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This paper explores the construction of quadratic Lyapunov functions for establishing the
conditional stability of shear flows described by truncated ordinary differential equations,
addressing the limitations of traditional methods like the Reynolds–Orr equation and linear
stability analysis. The Reynolds–Orr equation, while effective for predicting unconditional
stability thresholds in shear flows due to the non-contribution of nonlinear terms, often
underestimates critical Reynolds numbers. Linear stability analysis, conversely, can yield
impractically high limits due to subcritical transitions. Quadratic Lyapunov functions offer
a promising alternative, capable of proving conditional stability, albeit with challenges in
their construction. Typically, sum-of-squares programs are employed for this purpose, but
these can result in sizable optimisation problems as system complexity increases. This
study introduces a novel approach using linear transformations described by matrices to
define quadratic Lyapunov functions, validated through nonlinear optimisation techniques.
This method proves particularly advantageous for large systems by leveraging analytical
gradients in the optimisation process. Two construction methods are proposed: one
based on general optimisation of transformation matrix coefficients, and another focusing
solely on the system’s linear aspects for more efficient Lyapunov function construction.
These approaches are tested on low-order models of subcritical transition and a two-
dimensional Poiseuille flow model with degrees of freedom nearing 1000, demonstrating
their effectiveness and efficiency compared with sum-of-squares programs.
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1. Introduction
Up to a specific Reynolds number, it is widely believed that the laminar state of most shear
flows is unconditionally stable (Reynolds 1895; Orr 1907; Serrin 1959). However, beyond
this threshold, the behaviour of the fluid remains an open question.

In the 19th century, Lord Kelvin (F.R.S. 1887) suggested that the stability threshold
amplitude decreases as viscosity approaches zero: ‘. . . the steady motion is stable for
any viscosity, however small; and that the practical unsteadiness pointed out by Stokes
forty-four years ago and so admirably investigated experimentally five or six years ago
by Osbourne Reynolds, is to be explained by limits of stability becoming narrower
and narrower the smaller is the viscosity’. Unfortunately, determining this permissible
perturbation level of the laminar state has proven to be a challenging problem. One
exception is the well-known linear stability limit, beyond which the laminar state’s region
of attraction vanishes. However, for several practical applications, this limit is excessively
high, if not infinite.

The literature on the conditional and unconditional stability analysis of shear flows
is extensive. Here, only some relevant results are mentioned. For further details and
results, the books by Joseph (1976), Drazin & Reid (2004) and Straughan (2004) are
recommended.

1.1. Global, unconditional stability analysis
The initial solutions for the unconditional stability limit of plane Poiseuille flow were
derived by Reynolds (1895) and Orr (1907). Initially, solutions were obtained for the two-
dimensional problem due to its complexity. However, the computed Reynolds number,
Re = 88 – defined using the maximum velocity and half the channel gap – was an order
of magnitude smaller than the value observed experimentally. Later, Joseph & Carmi
(1969) tackled the three-dimensional problem and revealed that the kinetic energy of
spanwise oscillating perturbations could grow at a significantly smaller Reynolds number,
specifically 49.55. Additionally, they demonstrated that the critical perturbations of two-
dimensional base flows were those oscillating exclusively in the spanwise direction, instead
of in the streamwise one.

Goulart & Chernyshenko (2012) proposed that to prove global stability there is no better
alternative than kinetic energy among quadratic functions in the case of a general flow. At
the same time, many attempts were made to add reasonable assumptions and constraints
on the solutions in order to prove the global stability of the flow up to higher Reynolds
numbers, even though they are not mathematically rigorous.

Falsaperla, Giacobbe & Mulone (2019) introduced a modified kinetic energy and
assumed the perturbations to be two-dimensional tilted waves. They varied the angle
between purely streamwise and purely spanwise oscillating waves and proposed that purely
streamwise oscillating waves emerge as the most critical. Their findings in the case of tilted
waves were in excellent agreement with experiments conducted by Prigent et al. (2003)
for plane Couette flow. Moreover, their results aligned with the work of Joseph & Tao
(1963) and Moffatt (1990), who independently established the stability of flow perturbed
by spanwise oscillating waves.

A further generalisation of the kinetic energy was recently investigated by Nagy &
Kulcsár (2023), who introduced multipliers in the definition of kinetic energy for all
velocity components. Addressing the three-dimensional domain, they predicted a critical
Reynolds number roughly 25 % larger for both Couette and Poiseuille flows. Their analysis
indicated that critical perturbations manifest as tilted waves in both flow configurations.
However, it is worth noting that their study neglected a nonlinear term in the pressure
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calculations, limiting its validity to a specific perturbation amplitude; this limit, however,
was not determined.

Another way of improving the original energy method involves constraining the
potential perturbation field rather than altering the definition itself. Originally, such a
constraint was that the velocity field must satisfy the continuity equation, implying
divergence-free velocity in the context of incompressible flow. Nagy, Paál & Kiss (2023)
observed that the solution of the Reynolds–Orr equation fails to meet the compatibility
condition essential for a smooth, physically realistic solution. They introduced this
condition as a constraint into the problem; however, their ultimate finding was that, while
the solution of the Reynolds–Orr equation does not meet the condition, there exist velocity
fields close to the solution that do fulfil the compatibility condition. This implies that,
in the cases considered, introducing the condition does not change the energy stability
limit.

An alternative approach to enhancing the Reynolds–Orr method and proving global
stability involves the utilisation of enstrophy. Synge (1938) explored this method, and
more recently, Fraternale et al. (2018) applied it, predicting a significantly larger critical
Reynolds number of Recri t = 155 for two-dimensional Poiseuille flow. Notably, this value
is approximately double the energy limit for the same configuration. Unfortunately,
the nonlinear term in the vorticity equation cannot be eliminated in the case of
three-dimensional flows. Furthermore, Nagy (2022) showed that, in the case of three-
dimensional systems, the predicted critical Reynolds number is smaller than in the case of
using the original Reynolds–Orr equation even if the nonlinear terms are neglected, which
confirms the statement of Goulart & Chernyshenko (2012) that the kinetic energy is the
optimal choice for proving global stability among quadratic functions.

Alternatively, higher than quadratic-order functionals can be utilised for proving the
global stability of the laminar state. Galdi & Straughan (1985) showed possible analytical
ways to construct such an energy function to prove global or local stability. They
demonstrated the conditional stability in the case a basic model for the motion of
microorganisms.

Goulart & Chernyshenko (2012) suggested that the global stability of the laminar state
can be proved at a higher Reynolds number than ReE by utilising higher-order polynomials
as Lyapunov functions. The usage of sum-of-squares (SOS) programs is proposed to
create such a function. They demonstrated its effectiveness on a ninth-order model of
Couette flow. Unfortunately, the computational needs of the method increase rapidly
with the degrees of freedom of the investigated system. Therefore, they proposed a so-
called infinite-dimensional model to investigate the stability of a flow governed by partial
differential equations, employing only a finite number of state variables while ensuring the
global stability of the original infinite-dimensional system is preserved. As the first step,
their method uses a Galerkin projection to create a low-order system up to a finite number
of modes. In the next step, instead of neglecting the truncated modes, they took into
account this tail. Utilising linear eigenvalue problems, the worst-case effect of the tail can
be estimated on the stability of the infinite-dimensional system. Later, Huang et al. (2015)
applied the method to the rotating Couette flow and improved the global stability limit
compared with the standard kinetic energy method. Fuentes, Goluskin & Chernyshenko
(2022) employed this optimisation technique to create non-quadratic Lyapunov functions
of planar Couette flow and gave a sharper bound on the effect of the tail. They projected
the velocity field onto the modes of the classic energy equation solutions and achieved a
significantly higher Reynolds number limit using 13 modes.
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1.2. Local, conditional stability analysis
Alternatively, a quadratic energy functional can be used to prove stability up to a certain
threshold. Galdi & Padula (1990) showed a possible way to construct a generalised energy
functional by decomposing the linear operator of the governing equation. They argued
that the non-symmetry of the operator can have a stabilising effect and presented ways to
include this effect in the energy functional. They applied the method to Bénard convection
and various rotating flows.

Similarly, a quadratic energy function was proposed by Nerli, Camarri & Salvetti
(2007) by perturbing the original norm. They calculated the threshold amplitude of low-
dimensional transition models numerically utilising a nonlinear optimisation method.
Here, their work is followed, but the quadratic energy is defined in a general form through
a transformation matrix. The optimisation is discussed in detail and improved, and the
method is extended to significantly larger systems. The method, which defines quadratic
kinetic energy using a transformation matrix and validates it as a conditional Lyapunov
function through nonlinear optimisation, is referred to as the generalised kinetic energy
(GKE) method.

Sum-of-squares programs can also be utilised to construct conditional Lyapunov
functions for finite-dimensional models and to estimate the threshold amplitude. Jarvis-
Wloszek (2003) proposed two algorithms: the ‘expanding D algorithm’ and ‘expanding
interior algorithm’. The simplified version of the second one is widely used for low-order
dynamical systems (Tan & Packard 2008; Topcu, Packard & Seiler 2008; Khodadadi,
Samadi & Khaloozadeh 2014; Meng et al. 2020). Kalur, Seiler & Hemati (2021) applied
this approach to low-dimensional models of subcritical transition. An alternative SOS
program for constructing conditional Lyapunov functions was defined by Liu & Gayme
(2021), who applied it to various low-dimensional models. These two approaches will be
compared in this study based on computational time and threshold amplitudes.

The conditional stability can also be proved by bounding the nonlinear terms. One
promising approach is to regard the nonlinear part as an excitation and establish a bound
for it, thus obtaining conditional stability. This concept was explored in the context of
Couette flow using the resolvent of the linear operator in the unstable half-plane by
Kreiss, Lundbladh & Henningson (1994). However, extending this solution method further
appears to be challenging. Another, more comprehensive method that models the nonlinear
term as a bounded excitation of the linear system has been developed by two groups: Liu
& Gayme (2020) and Kalur et al. (2021), referred to as the quadratic constrained (QC)
method. They applied this technique to low-dimensional models of subcritical transition.
The approach proved to be computationally efficient, but the predicted threshold amplitude
is significantly lower than in the case of SOS methods. A similar bounding to the nonlinear
terms was applied to low-dimensional flow models by Toso, Drummond & Duncan (2022),
utilising matrix inequalities, and they calculated roughly 30 % higher threshold amplitude
than the aforementioned QC method.

