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Abstract. Supra-Bayesianism is the Bayesian response to learning the opinions of others.
Probability pooling constitutes an alternative response. One natural question is whether there
are cases where probability pooling gives the supra-Bayesian result. This has been called the
problem of Bayes-compatibility for pooling functions. It is known that in a common prior
setting, under standard assumptions, linear pooling cannot be nontrivially Bayes-compatible.
We show by contrast that geometric pooling can be nontrivially Bayes-compatible. Indeed, we
show that, under certain assumptions, geometric and Bayes-compatible pooling are equivalent.
Granting supra-Bayesianism its usual normative status, one upshot of our study is thus that,
in a certain class of epistemic contexts, geometric pooling enjoys a normative advantage over
linear pooling as a social learning mechanism. We discuss the philosophical ramifications of this
advantage, which we show to be robust to variations in our statement of the Bayes-compatibility
problem.

§1. Introduction. Consider two or more Bayesian agents, endowed with a common
prior. Assume that each agent privately receives some information about the true
state of nature, updates her prior accordingly, and publicly announces her posterior
beliefs. Now, contrast the following two responses. The first corresponds to so-called
supra-Bayesianism (see Genest & Zidek, 1986, sec. 4, and the references therein). It
consists in treating the announcements of the posterior probability values as further
information on which the common prior is to be updated. The second consists simply
in pooling—specifically, taking a weighted average of—the announced posterior
probability values (for a review of the most important pooling methods, see, e.g.,
Genest & Zidek, 1986, sec. 3). One interesting question is whether there are pooling
methods such that the two responses lead to the same result, i.e., whether some pooling
methods can deliver the supra-Bayesian response. This has been called the problem of
Bayes-compatibility for pooling subjective probabilities, and it has been investigated
even beyond the common prior setting (e.g., Genest & Schervish, 1985). The literature
has so far essentially focused on investigating the problem under linear pooling. In the
common prior setting, an impossibility result has been established, to the effect that
linear pooling with strictly positive weights cannot be nontrivially Bayes-compatible
(Dawid, DeGroot, & Mortera, 1995; Bradley, 2018 as qualified by Dawid & Mortera,
2020; also Steele, 2012). Under weighted geometric pooling, by contrast, the problem
has not hitherto been systematically studied in this or any other context, to the best of
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our knowledge. Dawid et al. touch upon the issue, but they do not elaborate (Dawid
et al., 1995, p. 280). The question addressed in Easwaran et al. (2016) is related but
distinct, if only because the authors focus on an unweighted variant of geometric
pooling.

Our paper aims at filling the above gap in the literature. We identify and study
the form of Bayes-compatibility that is most relevant for geometric pooling in a
common prior setting. Judging from the seemingly trivial informational circumstances
under which it applies, the relevant condition, which we dub “full-revelation Bayes-
compatibility,” encapsulates a very minimal notion of Bayes-compatibility. But by
the same token, it expresses an extremely basic requirement for any pooling function
aspiring to the supra-Bayesian ideal. In a nutshell, for any such pooling function,
our full-revelation Bayes-compatibility requirement should be a low bar to clear.
Equipped with our new notion of Bayes-compatibility, we depart from the existing
literature—that has essentially focused on the aforementioned impossibility obtaining
under linear pooling—in establishing the possibility result that geometric pooling
can, in a common prior setting, be nontrivially Bayes-compatible. The issue of
the support of the measures being pooled, traditionally considered a weakness of
geometric pooling, plays a prominent role in this possibility; hence our paper’s title.
In fact, our main finding is the stronger result that geometric pooling is the only
pooling method displaying the form of Bayes-compatibility which we introduce.
Setting aside the trivial cases where linear and geometric pooling coincide, linear
pooling systematically violates the very basic Bayes-compatibility requirement which
our notion expresses; that is, linear pooling fails to clear the low bar for Bayes-
compatibility set by this requirement. Positively speaking, our main result delivers
at once a characterization of a very fundamental notion of Bayes-compatibility and,
under some restrictions (including the domain restriction induced by the common prior
assumption), a characterization of geometric pooling. Given that supra-Bayesianism
has the status of a normative ideal, our result thus indicates one dimension along
which geometric pooling enjoys a normative advantage over linear pooling. We discuss
the philosophical ramifications of this advantage. Perhaps most important in this
respect, we explain how it relates to respect for a pillar of Bayesian epistemology:
the principle of total evidence (Carnap, 1947; Good, 1967). While this completes the
conceptual core of our contribution, for interested readers, we also examine whether
this advantage carries over to more general settings than the one in which we initially
investigate the Bayes-compatibility problem. Specifically, we examine the effects of
relaxing the common prior assumption. We also examine the effects of relaxing the
assumption which we will initially impose on the amount of information shared by
the agents. We find that even when such generalizations have an impact on the Bayes-
compatibility of geometric pooling or the Bayes-incompatibility of linear pooling,
they do not eliminate the comparative advantage which the former enjoys over the
latter.

Zooming out from the set of papers specifically dedicated to analyzing Bayes-
compatibility, our study is situated, more generally, at the intersection of several strands
of literature. It belongs, first, to the literature on supra-Bayesianism (see Morris,
1974 and the other references in Genest & Zidek, 1986, sec. 4). On this score, we
present a restrictive set of conditions under which the consequences of the supra-
Bayesian ideal are unusually tractable, given that they coincide with those of geometric
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pooling. Second, our paper belongs to the common prior literature (Aumann, 1976;
Geanakoplos & Polemarchakis, 1982). Indeed, our main result consists in deriving
a logical implication of the classical common prior assumption. Most of the other
assumptions used in this derivation are standard in the common prior literature. Our
paper contributes, third, to the axiomatic analysis of pooling functions (surveyed in
Genest & Zidek, 1986, sec. 3; more recently Dietrich & List, 2016). We introduce a
simple Bayes-compatibility property, which we characterize by two preexisting axioms
and use to differentiate geometric from linear pooling over suitably restricted domains.
Fourth, our paper belongs to a large stream of formal social epistemology using pooling
functions to answer a variety of questions concerning consensus formation, social
learning, and related topics (see DeGroot, 1974; Lehrer & Wagner, 1981; and a review
of the recent literature on social networks in Golub & Sadler, 2016). One difference is
worth mentioning upfront, however. In this literature, opinion pooling is typically
introduced as an informationally parsimonious, boundedly rational alternative to
supra-Bayesianism—a view which, in the case of linear pooling, has been given
some axiomatic foundations (see Golub & Sadler, 2016, sec. 3.1.4). We mention this
justification but avoid using it to motivate our own study. This is because, as we will
observe, it would apply to geometric pooling with more qualifications than to linear
pooling. One of our main conclusions will be precisely that, in our setting, there is a
general trade-off between the informational parsimony and the Bayes-compatibility of
a pooling function. Fifth and finally, our study touches upon some established concepts
in social epistemology, such as testimony (Bradley, 2007; Steele, 2012), deference
(Gaifman, 1988; Elga, 2007), and synergy (Christensen, 2009; Easwaran et al., 2016)—
three ideas which we define and discuss below. Our paper as a whole is, in effect, a
study in peer disagreement (Goldman, 2001), though the scope of disagreement in
our case is obviously limited by the common prior restriction and cognate structural
assumptions.

The rest of the paper is organized as follows. §2 gathers the necessary preliminaries
on pooling functions. §3 introduces the Bayes-compatibility problem as it arises under
linear pooling. §4 states and studies the problem as it arises under geometric pooling.
This is where the central result of the paper is to be found. The next two sections
are dedicated to better understanding that result. To this end, §5 emphasizes possible
philosophical interpretations. §6, which may be skipped by those wishing to focus on
our core conceptual take-aways, emphasizes possible mathematical generalizations.
§7 concludes.

§2. Preliminaries on pooling functions. Let Ω be a set of states of nature. For
simplicity, we assume throughout the paper that Ω is finite and we take the maximal
algebra of events A = 2Ω. Let p denote a probability measure on A, and define the
support of p as supp(p) = {� ∈ Ω : p(�) > 0}. Let Δ be the set of all probability
measures on A. For any n ∈ N, Δn is the set of all profiles (p1, ..., pn) of length n, with
N = {1, ..., n} the set of profile members, and n ≥ 2 for nontriviality. Of particular
interest to this study will be the set Δn

′
of all profiles of n probability measures

with intersecting supports, that is, Δn
′

= {(p1, ..., pn) ∈ Δn :
⋂
i∈N supp(pi) �= ∅}. The

profiles displaying this property have been called “coherent” in the literature (Dietrich,
2017, p. 3).
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A pooling function F : Δn → Δ associates a probability measure F (p1, ..., pn) with
a profile (p1, ..., pn). The two most prominent pooling functions in the literature are
the weighted linear and the weighted geometric pooling functions. Assume for now
that both pooling functions apply with a set of weights {αi}i∈N such that αi ∈ (0, 1)
for all i in N and

∑n
i=1 αi = 1.1 The first property is natural, for instance, whenever

the weights reflect respective trust in an epistemic community and none of the profile
members has reasons to entirely disregard any other’s opinions. The second amounts to
a kind of normalization. Then, for any (p1, ..., pn) ∈ Δn and any A ∈ A, the weighted
linear pool of (p1, ..., pn) is given by

F (p1, ..., pn)(A) =
n∑
i=1

αipi(A), (1)

or equivalently by

F (p1, ..., pn)(A) =
∑
�∈A

n∑
i=1

αipi(�).

By contrast, for any (p1, ..., pn) ∈ Δn
′
, the weighted geometric pool of (p1, ..., pn) is

given by

F (p1, ..., pn)(A) = c
∑
�∈A

n∏
i=1

pi(�)αi , (2)

with c the normalizing constant given by

c =
1∑

�′∈Ω

n∏
i=1
pi(�′)αi

. (3)

We highlight that in the case of geometric pooling, a domain restriction (to Δn
′
)

is necessary to ensure that pooling results in a probability measure. This is due to
the following property of geometric pooling: If one profile member gives probability
value zero to a state, then the geometric pool gives it probability zero as well. This
is typically considered a major defect of geometric pooling, inasmuch as “zeros [...]
constitute vetos” (Genest & Zidek, 1986, p. 120; see also French, 1985, p. 186). In
what follows, we revisit the negative evaluation of this property of geometric pooling,
which we call the support-veto property. At this stage, we simply observe that the
entailed domain restriction is natural in a wide range of epistemic contexts.2 In
particular, it is satisfied whenever all profile members give strictly positive probability
to the true state of nature. At a later stage, we will show that there are cases

1 This assumption is to initially facilitate the comparison of linear and geometric pooling.
However, neither is restricted to this case. Indeed, we will later consider more general cases
for both. Furthermore, in the case of geometric pooling, we will provide more primitive
assumptions about pooling functions under which, over some domains, the above restrictions
on the weights can be imposed without loss of generality.

2 We later derive this domain restriction from more primitive assumptions about information;
see especially fn. 7.
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where the support-veto property of geometric pooling can be exploited further for
epistemic gain.

Both linear and geometric pooling have prima facie desirable properties that, under
additional assumptions, can be used to characterize them. Unlike geometric pooling,
linear pooling has the so-called strong setwise function property (McConway, 1981;
also Mongin, 1995, sec. 2; Bonnay & Cozic, 2018, sec. 5). This is essentially the
requirement that the pooling function be separable event by event in the algebraA, that
is, that the value of the pool onA ∈ A depend on the values taken by the pi only on A,
and on no other event inA. On the other hand, unlike linear pooling, geometric pooling
has the so-called external Bayesianity property (Genest, McConway, & Schervish,
1986; also Russell, Hawthorne, & Buchak, 2015; Dietrich, 2017). This is essentially
the requirement that pooling updated probability measures leads to the same result as
updating the pool of the probability measures. Each of these properties amounts to a
commutativity requirement on, and can be interpreted as a form of nonmanipulability
of, the pooling function (Dietrich & List, 2016). In what follows, we compare linear
and geometric pooling from a related but distinct point of view, namely, their respective
merits as mechanisms for learning from others. To this end, we assume the prevailing
normative view that, in the contexts where it applies, Bayesianism is the gold standard
for learning evidence in general, and “supra-Bayesianism”, to which we now turn, is
the gold standard for learning from others in particular.

§3. The problem of Bayes-compatibility.

3.1. A baseline setting for Bayes-compatibility. Supra-Bayesianism (e.g., Morris,
1974) is nothing other than what Bayesianism demands in a social context, that is,
when the available evidence includes the beliefs of other agents. More specifically,
by definition, a supra-Bayesian agent has a prior not only about the state of nature,
but also about any probabilistic opinion the other agents in her epistemic community
might have about the state of nature. Additionally, when she learns these opinions, for
example through verbal reports, she updates her prior by Bayesian conditionalization,
just like she does when she learns any event. Such reports simply provide a special
kind of evidence, sometimes called testimonial evidence (Bradley, 2007; Steele, 2012),
the receipt of which her posterior should reflect. To illustrate this idea, let us assume
that the supra-Bayesian agent is interested in the probability of some event A ∈ A.
Suppose that there is an event E ∈ A that represents the reports of the other agents’
probabilistic opinions on A. (This is in fact an important assumption, and we will
shortly offer one way to substantiate it.) Under this assumption, with p her prior and
provided that p(E) > 0,3 the agent responds in a supra-Bayesian way to learning E
just in case she adopts the posterior p(A|E) given by

p(A|E) =
p(A ∩ E)
p(E)

. (4)

More specifically, we will follow the stream of literature (Dawid et al., 1995; Bradley,
2018) examining the links between supra-Bayesianism and opinion pooling in the

3 Throughout the paper, whenever we write expressions like “p(A|E)” or refer to “the
conditionalization of p on information E”, we assume that p(E) > 0 so that p(A|E) is
well-defined.
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simple analytical setting characterized by the following assumptions.4 First, all the
agents start, and know that they start, from a common prior over A. For simplicity, we
will assume throughout that this prior has full support over Ω.5 Second, each agent i
receives about the true state of nature � some private information Ei(�). This private
information is “representable” (Dietrich, 2017, p. 2), that is, for all i, Ei(�) ∈ A. This
excludes more general forms of learning, such as the ones considered in the theory
of Jeffrey conditioning (Jeffrey, 2004). Additionally, the private information is what
we call “factive”, that is, whatever the true state of nature �, for all i, � ∈ Ei(�).
Intuitively speaking, this excludes receiving false information about the true state
of nature. Third, each agent i updates the common prior by Bayesian conditioning
on her private information Ei(�) and publicly announces her posterior probability
value for some event A of interest. The n updated probability measures will constitute
the profile of interest from the point of view of pooling. To these three established
assumptions we add a fourth one that is likewise established in the common prior
literature (Aumann, 1976; Geanakoplos & Polemarchakis, 1982) and comparable to
assumptions standardly made in the literature on supra-Bayesianism and opinion
pooling.6 To wit, we will assume that each agent i is equipped with an information
partition Ei over Ω, that any piece of private information Ei(�) she might receive is
taken from that partition Ei , and that the information partitions {Ei}i∈N are known by
all the agents. This allows us to work only with the primitive space of states of nature
Ω, instead of having to introduce (like in, e.g., Romeijn & Roy, 2018) an additional
space of epistemic states corresponding to the possible probability announcements.