A fundamentally different approach to address this problem involves calculating the
perturbation with minimal energy necessary to induce a non-laminar solution, often
referred to as the minimal seed (Pringle, Willis & Kerswell 2012). This approach is similar
to conditional stability calculations; however, in this methodology, optimisation occurs on
the unstable side of the boundary between stable and unstable regions of the laminar state.
The conditional Lyapunov functions maximise the perturbation kinetic energy until the
point where the laminar flow remains stable, while solving the minimal seed problem
provides the lower kinetic energy limit leading to another state. Implicitly, the existence
and realisation of these minimal seeds demonstrate stability, as the laminar flow must
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remain stable below the perturbation amplitude of the minimal seed. Unfortunately, the
solution of the minimal seed problem is usually obtained by a local optimiser, and proving
it to be a global optimum requires an alternative method or approach.

Typically, the initial kinetic energy is minimised, leading to maximal kinetic energy after
a certain time horizon. For low-order flow models proposed by Waleffe (Waleffe 1995,
1997), Cossu (2005) calculated the energy of these minimal seeds. Later, this method was
applied to real flow configurations (Rabin, Caulfield & Kerswell 2012; Duguet et al. 2013;
Kerswell, Pringle & Willis 2014; Cherubini, De Palma & Robinet 2015; Kerswell 2018;
Vavaliaris, Beneitez & Henningson 2020; Parente et al. 2022; Wu 2023; Zhang & Tao
2023). Nonlinear optimisations revealed localised perturbation fields with significantly
lower kinetic energy than perturbations optimised by linear methods. Readers are referred
to the cited papers for a more detailed discussion and specific results.

Alternatively, Pershin, Beaume & Tobias (2020) proposed a probabilistic approach to
describe the boundary of the basin of attraction of the laminar state. They perturbed
the laminar state of Couette flow at 40 different perturbation levels with 100 initial
states per energy level, calculating the relaminarisation probability as a function of the
perturbation level. Later, Pershin et al. (2022) suggested a Bayesian approach to compute
relaminarisation probabilities with fewer simulations.

While a probabilistic approach is practically useful, determining the exact boundary of
the laminar state’s basin of attraction remains a significant scientific challenge. Minimal
seeds calculated by various research groups for the same flow configuration exhibit similar
qualitative structures, suggesting they may represent the global minimum. However,
improving Lyapunov function construction is essential for validating these results and
better describing the laminar state’s region of attraction.

The primary objective of this study is to develop a method for constructing a conditional
Lyapunov function for low-dimensional flow models that is computationally more efficient
than state-of-the-art SOS techniques and applicable to significantly larger dynamical
systems. At the same time, the predicted threshold amplitude remains comparably
accurate. This work builds upon and improves the method introduced by Nerli et al. (2007).
In particular, the energy is defined in a more general form using a transformation matrix,
whereas Nerli et al. (2007) employed a less general, perturbed matrix for this purpose.
Additionally, the optimisation aspect of the method is discussed in detail.

First, the classical energy method for discretised fluid mechanical systems is presented in
§ 2.1. Then, the generalised kinetic energy is introduced through a variable transformation
using a matrix, as described in § 2.2.

The optimisation technique used to identify the worst-case perturbations and to compute
the region of attraction of the laminar state is described in detail in § 2.2.2. Several
gradient-based optimisation algorithms are compared. Next, two strategies for optimising
the transformation matrix are presented in § 2.3 to obtain the optimal generalised energy.
One of them involves optimising the elements of the transformation matrix to maximise
the region of attraction, while the other method utilises only the decomposition of
the eigenvalue matrix of the linearised system. Next, the method is compared with
state-of-the-art techniques utilising SOS programs in § 2.4.

Later, the method is applied to low-dimensional models of subcritical transition: the
Trefethen two-dimensional TTRD’ model (Baggett & Trefethen 1997) and the Waleffe
(1995) (W95) model (§ 3.1). As a last step, the new technique is demonstrated for
higher, yet still relatively low-order (few hundred degrees of freedom) models of the
two-dimensional Poiseuille flow (§ 3.2). These models are created using the Galerkin
projection method, employing the Stokes eigenfunctions. Finally, the findings and
conclusions are summarised in § 4.
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2. Theory

2.1. The original energy method
After projecting the perturbed Navier–Stokes equation on an L2 orthogonal and
divergence-free basis, the fluid motion can be described by the following truncated
ordinary differential equation system

dqi

dt
= Ai j q j + Qi jk q j qk, (2.1)

where qi (t) represents an n-element vector (i = 1, . . . , n) describing the perturbation of
the base flow as a function of time t . The coefficients Ai j and Qi jk are time-independent
arrays characterising the behaviour of the perturbed flow, where i, j and k are running
variables ranging from 1 to n in the Einstein summation notation. The state at the origin
is stable if the perturbations (qi ) tend to zero as t → ∞. In cases where the perturbation
is assumed to be small (qi ∝ ε), neglecting the nonlinear (quadratic) terms in the equation
allows for linear stability analysis. This involves examining the eigenvalues of the matrix
Ai j . However, matrix Ai j might be non-normal, that is its eigenvectors might be non-
orthogonal. Then perturbations might grow transiently reaching the amplitudes at which
nonlinear terms cannot be neglected (Schmid 2007; Kerswell 2018).

An alternative method of stability analysis involves examining the derivative of the
perturbation kinetic energy with respect to time. Assuming the kinetic energy of the
perturbations is the inner product of the state vector

e = qi qi , (2.2)

its temporal derivative can be easily obtained from (2.1)
de

dt
= 2 Ai j qi q j + 2 Qi jk qi q j qk . (2.3)

According to the Reynolds–Orr identity (Orr 1907; Schmid & Henningson 2001) (utilising
Gauss divergence theorem), the nonlinear term does not influence the change in kinetic
energy if the perturbations are confined by walls, are periodic or decay to zero in the far
field, which are reasonable assumptions in most cases

2 Qi jk qi q j qk = 0. (2.4)

From this point, matrices and vectors are denoted by bold letters to enhance readability.
The Einstein summation notation is used when a three-dimensional array appears in an
expression or the discussion.

The growth rate of the kinetic energy is

μe = 1
e

de

dt
, (2.5)

and using (2.3) and (2.4) the following expression can be derived:

μe = 2 qT Aq
qT q

. (2.6)

The zero solution of (2.1) is Lyapunov stable if μe < 0 for any qi . This statement is
equivalent to ensuring that the maximum over any possible state is negative

μm,e = max
q
μe(q) < 0. (2.7)

The numerator in (2.6) can be written as 2 qT A q = qT (A + AT )q. Moreover,
expression (2.6) represents the Rayleigh quotient of A + AT . As A + AT is symmetric,
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the largest Rayleigh quotient corresponds to its largest eigenvalue, which is the maximum
possible growth rate of kinetic energy

max
q
μe(q)= λmax

(
A + AT )

. (2.8)

Therefore, the laminar state is Lyapunov stable if

λmax
(
A + AT )

< 0. (2.9)

The critical state, which maximises the growth rate of kinetic energy, is the
corresponding eigenvector. Unfortunately, this condition is sufficient but often far from
necessary in practice. This analysis is referred to as energy method or nonlinear stability
analysis since the results are valid for the nonlinear system due to the nonlinear terms
not being assumed zero during the derivation but were eliminated by the Reynolds–Orr
identity.

In many fluid dynamics applications, the primary concern is not just whether the flow is
stable, but the critical limit at which instability arises. Notably, viscosity or the Reynolds
number affects only the linear terms. In certain flow configurations, such as Poiseuille
or Couette flows, the non-dimensionalised base flow is independent of viscosity, and the
matrix A can be decomposed into components that depend on the Reynolds number and
those that do not

A(Re)= AU + 1
Re

AR . (2.10)

Considering that the Laplacian term can only dissipate kinetic energy, AR is a negative
definite matrix. The smallest Reynolds number, for which μm,e = 0 and e �= 0, is equal to
the smallest Reynolds number, for which μe can be 0, therefore it is equal to the smallest
Reynolds number for which μe = 0. By substituting (2.10) into (2.6), setting the expression
to zero, and subsequently expressing Re and calculating its minimum through variation,
we arrive at the corresponding Euler–Lagrange equation(

AR + AT
R

)
q = R̃e

( − AU − AT
U

)
q. (2.11)

This equation represents a general eigenvalue problem where the eigenvalue is the
Reynolds number. The smallest eigenvalue, typically denoted as ReE , is referred to as
the global stability limit. If Re< ReE , then μm,e < 0, signifying unconditional stability.

2.2. The generalised kinetic energy method
The classical energy method often proves to be highly conservative, predicting Reynolds
number limits below experimental observations. This issue arises because, at high
Reynolds numbers, the A matrix becomes non-normal. In such cases, the eigenvectors are
non-orthogonal, and the energy of solutions initialised close to a linearly stable laminar
state can grow significantly (Schmid 2007), although they do not necessarily transition to
another state. Nerli et al. (2007) defined P in a perturbed form, which is less general than
the transformation matrix formulation presented in this work.

A possible way to define a generalised kinetic energy, h, is through the linear
transformation of the variables by an invertible S matrix

q = S r, (2.12)

and

h = rT r. (2.13)
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The h function is the most general one among quadratic energy functions. Olivier Dauchot
& Paul Manneville (1997) defined similarly the ‘exotic’ energy in their paper, where
the transformation matrix is the eigenvectors of the linear part of the dynamical system.
However, it is not optimal in general, a point that will be discussed later. In another form,
h can be expressed as

h = qT P q, (2.14)

where

P = S−T S−1, (2.15)

and the matrix P is clearly positive definite.
Among quadratic energy functions, there is no way to improve the global stability results

obtained with kinetic energy (Goulart & Chernyshenko 2012), therefore h is constructed
to prove the conditional stability of the laminar state. A conditional Lyapunov function
must meet the following requirements:

h(q) > 0 if q �= 0 and h(q)= 0 if q = 0, (2.16)

and
∂h

∂qi

dqi

dt
< 0 if h(q) < γ 2

a . (2.17)

The region where h(q) < γ 2
a represents the provable region of attraction (ROA) of the

origin, although the true ROA can be larger in general. The definition of h in (2.14)
automatically satisfies the first condition (2.16). Our objective is to maximise the size
of the ROA satisfying equation (2.17) by constructing an optimal h function. Here, the
smallest radius,

√
emin in the original state space is used to describe the region since it

makes the results of minimal seed calculations comparable.
There are three essential parts of the investigation. The first is verifying that a given h

satisfies equation (2.17). The second involves maximising the ROA and γa for a given h,
where the critical value γcri t determines

√
emin . The third focuses on finding the optimal

h that maximises this region.

2.2.1. Validating the generalised kinetic energy to be a conditional Lyapunov function
For the validation of (2.17), it is convenient to transform the differential equation (2.1) for
the new variables

dri

dt
= S−1

i j A jk Skl rl + S−1
i j Q jkl Skm rm Slo ro. (2.18)

To facilitate this transformation, let us define

Ãi j = S−1
il Alk Sk j , (2.19)

Q̃i jk = S−1
im Qmol Soj Slk . (2.20)

These transformations result in a similar ordinary differential to (2.1), if Ai j and Qi jk are
replaced by Ãi j and Q̃i jk , respectively.

To analyse the system at different perturbation levels, the perturbation magnitude γ is
introduced by decomposing the transformed state vector into its magnitude, γ = √

riri ,
and a unit vector

ri = γ r̃i . (2.21)
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Next, let us define the growth rate of the generalised kinetic energy

μh = 1
h

dh

dt
, (2.22)

which can be calculated as

μh = 2 Ãi j ri r j + 2 Q̃i jk ri r j rk

rlrl
= 2 Ãi j r̃i r̃ j + 2 γ Q̃i jk r̃i r̃ j r̃k . (2.23)

The main difference lies in the quadratic term (Q̃i jk) contributing to the growth rate of
the generalised kinetic energy (h), unlike in the case of the original kinetic energy (e).
Due to the presence of this term, only conditional but not unconditional stability can be
established, and it can be utilised to calculate the threshold amplitude (γcri t ).

Let us define the possible maximum growth rate at a given level of perturbation as

μmax,h(S, γ )= max
r̃
μh(r̃, S, γ ). (2.24)

The generalised kinetic energy, h, should first be investigated at zero perturbation level,
γ = 0. There, similarly to the formula (2.8), the largest growth rate can be determined as

μh,lin,max =μmax,h(S, γ = 0)= λmax
(
Ã + Ã

T )
, (2.25)

where λmax denotes the largest eigenvalue of a matrix. If λmax (Ã + Ã
T
)� 0, then h cannot

demonstrate the existence of a ROA, similar to how the original kinetic energy, e, fails to
do so if Re> ReE . However, it is well known that if the equilibrium point is linearly stable,
a suitable h function must exist, ensuring the maximal generalised kinetic energy growth
rate of the linearised system is negative. For instance, the eigenvectors of A can be used to
construct such a function.

If λmax (Ã + Ã
T
) < 0, h can prove the existence of a ROA. The next step is to increase γ

and expand the ROA until the point where the maximal growth becomes zero, (γ = γcri t ).
Since the growth rate must not exceed the maximum growth rate, and the maximum
remains negative up to this perturbation level, the generalised kinetic energy or h decreases
monotonically, if γ < γcri t . Therefore, the second requirement (2.17) of the conditional
Lyapunov function is fulfilled.

Finding the global maximum of the growth rate at a given perturbation level among the
various states (r) is essential for proving that h is a conditional Lyapunov function. This
will be achieved using robust optimisation techniques, initialised from multiple seed points
to increase the likelihood of accurately identifying the global maximum. Unfortunately, the
optimisation procedure was not discussed in the paper by Nerli et al. (2007), and thus this
aspect of the present study fills an important gap in validating the method.

2.2.2. Calculation of the maximal growth of the generalised kinetic energy
Proving that a specific r̃ maximises the expression in (2.23), while also adhering to the
constraint that (‖r̃‖ = 1), presents a formidable challenge.

Analytical form of (2.23) helps to derive the gradient and the Hessian, accelerating the
optimisation. Among the various methods explored are sequential quadratic programming
(SQP), the active set algorithm and the interior-point algorithm (Nocedal & Wright 2006),
all of which can be efficiently employed using MATLAB’s fmincon function.

First, various dynamical models with increasing degrees of freedom, n, are generated.
For n = 2, the TTRD’ model is utilised, for n = 4 the W95A (defined in § 3.1) model is
employed, and for n = 12, 18, 24, 30, 45, 60, 90, 150, a range of Poiseuille flow models
(PFMs) are considered. The specifics of these models will be detailed later.
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Figure 1. Computation time for calculating the maximal growth rate (a) and the relative frequency of solutions
achieving the actual maximum (b) as functions of the dynamical system’s degrees of freedom. The shaded
areas represent the standard deviation from the mean values.

The optimisation process was conducted for each dynamical model using 20 randomly
generated transformation matrices, across a spectrum of relatively high perturbation levels
γ = 0.1, 0.2, 0.5, 1, 2, 5, 10. For each model, 100 randomly generated seed points –
unitary r̃ state vectors – were created. From each seed point, optimisation was executed
using three distinct algorithms. The global maximum for a given transformation matrix at
a specified perturbation level was determined as the maximum across all optimisation
techniques and seed points. The methods were compared based on the convergence
rate, defined as the proportion of solutions that converged to the global maximum from
differently initialised optimisations.

The convergence rate as a function of the number of degrees of freedom is depicted
in figure 1(b), with the thick curve representing the mean value and the dashed line
and shadow indicating the standard deviation of the convergence rate across various
perturbation levels and transformation matrices. For systems with few degrees of freedom,
the convergence rate was approximately 70 %, decreasing to 20 % as n increases. For
small systems (n < 20), no significant difference was observed among the optimisation
algorithms; however, for larger systems (n > 100), the interior-point algorithm clearly
outperformed the others. Its mean convergence rate was higher, and its standard deviation
was smaller. Although not visualised here, the convergence rate as a function of
perturbation level was evaluated. For SQP and active set methods, the convergence rate
decreased with increasing perturbation level, whereas for the interior-point algorithm,
it remained nearly constant. Based on the convergence rate, the interior-point algorithm is
superior, especially for large dynamical systems.
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Figure 2. The maximal growth rate of the generalised kinetic energy (μmax,h) as the function perturbation
magnitude γ in the case of the optimally transformed TTRD’ model at Re = 5. The red curve represents the
one tenth of the growth rate of the original kinetic energy (μe = 0.6), which is independent of the perturbation
level.

Computational time comparison, shown in figure 1(a), reveals that, for smaller systems
(n < 12), the SQP method is the fastest. There exists a narrow range (12< n < 20)
where the active set method is optimal. For larger systems, the interior-point method is
significantly faster than the other two methods, primarily because it utilises the analytical
Hessian matrix, unlike the other methods.

In summary, the SQP method is recommended for small systems, while the interior-
point method is better suited for larger ones. To determine the maximum growth rate for a
given transformation matrix and perturbation level, optimisation is repeated from random
initial points until at least five solutions converge to the same maximum value, reducing
the risk of converging to a local maximum.

Since finding the global maximum is critical, the interior-point method’s convergence
rate was analysed for dynamical models with up to 330 degrees of freedom. At this
scale, the convergence rate drops to 5.81%. Assuming a sufficiently large sample, this rate
can approximate the probability of locating the global maximum with a random initial
guess. With 231 random initial guesses, the probability of missing the global maximum
decreases to 1 in 106, making failures highly unlikely. The applied rule requiring at least
five consistent results often necessitates even more initial guesses.

2.2.3. Calculation of the critical perturbation level
As the μmax,h function is created by a proper optimisation procedure, the next step is
to determine the largest possible critical perturbation level below which this growth is
negative

μmax,h(S, γcri t )= 0. (2.26)

The corresponding unitary state vector, defined by

μmax,h(S, γcri t )=μh(r̃cri t , S, γcri t ), (2.27)

can be utilised to obtain the critical state: rcri t = γcri t r̃cri t .
For illustration, μmax,h is plotted in figure 2 for one particular problem. At low γ values,

the linear part of the dynamical system dominates, where the maximum growth rate is
almost constant and equal to the Rayleigh quotient of the Ãi j + Ã ji matrix, see equation
(2.25). For higher γ values, the nonlinearity of the system influences the maximal growth,
which tends towards a straight line. The slope of this line corresponds to the maximum of
{2 Q̃i jk r̃i r̃ j r̃k} among possible r̃i states. Figure 2 illustrates the maximal growth rate of
the original kinetic energy, highlighting that the laminar state is unstable according to the
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Figure 3. The phase space trajectories of the TTRD’ model at Re = 5 are shown for the original state variables
(a) and for the optimally transformed variables (b). Green trajectories converge towards the origin, while red
trajectories tend to another equilibrium point, which is not shown. The black curve represents the provable
boundary of the ROA utilising the optimal h function. The dashed, blue curve shows the boundary of the true
ROA. The red vector is the critical perturbation (2.26), where the growth rate of the generalised kinetic energy
was zero at the critical perturbation level (2.27). The yellow vector illustrates the smallest perturbation (2.30)
in the original state space (a) whose length is equal to the critical perturbation in the optimally transformed
state space (b).

regular energy method. Moreover, it demonstrates that the original kinetic energy remains
constant and is unaffected by the perturbation amplitude.

Determining the critical perturbation level is relatively simpler compared with the other
parts of the method. It involves finding the roots of equation (2.26). The gradient of this
expression can be derived easily as

∂μmax,h

∂γ
= 2 Q̃i jk r̃max,i r̃max, j r̃max,k (2.28)

where r̃max is the vector that maximises the growth rate at a given perturbation level.
By leveraging the analytical gradient, the Newton method, renowned for its second-
order convergence rate, is utilised effectively. Typically, after a few iterations (5–6), the
solution’s residual falls below the tolerated error threshold of 10−10.