These assumptions call for some preliminary comments. The second assumption,
about the nature of information, will be maintained throughout the paper. We want to
focus here on the simplest kinds of learning, and these involve only representable and
factive pieces of information. From now on, “information” will always be shorthand
for “representable and factive information.” As regards the third assumption, about
social information, the focus on absolute probability values—that is, single probability
values of the form p(A)—will be maintained through most of the paper. But we will
also briefly consider relative probability values—that is, probability ratios, of the form
p(A)/p(B). The first assumption, that is, the common prior assumption, is evidently
restrictive. We will eventually explore weakening it, but we will impose it through most
of the paper, and will weaken it only mildly. This calls for two immediate clarifications.
First, although such claims have been made in the literature (see Morris, 1995 for
a review), we make no general normative claim for the common prior assumption.

4 Not all the literature on supra-Bayesianism and opinion pooling adopts this analytical
setting, however, especially not the common prior condition, nor even the more general
assumption that some prior is fully specified from the outset (and thus, that Bayes-
compatibility is eventually to be appreciated with respect to that specific prior). See Genest &
Schervish (1985), for example, with a recent philosophical application in Romeijn (2019a);
see also Bonnay & Cozic (2019).

5 Lindley proposed to call “Cromwell’s rule” the “requirement (...) that for quantities taking
only a finite set of values, no probability be zero”. This is because “[Cromwell] suggested its
equivalent when he advised the Church of Scotland to remember that it might be wrong”
(Lindley, 1982a, sec. 6).

6 The literature standardly assumes that from the point of view of a distinguished agent i, the
report of each j constitutes a random variable for i (Dawid et al., 1995, p. 267–268; Bradley,
2018, p. 9–10). This is tantamount to i equipping each j with an information partition. More
on the random variable construction later in the present section.
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We simply invoke it for a baseline investigation of the links between supra-Bayesianism
and opinion pooling. Second, we observe that from a subjectivist perspective at
least, this is a rather natural assumption to make in the context of opinion pooling.
Indeed, starting from a common prior, differences in beliefs boil down to differences in
information (since we assume that only representable and factive pieces of information
are received). And from a subjectivist perspective, as Aumann argues, trying to
“reconcil[e] subjective probabilities [by pooling them] makes sense if it is a question of
implicitly exchanging information, but not if we are talking about ‘innate’ differences
in priors” (Aumann, 1976, p. 1238). Finally, the fourth assumption, about information
partitions, is also evidently restrictive. We highlight that in a common prior context,
it can be interpreted (as elsewhere in the literature; see Bonanno & Nehring, 1997) in
terms of a model in which scientists start from a common hypothesis (the common
prior), distribute various experiments between themselves, and then share the results.
Such an epistemic community constitutes a natural setting for thinking about learning
from others. It can be used for making sense of our main results.

To formally state the problem of Bayes-compatibility, we need to make one last
mathematical object explicit. Recall our supposition that, for each i ∈ N , there
is an information partition Ei , and that these partitions are known to all agents.
Accordingly, let p(·|Ei(·)) : A× Ω → R be a random variable such that, for all� ∈ Ω,
p(·|Ei (�)) ∈ Δ and Ei(�) is the cell of Ei that contains �.7 In words, p(·|Ei (·)) is the
random variable whose possible values are the possible posterior opinions of agent
i. Since we are assuming that the common prior p has full support, each cell of each
partition has positive probability, so that p(·|Ei(·)) assumes distinct values on each
cell of Ei . Exploiting the full support and factive learning assumptions, we can identify
the information that i receives with the support of the posterior of i: for all � ∈ Ω,
{�′ ∈ Ω : p(·|Ei(�′)) = p(·|Ei(�))} = Ei(�) = supp(p(·|Ei (�))). 8 Importantly,
it then follows that, for all � ∈ Ω,

⋂
i∈N{�′ ∈ Ω : p(·|Ei (�′)) = p(·|Ei(�))} =⋂

i∈N supp(p(·|Ei(�))), which is nonempty by the assumption that agents learn
only events containing �. Therefore, in our setting, learning the n distributions is
equivalent to learning the intersection of the supports of the probability distributions.
This fact, which will play a central role in our paper, can be immediately verified
as follows. Since, for all � ∈ Ω, supp(p(·|Ei (�))) = Ei(�) ∈ Ei , we can recover
the support of p(·|Ei(�)) from knowledge of both

⋂
i∈N supp(p(·|Ei (�))) and Ei .

To do so, it suffices to find the unique cell of Ei that has nonempty intersection
with

⋂
i∈N supp(p(·|Ei (�))). For simplicity, in what follows, unless we say otherwise

(as will be necessary, for example, when we will consider relaxing the full support
assumption), we will let Ei(�) denote both the conditioning information and the
support of p(·|Ei(�)). Since those events are identical under the above assumptions,
no confusion can arise.

Studies of Bayes-compatibility have hitherto focused on cases where the agents
report not their full posteriors, but only their posterior probability value for some
distinguished event A ∈ A. One possible motivation for this is that the agents have
only limited information about each other’s beliefs. Another can be that the epistemic

7 Notice that a profile
(
p(·|E1(�)), ... , p(·|En(�))) generated by Bayesian updating p on

n pieces of private evidence taken from n information partitions is in Δn
′
, for with � the

unknown true state of nature,� ∈
⋂
i∈N supp(p(·|Ei (�))) =

⋂
i∈N Ei (�), the last equality

following from the full support assumption.
8 Without the full support assumption, the support of pi could be a strict subset of Ei (�).
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inquiry is conducted event by event, perhaps so as to take full advantage of event-
specific expertise of the agents, perhaps for some other reason. Either way, such cases
can be modeled using real-valued random variables of the formp(A|Ei(·)) : Ω → [0, 1].
In general, it is possible that p(A|E) = p(A|E ′) forE,E ′ ∈ Ei ,E �= E ′. Consequently,
the report of p(A|Ei(�)) does not generally inform the other agents of exactly one cell
of Ei . The partition corresponding top(A|Ei(·)) will be a coarsening of the information
partition Ei , with cells formed by taking unions of all the cells in Ei that yield the same
probability value for A. This is how the form of testimonial evidence most often
discussed in the literature can be represented in our setting.

We can now formally state the baseline, standard version of the Bayes-compatibility
problem. Let p be the common prior. With A some event of interest in A, let
{p(A|Ei(·))}i∈N be real-valued random variables corresponding to the updated
probability value agent i = 1, ... , n might report for event A. The report of agent
i, then, is represented as p(A|Ei(·)) = p(A|Ei(�)). Studies of Bayes-compatibility
typically adopt the perspective of some distinguished agent i ∈ N . Call a pooling
function F Bayes-compatible with respect to agent i if, whatever the true state of nature
� ∈ Ω, for any event A ∈ A, the following equality holds9 :

F
(
p|E1(�), ... , p|En(�)) (A)

= p

(
A

∣∣∣∣∣p(A|E1(·)) = p(A|E1(�)), ... , Ei(�), ... , p(A|En(·)) = p(A|En(�))

)
.

(5)

It is not always relevant to single out some particular agent i ∈ N to think about
Bayes-compatibility, however. Bayes-compatibility can also be investigated from the
point of view of all agents at once, in the following sense. Call a pooling function F
Bayes-compatible if, whatever the true state of nature � ∈ Ω, for any event A ∈ A, the
following equality holds:

F
(
p|E1(�), ... , p|En(�)) (A)

= p

(
A

∣∣∣∣∣p(A|E1(·)) = p(A|E1(�)), ... , p(A|En(·)) = p(A|En(�))

)
. (6)

Equation (6) is still naturally interpreted from the perspective of any specific i ∈ N ,
provided one considers i before she receives information Ei(�) about the true state
of nature �. Indeed, ex ante in this sense, i is uncertain about her own posterior just
like she is uncertain about any other j’s posterior. Accordingly, to appreciate Bayes-
compatibility from such ex ante perspective, it is not relevant to single out i, or j, or
any specific agent. Alternatively, equation (6) can be interpreted from the point of view
of some external observer that—without having any private information of her own

9 Notice that our definition requires equality to hold surely (deterministically), and not
just almost surely (in expectation). By contrast, most of the literature focuses on almost
sure equality. Sure equality implies almost sure equality, so our requirement is stronger.
Furthermore, sure equality can be considered more natural than almost sure equality when,
like in our setting, finite state spaces are at stake. By way of anticipation, the equalities in
our main finding (Theorem 1) and most subsequent results—even when the full support
assumption is relaxed (e.g., Proposition 4)—will also hold surely, not just almost surely.
More on the logical relationships between our approach and the traditional approach in
fn. 18.
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about the true state of nature—would be uncertain about the opinions of a group of
agents. We leave the interpretation open at this stage. For reasons to be discussed in
more detail below (see especially the discussion after (11)), we will henceforth focus
on (6) rather than (5). The problem of Bayes-compatibility that we are interested in,
then, is whether any pooling function can be Bayes-compatible in the sense displayed
in (6).10

3.2. The possibility of Bayes-compatibility. As defined in the previous section, the
problem of Bayes-compatibility has already been studied in the particular case of linear
pooling functions. For linear pooling, the equality in (6) reads as follows:
n∑
i=1

αip(A|Ei(�)) =p

(
A

∣∣∣∣∣p(A|E1(·)) = p(A|E1(�)), ... , p(A|En(·)) = p(A|En(�))

)
.

(7)

It has been established in the literature that, for any A, the equality in (7) holds almost
surely only if, for all i, j ∈ N , p(A|Ei(·)) = p(A|Ej(·)) holds almost surely (Dawid
et al., 1995, sec. 4.1; Bradley, 2018, sec. 4.211; see also Steele, 2012). This can be
interpreted as an impossibility result—into which we later offer a new, simple insight.
Indeed, this means that under linear pooling, Bayes-compatibility holds only if all
agents are expected to report the same updated probability value for the event A of
interest. Under the assumption that these probability values come from updating the
common prior on typically different pieces of private information, this is impossible.

To fully appreciate the impossibility, however, one would need to know whether it
affects only linear or all pooling functions. The following preliminary example (parallel
to the one in Bradley, 2018, sec. 4.2) suggests that geometric pooling affords more
possibilities than linear pooling. To understand the example, notice the following
elementary implication of the common prior and the private information assumptions.
Assume that agent 1, say, reports an updated probability value of zero for the event
A of interest.12 Then, upon learning this report, no matter what the other reports
are, a supra-Bayesian i ∈ N will set her posterior probability value for that event to
zero. That is to say, p(A|p(A|E1(·)) = 0, p(A|E2(·)) = p(A|E2(�)), ... , p(A|En(·)) =
p(A|En(�))) = 0. But, for any �, this particular constraint cannot be satisfied under
linear pooling unless p(A|Ei(�)) = 0 for all i. Under geometric pooling, by contrast,
this constraint will always be satisfied. This follows from the support-veto property of
geometric pooling, which we highlighted when introducing (2). Indeed, for any� ∈ Ω,

10 We are aware of the fact that supra-Bayesianism itself could be formally construed as a
pooling function (e.g., Genest & Zidek, 1986, p. 120). But we are interested in nontrivial
Bayes-compatibility, so we consider only pooling functions that differ from the supra-
Bayesian one in pooling-functional form.

11 Dawid & Mortera (2020) identify a problem in the proof of one of Bradley’s theorems.
But they grant—and indeed they prove in their own work (Dawid et al., 1995)—that
linear pooling with strictly positive weights cannot be nontrivially Bayes-compatible. This
corresponds to the above statement.

12 The trivial case Ei (�) = Ω put aside, under our assumptions about information, each
i ∈ N will have some nonempty event—namely, Ei (�)c—for which to report an updated
probability value of zero.
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the following equality holds:

c
∑
�′∈A

n∏
i=1

p(�′|Ei(�))αi = 0

= p

(
A

∣∣∣∣∣p(A|E1(·)) = 0, p(A|E2(·)) = p(A|E2(�)), ... , p(A|En(·)) = p(A|En(�))

)
.

(8)

This raises several questions, among which are the following. Can geometric pooling
achieve Bayes-compatibility also when none of the agents attributes posterior
probability value zero to the event of interest? And when geometric pooling achieves
Bayes-compatibility, what is the role played by the support-veto property?

§4. Full-revelation Bayes-compatibility.

4.1. Introducing full-revelation Bayes-compatibility. Under the preceding defini-
tions and assumptions, geometric pooling is Bayes-compatible if, whatever the true
state of nature � ∈ Ω, for any event A ∈ A, the following equality holds:

c
∑
�′∈A

n∏
i=1

p(�′|Ei(�))αi

= p

(
A

∣∣∣∣∣p(A|E1(·)) = p(A|E1(�)), ... , p(A|En(·)) = p(A|En(�))

)
. (9)

Notice first that, as indicated by the denominator of the normalizing factor c defined
in (3),13 the geometric variant of the Bayes-compatibility problem calls for stronger
assumptions about social information than the linear variant. This is because, unlike
linear pooling, geometric pooling is not separable event by event in the algebra A. The
value of the geometric pool on A depends on the values taken by the p(·|Ei(·)) not
only on A, but also on events other than A. Thus, under geometric pooling, unlike
under linear pooling, it makes little—if any—sense to maintain the assumption that
the agents report only their updated probability value for the event A of interest.
Put differently, the very definition of Bayes-compatibility in (6) proves tailored to,
if not biased towards, linear pooling. For investigating the Bayes-compatibility of
geometric pooling, then, an alternative approach must be taken. Now, the definition
of geometric pooling in (2) makes it clear that to compute the value of the geometric
pool for A, one needs to know no less than the full posterior distributions of the
agents. Accordingly, in what follows, we require that the full posterior distributions
of the agents be reported. We call this requirement the full revelation assumption.
Admittedly, this is a very strong informational requirement. This is why we will later
present a variation on the problem of Bayes-compatibility in which it can be relaxed.
However, under geometric pooling, this requirement is necessary in order to study the
problem of Bayes-compatibility as initially stated, that is, with reference to a given

13 Since the profile considered in (9) depends on �, so does the normalizing factor c defined
in (3).
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event and a fixed underlying measurable space.14 Furthermore, the minimal kind of
Bayes-compatibility to which the full revelation assumption leads is worth investigating
not only under geometric pooling, but under any type of pooling. In particular, as the
next section will confirm, even linear pooling is well worth considering anew under the
full revelation assumption. Indeed, as much as one should recognize that, under full
revelation, Bayes-compatibility looks like a low hurdle, one cannot simply presume,
but must check, that this low hurdle is actually cleared by any pooling mechanism,
starting with the linear one.