The investigated region can be envisioned as a multidimensional hypersphere in the r
state space around the origin. The radius of this sphere is γ . If the radius is smaller than
a critical value γcri t , then μh < 0, indicating that the generalised kinetic energy (h) is
decreasing, and the trajectories move inward, ultimately converging to the origin. At the
critical radius, a trajectory becomes tangential to the sphere and may not reach the origin.
The hypersphere with radius γcri t represents the boundary of the provable ROA. However,
states outside this sphere can belong to the basin of attraction of either the origin or another
attractor. In the case of the two-dimensional problem, the hyperspherical ROA reduces to
a circle and is illustrated in figure 3(b) in the case of an optimal transformation matrix and
h function.

It is more interpretable to transform the ROA back to the original state space. The linear
transformation (scaling and rotating) of the hypersphere results in a hyperellipsoid in the
original state space q. This hyperellipsoid defines the boundary of the provable ROA of
the origin. A standard quantity describing ROA is its smallest radius,

√
emin .

The value emin can be calculated using equations (2.2) and (2.21) as follows:

emin(S)= γ 2
cri t (S)min

r̃
{r̃T ST Sr̃}. (2.29)
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The argument of the minimum function is the Rayleigh quotient of ST S, and the minimum
value corresponds to the smallest eigenvalue of ST S, since ST S is a symmetric matrix

emin(S)= γ 2
cri t (S) λmin

(
ST S

)
. (2.30)

The corresponding unitary eigenvector r̃min can be utilised to get the two locations
qmin = ±γcri t S r̃min = ±S rmin , where the inner hypersphere touches the hyperellipsoid,
as illustrated in figure 3(a). This inner hypersphere is a subset of the provable ROA, where
e< emin .

The value of emin depends on the definition of h through the transformation matrix S.
The aim of the method is to maximise this minimum energy, emin(S) over all matrices, S.
The possible methods for maximisation will be discussed in § 2.3. It is important to note
that the value of γ is only meaningful for a specific transformation or generalised kinetic
energy. Comparisons of γ or γcri t between different S matrices or h functions are not
valid.

It should also be mentioned that although the kinetic energy (e) can grow significantly
inside the provable ROA region – a phenomenon usually called the non-modal growth –
stability is guaranteed there due to the exponential decay of h there.

2.3. Optimising the generalised kinetic energy
The last key question is how to determine the optimal h function, represented by the
transformation matrix Sopt , to maximise the size of the provable ROA, emin . First, a
method utilising the singular value decomposition (SVD) of the eigenvectors is presented.
This method cannot provide the largest emin , but it is extremely fast compared with other
methods. As a second approach, all the elements of the transformation matrix are treated as
decision variables, leading to a significantly larger ROA at the cost of higher computational
need.

2.3.1. The GKE-SV method utilising the singular value decomposition of the eigenvector
matrix

A plausible starting point is to use the eigenvectors of A, Ψ c, as the transformation matrix,
since it diagonalises the A matrix. This transformation redefines the state variables as
coefficients of the eigenmodes, addressing non-normality by making Ã diagonal and
its eigenvectors orthogonal. Consequently, the GKE, expressed as the sum of squared
eigenmode coefficients, ensures stability at infinitesimally low perturbation levels, as
noted by Olivier Dauchot & Paul Manneville (1997).

Diagonalising A with Ψ c results in the maximum linear growth rate of

μh,lin,max(Ψ c)= λmax
(
Ã + Ã

T ) = 2Re
(
λmax (A)

)
, (2.31)

which must be negative if the equilibrium point is linearly stable and there exists a certain
provable ROA. However, it will be shown that Ψ c used to define h is not optimal, but
systematic modifications can yield an improved transformation matrix and h.

As a first step, the eigenvector matrix is transformed into a real-valued matrix, denoted
as Ψ . This involves reinterpreting all eigenvector pairs associated with the same complex-
conjugate eigenvalue pairs, alternately focusing on the real and imaginary components,
and subsequently normalising these to unit vectors. Although this new transformation
matrix does not diagonalise the A matrix, the formulation of generalised energy remains
analogous and equation (2.31) still holds.
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Next, the SVD of Ψ matrix is performed

Ψ = Uψ Sψ Vψ. (2.32)

It can be demonstrated that Vψ does not affect the definition of h in equation (2.15) and
Vψ can therefore be omitted.

For simplicity, the singular values can be normalised by their maximum without
sacrificing generality. Furthermore, let the singular values be denoted by si , where s1 is the
largest and sn is the smallest. Due to normalisation s1 = 1 and 0< si � 1. It is well known
that, as the Reynolds number increases, the non-normality of A or the condition number
of the eigenvector matrix increases. Therefore, the smallest singular value of Ψ , sn , tends
toward zero, leading to two significant issues. One problem is that a decreasing sn makes
the eigenvector matrix ill conditioned and difficult to invert accurately. Additionally, this
choice likely reduces the size of ROA, emin , since

emin ∝ λmin
(
ST S

) = s2
n , (2.33)

according to equation (2.30). Visually, utilising Ψ as the transformation matrix results in
an attraction region shaped like a narrow superellipsoid with its smallest axis shrinking
to zero. In this context, the concept of ‘exotic’ energy as defined by Olivier Dauchot &
Paul Manneville (1997), while effective for two-dimensional systems at lower Reynolds
numbers, is presumably inefficient for larger systems or those at higher Reynolds numbers,
where the ratio of the smallest and largest singular values of Ψ becomes large.

A straightforward solution to the problem is proposed by modifying the transformation
matrix as

S = Uψ S̃ψ, (2.34)

where Uψ comes from the SVD decomposition of Ψ and S̃ is the modified matrix of the
singular values (Sψ ), for which the singular values smaller than a certain threshold, smin ,
are simply set to smin

s̃i =
{

si if si > smin,

smin if si � smin.
(2.35)

The threshold parameter, smin , can be set between sn and 1. If smin = sn , the transformation
matrix is equivalent to the eigenvector matrix in terms of the h definition. Conversely, if
smin is set to 1, the transformation has no effect, making the GKE equivalent to e. In this
case, if Re> ReE , no provable ROA exists according to h.

By varying smin , between the two extrema, μh,lin,max increases continuously and
changes sign. This behaviour is illustrated in figure 4, which shows the maximal
growth rate of the linearised system rate after transformation as a function of smin
for the n = 210 PFM at Re = 2000. Interestingly, for various systems, smin can be
increased by orders of magnitude above the smallest original singular values without
significantly affecting μh,lin,max . In the presented case, smin is increased by two orders
of magnitude without altering μh,lin,max . This demonstrates that the non-normality
of A can be effectively managed without relying on an ill-conditioned transformation
matrix. Moreover, increasing smin significantly enlarges the provable ROA, as

√
emin is

proportional to the smallest singular value of the transformation matrix.
During the optimisation of the transformation matrix, the optimal smin is determined

using a bisection algorithm. The algorithm increases sn with a relative accuracy of 10−3

until μh,lin,max no longer exceeds a relative change of 10−5 from its minimum possible
value.
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Figure 4. The maximal growth rate of the GKE (μh,lin,max ) for the linearised system, plotted against the
smallest singular value of the modified eigenvector matrix at Re = 2000. The system in question is the 210-
dimensional PFM. The red curve depicts the maximal growth rate of the original kinetic energy, while the
yellow cross marks the critical smin value at which the growth rate becomes zero.

The optimisation of S such a way offers both benefits and limitations due to its disregard
for nonlinear terms. This exclusion streamlines the optimisation, significantly speeding up
the process as it necessitates only the eigenvalue analysis of relatively small matrices. After
optimising the transformation matrix, a solitary evaluation is sufficient for computing the
ROA. However, this method may not achieve optimality, given that it neglects the impact
of nonlinear terms during the optimisation of the transformation matrix. This approach
has been named the ‘GKE-SV’ algorithm in the context of this study.

2.3.2. The GKE-G method – general optimisation of the transformation matrix
An alternative approach involves optimising the elements of the transformation matrix as
decision variables to maximise the size of the provable ROA, emin value. Given that only
the definition of h (P in equation (2.15)) affects the stability analysis, we can assume,
without loss of generality, that S is an upper triangular matrix. This assumption reduces
the number of unknowns from n2 to (n2 + n)/2. As the degrees of freedom expand,
the number of decision variables increases quadratically, necessitating gradient-based
optimisation. The derivation of the gradient is elaborated in Appendix A.2.

This approach to optimising the transformation matrix is comprehensive, allowing
for the identification of the optimum among all possible quadratic Lyapunov functions.
Despite this advantage, the method requires multiple evaluations of the ROA, making it
computationally intensive. Even with the utilisation of gradients with respect to decision
variables to expedite the process, the computational demands remain significant. To
manage the complexity and the high number of unknowns efficiently, the interior-point
algorithm is employed in this study.

The general optimisation procedure for S unfolds as follows:

(i) Solve (2.26) to determine γcri t .
(ii) Calculate emin through (2.30).

(iii) Update S through the interior-point algorithm, guided by the gradient (A9), and
iteratively repeat the first two steps until emin (2.30) reaches its maximum value.

This methodical enhancement of S ensures that the optimisation steadily moves towards
a maximum of emin , which can of course be only local rather than global. In the paper,
this optimisation procedure of the transformation matrix is referred to as the ‘GKE-G’
algorithm.
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2.4. Comparison of the generalised kinetic energy method and sum-of-squares programs
This section introduces a comparison between the proposed procedure for constructing
Lyapunov functions and the current state-of-the-art methodologies, particularly those
employing SOS programs. A brief description of the applied SOS methods is provided
in Appendices A.2.1 and A.2.2.

The first SOS program, SOS1 (Jarvis-Wloszek 2003; Tan & Packard 2008; Topcu et al.
2008; Khodadadi et al. 2014; Kalur et al. 2021), consists of three SOS constraints, one
ensures the positive definiteness of the Lyapunov function, the second maximises the
size of the ROA while the third mandates that the Lyapunov function decreases along
the solution trajectories. The maximal ROA can be obtained by an iterative maximisation
of the parameters of the constraints.

The second SOS program, SOS2 (Liu & Gayme 2020), is similar to the SOS1 program
but the second constraint is replaced by an eigenvalue problem, significantly reducing the
size of the problem and the necessary number of iterations. Therefore, SOS2 is usually
faster but less accurate compared with the SOS1 method.