As a preliminary to such an inquiry, notice that the full revelation assumption
allows us to state a new version of the equality in (9). Let {p(·|Ei (·)}i∈N be random
variables corresponding to the possible updated distributions of experts i = 1, ... , n.
Then, indicating a particular full-revelation report by p|Ei(·) = p|Ei(�), the new
equality reads as follows:

c
∑
�′∈A

n∏
i=1

p(�′|Ei(�))αi = p

(
A

∣∣∣∣∣p|E1(·) = p|E1(�), ... , p|En(·) = p|En(�)

)
.

(10)

In our setting, by announcing her full posterior, each agent i effectively reveals her
conditioning private information Ei(�). Under our assumptions about information,
this statement holds without qualification if, as we are assuming now and will be
assuming through most of this paper, the prior p has full support over Ω. We will later
invoke the fact that, even when this assumption is not imposed, a qualified version
of the statement remains true.15 Accordingly, we propose to model i’s announcement
that her posterior distribution is p|Ei(�) simply as the event Ei(�). Admittedly, in
general, the two events are fundamentally distinct. However, under the assumption
that the Ei(�) are taken from information partitions Ei that are known to all, as we
explained in §3.1, the two events are identical.16

14 Rather than requiring agents to report their full posterior distributions, one could envisage
requiring that the agents report their updated probability values only for A and Ac . This is
essentially the strategy followed in Dawid et al. (1995), sec. 4.3 and Easwaran et al. (2016), sec.
9.1. First, notice that this would amount to coarsening the algebra, while the original pooling
problem was stated for the algebra A. Second, given the properties of geometric pooling,
the only way to secure probabilistically consistent results across all such coarsenings would
consist in requiring that the reported posterior values for both A andAc be decomposed with
respect to the finest of all the partitions of Ω—which would lead back to the full revelation
assumption.

15 Even when the full support assumption is relaxed, under our assumption that A contains
all the states in Ω, one can still think of the agents as revealing their private information in
the following sense. Assume for instance that �0 is the only state not in the support of p.
Then, for any � ∈ Ω, upon learning the full posterior of j, i cannot tell whether j’s private
information was Ej(�) or Ej(�) ∪ {�0}. Such underdetermination generalizes to when
there is more than one state in the complement of the support of p. In this sense, one may
say that the agents reveal their private information up to zero-probability events.

16 Furthermore, even when one cannot identify the announced posteriors with the received
private information,Ei (�) still is the most specific event representable inAwhich j �= i learns
when receiving the probabilistic report that p|Ei (·) = p|Ei (�). This implies the following.
Assume that (unlike in, e.g., Romeijn & Roy, 2018) one chooses not to explicitly model an
additional algebra B for the probabilistic reports over A. This permits zooming in on the
simplest implications of supra-Bayesianism, that is, those reflected within the basic algebraA.
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The foregoing motivates introducing and investigating what we call full-revelation
Bayes-compatibility. Call a pooling function F full-revelation Bayes-compatible if,
whatever the true state of nature � ∈ Ω, for any event A ∈ A, the following equality
holds:

F
(
p|E1(�), ... , p|En(�)) (A) = p

(
A

∣∣∣∣∣
⋂
i∈N
Ei(�)

)
. (11)

To start with, the equality in (11) can be compared with the equality in (6). The former
equality is evidently simpler than the latter. Furthermore, under the assumptions
leading to the simplification of (6) into (11), we need not distinguish between (5)
and (6). That is to say, it is unnecessary to define full-revelation Bayes-compatibility
with respect to some agent i, rather than simpliciter. This is because, under the full-
revelation assumption, a pooling function is Bayes-compatible with respect to some
i ∈ N if and only if it is Bayes-compatible with respect to all i ∈ N . We started directly
by considering (6), rather than (5), largely because of this equivalence which we can
now state.

Second, the very definition of full-revelation Bayes-compatibility can be conveniently
simplified. Under our assumptions of a common prior and individual information
partitions, any � ∈ Ω defines a profile (p|E1(�), ... , p|En(�)). Accordingly, let Δn

cp

stand for the set of all profiles generated from some common prior in accordance with
all our assumptions.17 Therefore, for any A ∈ A, the claim that the equality in (11)
holds for any n-tuple {p(·|Ei (·))}i∈N and all � ∈ Ω is equivalent to the claim that, for
all profiles (p|E1, ... , p|En) in Δn

cp
,

F (p|E1, ... , p|En) (A) = p

(
A

∣∣∣ ⋂
i∈N
Ei

)
. (12)

Henceforth in this paper, we will adopt the alternative approach of quantifying over
profiles, like in (12) and unlike in (11), that features realizations of random variables.
While being equivalent to the traditional random variable approach when construed as
above,18 this alternative domain approach allows one to substantially simplify notation.
It also brings out the continuity, which our results will exploit, between our question
and some of the concepts and tools in the axiomatic theory of pooling functions.

Then, the onlyA-representable option is to model the probabilistic reportp|Ei (·) = p|Ei (�)
as Ei (�).

17 In more detail, the domain Δncp can be defined as follows. Any full-support common prior
p and family of information partitions {Ei}i∈N define an n-tuple of random measures
(p|Ei (·), ... , p|En(·)) in accordance with our factive learning assumption. Let Λ index the
set of all such n-tuples of random measures, {(p|E1(·), ... , p|En(·))� : � ∈ Λ}. For each
� ∈ Λ and � ∈ Ω,

(
p|E1(·), ... , p|En(·)

)
�

induces a profile
(
p|E1(�), ... , p|En(�)

)
�
. Thus,

the set of all profiles that are generated by such an n-tuple of random measures is Δncp ={(
p|E1(�), ... , p|En(�)

)
�

: � ∈ Λ and � ∈ Ω
}
.

18 More fundamentally, our alternative approach indicates that the traditional conception of
Bayes-compatibility as a property that holds for each profile in a set of probability 1 can be
generalized to the notion of Bayes-compatibility at each profile in a certain domain. This is
a generalization since, unlike what the traditional approach implies and a full unpacking of
(12) would accordingly reflect, nothing of principle in the new approach necessitates that the
domain in question be defined with reference to a set of states of measure 1. For illustration
and by way of anticipation, some of the generalizations we will present in §6 will be with
reference to domains of profiles that need not have unit measure.
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The problem of full-revelation Bayes-compatibility, then, is whether any pooling
function can be full-revelation Bayes-compatible as expressed in (12). Before
thoroughly studying that problem, it is worth pausing to emphasize what it is and
what it is not. The problem is not what the supra-Bayesian response would be under
the full revelation assumption. The answer to this question is almost transparent. It
is already given in the right-hand side of the equality in (12). The problem is whether
any pooling function can capture this supra-Bayesian response, that is, whether there
exists a left-hand side to realize, for all (p|E1, ... , p|En) in Δn

cp
, the equality in (12). The

answer to this question is, by contrast, not transparent. We now turn to providing it.

4.2. Characterizing full-revelation Bayes-compatibility. We now proceed to stating
our results. As a preliminary check, we start with the observation that, degenerate
cases aside, linear pooling cannot be full-revelation Bayes-compatible. We recapitulate
the most relevant assumptions made so far. The proofs are in the Appendix.

Proposition 1. Let (p|E1, ... , p|En) be any profile in Δn
cp

. Let {αi}i∈N be any weights
such that αi ∈ (0, 1) for all i and

∑n
i=1 αi = 1. The following are equivalent:

1.
∑n
i=1 αip(A|Ei) = p(A|

⋂
i∈N Ei) for allA ∈ A.

2. Ej = Ek for allj, k ∈ N .

The above proposition can be related to the impossibility result mentioned after
equation (7). Given their heterogeneous assumptions about social information, the two
results are not directly comparable. This fact notwithstanding, the above proposition
offers an appreciably simpler insight into the Bayes-incompatibility of linear pooling
than currently available in the literature—compare the respective proofs of Proposition
1 and Corollary 1 in Bradley (2018), in particular. The gain in simplicity crucially
hinges on the strength of the full revelation assumption. This assumption, which
is motivated by our interest in geometric pooling, is not imposed in the rest of the
literature. There, in line with a prevailing interest in linear pooling, it is assumed that
agents reveal only their posterior probability value for one event. Nevertheless, what
can be taken from Proposition 1 is that the Bayes-incompatibility of linear pooling does
not depend on that restriction. Indeed, under linear pooling, Bayes-incompatibility
prevails even when full revelation is assumed. To this extent, linear pooling can be
deemed radically Bayes-incompatible.

Now to our main result. It establishes, among other things, that a pooling function
is full-revelation Bayes-compatible if and only if it is geometric. Once again, in line
with the caveat with which we ended last section, we wish to stress upfront that while
it is almost immediate that, under our assumptions, the n probabilistic reports should
correspond to the event

⋂
i∈N Ei , it is not immediately transparent that conditioning on

this event would coincide with geometric pooling. Now, to state the entire proposition,
we introduce two preexisting pooling axioms. The first property is arguably the simplest
of all unanimity preservation constraints. The second property is a particular kind of
commutativity with Bayesian conditioning, named here as in Dietrich (2017) (p. 6). It
essentially requires that anything learned by one single agent is reflected in the pooled
probability.19

19 As regards the second axiom, recall that, provided F (p1, ... , pn)(E) > 0, F (p1, ... , pn)|E is
simply the conditionalization of F (p1, ... , pn) on information E ∈ A.
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Unanimity. For any probability measure p ∈ Δ, F (p, ... , p) = p.
Private Bayesianism. For any profile (p1, ... , pi , ... , pn) ∈ Δn and any event E ∈ A,
F (p1, ... , pi |E, ... , pn) = F (p1, ... , pi , ... , pn)|E.

The theorem can now be stated.

Theorem 1. Let F denote any pooling function on Δn
cp

. The following are equivalent:

1. For any profile (p|E1, ... , p|En) ∈ Δn
cp

and all A ∈ A: F (p|E1, ... , p|En) (A) =
p

(
A|

⋂
i∈N Ei

)
.

2. For any profile (p|E1, ... , p|En) ∈ Δn
cp

, any weights {αi}i∈N such that αi �= 0
for all i ∈ N and

∑n
i=1 αi = 1, with c induced as in (3), for all � ∈ Ω:

F (p|E1, ... , p|En) (�) = c
∏n
i=1 p(�|Ei)αi .

3. F satisfies Unanimity and Private Bayesianism.

While the Appendix contains a full proof of the theorem, it may be helpful to convey
here the main intuition behind the equivalence of 1 and 2. Two cases need to be
considered. If � /∈

⋂
i∈N Ei , then, for some i ∈ N , p(�|Ei) = 0 = p(�|

⋂
i∈N Ei). By

the support-veto property of geometric pooling, this implies that, for any admissible
set of weights, c

∏n
i=1 p(�|Ei)αi = 0. On the other hand, if � ∈

⋂
i∈N Ei , then

simple algebra shows that, for any admissible set of weights, c
∏n
i=1 p(�|Ei)αi =

p(�|
⋂
i∈N Ei). Thus, it must be that a pooling function F is Bayes-compatible if and

only if it is geometric with nonzero normalized weights, that is, 1 and 2 are equivalent.
Stepping back, several comments are in order. First, the equivalence between parts

2 and 3 of Theorem 1 amounts to a characterization of geometric pooling with weights
{αi}i∈N such that αi �= 0 for all i and

∑n
i=1 αi = 1. This characterization is interesting

for its simplicity. But it is important to realize, to start with, that it is here proved
to hold only over the domain Δn

cp
. Indeed, the common prior assumption induces a

domain restriction to the set of all profiles coming by Bayesian updating from some
common prior. For instance, with the state space Ω = {�1, �2, �3} and the probability
measures p1 and p2 such that p1({�1, �2}) = 1/2 and p2({�1, �2}) = 1/3, the profile
(p1, p2) is not contained in this set, and so does not fall under the scope of Theorem 1.

Furthermore, it is equally important to note that the weights in the above
characterization of geometric pooling are not unique, and this nonuniqueness cannot
be improved on the domain over which the characterization has been proved to hold.
To be sure, the weights {αi}i∈N can all be taken in (0, 1), or even equal to 1/n, without
altering the result of the pool. One interpretation of this flexibility is that, for the
particular epistemic purpose under consideration, geometric pooling is robust against
expert miscalibration. It delivers the supra-Bayesian solution even when the agent with
the most specific information is given the smallest weight in the pool.20 That being said,
one should not lose track of the fact that taking the weights to be all equal, or even
positive, can only be a matter of convention in our setting. In fact, negative weights
are acceptable, too, provided the weights sum up to 1 over N. At this point, in all
fairness, it might be asked whether allowing weights to be negative would open up new
possibilities for the Bayes-compatibility of linear pooling. However, it is well-known

20 More generally, geometric pooling thus proves immune, in our setting, to any kind of
manipulation of the pooling result that one would want to implement through a manipulation
of the pooling weights.
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that linear pooling cannot accommodate negative weights if—as indicated here by the
notation—the pooling weights are required to be profile-independent.21

Second, as the notation also indicates, the weights {αi}i∈N featured in Theorem 1
are event-independent. Unlike linear pooling, geometric pooling can accommodate
at least some forms of event-dependence in the pooling weights. Consider, for
example, the limiting case of state-dependent weights, that still induce a well-defined
probability measure under geometric pooling. However, nothing guarantees the Bayes-
compatibility of geometric pooling in those cases, and we will not explore them any
further here.

Third, Proposition 1 follows from Theorem 1 as a corollary. It corresponds to the
degenerate case where linear and geometric pooling coincide on all events. In a common
prior setting, this happens exactly on the unanimous profiles, that is, when all agents
announce the same posterior probability measure.

Fourth, Theorem 1 highlights the links between Bayes-compatibility and commu-
tativity with Bayesian conditionalization (here expressed, specifically, by the Private
Bayesianism axiom). Whatever the exact assumption one wishes to impose regarding
social information, this connection is directly relevant to understanding why linear
pooling fails to be Bayes-compatible. However, the relevance of commutativity with
Bayesian conditionalization to understanding Bayes-compatibility appears less clearly
in the previous treatments of the problem than in ours. This, too, is made possible
by the fact that we are investigating the problem of Bayes-compatibility under the
restrictive assumption of full-revelation.

§5. Interpreting full-revelation Bayes-compatibility. This section is dedicated to
putting full-revelation Bayes-compatibility, and its characterization by geometric
pooling in Theorem 1, in broader philosophical perspective. We first detail how
requiring full-revelation Bayes-compatibility can be related to respecting the “principle
of total evidence,” a pillar of Bayesian epistemology. Next, we explain how this
principle and Theorem 1 shed light on the phenomenon of “synergy” that has recently
received some attention in the social epistemology literature. Finally, we discuss another
recent central topic of this literature, “epistemic deference,” in connection to Bayes-
compatibility, geometric pooling, the principle of total evidence, and synergy.

5.1. Total evidence. Consider, say, agent 1. She privately receives information E1

and subsequently learns, through public announcements, that the posteriors of the
other agents are p|E2, ... , p|En. Under the assumptions spelled out in the previous
section,

⋂
i∈N Ei corresponds to all the evidence she is directly or indirectly given

regarding the true state of nature. Similarly, for any i ∈ N , i’s total evidence is given
by

⋂
i∈N Ei . This is why there is no need to distinguish between (5) and (6) under

21 For some profiles and profile-dependent weights, if negative weights are allowed, linear
pooling can behave in a Bayes-compatible way. Consider for example Ω = {�1, �2, �3, �4},
p be the uniform distribution on Ω, p1 = p|{�1, �2}, p2 = p3 = p|{�1, �2, �3}. Then,
with profile-dependent weights α1 = α2 = 1, α3 = –1, the linear pool of this profile is
well-defined and full-revelation Bayes-compatible. Notice by contrast that, to secure Bayes-
compatibility, geometric pooling requires no profile-dependence or sign condition on the
weights. Moreover, allowing negative weights for linear pooling would require introducing
still further coherence constraints on weights to ensure that the pool itself is a probability
function (see, e.g., Genest, 1984).
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our assumptions. An often implicit pillar of Bayesian epistemology known as the
principle of total evidence (Carnap, 1947; Good, 1967) requires that a Bayesian agent
conditionalize on all of her evidence. What Proposition 1 and Theorem 1 show is that,
in our setting, geometric pooling, as a mechanism for learning from others, always
respects this principle while linear pooling systematically violates it. This is illustrated
particularly vividly by how each pooling method treats the states to which some, but
not all, agents give posterior probability zero. By putting some probability mass on
such states, linear pooling disregards the part of the available evidence entailing that
these states should be left out of the support of any Bayesian posterior. By contrast,
because of the support-veto property, geometric pooling efficiently aggregates all of
the evidence to which the group collectively has access.

Furthermore, it has been remarked in the literature (Bradley, 2006, p. 145–146)
that if individuals are required to respect the principle of total evidence, pooling
problems will generally be, in one important respect, unstable. The key observation
behind this assessment is that the very statement of a pooling problem, which includes
the profile of opinions, conveys information to the agents whose opinions are being
pooled. Thus, whenever the agents are informed of the profile, they are required by
the principle of total evidence to revise their opinions. This means that the initial
pooling problem transforms into a new one, generally leading, through the pooling
function of interest, to a different solution. But the new problem similarly contains
new information, thus leading to still another problem and solution, and so on. In light
of this, it is worth highlighting that in our common prior setting and under geometric
pooling, no such instability arises. In our setting, the aggregation problem informs
the agents of

⋂
i∈N Ei , which is identical to the intersection of the supports. Suppose

that the agents update on that information, in accordance with the principle of total
evidence. Then, Theorem 1 ensures that the new pool does not differ from the initial
one under geometric pooling. To see this, observe that, for any profile in Δn

cp
, for all

i ∈ N , and any � ∈ Ω, we have the following chain of equalities.

c

n∏
i=1

pi(�)αi = p

(
�

∣∣∣∣ ⋂
i∈N
Ei

)
= pi

(
�

∣∣∣∣ ⋂
i∈N
Ei

)
= c

n∏
i=1

pi

(
�

∣∣∣∣ ⋂
i∈N
Ei

)αi
. (13)

5.2. Synergy. Another implication of Theorem 1 is worth singling out. Say that
a pooling function F displays synergy (see Christensen, 2009; Easwaran et al.,
2016, sec. 6; Dietrich, 2010, sec. 1) if for some event A, F (p1, ..., pn) (A) /∈
[mini∈N pi(A),maxi∈N pi(A)]. Synergy thus violates the unanimity preservation
constraint requiring that if pi(A) ∈ [x, y] for all i ∈ N , then F (p1, ..., pn) (A) ∈ [x, y].
Notice that this is a strengthening of a standard unanimity preservation constraint
(weaker than the one mentioned in §4.2) to the effect that if pi(A) = x for all i ∈ N ,
then F (p1, ..., pn) (A) = x (e.g., Mongin, 1995, p. 314). Synergy is of interest in the
present paper because, mutatis mutandis, it can be displayed by supra-Bayesianism.22

The following is an informal and elementary illustration. Assume that, based on
independent sources of information, n agents report the same very high probability
value x for event A. Then it would be conceivable for at least one of the agents to
consider that the independent reports confirm the truth of A, and raise her probability

22 This statement can be made more rigorous by considering supra-Bayesianism as a pooling
function (as contemplated in, e.g., Genest & Zidek, 1986, p. 120).
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for A from x to y > x. This would be a simple instance of synergy. A related phe-
nomenon has been called extremizing and discussed in the recent statistical literature
on expert forecasting (see esp. Baron et al., 2014; Tetlock & Gardner, 2016, chap. 9; and
Romeijn, 2019b for a philosophical elaboration). We henceforth focus on synergy while
noting that the links with extremizing would deserve further study.

Assuming weights {αi}i∈N such that αi ∈ (0, 1) for all i and
∑n
i=1 αi = 1, linear

pooling cannot display synergy. By construction, it will always be the case that, for any
A,

∑n
i=1 αipi(A) ∈ [mini∈N pi(A),maxi∈N pi(A)]. While this can be considered an

advantage for certain purposes,23 it is a limitation for a learning heuristic. Geometric
pooling can, by contrast, display synergy. We illustrate this with the following two
examples. In these examples, in order to facilitate comparison with linear pooling, we
restrict attention to geometric pooling with weights {αi}i∈N such that αi ∈ (0, 1) for
all i and

∑n
i=1 αi = 1.

Example 1. Let Ω = {�1, �2, �3, �4} and let p be the uniform distribution on Ω.
Let p1 and p2 be the probability measures obtained from p by Bayesian conditioning on
E1 = {�1, �2, �3} and E2 = {�1, �4}, respectively. Then, the profile (p1, p2) is given in
the table below.

�1 �2 �3 �4

p1 1/3 1/3 1/3 0
p2 1/2 0 0 1/2

Consider the event A = {�1, �3}. Notice that [mini∈N pi(A),maxi∈N pi(A)] =
[1/2, 2/3] and [mini∈N pi(Ac),maxi∈N pi(Ac)] = [1/3, 1/2]. For any geometric pool F
with weights in (0, 1), it will be the case that F (p1, p2)(A) = 1 > maxi∈N pi(A) and
F (p1, p2)(Ac) = 0 < mini∈N pi(Ac).

The next example immediately clarifies that, contrary to what one might be tempted
to conclude on the basis of Example 1, different supports for the pi is not a necessary
condition for geometric pooling to display synergy. It also serves as a reminder of the
fact that geometric pooling can violate the standard unanimity preservation constraint
mentioned earlier in this section, in the special case when for some A, mini∈N pi(A) =
maxi∈N pi(A).

Example 2. Let Ω = {�1, �2, �3} and consider the profile given in the table below.

�1 �2 �3

p1 1/4 1/4 1/2
p2 1/4 1/2 1/4

Observe that mini∈N pi({�1}) = maxi∈N pi({�1}) = 1/4. However, with weights α1 =
α2 = 1/2, the geometric pool F (p1, p2)({�1}) = 1/(1 + 2

√
2) > 1/4. Similarly, while

mini∈N pi({�1}c) = maxi∈N pi({�1}c) = 3/4, with weights α1 = α2 = 1/2, the geo-
metric pool F (p1, p2)({�1}c) = 2

√
2/(1 + 2

√
2) < 3/4.

23 See, for example, Lehrer & Wagner (1981), p. 127: it “has the desirable feature of maintaining
disagreement within its original bounds.”
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Nevertheless, in a common prior setting, the form of synergy illustrated by Example
2 cannot arise; only the form illustrated by Example 1 can. Indeed, in such a setting and
under the assumption that the pooling function is geometric, one can show that synergy
is closely related to the fact that the pi have different supports. This is the content of the
following characterization, which we provide for the general case of geometric pooling
with weights {αi}i∈N such that αi �= 0 for all i and

∑n
i=1 αi = 1. Here, as elsewhere,

we write � (respectively, ⊆) for the strict (respectively, weak) subset relation.

Proposition 2. Let (p|E1, ... , p|En) be any profile in Δn
cp

. Let F be a geometric
pooling function with any weights {αi}i∈N such that αi �= 0 for all i and

∑n
i=1 αi = 1.

The following are equivalent:

1. There exists A∈A such that F (p|E1, ..., p|En)(A) /∈ [mini∈N p(A|Ei),
maxi∈N p(A|Ei)].

2. For all j ∈ N ,
⋂
i∈N Ei � Ej .

Proposition 2 can be interpreted as follows. In a common prior setting, geometric
pooling displays synergy if and only if there is more information in the group (

⋂
i∈N Ei),

than any single member has access to (Ej). This is an intuitive result. Under the
characterizing condition, geometric pooling amounts to conditioning the prior on
an event that is stronger than any of the events a single agent has conditioned on.
As a result, the geometric pool gives unit probability to an event that no individual
probability measure does.

Finally, we note that the above interpretation sheds light on the stability property
highlighted in the previous section. Specifically, the stability of our aggregation problem
under geometric pooling relies on the fact that geometric pooling aggregates all the
information distributed in the group.

5.3. Deference. We now discuss the links between “epistemic deference” (Gaifman,
1988; Elga, 2007), full-revelation Bayes-compatibility, and geometric pooling. In
general terms, epistemic deference is the phenomenon whereby one agent constrains
her subjective probabilities to take certain values in light of some other probabilistic
assessment. This other assessment could be a relative frequency (Reichenbach, 1971),
an “objective” chance distribution (Levi, 1977), the beliefs of another agent (Bradley,
2018), or the beliefs of the same agent at some future time (van Fraassen, 1984).
Adopting another’s beliefs as one’s own is one of the most straightforward illustrations.
An agent has motivation to defer to another’s probabilistic judgment if she considers
the other agent, in some sense, an expert. An agent may be considered an expert because
she has more information, or because she is more skilled at assessing information. We
will be concerned here with the former motivation, called “information deference” in
the philosophical literature (Bradley, 2018, p. 10; on the latter motivation, see Bradley,
2018, sec. 3.2). The assumption of a common prior provides a natural setting in which
to investigate this kind of epistemic deference. Starting from a common prior, a less-
informed agent has grounds to adopt the posterior beliefs of any more-informed agent
if she learns them. In the statistical literature, this kind of epistemic deference has
been investigated—not necessarily with a common prior restriction—under the label
“probability calibration” (Lindley, 1982b, sec. 1; French, 1986, sec. 4; Dawid et al.,
1995, sec. 2.1).24

24 This is not to be confused with calibration understood as matching subjective probabilities
to frequencies.
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The analysis of information deference can be refined by distinguishing between “full”
and “partial” deference (Bradley, 2018, sec. 4). This is best explained by temporarily
reverting, till the end of the present section, to the language of random variables.
Taking the reported beliefs of another agent as one’s own amounts to fully deferring
to her. The simplest illustration is a two-agent common prior case in which only
one agent—say, j—has received new information. Then, the less-informed agent i has
grounds to adopt the reported posterior beliefs of the more-informed agent j. More
generally, even if both agents have received new information, for any� ∈ Ω, ifEj(�) ⊆
Ei(�), then agent j has (weakly) more evidence than i. Thus, if Ej(�) ⊆ Ei(�),
pi(·|p|Ej(·) = p|Ej(�)) = pi(·|Ej(�)) = p(·|Ei (�) ∩ Ej(�)) = p|Ej(�), which is
the very definition of full information deference as we understand it. Therefore,
deferring to j is the same as conditioning p on the intersection of the supports of pi and
pj . By Theorem 1, in our setting, this is equivalent to geometrically pooling i’s and j’s
posteriors.

But consider now a three-agent common prior case in which only two agents—say,
j and k—have received new information. Assume that neither of the better-informed
agents has more information than the other, in the sense that given � ∈ Ω, neither
Ej(�) ⊆ Ek(�) nor Ek(�) ⊆ Ej(�) holds. Then, upon learning the updated beliefs
of both j and k, the less-informed agent i should not fully defer to either j or k—
for example, to j. Indeed, this would amount to disregarding some of the evidence
available to her, to wit (in the example), whatever information is contained in k’s
report. Rather than fully deferring to any single expert, partially deferring to both
seems to be in order. At least when the full posteriors are reported, that is, under the
full revelation assumption, the content of the Bayesian response remains clear, which is
what we wish to emphasize here (see also Bradley, 2018, equation (8)). Agent i should
just exploit the information that the more informed agents have by conditioning
on the intersection of the supports of their reported posteriors: for any � ∈ Ω,
pi(·|p|Ej(·) = p|Ej(�), p|Ek(·) = p|Ek(�)) = p(·|Ei(�) ∩ Ej(�) ∩ Ek(�)). Thus,
while full deference amounts to conditioning the common prior on the evidence
received by the most-informed agent, when such an individual exists, partial deference
amounts to conditioning the prior on the total evidence collectively received by all
agents, which applies even when information is scattered across the group. As Theorem
1 attests, in our setting, geometric pooling secures the latter, more general form of
deference. Therefore, geometric pooling constitutes an attractive model for partial
deference under the full-revelation assumption.

By contrast, when only probabilities for a fixed event and not entire distributions
are reported, agents do not reveal which cells of their respective information partitions
they have learned. As a result, admittedly, what partial deference precisely amounts
to is much less straightforward. We take no stance on how it should then be
modelled.25

We conclude this section by observing that the concept of information deference also
affords another take on Proposition 2 which characterizes synergy under geometric
pooling in a common prior setting. This proposition can be interpreted as stating
that geometric pooling displays synergy if and only if there is no particular member

25 As a referee suggested, with the benefit of hindsight, one may doubt whether, by focusing
directly and almost exclusively on this case, the philosophical literature has taken the most
natural route to understanding deference.
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of the epistemic community to whom everyone should fully defer. In other words, it
is only to the group, and not to any particular member thereof, that each member
should fully defer. Indeed, for any � ∈ Ω, all members of the epistemic community N
should fully defer to member j if and only if for any i ∈ N , Ej(�) ⊆ Ei(�), that is,
Ej(�) =

⋂
i∈N Ei(�). Mutatis mutandis, this is exactly what is excluded by condition

2 in Proposition 2.