There is a convex formulation, SOS3, for inner approximating a basin of attraction
introduced by Henrion & Korda (2014) which avoids the necessary iteration steps of
the SOS1 and SOS2 programs. However, in SOS3, time appears as an explicit variable
in the polynomials, unlike in SOS1 and SOS2. Additionally, SOS3 consist of four SOS
constraints, resulting in significantly larger optimisation problem. Furthermore, it requires
the explicit specification of a time horizon and a target domain. These parameters play a
critical role in shaping the results. This formulation is excluded from the comparison.

The two SOS algorithms and the two GKE algorithms were evaluated against each
other using simple models, focusing on computational time and the size of the ROA as
key metrics. For the conversion of SOS programs into a semi-definite program (SDP),
two tools, SOSTOOLS (Papachristodoulou et al. 2013) and Yalmip (Löfberg 2004), were
employed. However, no significant difference in computational time was observed between
them. Consequently, the results presented here utilise the conversion code provided by
SOSTOOLS, with the SDP problems solved using MOSEK.

The ROA was calculated for five dynamical systems: TTRD’, W95A, W95B, BT and
PFMn=12. These systems have degrees of freedom (n) of 2, 4, 4, 4 and 12 respectively.
Here, PFMn=12 denotes the truncated Galerkin model of Poiseuille flow, while the other
models are low-order representations of subcritical transition. These calculations were
performed on a computer equipped with an Intel i7-7700 processor running at 3.6 GHz
and 32 GB of memory with a speed of 2400 MHz.

The comparative analysis in figure 5 illustrates the performance differences between
the GKE and SOS algorithms in determining the ROA for dynamical systems. The
GKE-G algorithm identified a ROA radius identical to that of the SOS1 method for low-
dimensional models (n � 4) and slightly smaller for the n = 12 model, but required more
time to do so. The small difference is attributed to the optimisation of the h function
in the GKE-G method. When the optimal h definition obtained by the SOS1 algorithm
was used to calculate the provable ROA using the GKE-G method, the radius matched
that of the SOS1 method. The SOS2 algorithm yielded a slightly smaller ROA, whereas
the GKE-SV algorithm predicted significantly smaller regions but demanded substantially
less computational resources.

For smaller systems, the SOS1 algorithm is recommended due to its precision. The
increased computational demand typically does not pose a significant concern for these
cases. However, it has been discovered that the SOS1 method becomes impractical for
systems with more than 15 degrees of freedom, as the resultant SDP becomes too large for
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Figure 5. Threshold amplitude (a) across five dynamical systems (TTRD’, W95A, W95B, BT, PFMn=12) at a
Reynolds number of Re = 5ReE , as determined by four distinct methods, alongside the computational time (b).

the optimisation program, MOSEK, to solve. Similar limitations were observed with the
SOS2 algorithm when the degrees of freedom exceeded 21.

A core issue identified is that, even when restricting the analysis to quadratic Lyapunov
functions, the left-hand side of equations (A18–A19) in SOS1 and (A22) in SOS2 manifest
as fourth-order polynomials. To ascertain their positive definiteness, the necessary number
of monomials is proportional to n2, implying that the optimisation matrix size –
containing the decision variables – scales roughly with n4. Consequently, the number of
decision variables surges as the degrees of freedom (n) increase. The SOS2 algorithm
accommodates slightly larger systems due to involving only one fourth-order polynomial,
in contrast to the two present in SOS1.

Conversely, GKE methods exhibit scalability to systems an order of magnitude larger, as
will be demonstrated. Notably, the GKE-G method provides an approximation of the ROA
comparable in accuracy to the widely utilised SOS1 method, offering a viable alternative
for larger system analysis. The GKE method exemplifies a less conservative approach with
better scalability.

3. Application

3.1. Trefethen’s and Waleffe’s models
Well-known low-order dynamical systems that mimic the subcritical transition of shear
flows are investigated in this study. Specifically, the two-dimensional TTRD’ model of
Baggett & Trefethen (1997) and the four-dimensional W95 model of Waleffe (1995)
are examined. In these models, the linearised part (A) is non-normal, and the condition
number of its eigenvector matrix grows with increasing Reynolds number. Meanwhile,
the nonlinear part does not affect the growth rate of kinetic energy, as the corresponding
matrix remains asymmetric.

The TTRD’ model is represented by the following equation:

dq
dt

=
⎡
⎢⎣− 1

Re
1

0 − 1
Re

⎤
⎥⎦ q +

[
0 −q1

q1 0

]
q, (3.1)

therefore the non-zero elements of Qi jk are

Q1 1 2 = −1, (3.2)

Q2 1 1 = 1. (3.3)
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Figure 6. The size of ROA as the function of Reynolds number in the case of TTRD’ model. The fitted curve
from Liu & Gayme (2020) using the QC method (0.912 Re−3.07) is shown alongside. The best-fitting curve of
GKE-G results is

√
emin ≈ 2.228 Re−3.005. The red crosses represent the energy of the approximated minimal

seeds. The vertical red line signifies the unconditional stability limit ReE = 2.

The optimal h functions and the corresponding transformation matrices for TTRD’, that
maximise emin , are calculated at the Reynolds number between 5 and 100 with the step
size 2.5 by the proposed GKE-G method. The result is visualised in figure 3 at Re = 5,
where green trajectories converge to the origin and red trajectories to another state. These
trajectories are shown in the original variables (figure 3a) and the transformed variables
(figure 3b). The calculated ROA appears as an ellipse in the original state space, precisely
touching the boundary of the true ROA.

Next, the calculated threshold amplitude as the function of Reynolds number are plotted
in figure 6 and compared with the findings of Liu & Gayme (2020). The cited authors
used the quadratic constraint method, which has been proven to be computationally
efficient. They treated the nonlinear term as a forcing with an approximated upper
bound.

The calculated threshold amplitude (
√

emin) decays as a function of the Reynolds
number following a power law. The exponents are nearly identical: −3.005 in this
study and −3.07 in the work of Liu & Gayme (2020). However, the method presented
here predicts a ROA with a radius roughly three times larger, indicating a energy
level approximately one magnitude higher. This substantial difference arises from their
approximation of the nonlinear term, while GKE-G calculation takes into account the
exact terms, providing a more precise representation of the system’s behaviour, similarly
to SOS methods.

In the next step, the accuracy of the ROA is investigated by solving the ordinary
differential equation initialised close to the outside of the calculated ROA. The solutions
are initialised from slightly increased threshold state vectors q0 = cuqmin approximating
the minimal seed states and computed using the Matlab ode45 Runge–Kutta method.

The average value of cu for such solutions is found to be 1.02, indicating that the
proposed method is highly accurate for this small model. The energy level of these
approximated minimal seeds are shown in figure 6 but they are almost on the curve
representing the radius of ROA.

In the next step, the GKE-G method is applied to the low-order model of subcritical
transition proposed by Waleffe (1995). The dynamical system is represented as
follows:
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Figure 7. The size of the ROA as the function of the Reynolds number in the case of the W95A model
(a), W95B model (b) and BT model (c), computed using the GKE-G method. The QC, SOS, MS curves
represent the results of Kalur et al. (2021) and MS refers to minimal seeds obtained via direct-adjoint looping.
For the W95B model, the minimal seed energy is taken from Cossu (2005). The red, vertical dashed line
indicates the unconditional stability limit, ReE . The best-fitting curves of

√
emin :

√
emin ≈ 176479 Re−2.65089

for W95A;
√

emin ≈ 1964.3 Re−2.08506 for W95B;
√

emin ≈ 4.1952 Re−1.98875 for BT model.

dq
dt

= 1
Re

⎡
⎢⎢⎢⎣

−λw Re 0 0
0 −μw 0 0
0 0 −νw 0
0 0 0 −σw

⎤
⎥⎥⎥⎦ q +

⎡
⎢⎢⎢⎣

−γwq2
3 + q2q4

δwq2
3

γwq3q1 − δwq3q2

−q4q2

⎤
⎥⎥⎥⎦ . (3.4)

The parameters λw, μw, νw, σw represent the decay rates due to viscosity, while γw, δw
describe the nonlinear interaction between rolls (q2) and streaks (q1).

In this study, three different parameter sets are investigated. The first set is
characterised by λw =μw = σw = 10, νw = 15, δw = 1, γw = 0.1, denoted as the W95A
model (Waleffe 1995). The parameters of the second set remain the same except γw = 0.5,
and this configuration is denoted as W95B. In the last case, all parameters are set to 1,
λw =μw = νw = σw = δw = 1, and this configuration is denoted as the BT model (Baggett
& Trefethen 1997). It is important to note that these parameter sets significantly influence
the system dynamics (Baggett & Trefethen 1997; Kalur et al. 2021).

The optimised transformation matrices are calculated for the W95A, W95B and BT
models over different ranges of Reynolds numbers: 25–200 for the W95A model, 25–2000
for the W95B model and 5–100 for the BT model by the GKE-G method. For the W95A
and BT models, the step size was set to 2.5, while for the W95B model, a logarithmic
spacing was applied over 150 steps. Figure 7 shows the largest inner radius of the ROA for
the three models.
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The proposed GKE-G method is compared with other stability calculation methods.
For the W95A and BT models, it yields nearly identical allowable perturbation levels as
the SOS1 method employed by Kalur et al. (2021), indicating that these are the largest
provable ROA utilising quadratic Lyapunov functions.

Kalur et al. (2021) also applied the QC method to the same W95A and BT models,
predicting significantly smaller regions due to the approximation of nonlinear terms using
bounds, despite its lower computational cost. A comparative analysis of the QC method
across different model dimensions (TTRD’, W95A, BT) reveals a decreasing accuracy
with increasing model complexity.

For the W95B model, the calculated allowable perturbation levels are compared with the
results of Nerli et al. (2007). The presented GKE-G implementation slightly outperforms
the GKE method of Nerli et al. (2007) due to a more general energy function form.
(It is mentioned that Nerli et al. (2007) defined the kinetic energy with a multiplier of 1/2
which was compensated by a factor of 1/

√
2 on the plots here.) Additionally, the calculated

allowable threshold energy levels by the GKE-G method are close to the energy levels of
minimal seeds calculated by Cossu (2005). Since the minimal seeds represent states with
the lowest kinetic energy converging to another attractor, the close agreement between
stability threshold energy and minimal seed energy indicates accurate approximation of
the stability region boundary. Similar observations hold for the BT model, where minimal
seeds (MS) are calculated by Kalur et al. (2021) using direct-adjoint looping.