§6. Generalizing full-revelation Bayes-compatibility. The central result of our
paper is the characterization of geometric pooling by Bayes-compatibility given in
Theorem 1. The goal of this section—which may be skipped by those wishing
to restrict themselves to our core conceptual take-aways—is to better understand
this characterization by answering two questions, considered first separately from
one another, then together. First, Theorem 1 characterizes geometric pooling by
Bayes-compatibility under (the full revelation assumption and) the common prior
assumption. This assumption restricts the domain of the pooling function to Δn

cp
.

Can the characterization be extended to a larger subdomain of Δn
′

by relaxing the
common prior assumption to some extent? Second, Theorem 1 characterizes geometric
pooling by Bayes-compatibility under (the common prior assumption and) the full
revelation assumption. This is a strong requirement on how much of their private
information agents reveal. Can a supra-Bayesian case for geometric pooling still
be made under weaker informational demands than the full revelation assumption?
Finally, in case both of the above constraints can be interestingly relaxed, one would
also like to know whether they can be relaxed simultaneously. The main question
being here: Does the comparative advantage of geometric pooling over linear pooling
documented in Theorem 1 persist both under a weaker informational requirement
than the full revelation assumption and over a larger domain than Δn

cp
? As we now

explain and discuss in detail, the answer to each of the above questions is a qualified
“Yes.”

To the various qualifications we will detail along the way, we add the following
general caveat. In this section, we engage in further axiomatic analysis of the properties
in Theorem 1 even when this puts a strain on the epistemic interpretation of the
Bayes-compatibility properties under examination. For instance (recalling our remarks
following equation (6)), some of our results will make good epistemic sense only when
one takes the perspective of some external observer of the group, not the ex ante
perspective of any specific member. Admittedly, and as we will highlight, this narrows
the epistemic implications of our results. But unlike in the previous section, our main
goal in the present section is to explore the robustness of our main characterization.
Complementing our previous emphasis on possible philosophical interpretations, our
emphasis now is on possible mathematical generalizations.

6.1. Beyond the common prior assumption? We focus first on the common prior
assumption. Recall that Δn

cp
is the domain of all profiles coming by Bayesian updating

from some common prior p, that is, profiles of the form (p1, ... , pn) = (p|E1, ... , p|En).
Notice a key property of such profiles. Say that pj is proportional to pk on E, written
pj ∝ pk on E, if pi(�)/pi(�′) = pj(�)/pj(�′) for all�,�′ ∈ E such that these ratios
are defined. Now, by the definition of conditional probability, all profiles {pi}i∈N in
Δn

cp
are such that pj ∝ pk on

⋂
i∈N supp(pi) for all j, k ∈ N . However, the profiles

in Δn
cp

are not the only ones to display such proportionality. Indeed, to assume that
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the agents start from a common prior p = pj = pk for all j, k ∈ N is tantamount to
assuming that, whatever pieces of evidence {Ei}i∈N the agents receive, their resulting
posteriors {pi |Ei}i∈N are proportional on the intersection of their supports. But such
proportionality can hold in some noncommon prior cases as well. That is to say,
for some different priors {pi}i∈N and some possible pieces of evidence {Ei}i∈N , the
resulting posteriors {pi |Ei}i∈N are proportional on the intersection of their supports.
And, as we now explain, this is in fact the property most tightly connected to the
characterization in Theorem 1.

Let Δn∝ be the domain of all profiles such that pj ∝ pk on
⋂
i∈N supp(pi) for all

j, k ∈ N .26 As explained above, Δn∝ is a strictly larger domain than Δn
cp

. The following
result characterizes the domain Δn∝, and is preliminary to the main result of this section,
stated next.

Proposition 3. Let {pi}i∈N be any profile in Δn
′
. Let {αi}i∈N be any weights such

that αi �= 0 for all i and
∑n
i=1 αi = 1. The following are equivalent:

1. c
∑
�∈A

∏n
i=1 pi(�)αi = pi(A|

⋂
i∈N supp(pi)) for any i ∈ N , A ∈ A.

2. For all j, k ∈ N , pj ∝ pk on
⋂
i∈N supp(pi).

Proposition 3 establishes that a profile is in Δn∝ if and only if geometric pooling
with nonzero normalized weights behaves in a full-revelation Bayes-compatible way
with respect to it.27 Thus, Δn∝ is exactly the domain over which geometric pooling
with nonzero normalized weights behaves in a full-revelation Bayes-compatible
way. Now, it is worth explaining why the characterization cannot be given for a
larger, simpler, domain. First, it is only informally that a profile in Δn∝ can be
considered a profile of “posteriors” in the context of interest in Proposition 3.
The characterization holds directly and only for Δn∝.28 Second, the full-revelation
Bayes-compatibility condition 1 in Proposition 3 is phrased with respect to event⋂
i∈N supp(pi), rather than

⋂
i∈N Ei as in Theorem 1 and other previously stated

26 To facilitate comparison with our initial approach in terms of random variables, this domain
may be defined as follows. For all i ∈ N , let pi (·, ·) : A× Ω → R be a random probability
measure. Such a random measure can be interpreted as representing, for example, the
uncertainty of an external agent about the opinions of in-profile agents. For any � ∈ Ω,
pi (·, �) ∈ Δ is a probability measure, just like p|Ei (·) before. However, unlike before, we
do not assume that the pi are random posteriors coming from a common prior p and
individual information partitions for each i. Instead, we merely assume that, for all i ∈ N
and any � ∈ Ω, (p1(·, �), ... , pn(·, �)) ∈ Δn

′
and, for all j, k ∈ N , pj(·, �) ∝ pk(·, �) on⋂

i∈N supp(pi (·, �)). Let B be the index set for all such n-tuples of random measures.
The profiles that are possible values of (p1(·, ·), ... , pn(·, ·))� for any � ∈ B define a new

domain, and it is this domain that we denote by Δn∝ = {(p1(·, �), ... , pn(·, �))� ∈ Δn
′

: � ∈
B and � ∈ Ω}.

27 The domain considered in Proposition 3 is the full domain Δn
′
, over which geometric pooling

will behave in a Bayes-compatible way for some profiles, and fail to do so for others. Thus,
when defined over Δn

′
, geometric pooling is certainly not Bayes-compatible according to

our definition. However, based on Proposition 3, one can define the partial domain Δn∝ over
which geometric pooling will always behave in Bayes-compatible way.

28 More generally, it would be interesting to furnish Δn∝ with an epistemic interpretation that
could parallel and generalize the one already presented (in terms of a team of scientists
distributing various experiments between themselves) for Δncp. To the best of our knowledge,
no such interpretation is currently available in the literature.
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propositions. This is because (as we stressed in §4.1) without the assumption of
full support for the prior, the announcement of one’s posterior support need not
coincide with the announcement of one’s private information. As the profiles in
Δn∝ cannot be rigorously considered posterior profiles in the context of Proposition
3, it a fortiori holds that the support of the measures in those profiles cannot
be rigorously identified with the pieces of information the agents might have
received.

Now, recall the first question asked at the beginning of §6: Can the characterization
in Theorem 1 be extended to a larger subdomain of Δn

′
than Δn

cp
? Proposition 3 is

instrumental in providing a qualified positive answer to this question. The qualification
is that in what follows, like in Proposition 3, the property of full-revelation Bayes-
compatibility is generalized to refer to

⋂
i∈N supp(pi), rather than

⋂
i∈N Ei . Subject

to this qualification regarding how the full revelation condition is cashed out, the
following proposition constitutes a positive answer.

Proposition 4. Let F be a pooling function on Δn∝. The following are equivalent:

1. For any profile {pi}i∈N ∈ Δn∝, all A ∈ A, i ∈ N : F (p1, ... , pn)(A) =
pi(A|

⋂
i∈N supp(pi)).

2. For any profile {pi}i∈N ∈ Δn∝, any weights {αi}i∈N such that αi �= 0 for all i ∈ N
and

∑n
i=1 αi = 1, with c induced as in (3), for all � ∈ Ω: F (p1, ... , pn) (�) =

c
∏n
i=1 pi(�)αi .

3. F satisfies Unanimity and Private Bayesianism.

Like Theorem 1, Proposition 4 offers a simple characterization of geometric pooling.
Remarks similar to those made after Theorem 1 apply to Proposition 4 with regard
to the limited domain of this characterization, and the nonuniqueness of the pooling
weights. But most importantly for our purposes, with appropriate adjustments to the
epistemic interpretations and under the aforementioned qualification regarding how
the full revelation condition is cashed out, Proposition 4 shows that the equivalence
between geometric and Bayes-compatible pooling presented in Theorem 1 generalizes
beyond Δn

cp
, namely, to Δn∝. To this extent, the equivalence does not crucially depend

on the common prior assumption.
As we initially did for Δn

cp
, we can contrast the behavior of geometric and linear

pooling over Δn∝. The following result thus parallels Proposition 1.

Proposition 5. Let {pi}i∈N be any profile in Δn∝. Let {αi}i∈N be any weights such
that αi ∈ (0, 1) for all i and

∑n
i=1 αi = 1. The following are equivalent:

1.
∑n
i=1 αipi(A) = pi(A|

⋂
i∈N supp(pi)) for all i ∈ N , A ∈ A.

2. pj = pk for all j, k ∈ N .

Subject to the qualification highlighted before Proposition 4, Proposition 5 establishes
that the impossibility result in Proposition 1 generalizes from Δn

cp
to Δn∝. Therefore,

this impossibility does not crucially depend on the common prior assumption. A
joint implication of Propositions 4 and 5 is that, from a supra-Bayesian perspective,
geometric pooling conserves a clear-cut comparative advantage over linear pooling
beyond the traditional common prior setting.

Our final question in this section will be whether this comparative advantage of
geometric pooling over linear pooling could generalize, perhaps in a less clear-cut way,
even beyond Δn∝. Now, it is clear from Proposition 3 that geometric pooling will not be
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full-revelation Bayes-compatible beyond Δn∝. However, as we now explain, a weaker
notion of full-revelation Bayes-compatibility is still worth investigating over a larger
domain. So far, we have construed Bayes-compatibility as holding at every profile in
a certain domain and, given any profile, for all agents. Instead of these two universal
quantifications, consider now defining Bayes-compatibility for some i ∈ N , at some
{pi}i∈N ∈ Δn

′
. Setting aside relevant discontinuities in the epistemic interpretations,

this very weak notion of Bayes-compatibility is, in fact, the building block of all our
previous definitions. Formally, with {pi}i∈N some profile in Δn

′
, call a pooling function

F full-revelation Bayes-compatible at profile {pi}i∈N with respect to agent i if, for any
event A ∈ A, the following equality holds:

F (p1, ... , pn) (A) = pi

(
A

∣∣∣∣∣
⋂
i∈N
supp(pi)

)
. (14)

The following proposition provides a partial answer to the final question raised
above. In the proposition, Δn� denotes the domain of profiles containing only mutually
absolutely continuous measures, that is, measures with common support.29

Proposition 6. Let {pi}i∈N be any profile in Δn
′
. Let {αi}i∈N be any weights such

that αi ∈ (0, 1) for all i and
∑n
i=1 αi = 1.

1. c
∑
�∈A

∏n
i=1 pi(�)αi = pj(A|

⋂
i∈N supp(pi)) for some j ∈ N and all A ∈ A

if and only if pj ∝ c
∏n
i=1 p

αi
i on

⋂
i∈N supp(pi).

2. If
∑n
i=1 αipi(A) = pj(A|

⋂
i∈N supp(pi)) for some j ∈ N and all A ∈ A, then

pj =
∑n
i=1 αipi . Furthermore, when Δn

′
is restricted to Δn�, the consequent in the

previous sentence also implies the antecedent.

Several comments are in order. First, it is worth highlighting that the condition
investigated by Proposition 6, viz. Property (14), is only a Bayes-compatibility-like
condition that structurally differs from the Bayes-compatibility with respect to agent i
defined in equation (5). The crucial difference being that, as indicated by the very name
given to Property (14), the condition may hold at certain profiles of the domain, and
fail at others. Second, it also bears emphasis that in Proposition 6, be it for geometric
or for linear pooling, the pooling weights matter in the following sense. Given a profile
in Δn

′
, be it under geometric or linear pooling, the Bayes-compatibility-like condition

in (14) may hold for some sets of weights {αi}i∈N such that αi ∈ (0, 1) for all i
and

∑n
i=1 αi = 1, and fail for others. This is another contrast with the possibility

(respectively, impossibility) results in Theorem 1 and Proposition 4 (respectively,
Propositions 1 and 5), where only general constraints on the weights matter.

Third, the right-hand side conditions in Proposition 6 are strong and will generally
not be met by either geometric or linear pooling. Indeed, normalizing the weights,

29 To facilitate comparison with our initial random variable approach, for i ∈ N , let
pi (·, ·) : A× Ω → R be a random probability measure. Thus, for all i ∈ N and any � ∈ Ω,
pi (·, �) ∈ Δ. We now further assume that, for all � ∈ Ω and any i, j ∈ N , pi (·, �) �
pj(·, �). Let Γ be the index set for all n-tuples satisfying those assumptions. The possible
values of (p1(·, ·), ... , pn(·, ·))� for � ∈ Γ and � ∈ Ω define a new domain of profiles of
probability functions. We let this domain be denoted by Δn� =

{
(p1(·, �), ... , pn(·, �))� ∈

Δn
′

: � ∈ Γ and � ∈ Ω
}
.
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one can rephrase these conditions as stating the mathematically restrictive fact that
j’s probability function is in fact already a pool of the profile, that is, j is already
an “aggregator.” In the context of linear pooling, “aggregator” is thus shorthand
for “linear aggregator with a normalization of the weights used in the linear pooling
function.” A similar explication applies regarding geometric pooling. The condition
that a given profile already features either kind of aggregator will, when some richness
conditions are satisfied, generically be violated.30

Fourth, there is nonetheless a sense in which geometric pooling achieves the relevant
form of Bayes-compatibility under less restrictive conditions than linear pooling. The
equality constraints necessary under linear pooling are stronger than the relevant
proportionality constraints for geometric pooling. Indeed, under geometric pooling,
it can be that

⋂
i∈N supp(pi) � supp(pj) and that on supp(pj) \

⋂
i∈N supp(pi), j

is not an aggregator. Thus, the statement that j must be an aggregator holds with
the qualification that it applies only up to proportionality on

⋂
i∈N supp(pi). Under

linear pooling, by contrast, the statement must hold not only up to proportionality, but
equality is required on

⋂
i∈N supp(pi). This is the respect in which one can cautiously

claim that, as far as supra-Bayesianism is concerned, geometric pooling conserves
some comparative advantage over linear pooling even beyond Δn∝.