In contrast, the results for the W95A model show different behaviour. Solutions
initialised outside the predicted ROA tend to a laminar state, as also observed by Kalur
et al. (2021). This suggests that the true ROA is significantly larger than the predicted and
might be better captured using higher-order Lyapunov functions.

In summary, the GKE-G method accurately predicts perturbation thresholds for the two-
dimensional TTRD’ model and the four-dimensional BT and W95B models. However,
for the W95A model, the method proves overly conservative, necessitating higher-order
Lyapunov functions to capture a larger ROA.

3.2. Poiseuille flow models
To construct a reasonably accurate yet comparatively low-dimensional model of the two-
dimensional Poiseuille flow we will use Galerkin projection on the basis of eigenfunctions
of the Stokes operator. The construction method is described in Appendix B.

The chosen dimension of the domain is Lx = 2π to ensure that the base wavenumber
(α0 = 2π/Lx = 1) aligns closely with the critical value identified through linear stability
analysis, which is α= 1.02 according to Orszag (1971).

To determine an appropriate number of modes for the analysis, an initial assessment was
conducted on the reduced-order model’s linear stability, followed by an examination of the
original energy stability.

Initially, the linear stability limit (ReL ) is determined by identifying when the first
eigenvalue of the linear part (A) turns positive. The influence of the number of modes
at a particular wavenumber pairs, Ny within the range of 10–50 is depicted in table 1.
It becomes apparent that, for fewer than 30 modes, the outcome of the linear stability
analysis is markedly sensitive to the mode count, a phenomenon attributable to the high
susceptibility of the non-normal linear operator to numerical inaccuracies, as highlighted
by Trefethen & Embree (2005).

Concurrently, the energy stability limit (ReE ) exhibits less sensitivity to the choice
of modes Ny and numerical errors. Notably, as the number of streamwise modes Nx is
increased from 1 to 2, a significant shift in the limit from 121 to 87 is observed. However,
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Nx Ny N ReL ReE

1 10 30 4544.82 121.617
1 20 60 3452.81 121.124
1 30 90 5770.67 121.072
1 40 120 5973.48 121.059
1 50 150 5926.84 121.054
2 30 150 5770.67 87.7574
3 30 210 5770.67 87.7574
4 30 270 5770.67 87.7574
5 30 330 5770.67 87.7574
6 30 390 5770.67 87.7574
7 30 450 5770.67 87.7574
8 30 510 5770.67 87.7574
16 30 990 5770.67 87.7574

Table 1. The critical Reynolds numbers, as determined through linear stability analysis (ReL ) and energy
stability analysis (ReE ), for the two-dimensional PFM with domain size Lx = 2π and Nz = 0. Values selected
for further analysis in this study are highlighted in bold.

further increments in the number of streamwise modes do not influence the outcome.
This indicates that the critical perturbation for classical energy analysis corresponds to
a wavenumber of 2α0 = 2, whereas, according to linear stability analysis, the streamwise
wavenumber of the critical perturbation is α0 = 1 for this configuration.

These two limits serve as pivotal benchmarks for the model and can be calculated with
relative ease. Below the energy stability limit, the flow is deemed unconditionally stable,
implying an infinite radius for the ROA. Conversely, beyond the linear stability limit, the
flow becomes unconditionally unstable, reducing the radius of the ROA to zero. Within
the bounds of these two limits, the proposed method offers a viable approach to ascertain
the conditional stability threshold.

For the models under consideration, the threshold amplitudes are computed with Ny =
30. This provides a balance between the error margin of the linear stability limit and the
number of modes.

The evaluation of the models spans Reynolds numbers from 250 to 2000, in increments
of 250. Given the complexity associated with a high number of degrees of freedom, which
reaches 90 for the smallest model studied, the SOS methods are deemed impractical for
estimating the threshold amplitude. Instead, the GKE-G method is utilised for models up to
Nx = 5, where the results indicate convergence. For demonstration purposes, the GKE-SV
method is applied to the largest systems up to Nx = 16 and n = 990.

The figure 8(a) presents the allowable perturbation amplitude for various models at
Re = 500. It depicts the square root of the ratio of allowable perturbation kinetic energy to
the base flow kinetic energy (E), essentially showcasing the proportionality between the
magnitude of perturbation velocity and the base flow velocity. This metric is henceforth
referred to as the threshold amplitude ratio.

In the application of the GKE-G method, notable variations in results persist until the
number of degrees of freedom reaches 210 (Nx = 3), beyond which increases to 270
(Nx = 4) or 330 (Nx = 5) result in only slight changes. It is important to note that the
optimisation process of the transformation matrix does not utilise results from lower-order
dynamical systems, rendering these results independently obtained. The convergence of
the threshold amplitude ratio, therefore, suggests that the optimisation either identifies
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Figure 8. (a) The square root of the ratio of allowable perturbation kinetic energy to the base flow kinetic
energy, plotted as a function of degrees of freedom for a two-dimensional Poiseuille flow at Re = 500. The
periodic domain length is set to Lx = 2π . (b) The computational time required for the analysis.
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Figure 9. The square root of the ratio of allowable perturbation kinetic energy to the base flow kinetic energy
plotted against the Reynolds number for various PFMs. The transformation matrix optimisation is carried out
using (a) the GKE-G method and (b) the GKE-SV method.

the global maximum of the allowable perturbation level or converges to a similar local
maximum across various system sizes.

When the transformation matrix is optimised using the GKE-SV method, the predicted
allowable perturbation level is lower, as anticipated. This reduction is due to the
optimisation focusing solely on the singular values of the Ψ matrix and considering only
the linear component of the dynamical system. However, these substantial simplifications
in determining the optimal transformation matrix yield a threshold amplitude that is less
than one magnitude smaller than that predicted by the GKE-G method. Conversely, the
previously described QC method predicts significantly lower threshold amplitude levels,
even for smaller dynamical systems.

Figure 8(b) compares the computational times between the two optimisation approaches.
The benefits of employing the GKE-SV method are evident; not only is the computational
time orders of magnitude lower, but it also facilitates application to larger dynamical
systems, underscoring its efficiency and scalability.

Next, the threshold amplitude ratio as a function of Reynolds number is depicted in
figure 9. When the transformation matrix is optimised using the GKE-G method for
models with n = 210, 270, 330, the resulting curves closely align with one another, with
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Figure 10. Perturbation field for the truncated PFM with n = 330 at Re = 1000. Panels (a) and (b) show the
states with the smallest energy (emin) on the boundary of provable ROA calculated using the GKE-G method.
Panels (c) and (d) depict the same states using the GKE-SV method. Panels (e) and (f ) present the perturbations
with the highest growth rate according to the original energy method. The streamwise and wall-normal velocity
components are shown in the left and right columns, respectively.

only minor deviations observed at higher Reynolds numbers. The figure plots the threshold
amplitude ratio on a logarithmic y-axis against a linear x-axis. The nearly linear curves
suggest a decay rate faster than a power law, consistent with the flow’s linear instability at
a finite Reynolds number, where the threshold amplitude approaches zero.

In figure 9(a), the threshold amplitudes obtained using the GKE-SV method are
presented. The amplitude ratios are notably lower than those calculated via the GKE-
G method, which can be attributed to the simpler optimisation process previously
discussed. Additionally, fluctuations are observed around at Re = 1700, highlighting the
sub-optimality of the GKE-SV method. These fluctuations result from the restrictions
imposed on the transformation matrix, which vary with the Reynolds number but remain
consistent across the models since they describe the same shear flow configuration. As the
Reynolds number increases, the disparity between the results from the two methods
widens, yet the difference remains under two magnitudes even at the highest Reynolds
number evaluated.

The findings are juxtaposed with the minimal seed calculations conducted by Zhang &
Tao (2023), who determined that the laminar flow remains globally stable up to a Reynolds
number of 2332.5. Zhang calculated the energy of the minimal seed at Re = 2333 to be
approximately eMS = 0.01. From this value, the estimated amplitude ratio of the minimal
seed,

√
eMS/E , is roughly 0.007. This represents the amplitude limit beyond which

perturbations persist within the system. In our analysis utilising the 330-dimensional
model with the GKE-G method, the threshold amplitude – up to which the laminar flow
maintains stability – is approximately

√
emin/E = 0.00045 at Re = 2000. This value is

only one magnitude smaller than the minimal seed estimation. However, it is important
to note that their results were obtained in a significantly larger domain of Lx = 400,
compared with the domain length of Lx = 2π employed in our study.

In figure 10, panels (a–d) present the perturbations with the smallest kinetic energy
(emin) at the boundary of the provable ROA for both the GKE-G and GKE-SV methods.
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Source Perturbation Domain Re range η

Lundbladh et al. (1994) Oblique wave 2π × 2 × 2π 1500–5000 −1.75
Reddy et al. (1998) Oblique wave 2π × 2 × 2π 1500–5000 −1.6
Parente et al. (2022) Minimal seed 250 × 2 × 125 1000–1568 −4.25
Zhang & Tao (2023) Minimal seed 100 × 2 (2D) 2500–4500 −3.8
PFM n = 330 GKE-G stability 2π × 2 (2D) 500–2000 −1.28

Table 2. Exponents of the power law for the threshold amplitude (
√

emin ∝ Re−η), corresponding to half of
the exponents for the threshold energy.

In the case of the GKE-G method, these perturbations manifest as tilted periodic waves
localised near the walls, resembling the minimal seed states described by Zhang & Tao
(2023). However, due to the significantly longer domain (100 units) used in their study,
sometimes localised structures in the streamwise direction were observed, depending on
the initial perturbation amplitude and Reynolds number. The shorter domain length (2π)
in our study likely excludes the observation of such structures, resulting in fully periodic
structures instead.

For the GKE-SV method, the perturbations appear as stripes localised between the
wall and the domain’s centreline. These perturbations are less structured and exhibit
asymmetry, likely due to the sub-optimal nature of the GKE-SV method.

For reference, panels (e–f ) in figure 10, show the critical perturbation with the highest
growth rate (μe = 0.7712) according to the original energy method. These perturbations
also appear as tilted periodic waves, as demonstrated by Farrell (1988), but are less
localised to the near-wall region and exhibit higher oscillations in the streamwise direction
compared with the critical perturbations according to the GKE-G method.