6.2. Beyond the full-revelation assumption? We now temporarily revert to the
common prior assumption to focus, instead, on the full revelation assumption. To
investigate the Bayes-compatibility of geometric pooling, we have so far assumed that
the n agents report their full posterior probability distributions. As we now explain, this
particularly demanding informational requirement can be somewhat relaxed. Indeed,
under some conditions, one can require that the n agents report only the restriction
of their posterior probability distributions to a pair of events, A and B. This means
that the agents report their posterior probability values for all states in A and B, but
not for any other state. We call this requirement the partial revelation assumption. The
partial revelation assumption is informationally less demanding than requiring that the
entire posterior distributions be known, as in the full-revelation Bayes-compatibility
problem. But it bears emphasis that it is still more demanding than requiring that only
the posterior probability value for some event be known, as in the baseline version of
the Bayes-compatibility problem.

The informational basis thus provided proves tractable enough if, at the same
time, the definition of Bayes-compatibility is generalized to target not absolute, but
relative probability values—that is, ratios of the form p(A)/p(B), rather than single

30 More specifically, let m be the number of agents and n be the number of states in⋂
i∈N supp(pi ). Consider A, the m × n real matrix constituted by the restriction of the

m posteriors to the n states in
⋂
i∈N supp(pi ). If n ≥ m, it is generically the case, in the sense

explained next, that the restrictions of the m posteriors to the n states in
⋂
i∈N supp(pi )

are linearly independent. Consider all the values which the m posteriors can conjointly
take over the n states. Finding one set of values such that the m posteriors are not linearly
independent over the n states is akin to drawing one particular number from a real interval.
Similar reasoning (based on the observation that any entry of A is strictly positive, so
that its logarithm exists) shows that, generically, the restriction of the m posteriors to the
n states in

⋂
i∈N supp(pi ) are log-linearly independent. Notice however that, when n < m,

there can be only n < m linearly independent restrictions of the m posteriors to the n states in⋂
i∈N supp(pi ). Similarly, there can then be only n < m log-linearly independent restrictions

of the m posteriors to those n states.
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values like p(A) or p(B). Put differently, one moves from p(A)/p(B) with B the
total event Ω, to p(A)/p(B) with B an arbitrary event such that p(B) > 0. This is a
natural generalization to consider because in many epistemic or practical situations,
the question of interest is not what respective probability values to attribute to A
and B, but only whether p(A) ≥ p(B), that is, (assuming that p(B) > 0), whether
p(A)/p(B) ≥ 1. Examples include determining which of two hypothesis is most likely
to be true, deciding on which of two events to bet, and any similar context where
qualitative probability assessments may suffice. Crucially for our purposes, under
geometric pooling, such situations spare computing the normalizing factor in the
denominator of equation (2).

This leads us to introduce the following variant of the Bayes-compatibility problem,
which we call the partial-revelation Bayes-compatibility problem. Consider a profile
(p|E1, ... , p|En) in Δn

cp
. Assume that through public announcements, the agents learn

the restrictions of the n posteriors to a given pair of events A and B. Thus, they learn
which states in A and B are in the intersection of the supports of the n posteriors. More
specifically, under the assumptions in §4.1, they learn exactly the event E(A,B), that
is, the complement of the set of states in A and B that have been excluded by the public
announcements:

E(A,B) =

((
A \

⋂
i∈N
Ei

)⋃ (
B \

⋂
i∈N
Ei

))c
. (15)

Recall that each agent j also has access to her private information Ej . Such private
information is in general not fully disclosed by her revelation of the restriction of
her posterior distribution pj to A and B. Therefore, the total evidence of any agent
j is given by the more specific event E(A,B) ∩ Ej . Accordingly, the relevant revised
version of the Bayes-compatibility problem consists in knowing whether there exists
any pooling function F with the following property. Given A,B ∈ A with B such that
B ∩

(⋂
i∈N Ei

)
�= ∅, for any j ∈ N , the following equality holds:

F (p|E1, ... , p|En) (A)
F (p|E1, ... , p|En) (B)

=
p

(
A|E(A,B) ∩ Ej)

p
(
B |E(A,B) ∩ Ej)

. (16)

For future reference, we immediately observe that the equality in (16) can be simplified
in virtue of the following equality31 ;

p
(
A|E(A,B) ∩ Ej)

p
(
B |E(A,B) ∩ Ej)

=
p

(
A|

⋂
i∈N Ei

)
p

(
B |

⋂
i∈N Ei

) . (17)

This clarifies by way of anticipation that, in (16), the expression on the right-hand side
of the equality does not really depend on the particular j ∈ N considered, since the
probability ratio in question takes the same value given any individual’s total evidence,
or the group’s total evidence. As we will detail shortly, (17) has more specific epistemic
implications for how informationally demanding geometric pooling is.

Indeed, recall the second question asked at the beginning of §6: Can a supra-Bayesian
case for geometric pooling still be made under weaker informational demands than the
full-revelation assumption? Equality (17) proves instrumental in providing an answer
to this question. Under the previously explained qualification that Bayes-compatibility

31 This equality is established within the proof of Proposition 7.
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is generalized to target not absolute, but relative probability values, and requiring such
Bayes-compatibility for all pairs of events, the following proposition constitutes a
positive answer to this question.

Proposition 7. Let F denote any pooling function on Δn
cp

. The following are
equivalent:

1. For any profile (p|E1, ... , p|En) in Δn
cp

, F (p|E1,...,p|En)(A)
F (p|E1,...,p|En)(B) =

p(A|E(A,B)∩Ej)
p(B|E(A,B)∩Ej)

holds

for all j ∈ N , A ∈ A, and B ∈ A such that B ∩
(⋂
i∈N Ei

)
�= ∅, with E(A,B)

the event defined in (15).
2. For any profile (p|E1, ... , p|En) in Δn

cp
, any weights {αi}i∈N such that αi �= 0

for all i ∈ N and
∑n
i=1 αi = 1, with c induced as in (3), for all � ∈ Ω:

F (p|E1, ... , p|En) (�) = c
∏n
i=1 p(�|Ei)αi .

Thus, over the common prior domain Δn
cp

, requiring that a pooling function be partial-
revelation Bayes-compatible whatever the pair of events is equivalent to requiring it
to be geometric with nonzero normalized weights.32 We stress that the equivalence
does not require that the agents reveal their posterior ratios for all pair of events.
What it requires is that the partial Bayes-compatibility condition holds whatever the
pair of events under consideration. Put differently, what the proposition establishes is
that geometric pooling is the only format that is guaranteed to achieve, whatever the
pair of events, partial-revelation Bayes-compatibility. Thus, the motivation for using
geometric pooling as a Bayesian recipe for social learning does not depend on the full
revelation assumption.

Subject to the qualification just explained regarding that with respect to which
Bayes-compatibility should be appreciated, the next proposition shows that weakening
full-revelation to partial-revelation does not open any new possibility for linear pooling.

Proposition 8. Let (p|E1, ... , p|En) be any profile in Δn
cp

. For any A ∈ A and any
B ∈ A such that B ∩

(⋂
i∈N Ei

)
�= ∅, let E(A,B) denote the event defined in (15). Let

{αi}i∈N be any weights such that αi ∈ (0, 1) for all i and
∑n
i=1 αi = 1. The following are

equivalent:

1.
∑n
i=1 αip(A|Ei )∑n
i=1 αip(B|Ei )

=
p(A|E(A,B)∩Ej)
p(B|E(A,B)∩Ej)

holds for all j ∈ N ,A ∈ A, and allB ∈ Ameeting

the condition above.
2. Ek = El for all k, l ∈ N .

The following example immediately clarifies the content of Proposition 8 by showing
that although the equality in (16) cannot nontrivially hold for all pairsA,B ∈ A under
linear pooling, it can nonetheless nontrivially hold for some such pairs.33

Example 3. Let Ω = {�1, �2, �2, �4, �5} and let p be the uniform distribution on Ω.
Let p1 and p2 be the probability measures obtained from p by Bayesian conditioning on
E1 = {�1, �2, �3, �4} and E2 = {�2, �3, �5}, respectively. Then,

⋂
i∈N Ei = {�2, �3}

and the profile (p1, p2) is given in the table below.

32 Thus, it also follows from Proposition 7 and Theorem 1 that on Δncp, partial-revelation
Bayes-compatibility for a pooling function is equivalent to its respecting Unanimity and
Private Bayesianism.

33 We do not yet know the general conditions under which the equality in (16) holds for some
A,B ∈ A under linear pooling.
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�1 �2 �3 �4 �5

p1 1/4 1/4 1/4 1/4 0
p2 0 1/3 1/3 0 1/3

Consider the events A = {�1, �2} and B = {�3, �4}. With weights α1 = α2 = 1/2,
although

∑2
i=1 αip(A|Ei) =

∑2
i=1 αip(B |Ei) = 5/12 �= 1/2 = p

(
A|

⋂
i∈N Ei

)
=

p
(
B |

⋂
i∈N Ei

)
, we have that

∑2
i=1 αip(A|Ei )∑2
i=1 αip(B|Ei )

=
p(A|

⋂
i∈N Ei)

p(B|
⋂
i∈N Ei)

= 1.

Together with Example 3, Propositions 7 and 8 call for two series of comments.
First, as can be seen by bringing together Example 3 and the preexisting literature
discussed in §3 (especially Bradley, 2018), linear pooling performs better when the
Bayes-compatibility of probability ratios is examined under the partial-revelation
assumption, than when the Bayes-compatibility of single probability values is examined
under the full-revelation assumption (notice the two simultaneous changes). Naturally,
this has to be appreciated in light of the fact that the former problem involves weaker
mathematical constraints than the latter. Furthermore, this is of interest only provided
one finds worth considering a form of Bayes-compatibility that would hold for some,
but not all events. Be that as it may, what Propositions 7 and 8 show is that, unlike
geometric pooling, linear pooling cannot nontrivially deliver the desired compatibility
whatever the probability ratio. To this extent, we take these propositions overall to
confirm, rather than challenge, the Bayesian advantage of geometric pooling over
linear pooling in a common prior setting.

Second, Proposition 7 illustrates a useful shortcut for geometric pooling. As (17)
makes explicit, when only probability ratios are at stake, learning the evidence of the
group restricted to the events of interest leads to the same result as learning all the
evidence available to the group. This allows less social information to be elicited for
geometric pooling, while preserving its supra-Bayesian qualities in a large class of
epistemic and practical situations.

This fact notwithstanding, first and foremost, we take the present section to highlight
the strong informational demands of geometric pooling. Indeed, even when only
probability ratios of the form p(A)/p(B) are at stake, geometric pooling requires
knowing the individual probability values for each state in A and B, and not just
the individual aggregate values for A and B. This requirement extends to the whole
state space when single probability values, like p(A) or p(B), are at stake. Either way,
then, there is a tension with one standard motivation for pooling as a heuristic—or a
boundedly rational mechanism, or a shortcut rule—for learning from others, namely,
informational parsimony. Linear pooling can claim such parsimony (Dawid et al.,
1995; Golub & Jackson, 2010), but at the expense of Bayes-compatibility. In a nutshell,
then, geometric pooling illustrates the converse trade-off.

6.3. Beyond both the common prior and the full-revelation assumptions? Our last
observation will be that the qualified generalizations of Theorem 1 presented separately
in the two previous subsections could also be carried out—though even more cautiously
still—simultaneously. Consider {pi}i∈N , a profile in Δn∝, and not necessarily Δn

cp
.

Assume that through public announcements, the agents learn not the entire supports
of the n measures, but only their restrictions to a given pair of events, A and B.
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Accordingly, let S(A,B)—with S for “support”—denote the following event:

S(A,B) =

((
A \

⋂
i∈N
supp(pi)

) ⋃ (
B \

⋂
i∈N
supp(pi)

))c
. (18)

Under additional qualifications similar to the ones already discussed in §6.1, the more
specific event S(A,B) ∩ supp(pi) can then be considered the total evidence of agent
i, for any i ∈ N . Furthermore, in this context, like in §6.2, the Bayes-compatibility
of a pooling function can be investigated with respect not to absolute, but to relative
probability values.

Under these assumptions, the following proposition establishes that the supra-
Bayesian case for geometric pooling generalizes beyond both the common prior and
the full revelation settings.

Proposition 9. Let F be a pooling function on Δn∝. The following are equivalent:

1. For any profile {pi}i∈N in Δn∝, F (p1,...,pn)(A)
F (p1,...,pn)(B) =

pi(A|S(A,B)∩supp(pi ))

pi(B|S(A,B)∩supp(pi ))
holds for all

i ∈ N ,A ∈ A, andB ∈ A such thatB ∩
(⋂
i∈N supp(pi)

)
�= ∅, with S(A,B) the

event defined in (18).
2. For any profile {pi}i∈N in Δn∝, any weights {αi}i∈N such that αi �= 0 for all i ∈ N

and
∑n
i=1 αi = 1, with c induced as in (3), for all � ∈ Ω: F (p1, ... , pn) (�) =

c
∏n
i=1 pi(�)αi .

Similarly, the next and final proposition states that the Bayes-incompatibility of
linear pooling simultaneously generalizes beyond both the common prior and the
full revelation settings.

Proposition 10. Let {pi}i∈N be a profile in Δn∝. With A ∈ A and B ∈ A always
such that B ∩

(⋂
i∈N supp(pi)

)
�= ∅, let S(A,B) denote the event defined in (18). Let

{αi}i∈N be any weights such that αi ∈ (0, 1) for all i and
∑n
i=1 αi = 1. The following are

equivalent:

1.
∑n
i=1 αipi (A)∑n
i=1 αipi (B) =

pi(A|S(A,B)∩supp(pi ))

pi(B|S(A,B)∩supp(pi ))
holds for all i ∈ N ,A ∈ A,B ∈ A meeting the

condition above.
2. For all j, k ∈ N , supp(pj) = supp(pk).

The proofs of Propositions 9 and 10 are analogous to those for Propositions 7 and 8,
respectively; so we omit them altogether.

We close by stressing what we mean to be the main take-away of the present section,
namely that the key positive and negative results of our paper are robust to important
variations in the statement of the Bayes-compatibility problem.

§7. Conclusion. The literature investigating the Bayes-compatibility of pooling
functions in a common prior setting has so far focused on certain impossibilities
that obtain under linear pooling. By contrast, we have established a possibility result
to the effect that geometric pooling can be Bayes-compatible in such a setting. Indeed,
our main finding is the stronger result that, under certain assumptions, geometric
and Bayes-compatible pooling are equivalent. This characterization involves a very
basic Bayes-compatibility requirement which, setting aside trivial cases, linear pooling
systematically fails to satisfy. We have also shown that our central characterization
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extends somewhat beyond the common prior setting. As a result, in a distinguished
class of epistemic contexts, geometric pooling enjoys a normative advantage over linear
pooling as a recipe for social learning. But upon closing, we wish to stress again that
this advantage should be appreciated cautiously. First, our study suggests that there is a
general trade-off between the informational parsimony and the Bayes-compatibility of
a pooling function. Linear pooling can lay claim to such parsimony, but at the expense
of Bayes-compatibility; geometric pooling essentially illustrates the converse trade-
off. The cost of Bayes-compatibility, then, should not be downplayed. Second, and
more generally, there is simply no one-size-fits-all format of the Bayes-compatibility
problem. We have moved away from what is perhaps its most standard variant because
it proves almost exclusively tailored to linear pooling. We have introduced a different
variant of the problem befitting an inquiry into geometric pooling. This format is of
interest beyond geometric pooling, as we have indicated; in particular, it also sheds light
on the structural properties of linear pooling. But stepping back, first and foremost,
what our study highlights is that there are in fact several, nontrivially related Bayes-
compatibility properties worth considering. Under those two caveats, we can conclude
that the consideration of Bayes-compatibility provides some support for geometric
pooling as a social learning mechanism.