In the following phase of the analysis, power-law functions are fitted to the threshold
amplitude as a function of Reynolds number,

√
e ∝ Reη. This fitting method has previously

shown effectiveness for Couette flow, as documented by Duguet et al. (2013), and has been
employed in other referenced studies. For Poiseuille flow, the exponents derived from the
fitting range between −1.6 and −4.25, according to research conducted by Lundbladh et al.
(1994), Reddy et al. (1998), Parente et al. (2022) and Zhang & Tao (2023).

The exponents predicted using the GKE-G method surpass these cited figures, yielding
an exponent of −1.28 for the model with n = 330 dimensions. This discrepancy could
stem from several factors. Notably, the current investigation focuses on two-dimensional
flow, and the range of Reynolds numbers considered also differs. Additionally, as
previously discussed, the relationship between threshold amplitude and Reynolds number
in Poiseuille flow is likely to diverge from a simplistic power-law function, further
contributing to the observed differences.

4. Conclusion
Due to the subcritical nature of the most shear flows, the calculation of the allowable
perturbation level is an important scientific challenge. Minimal seed calculations by
nonlinear optimisation have proven to be an efficient tool for that; however, the validation
of the result still needs alternative methods. This study introduces an approach for
determining the conditional stability limit of laminar flows by constructing a quadratic
Lyapunov function. The method of Nerli et al. (2007) is followed to validate the Lyapunov
function through nonlinear optimisation; however, in this study, it is defined in a more
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general form by applying a linear transformation to the state variables and establishing a
generalised kinetic energy via the inner product of the transformed variables.

The transformation directly impacts the growth rate of generalised kinetic energy,
making it dependent on the perturbation amplitude. This dependency allows for the
calculation of the threshold amplitude of stability, offering vital insights into the system’s
dynamics. With a suitable definition of the generalised kinetic energy through the
transformation matrix, the maximum potential growth rate of infinitesimal perturbations is
negative (if Re< ReL ) and it increases with the perturbation level. The maximum potential
growth rate of the system, relative to the perturbation level, delineates two distinct regions:
an initial phase dominated by a linear dynamics at lower perturbation levels, followed by
a transitional phase to a regime where nonlinear effects predominate at higher levels. The
critical perturbation level, below which the laminar state remains stable, is defined by the
intersection of the maximum generalised kinetic energy growth rate with the zero line.

In the transformed state space, the basin of attraction is a hypersphere with a radius equal
to the critical perturbation level, whereas, in the original state space, it is a hyperellipsoid
with the smallest semiminor axis dictating the maximum allowable perturbation kinetic
energy. To optimise this threshold, two strategies are delineated: the GKE-SV method,
which optimises the singular values of the linear system’s eigenvector matrix, and the
GKE-G method, which optimises the elements of a general triangular transformation
matrix through the interior-point algorithm, utilising analytic gradients for efficiency.

A crucial part of the calculations involves determining the global maximum of the
potential growth rate across a variety of perturbation states. To ensure precision, this
methodology integrates the use of analytic gradients and the Hessian matrix, alongside
employing multiple seed locations for a thorough exploration of the solution space. In this
context, three renowned optimisation algorithms were evaluated, with the SQP method
and the interior-point algorithm recommended for small and large dynamical systems,
respectively.

When juxtaposed with traditional SOS programs, it emerges that the presented GKE
methods give no significant benefits for smaller systems. However, they prove to be viable
for larger systems, where n > 20, a domain where SOS methods typically falter.

The GKE-G method was applied to the well-known low-dimensional systems: the
TTRD’ model and three different variations of the four-dimensional Waleffe model. In
general, the proposed method predicts a similar allowable threshold amplitude as the SOS
methods and significantly larger than so-called QC method. Additionally, for the TTRD’
model and the W95B and BT parameter sets of the Waleffe model, the proximity of the
minimal seed solutions to the boundary of the calculated ROA reinforces the accuracy of
the GKE-G methodology.

Applying GKE methods to a reduced-order model of two-dimensional Poiseuille flow
(90–990 degrees of freedom) shows that the GKE-G method accurately calculates the
perturbation threshold with 330 modes. Moreover, the calculated critical perturbation
shape qualitatively aligns with minimal seed solutions from the literature.

The GKE-SV method predicts a much lower threshold amplitude at a fraction of the
computational cost, with the divergence increasing at higher Reynolds numbers but staying
within two orders of magnitude, even for the largest systems analysed.

In summary, the presented methodology for constructing quadratic Lyapunov functions
can be applied to significantly larger fluid dynamical systems than SOS techniques.
Nonetheless, challenges persist in three-dimensional domains due to the reliance on
high-dimensional models. Employing more efficient basis functions, like controllability
modes (Cavalieri & Nogueira 2022) instead of Stokes modes, could reduce the necessary
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model order, potentially enabling the analysis of finite-dimensional models for three-
dimensional flows with the presented GKE methods. Future improvements might involve
the use of infinite-dimensional models (Goulart & Chernyshenko 2012; Fuentes et al.
2022), considering the worst-case effects of truncated modes on flow stability. Notably,
Fuentes et al. (2022) demonstrated a significantly higher global stability limit for two-
dimensional Couette flow using only 13 modes. Given that the GKE method can efficiently
handle systems with several hundred modes, extending it to accommodate infinite-
dimensional models could potentially uncover the conditional stability of physically
relevant three-dimensional flows.
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Appendix A. Numerical methods

A.1. The maximisation of μh

The critical aspect of the method lies in determining the maximum potential growth rate
of GKE (2.24). In practical implementations, Matlab’s fmincon is employed, a tool that
can significantly benefit from the provision of gradient and Hessian matrix of the cost
function. The derivatives of the growth rate (2.23) concerning the normalised state vector
(r̃k) are expressed as follows:

∂μh

∂ r̃ p
= 2

(
Ã p,i + Ãi,p

)
r̃i

+ 2γ
(
S−1

i j Q jkl Skp Slor̃or̃i + S−1
i j Q jkl Skmr̃m Slpr̃i + S−1

pj Q jkl Skmr̃m Slor̃o
)
, (A1)

where Ãi j is the transformed Ai j matrix defined in equation (2.19). Let us introduce the
vectors v j = S−T

ji r̃i and q̃i = Si j r̃ j to simplify the gradient

∂μh

∂ r̃ p
= 2

(
Ã pi + Ãip

)
r̃i + 2γ

(
ST

pk Q jkl q̃lv j + ST
pl Q jkl q̃kv j + S−1

pj Q jkl q̃k q̃l
)
. (A2)

The Hessian matrix of μh (2.23) is given by

∂2μh

∂ r̃ p∂ r̃q
= 2

(
Ã pq + Ãqp

) + 2γ
(
S−1

i j Q jkl Skp Slq r̃i + S−1
q j Q jkl Skp Slor̃o

+ S−1
i j Q jkl Skq Slpr̃i + S−1

q j Q jkl Skmr̃m Slp + S−1
pj Q jkl Skq Slor̃o

+ S−1
pj Q jkl Skmr̃m Slq

)
. (A3)

By introducing the expressions

Bkl = Q jklv j , C jk = Q jkl q̃l , D jl = Q jkl q̃k, (A4)
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the equation (A3) simplifies to

∂2μh

∂ r̃ p∂ r̃q
= 2

(
Ã pq + Ãqp

) + 2γ
(
ST

pk Bkl Slq + (
S−1

q j C jk Skp
)T

+ (
ST

qk Bkl Slp
)T + (

S−1
pj D jl Slp

)T + S−1
pj C jk Skq + S−1

pj D jl Slq
)
. (A5)

It is worth noticing that the Hessian matrix consists of the sum of four matrices and their
transposes, resulting in a symmetric expression. This symmetry is expected due to the
nature of second derivatives. From a practical perspective, only half of the expression
needs to be calculated; the other half can be obtained by transposing the appropriate
matrices.

The optimisation is constrained by the requirement that the transformed state vector
should be unitary

c = r̃i r̃i − 1 = 0. (A6)

The gradient of the constraint is straightforward

∂c

∂ r̃i
= 2r̃i . (A7)

The Hessian of the constraint (A6) is given by

∂2c

∂ r̃i∂ r̃ j
= 2δi, j , (A8)

where δi, j is the Kronecker delta function and the right-hand side is two times the identity
matrix.

A.2. The maximisation of emin

The maximisation of emin(Si j ) (2.30) through the GKE-G method is substantially
enhanced by employing gradient-based optimisation. The sensitivity ofemin to variations
in the transformation matrix is derived from equation (2.30) as

∂emin

∂Si j
= 2γcri t

∂γ

∂Si j
λmin + γ 2

cri t
∂λmin

∂Si j
. (A9)

The sensitivity of the λ can be expressed as

∂λ

∂Si j
= 2Sikrmin, j rmin,k, (A10)

where rmin is the eigenvector associated with the smallest eigenvalue of ST S. The gradient
of γ with respect to the transformation matrix is determined as

∂γ

∂Si j
= −∂μh,max

∂Si j

1
∂μ

∂γ

. (A11)

The derivatives of the growth rate (2.26) with respect to the elements of the
transformation matrix are calculated as follows:
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∂μh,max

∂Spq
= 2

( − r̃i S−1
i p S−1

q j A jm Smor̃o + r̃i S−1
i j A jpr̃q

)
+ 2γ

( − r̃i S−1
i p S−1

ql QlmoSmpr̃ p Sor r̃r + r̃i S−1
i j Q jpl r̃q Slor̃o

+ r̃i S−1
i j Q jkp Skmr̃mr̃q

)
, (A12)

where it was assumed the inverse of a slightly perturbed transformation matrix can be
approximated as (

Si j + δSi j
)−1 ≈ S−1

i j − S−1
ik δSkl S−1

l j . (A13)

Simplifying these expressions (A12) using predefined vectors and the transformed Ai j
results in

∂μh,max

∂Spq
= 2

( − vp Ãq j r̃ j + v j A jpr̃q
)

+ 2γ
( − vp S−1

ql Qlmoq̃mq̃o + v j Q jpl r̃q q̃l + v j Q jkpq̃kr̃q
)
. (A14)

Moreover, the derivative of the growth rate with respect to the perturbation level is

∂μh,max

∂γ
= 2 γ Q̃i jk r̃i r̃ j r̃k, (A15)

which is simply the nonlinear component of μh

∂μh,max

∂γ
=μh,N L . (A16)

The derivatives presented in equations (A14) and (A15) are evaluated at the critical
perturbation that maximises the growth rate, μh .

A.2.1. First sum-of-squares program
The first (SOS) program, widely used to calculate the ROA for conditionally stable systems
(Jarvis-Wloszek 2003; Tan & Packard 2008; Topcu et al. 2008; Khodadadi et al. 2014;
Kalur et al. 2021), is delineated as follows:

V − l1 ∈�, (A17)

− [
(β − p)s1 + (V − γ 2)

] ∈�, (A18)

− (
(γ 2 − V )s2 + V̇ s3 + l2

) ∈�. (A19)

The following three paragraphs provide a brief description of the method, along with the
new expressions and notations. Here, V represents the conditional Lyapunov function,
akin to h in the GKE method but potentially non-quadratic, contrasting with the strictly
quadratic nature of h in the GKE method. The derivative of V with respect to time is
denoted as V̇

V̇ = ∂V

∂qi

dqi

dt
. (A20)

The polynomials l1 and l2 are predefined positive definite to ensure positive definiteness
(rather than semi-definiteness) of the expressions, set to li = 10−10qT q for minimal impact
on results. The variable β indicates the ROA’s size, with p depicting its shape, typically
chosen as p = qT q to describe a supersphere, thus approximating the ROA similar to
the generalised kinetic energy methods with β = emin . The parameter γ specifies the
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state space region where the Lyapunov function decreases along the system’s solution
trajectories.

Equation (A17) asserts that the Lyapunov function V must be positive definite. Equation
(A18) is employed to maximise β for the largest possible ROA shaped by the polynomial
p. Equation (A19) mandates that the Lyapunov function decreases along the solution
trajectories within the region where V < γ 2. The symbols s1, s2, s3 represent positive
semi-definite polynomials.

The notation ‘∈�’ signifies that the left-hand side must be expressible in a SOS form,
thereby being positive semi-definite. A SOS decomposition enables a polynomial up to
degree 2d to be represented as mT (q)M m(q), with m(q) encompassing all monomials
up to order d and M a positive definite matrix, leading to matrix inequality constraints
during optimisation. While the problem could be reformulated into a SDP solvable
efficiently if all constraints were linear, equations (A18–A19) include bilinear terms in
polynomial decision variables, necessitating a decomposed optimisation approach over
multiple iterations. Initially, the process starts with the γ step, during which γ is treated
as a parameter rather than as part of the decision variables. This parameter is maximised
using a bisection algorithm until equation (A19) is feasible, indicating that the left-hand
side can be represented as a SOS expression. Following this, the β step commences, setting
β as a parameter and employing a bisection algorithm to maximise it until equation (A18)
is satisfied, using the maximal γ value determined in the previous step. The final phase is
the V step, where all equations from (A17) to (A19) are addressed. However, in this phase,
decision variables established in earlier steps are held constant, with the exception of the
Lyapunov function V , which undergoes updates. This sequence of steps is iterated until β
reaches its peak, and the relative change dips below the set tolerance level of 10−3. This
iterative algorithm is designated as SOS1 in this study.

A.2.2. Second sum-of-squares program
In the context of quadratic Lyapunov functions, an alternative approach has been proposed
by Liu & Gayme (2020). This approach adopts the same definition of the Lyapunov
function as in the GKE method, with V = h, as outlined in equation (2.14). The
corresponding SOS program is presented as follows:

V − l1 ∈�, (A21)

− (
V̇ + (δ2 − qT q)s1 + l2

) ∈�. (A22)

The first equation (A21) ensures the positive definiteness of the Lyapunov function (V ),
analogous to equation (A17). The subsequent equation, (A22), mandates that V̇ is negative
within a specific region, the size of which is proportional to δ2. However, this region is not
the ROA since, although V̇ < 0, d/dt (||q||) can be positive in this region and trajectories
can go outwards. The provable ROA is a subset of this region where V < γ 2. Here, γ can
be calculated from the definition of V as γ 2 = λmin(P) δ2. This approach replaces and
simplifies the second equation (A18) of SOS1 leading to faster but less accurate results.

The calculated ROA forms a superellipsoid analogous to that in the GKE method. The
radius of the largest supersphere contained within this superellipsoid is given by

√
emin =

δ
√
λmin(P)/λmax (P).

Like SOS1, (A22) introduces a nonlinear constraint on the decision variables due to the
inclusion of the term δ2 s1. To address this, δ2 is considered as a parameter rather than
a decision variable and is maximised using a bisection algorithm until (A22) is feasible.
This SOS program is referred to as SOS2 in the study.
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Appendix B. Construction of Poiseuille flow model
The Stokes equations in non-dimensional form are given by

∂ui

∂t
= − ∂p

∂xi
+ 1

Re
∂2ui

∂x j∂x j
, (B1)

and
∂ui

∂xi
= 0, (B2)

where ui represents the non-dimensional velocity, p is the non-dimensional pressure
and xi are the spatial coordinates: x1 ∈ [0, Lx ]; x2 ∈ [−1, 1]; x3 ∈ [0, Lz], defining a
rectangular cuboid. The eigenvectors can be obtained by assuming the following ansatz:

ui = ûi eλ t , (B3)

and solving the eigenvalue problem

λûi = − ∂ p̂

∂xi
+ 1

Re
∂2ûi

∂x j∂x j
, (B4)

∂ ûi

∂xi
= 0, (B5)

for λ. The eigenvalues are negative real numbers expressing the dissipation rate of the
mode. Furthermore, the eigenvectors are orthogonal, which proves advantageous for
Galerkin projection. Given the linearity of the eigenvalue problem and assuming periodic
solutions in the x1 and x3 directions, solving the eigenvalue problem is conveniently
achieved using complex Fourier series. The modes of the ûi velocity field can be expressed
as follows:

ũi jm km (x2)ei( jmα0x1+kmβ0x3), (B6)

where α0 = 2π/Lx and β0 = 2π/Lz are the wavenumbers, and jm , km are the indices of the
modes ranging from −∞ to ∞. Substituting the complex wave form (B6) into equations
(B2) and (B4) leads to the following eigenvalue problem for each jm, km mode⎡

⎢⎣
L 0 0 −iα
0 L 0 −Dx2
0 0 L −iβ
iα Dx2 iβ 0

⎤
⎥⎦

⎡
⎢⎣

ũ1
ũ2
ũ3
p̃

⎤
⎥⎦ = λ

⎡
⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

⎤
⎥⎦

⎡
⎢⎣

ũ1
ũ2
ũ3
p̃

⎤
⎥⎦ , (B7)

where α = jm α0, β = km β0 and L = −(α2 + β2)+ D2
x2

is the Laplace operator, where
Dx2 is the differential operator with respect to x2.

The problem (B7) can be discretised using the Chebyshev collocation method. The
required boundary conditions involve stationary walls at the bottom and top of the
domain, implying ũi (±1)= 0 for any i velocity component. These conditions are enforced
by removing the corresponding rows from the matrices. In this study, 100 Chebyshev
collocation points are employed, a choice deemed accurate based on prior research (Nagy
& Kulcsár 2023). The discretised version of the equations (B7) solved for the first Ny
modes with the largest λ eigenvalues for jm ∈ [−Nx , Nx ] and km ∈ [−Nz, Nz] resulting in
a total of n = (2Nx + 1) Ny (2Nz + 1) modes. The calculation can be simplified, since in
the case of complex-conjugate wavenumber pairs ( jm,a = − jm,b and km,a = −km,b), the
eigenvalues are the same and the eigenvectors are the complex conjugate of each other
ũi jm km

= ũ∗
i − jm −km

. The values of the parameters (Nx , Ny, Nz) vary across different
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models and will be provided later. Subsequently, the coefficients Ai j and Qi jk are
computed using the Galerkin projection method

Aim jm =
∫
Ω

(
−U j

∂ ûi im

∂x j
− û j im

∂Ui

∂x j
+ 1

Re
∂2ui im

∂x j∂x j

)
û∗

i jm dΩ, (B8)

Qim jmkm =
∫
Ω

(
−û j jm

∂ ûi im

∂x j

)
û∗

i km
dΩ, (B9)

where im, jm and km are the indices of the modes, Ui denotes the velocity field of the base
flow and û∗

i jm
is the complex conjugate of û∗

i jm
. For the Poiseuille flow investigated in this

study, having only one non-zero velocity component

U1 = 1 − x2
2 . (B10)

It is worth noting that ∫
Ω

∂2ui im

∂x j∂x j
û∗

i jm dΩ = λim δim , jm . (B11)

This is due to the fact that the velocity modes are eigensolutions of the Stokes operator,
equations (B4) and (B5).

The modes are substituted in the form (B6) and the integrals over x2 are evaluated
utilising Chebyshev collocation points. Since the eigenvectors are complex, the Ai j matrix
and the Qi jk tensor are also complex. As a result, the previously derived gradients
for the optimisation procedure become invalid. However, this issue can be resolved
by transforming the system into a real-valued one. Let i0 represent the indices of the
real-valued modes, ic the complex-valued modes and icc their corresponding complex
conjugates. By rearranging the modes in the order i0, ic, icc, a transformation matrix T
can be defined as follows:

T =
⎡
⎣ Ti0i0 Ti0ic Ti0icc

Tici0 Ticic Ticicc

Ticci0 Ticcic Ticcicc

⎤
⎦ =

⎡
⎢⎢⎣

IN0×N0 0N0×Nc 0N0×Nc

0Nc×N0
1√
2
INc×Nc

1√
2
INc×Nc

0Nc×N0
1

i
√

2
INc×Nc − 1

i
√

2
INc×Nc

⎤
⎥⎥⎦ . (B12)

Here, N0 represents the number of real-valued modes, and Nc represents the number
of complex-valued modes (taking into account half of the complex-conjugate pairs).
Applying the S = T−1 transformation matrix on the problem as described by equations
(2.19) and (2.20) results in real-valued Ai j matrix and the Qi jk tensor, respectively. This
transformation matrix can also be used to convert the transformed real coefficients back
into the original complex coefficients of the complex-valued modes.
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