Appendix.

Proof of Proposition 1.

Proof Let (p|E1, ... , p|En) be a profile in Δn
cp

and let {αi}i∈N be weights such that
αi ∈ (0, 1) for all i and

∑n
i=1 αi = 1.

(⇒) We prove the contrapositive. Suppose that Ej �= Ek for some j, k ∈ N . By the
common prior assumption, it then follows that there is some eventA �= ∅ such thatA ⊆
Ej but A ∩ Ek = ∅ or vice versa. Without loss of generality, assume the former. Since
αj, αk > 0, it follows that

∑n
i=1 αip(A|Ei) > 0. However, since A ∩

(⋂
i∈N Ei

)
= ∅,

we have that p(A|
⋂
i∈N Ei) = 0, so that

∑n
i=1 αip(A|Ei) �= p(A|

⋂
i∈N Ei).

(⇐) Trivial. �

Proof of Theorem 1.

Proof (1 ⇔ 2) Let (p|E1, ... , p|En) be a profile in Δn
cp

. Consider first any� such that
� /∈

⋂
i∈N Ei . Then, it must be the case thatp(�|Ej) = 0 for some j ∈ N . Sinceαi �= 0,

c
∏n
i=1 p(�|Ei)αi = 0 = p(�|

⋂
i∈N Ei). It then follows that F (p|E1, ... , p|En)(�) =

c
∏n
i=1 p(�|Ei) if and only if F (p|E1, ... p|En)(�) = p(�|

⋂
i∈N Ei). Consider next

any � such that � ∈
⋂
i∈N Ei . In this case, the following chain of equalities holds.

c

n∏
i=1

p(�|Ei)αi =

∏n
i=1 p(�|Ei)αi∑

�′∈Ω

∏n
i=1 p(�′|Ei)αi

=

∏n
i=1 p(�|Ei)αi∑

�′∈
⋂
i∈N Ei

∏n
i=1 p(�′|Ei)αi

=

∏n
i=1

(
p(�)
p(Ei )

)αi
∑
�′∈

⋂
i∈N Ei

∏n
i=1

(
p(�′)
p(Ei )

)αi
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=

(∏n
i=1 p(Ei)–αi

) (∏n
i=1 p(�)αi

)
∑
�′∈

⋂
i∈N Ei

[(∏n
i=1 p(Ei)–αi

) (∏n
i=1 p(�′)αi

)]
=

(∏n
i=1 p(Ei)–αi

) (∏n
i=1 p(�)αi

)
(∏n
i=1 p(Ei)–αi

) (∑
�′∈

⋂
i∈N Ei

∏n
i=1 p(�′)αi

)
=

∏n
i=1 p(�)αi∑

�′∈
⋂
i∈N Ei

∏n
i=1 p(�′)αi

=
p(�)α1+···+αn∑

�′∈
⋂
i∈N Ei

p(�′)α1+···+αn

=
p(�)∑

�′∈
⋂
i∈N Ei

p(�′)

=
p(�)

p(
⋂
i∈N Ei)

= p

(
�

∣∣∣∣∣
⋂
i∈N
Ei

)
.

Hence, whether � ∈
⋂
i∈N Ei or not, we have that, for any profile (p|E1, ... , p|En} in

Δn
cp

, F (p|E1, ... , p|En)(�) = c
∏n
i=1 p(�|Ei) with weights {αi}i∈N such that αi �= 0,∑n

i=1 αi = 1, and c the constant defined in (3) if and only if F (p|E1, ... p|En)(�) =
p(�|

⋂
i∈N Ei). Given the scope of the universal quantifiers, the equivalence thus

established is stronger than, therefore implies, the equivalence between 1. and 2. in
Theorem 1, viz.: 1. For all profiles in Δn

cp
, F (p|E1, ... p|En)(�) = p(�|

⋂
i∈N Ei) for

all � ∈ Ω; 2. For all profiles in Δn
cp

, F (p|E1, ... , p|En)(�) = c
∏n
i=1 p(�|Ei) for all

� ∈ Ω, any weights {αi}i∈N such that αi �= 0 and
∑n
i=1 αi = 1, with c the profile-

dependent constant defined in (3).
(1 ⇐ 3) Assume that F satisfies Unanimity and Private Bayesianism. Let

(p|E1, ... , p|En) be a profile in Δn
cp

. Dietrich shows (Dietrich, 2017, Proposition 1)
that Private Bayesianism implies Public Bayesianism.

Public Bayesianism. For any profile (p1, ... , pn) ∈ Δn and any (suitable) eventE ∈ A,
F (p1|E, ... , pn|E) = F (p1, ... , pn)|E.

Alternating applications of Private Bayesianism and Public Bayesianism, we get

F (p(·|E1), ... , p(·|En))

= F (p, p(·|E2), ... , p(·|En))|E1

= F (p(·|E1), p(·|E1 ∩ E2), ... , p(·|E1 ∩ En))

= F (p(·|E1), p(·|E1), p(·|E1 ∩ E3), ... , p(·|E1 ∩ En))|E2

= F (p(·|E1 ∩ E2), p(·|E1 ∩ E2), p(·|E1 ∩ E2 ∩ E3), ... , p(·|E1 ∩ E2 ∩ En))
...

= F

(
p

(
·
∣∣∣∣∣
⋂
i∈N
Ei

)
, ... , p

(
·
∣∣∣∣∣
⋂
i∈N
Ei

))
.
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Now, by Unanimity,

F

(
p

(
·
∣∣∣∣∣
⋂
i∈N
Ei

)
, ... , p

(
·
∣∣∣∣∣
⋂
i∈N
Ei

))
= p

(
·
∣∣∣∣∣
⋂
i∈N
Ei

)
,

which completes the argument for the claim.
(1 ⇒ 3) Assume—henceforth: “the main assumption”—that F (p|E1, ... , p|En) =

p(·|
⋂
i∈N Ei) for all profiles in Δn

cp
.

First, let (p|E1, ... , p|En) be a profile such that Ei = Ej for all i, j ∈ N . Then,
Ej =

⋂
i∈N Ei for all j ∈ N . We then have that p|Ej = p(·|

⋂
i∈N Ei) for all j ∈ N .

Accordingly, by the main assumption, Unanimity is satisfied.
Next, consider a profile (p1, ... , pn) in Δn

cp
. By the main assumption, F (p1, ... , pn) =

p(·|
⋂
i∈N Ei). Next, consider the profile (p1, ... , pi |E, ... pn). Again by the main

assumption, F (p1, ... , pi |E, ... pn) = p(·|E ∩
⋂
i∈N Ei). By the definition of Bayesian

conditioning, we then have that F (p1, ... , pi |E, ... pn) = F (p1, ... , pn)|E, so that
Private Bayesianism is satisfied. �

Proof of Proposition 2.

Proof Let (p|E1, ... , p|En) be a profile in Δn
cp

, and let {αi}i∈N be weights such that
αi �= 0 for all i and

∑n
i=1 αi = 1.

(⇒) We show the contrapositive. Suppose that for some j ∈ N , Ej =
⋂
i∈N Ei .

By Theorem 1, it follows that c
∏n
i=1 p(�|Ei)αi = p(�|

⋂
i∈N Ei) = p(�|Ej) for all

� ∈ Ω. Then, for all � ∈ Ω,

min
i∈N
p(�|Ei) ≤ p(�|Ej) = c

n∏
i=1

p(�|Ei)αi ≤ max
i∈N
p(�|Ei).

This rules out synergy, which establishes the claim.
(⇐) Suppose that

⋂
i∈N Ei � Ej for all j ∈ N . Since αi �= 0 for all i ∈ N ,

∑
�∈

⋂
i∈N

Ei

c

n∏
i=1

p(�|Ei)αi = 1.

But since for every j ∈ N there exists a � ∈ Ej \
⋂
i∈N Ei , it follows that

pj(
⋂
i∈N Ei) < 1 for all j ∈ N , which establishes synergy. �

Proof of Proposition 3.

Proof Let {pi}i∈N be a profile in Δn
′

and let {αi}i∈N be such that αi �= 0 for all i
and

∑n
i=1 αi = 1.

(2 ⇒ 1) Suppose that pj ∝ pk on
⋂
i∈N supp(pi) for all j, k ∈ N . It then follows

that pj |
⋂
i∈N supp(pi) = pk |

⋂
i∈N supp(pi) for all j, k ∈ N . If � /∈

⋂
i∈N supp(pi),

then c
∏n
i=1 pi(�)αi = 0 = pi(�|

⋂
i∈N supp(pi)) for all i ∈ N when αi �= 0 for all

i ∈ N . If � ∈
⋂
i∈N supp(pi), we have the following.
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c

n∏
i=1

pi(�)αi =

∏n
i=1 pi(�)αi∑

�′∈Ω

∏n
i=1 pi(�

′)αi

=

∏n
i=1 pi(�)αi∑

�′∈
⋂
i∈N supp(pi )

∏n
i=1 pi(�

′)αi

Multiplying by 1 expressed as
1∏n

i=1 pi (
⋂
i∈N supp(pi ))αi∏n

i=1 pi (
⋂
i∈N supp(pi ))αi , we obtain the following.

∏n
i=1 pi(�)αi∑

�′∈
⋂
i∈N supp(pi )

∏n
i=1 pi(�

′)αi
=

∏n
i=1 pi (�)αi∏n

i=1 pi (
⋂
i∈N supp(pi ))αi∑

�′∈
⋂
i∈N supp(pi )

∏n
i=1 pi (�

′)αi∏n
i=1 pi (

⋂
i∈N supp(pi ))αi

=

∏n
i=1

(
pi (�)

pi (
⋂
i∈N supp(pi ))

)αi
∑
�′∈

⋂
i∈N supp(pi )

∏n
i=1 pi (�

′)αi∏n
i=1 pi (

⋂
i∈N supp(pi ))αi

.

Next, it follows from the proportionality assumption that
pj (�)

pj (
⋂
i∈N supp(pi )) =

pk (�)
pk (

⋂
i∈N supp(pi )) for all j, k ∈ N and any � ∈

⋂
i∈N supp(pi). So fix p∗ ∈ {pi}i∈N ,

and observe the following.∏n
i=1

(
pi (�)

pi (
⋂
i∈N supp(pi ))

)αi
∑
�′∈

⋂
i∈N supp(pi )

∏n
i=1 pi (�

′)αi∏n
i=1 pi (

⋂
i∈N supp(pi ))αi

=

∏n
i=1

(
p∗(�)

p∗(
⋂
i∈N supp(pi ))

)αi
∑
�′∈

⋂
i∈N supp(pi )

∏n
i=1 pi (�

′)αi∏n
i=1 pi (

⋂
i∈N supp(pi ))αi

=

(
p∗(�)

p∗(
⋂
i∈N supp(pi ))

)α1+···+αn

∑
�′∈

⋂
i∈N supp(pi )

∏n
i=1 pi (�

′)αi∏n
i=1 pi (

⋂
i∈N supp(pi ))αi

=

p∗(�)
p∗(

⋂
i∈N supp(pi ))∑

�′∈
⋂
i∈N supp(pi )

∏n
i=1 pi (�

′)αi∏n
i=1 pi (

⋂
i∈N supp(pi ))αi

=

p∗(�)
p∗(

⋂
i∈N supp(pi ))∑

�′∈
⋂
i∈N supp(pi )

∏n
i=1 pi (�

′)αi∏n
i=1 pi (

⋂
i∈N supp(pi ))αi

=

p∗(�)
p∗(

⋂
i∈N supp(pi ))∑

�′∈
⋂
i∈N supp(pi )

∏n
i=1

(
pi (�′)

pi (
⋂
i∈N supp(pi ))

)αi

=

p∗(�)
p∗(

⋂
i∈N supp(pi ))∑

�′∈
⋂
i∈N supp(pi )

∏n
i=1

(
p∗(�′)

p∗(
⋂
i∈N supp(pi ))

)αi

=

p∗(�)
p∗(

⋂
i∈N supp(pi ))∑

�′∈
⋂
i∈N supp(pi )

(
p∗(�′)

p∗(
⋂
i∈N supp(pi ))

)α1+···+αn
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=

p∗(�)
p∗(

⋂
i∈N supp(pi ))∑

�′∈
⋂
i∈N supp(pi )

p∗(�′)
p∗(

⋂
i∈N supp(pi ))

=

p∗(�)
p∗(

⋂
i∈N supp(pi ))∑

�′∈
⋂
i∈N supp(pi )

p∗(�′)

p∗(
⋂
i∈N supp(pi ))

=
p∗(�)∑

�′∈
⋂
i∈N supp(pi )

p∗(�′)

=
p∗(�)

p∗(
⋂
i∈N supp(pi))

= p∗
(
�

∣∣∣∣∣
⋂
i∈N
supp(pi)

)
.

Hence, for any i ∈ N , c
∏n
i=1 pi(�)αi = pi

(
�|

⋂
i∈N supp(pi)

)
.

(1 ⇒ 2). Assume that c
∏n
i=1 pi(�)αi = pi(�|

⋂
i∈N supp(pi)) for all � ∈ Ω and

any i ∈ N . It is then immediate that for all �,�′ ∈
⋂
i∈N supp(pi) and any i ∈ N ,

pi(�)
pi(�′)

=
pi(�|

⋂
i∈N supp(pi))

pi(�′|
⋂
i∈N supp(pi))

=
c

∏n
i=1 pi(�)αi

c
∏n
i=1 pi(�

′)αi
.

It follows that pj ∝ pk on
⋂
i∈N supp(pi) for all j, k ∈ N . �

Proof of Proposition 4.

Proof (1 ⇔ 2) Let {pi}i∈N be a profile in Δn∝. By Proposition 3, we have

c

n∏
i=1

pi(�)αi = pi

(
�

∣∣∣∣∣
⋂
i∈N
supp(pi)

)
(19)

for all i ∈ N and any weights {αi}i∈N such that
∑n
i=1 αi = 1 and αi �= 0 for all i ∈ N .

Then, F (p1, ... , pn) is equal to the left-hand side of (19) for nonzero weights summing
to 1 if and only if F (p1, ... , pn) is equal to the right-hand side of (19) for all i ∈ N .
As in the proof of the equivalence of 1. and 2. in Theorem 1, the equivalence of 1. and
2. in Proposition 4 now follows from the stronger equivalence just established between
Bayes-compatibility and geometric pooling for any profile in Δn∝.

(1 ⇐ 3) Assume that F satisfies Unanimity and Private Bayesianism. Let {pi}i∈N be
a profile in Δn∝. Noting that pi = pi |supp(pi) and alternating applications of Private
Bayesianism and Public Bayesianism (see p. 30), we get the following:

F (p1, ... , pn)

= F (p1|supp(p1), ... , pn|supp(pn))

= F (p1, p2|supp(p2), ... , pn|supp(pn))|supp(p1)

= F (p1|supp(p1), p2| ∩i=1,2 supp(pi ), ... , pn| ∩i=1,n supp(pi ))

= F (p1|supp(p1), p2|supp(p1), p3| ∩i=1,3 supp(pi ), ... , pn| ∩i=1,n supp(pi ))|supp(p2)

= F (p1| ∩i=1,2 supp(pi ), p2| ∩i=1,2 supp(pi ), p3| ∩i=1,2,3 supp(pi ), ... , pn| ∩i=1,2,n supp(pi ))
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...

= F

⎛
⎝p1

∣∣∣∣∣
⋂
i∈N
supp(pi ), ... , pn

∣∣∣∣∣
⋂
i∈N
supp(pi )

⎞
⎠ .

Since pj |
⋂
i∈N supp(pi) ∝ pk |

⋂
i∈N supp(pi) by the domain restriction to Δn∝ and

given that supp(pj |
⋂
i∈N supp(pi)) = supp(pk |

⋂
i∈N supp(pi)) for all j, k ∈ N , it

must be the case that pj |
⋂
i∈n supp(pi) = pk |

⋂
i∈N supp(pi) for all j, k ∈ N . Thus,

invoking Unanimity, for all i ∈ N ,

F

(
p1

∣∣∣∣∣
⋂
i∈N
supp(pi), ... , pn

∣∣∣∣∣
⋂
i∈N
supp(pi)

)
= pi

∣∣∣∣∣
⋂
i∈N
supp(pi),

which establishes the claim.
(1 ⇒ 3) Assume that F (p1, ... , pn) = pi(·|

⋂
i∈N supp(pi)) for all i ∈ N and all

profiles in the domain of F.
First, let (p1, ... , pn) be a profile such that pj = pk for all j, k ∈ N . Any such profile

is in Δn∝. Clearly, pj = pj |
⋂
i∈N supp(pj) = pk |

⋂
i∈N supp(pi) = pk for all i ∈ N .

Thus, by (1), we can infer that F (p1, ... , pn) = pi |
⋂
i∈N supp(pi) = pi for all i ∈ N .

So, Unanimity is satisfied.
Next, let (p1, ... , pn) be a profile in Δn∝. Consider the profile (p1, ... , pj |E, ... pn).

Since
(⋂
i∈N supp(pi) ∩ E

)
⊆

⋂
i∈N supp(pi) and pj ∝ pk on

⋂
i∈N supp(pi)

for all j, k ∈ N , we have that pj ∝ pk on
⋂
i∈N supp(pi) ∩ E for all j, k ∈ N ,

where
⋂
i∈N supp(pi) ∩ E is the intersection of the supports of the measures

in the profile (p1, ... , pj |E, ... , pn). Hence, (p1, ... , pj |E, ... , pn) ∈ Δn∝. Moreover,
pj |

⋂
i∈N supp(pi) ∩ E = pk |

⋂
i∈N supp(pi) ∩ E for all j, k ∈ N . Thus, by a

double application of (1), F (p1, ... , pj |E, ... , pn) = pi |
⋂
i∈N supp(pi) ∩ E =

F (p1|E, ... , pn|E). So, Private Bayesianism is satisfied. �

Proof of Proposition 5.

Proof Let {pi}i∈N be a profile in Δn∝ and let {αi}i∈N be weights such that αi ∈ (0, 1)
for all i and

∑n
i=1 αi = 1.

(1 ⇒ 2) Assume that
∑n
i=1 αipi(A) = pi(A|

⋂
i∈N supp(pi)) for all i ∈ N and any

A ∈ A. We want to show thatpj = pk for all j, k ∈ N . Sincepi(A|
⋂
i∈N supp(pi)) = 0

for any A such that A ∩ (
⋂
i∈N supp(pi)) = ∅, by the above assumption, it must

be the case that pi(A) = 0 for all i and any A disjoint from the intersection
of the supports. Hence, supp(pi) ⊆

⋂
i∈N supp(pi) for all i ∈ N . And clearly,⋂

i∈N supp(pi) ⊆ supp(pi) for all i ∈ N . So, supp(pi) =
⋂
i∈N supp(pi) for all i ∈

N , so that supp(pj) = supp(pk) for all j, k ∈ N . But sincepj ∝ pk on
⋂
i∈N supp(pi),

it follows that pj = pk for all j, k ∈ N .
(2 ⇐ 1) Trivial. �

Proof of Proposition 6.

Proof Let {pi}i∈N be a profile in Δn
′

and let {αi}i∈N be weights such thatαi ∈ (0, 1)
for all i and

∑n
i=1 αi = 1.
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1. (⇒) Assume that c
∏n
i=1 p

αi
i = pj |

⋂
i∈N supp(pi) for some j ∈ N and allA ∈ A.

For any �,�′ ∈
⋂
i∈N supp(pi),

c
∏n
i=1 pi(�)αi

c
∏n
i=1 pi(�

′)αi
=
pj(�|

⋂
i∈N supp(pi))

pj(�′|
⋂
i∈N supp(pi))

=
pj(�)
pj(�′)

.

Hence, pj ∝ c
∏n
i=1 p

αi
i on

⋂
i∈N supp(pi).

(⇐) Assume that pj ∝ c
∏n
i=1 p

αi
i on

⋂
i∈N supp(pi). Then, it is also the case that

pj |
⋂
i∈N supp(pj) ∝ c

∏n
i=1 p

αi
i since, for any �,�′ ∈

⋂
i∈N supp(pi),

pj(�)
pj(�′)

=
pj(�|

⋂
i∈N supp(pi))

pj(�′|
⋂
i∈N supp(pi))

=
c

∏n
i=1 pi(�)αi

c
∏n
i=1 pi(�

′)αi
.

This implies that supp(pj |
⋂
i∈N supp(pi)) = supp(c

∏n
i=1 p

αi
i ) =

⋂
i∈N supp(pi).

Given that pj |
⋂
i∈N supp(pj) and c

∏n
i=1 p

αi
i have the same support and are

proportional to one another on this support, we have that pj |
⋂
i∈N supp(pi) =

c
∏n
i=1 p

αi
i .

2. (⇒) Assume that
∑n
i=1 αipi = pj |

⋂
i∈N supp(pi) for some j ∈ N . Then, since

αi ∈ (0, 1) for all i ∈ N ,

⋃
i∈N
supp(pi) = supp

(
n∑
i=1

αipi

)
= supp

(
pj

∣∣∣∣ ⋂
i∈N
supp(pi)

)
⊆

⋂
i∈N
supp(pi).

From
⋃
i∈N supp(pi) ⊆

⋂
i∈N supp(pi), it follows that supp(pi) = supp(pk) for all

i, k ∈ N . As supp(pj) =
⋂
i∈N supp(pi), we also have that pj = pj |

⋂
i∈N supp(pi).

From the above assumption, it then follows that
∑n
i=1 αipi = pj .

(Partial ⇐) Let {pi}i∈N be a profile in Δn�. Since Δn� ⊆ Δn
′
, Proposition 6.2

holds for any profile in this smaller domain. For the partial converse, suppose that
pj =

∑n
i=1 αipi for some j ∈ N . Since supp(pj) =

⋂
i∈N supp(pj), it follows that

pj = pj |
⋂
i∈N supp(pj). Thus, pj =

∑n
i=1 αipi implies that pj |

⋂
i∈N supp(pi) =∑n

i=1 αipi . �

Proof of Proposition 7.

Proof (2 ⇒ 1). Suppose that, for all profiles (p|E1, ... , p|En) in Δn
cp

and any
weights {αi}i∈N such that αi �= 0 for all i and

∑n
i=1 αi = 1, F (p|E1, ... , p|En)(�) =

c
∏n
i=1 p(�|Ei)αi for all � ∈ Ω. From Theorem 1, we have that c

∏n
i=1 p(�|Ei)αi =

p(�|
⋂
i∈N Ei). Hence,∑
�∈A c

∏n
i=1 p(�|Ei)αi∑

�∈B c
∏n
i=1 p(�|Ei)αi

=

∑
�∈A

∏n
i=1 p(�|Ei)αi∑

�∈B
∏n
i=1 p(�|Ei)αi

=
p(A|

⋂
i∈N Ei)

p(B |
⋂
i∈N Ei)

. (20)

We will now show that

p(A|
⋂
i∈N Ei)

p(B |
⋂
i∈N Ei)

=
p

(
A|E(A,B) ∩ Ej)

p
(
B |E(A,B) ∩ Ej)

=
p

(
A|E(A,B))

p
(
B |E(A,B))

. (21)

The conclusion will then follow from (20) and (21).
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First, notice that, using the De Morgan’s laws, we can simplify the conditioning
event E(A,B) = ((A \

⋂
i∈N Ei) ∪ (B \

⋂
i∈N Ei))c in (15) as follows:

E(A,B) =

((
A \

⋂
i∈N
Ei

)
∪

(
B \

⋂
i∈N
Ei

))c

=

(
A \

⋂
i∈N
Ei

)c
∩

(
B \

⋂
i∈N
Ei

)c

=

(
Ac ∪

⋂
i∈N
Ei

)
∩

(
Bc ∪

⋂
i∈N
Ei

)

=
⋂
i∈N
Ei ∪ (Ac ∩ Bc).

Similarly, for any j ∈ N ,(⋂
i∈N
Ei ∪ (Ac ∩ Bc)

)
∩ Ej =

⋂
i∈N
Ei ∪ (Ac ∩ Bc ∩ Ej).

Then, using the definition of conditional probability,

p(A|E(A,B))
p(B |E(A,B))

=
p(A|

⋂
i∈N Ei ∪ (Ac ∩ Bc))

p(B |
⋂
i∈N Ei ∪ (Ac ∩ Bc))

=

p(A∩(
⋂
i∈N Ei∪(Ac∩Bc )))

p(
⋂
i∈N Ei∪(Ac∩Bc ))

p(B∩(
⋂
i∈N Ei∪(Ac∩Bc )))

p(
⋂
i∈N Ei∪(Ac∩Bc ))

=
p(A ∩ (

⋂
i∈N Ei ∪ (Ac ∩ Bc)))

p(B ∩ (
⋂
i∈N Ei ∪ (Ac ∩ Bc)))

=
p(A ∩ (

⋂
i∈N Ei))

p(B ∩ (
⋂
i∈N Ei))

. (22)

By analogous reasoning, for any j ∈ N ,

p
(
A|E(A,B) ∩ Ej)

p
(
B |E(A,B) ∩ Ej)

=
p(A|

⋂
i∈N Ei ∪ (Ac ∩ Bc ∩ Ej)

p(B |
⋂
i∈N Ei ∪ (Ac ∩ Bc ∩ Ej)

=
p(A ∩ (

⋂
i∈N Ei))

p(B ∩ (
⋂
i∈N Ei))

.

(23)

Now, multiplying
p(A∩(

⋂
i∈N Ei ))

p(B∩(
⋂
i∈N Ei )) by 1 expressed as

1/p(
⋂
i∈N Ei )

1/p(
⋂
i∈N Ei )

, we obtain

p(A∩(
⋂
i∈N Ei ))

p(
⋂
i∈N Ei )

p(B∩(
⋂
i∈N Ei ))

p(
⋂
i∈N Ei )

=
p(A|

⋂
i∈N Ei)

p(B |
⋂
i∈N Ei)

. (24)

Hence, (21) follows from (22), (23), and (24), and the conclusion follows from (20)
and (21). Notice also that (17) follows from (21), as claimed in the main text.
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(1 ⇒ 2) Suppose that for all profiles (p|E1, ... , p|En) in Δn
cp

, for all j ∈ N , for all
A ∈ A, and for all B ∈ A such that B ∩ (

⋂
i∈N Ei) �= ∅,

F (p|E1, ... , p|En)(A)
F (p|E1, ... , p|En)(B)

=
p(A|E(A,B) ∩ Ej)
p(B |E(A,B) ∩ Ej)

.

By (21),

F (p|E1, ... , p|En)(A)
F (p|E1, ... , p|En)(B)

=
p(A|E(A,B) ∩ Ej)
p(B |E(A,B) ∩ Ej)

=
p

(
A|

⋂
i∈N Ei

)
p

(
B |

⋂
i∈N Ei

) .
For any � ∈ Ω, since � ∈ A = 2Ω, we have that, with B = Ω, the following holds:

F (p|E1, ... , p|En)(�)
F (p|E1, ... , p|En)(Ω)

= F (p|E1, ... , p|En)(�) = p

(
�

∣∣∣∣∣
⋂
i∈N
Ei

)
.

Now, applying Theorem 1, we obtain

F (p|E1, ... , p|En)(�) = p

(
�

∣∣∣∣∣
⋂
i∈N
Ei

)
= c

n∏
i=1

p(�|Ei)αi ,

for any {αi}i∈N such that αi �= 0 and
∑n
i=1 αi = 1. The equality of the first and last

terms in the above equation then gives the desired result. �

Proof of Proposition 8.

Proof Let (p|E1, ... , p|En) be a profile in Δn
cp

and let {αi}i∈N be weights such
that αi ∈ (0, 1) for all i and

∑n
i=1 αi = 1. Let A ∈ A, and B ∈ A be such that B ∩(⋂

i∈N Ei
)
�= ∅. Let E(A,B) denote the event defined in (15).

(1 ⇒ 2) We show the contrapositive. Suppose that Ek �= El for some k, l ∈ N . By
the common prior assumption, there must be some event A �= ∅ such that A ⊆ Ek and
A ∩ El = ∅ orA ⊆ El andA ∩ Ek = ∅. Without loss of generality, suppose the former.
Since αk > 0, it follows that

∑n
i=1 αip(A|Ei) > 0. However, p(A|E(A,B) ∩ El ) = 0.

Now, let B be any event in A such that B ∩
⋂
i∈N Ei �= ∅. We then have∑n

i=1 αip(A|Ei)∑n
i=1 αip(B |Ei)

>
p

(
A|E(A,B) ∩ El )

p
(
B |E(A,B) ∩ El )

= 0,

which establishes the claim.
(2 ⇐ 1) Trivial using (17). �
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