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Gravity currents under oscillatory forcing

Cem Bingol1, Matias Duran-Matute1, Rui Zhu2,3, Eckart Meiburg3 and
Herman J.H. Clercx1,†
1Fluids and Flows group and J.M. Burgers Center for Fluid Dynamics, Department of Applied Physics,
Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
2Ocean College, Zhejiang University, Zhoushan 316021, PR China
3Department of Mechanical Engineering, University of California at Santa Barbara, Santa Barbara,
CA 93106, USA

(Received 27 June 2024; revised 15 October 2024; accepted 2 December 2024)

We investigate the effect of external oscillatory forcing on evolving two-dimensional (2-D)
gravity currents, resulting from the well-known lock-exchange set-up, by superimposing
a horizontally uniform oscillating pressure gradient. This pressure gradient generates
a 2-D horizontally uniform laminar oscillating flow over the flat no-slip bottom that
interacts with the evolving gravity current. We explore the effect of the velocity amplitude
of the applied oscillating flow and its period of oscillations on the behaviour of the
evolving gravity currents. A key element introduced by the external forcing is the Stokes
boundary layer near the no-slip bottom wall generating differential advection near the
bottom wall when the propagation direction of the gravity current and the oscillating
externally imposed flow are in the same direction. This results in a phenomenon that we
refer to as lifting of the gravity current, which clearly distinguishes the oscillatory forced
gravity current from the freely evolving case. This phenomenon induces fine-scale density
structures when the externally imposed flow is opposite to the propagation direction of the
gravity current a semi-period later. We have explored the effect of lifting on the current
propagation and the density structure of the gravity current front. Three separate regimes
are distinguished for the evolution of the density structure in the front of the gravity
current depending on the period of forcing, including a regime reminiscent of tidally
forced estuarine flows. The present study shows the existence of significant effects of an
oscillatory forcing on the dynamics, advection and density distribution of gravity currents.
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Figure 1. (a) Side view of the estuarine flow, where the salt water intrudes towards the fresh water over the
bottom of the estuary and forms a salt wedge. (b) Schematic of the lock-exchange set-up, where heavy fluid
(ρ1) and light fluid (ρ0) are separated by a gate. The density difference between light and heavy fluid causes a
gravity current (after removal of the gate) similar to a salt wedge.

1. Introduction

Gravity currents are primarily horizontal flows that are driven by hydrostatic pressure
gradients due to density differences. Such ‘simple’ gravity currents are used as a
benchmark to study the interaction with additional elements, e.g. bottom roughness,
obstacles and sloping bottoms to mimic situations occurring in nature. Some examples of
gravity currents that are seen in nature are sea breezes, thunderstorm outflows, avalanches,
turbidity currents and salt wedges in estuaries. The variation of density for the sea
breeze and thunderstorm outflows are due to the temperature difference, while the density
difference for avalanches and turbidity currents are caused by particle concentration of
snow and sediment, respectively. Finally, in estuaries, the salt concentration in the water
column is the origin of the density difference which forms the gravity currents. Here,
we are interested in the interaction of such evolving gravity currents with an oscillatory
forcing, a situation inspired by estuaries.

1.1. Salt intrusions under tidal forcing: need for a canonical approach
An estuary is a partially enclosed body of brackish water, which is connected to the sea
at one side while there is river inflow from another side. Hence, it is here that the fresh
water from the river meets with salt water from the sea. Since salt water is heavier, fresh
water moves towards the ocean near the surface of the estuarine water body, while salt
water propagates upstream at the bottom of the river or estuary underneath the fresh
water. When (turbulent) mixing is weak, the salt water moving upstream takes the shape
of a wedge (see the sketch in figure 1a), which is therefore called a salt wedge. The
extent of salt water intruding underneath the fresh-water body is referred to as a salt
intrusion. Salt intrusion impacts many processes such as sediment transport, nutrient
distribution, estuarine ecosystem dynamics, aquifer salinity and the salt concentration
(degree of brackishness) of the river water. Salt intrusion into fresh-water resources makes
the water unusable for drinking, agriculture and industry intake, and is exacerbating due to
various reasons namely sea level rise, human interventions such as dredging and channel
regulation, bathymetry alteration, and fresh-water diversion for commercial or private use
decreasing the mitigation of the inland migration of salt water (see, for example, Kuijper
& Van Rijn 2011; Cai et al. 2012; Chen, Liu & Huang 2013; Mohammed & Scholz 2018).
In the absence of adaptation, it is expected that the increased salt intrusion will decrease
the availability of fresh water. Therefore, understanding the dynamics of estuarine flow
and salt intrusion becomes increasingly crucial.

The distinct characteristic of the estuary is that it is influenced both by tidal flow,
affecting the dynamics of salt wedges and intrusions but also potentially causing strong
(turbulent) mixing, and river discharge of fresh water. Therefore, the dynamics of a salt
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intrusion is different from freely evolving gravity currents. Numerous studies focus on
predicting salt intrusion and understanding the dynamics of salt wedges by accounting for
the effect of tides, for example, Rigter (1973), Kuijper & Van Rijn (2011) and Savenije
(2006). These studies include analytical models to quickly obtain information on the
maximum salt-intrusion extent and data-driven models to predict the salt-intrusion extent
and salinity at selected places. However, such models cannot obtain detailed information
on small-scale processes. These models need to be supplemented with observations,
experiments and numerical studies. For example, by means of measurements and applying
hydrostatic models, the rich dynamics occurring in estuaries such as turbulence and
mixing, advection of the salt wedge, and sediment transport can be explored in the
presence of tides. It should be noted here that tides have a distinct effect on the mixing
and stratification processes, as discussed in more detail by Geyer & Ralston (2012).

Although hydrostatic models can provide general information on the dynamics of
gravity currents, they cannot capture some of the smaller-scale physics, such as instabilities
occurring at the density interface, and they underestimate the front position of the gravity
current compared with non-hydrostatic models (Fringer, Mcwilliams & Street 2006).
Therefore, to understand the behaviour of gravity currents more comprehensively, to
investigate complex physical processes such as (turbulent) mixing and instabilities, and
to find their front position more accurately, we need to employ non-hydrostatic models.
These processes can be accessed with, for example, direct numerical simulation (DNS)
and large-eddy simulation (LES). Due to the computational cost of DNS and LES, they
are not used for operational purposes. However, they have been widely used to contribute
to the understanding of gravity currents in different configurations. DNS and LES have
been used to study the front structure and position of the gravity currents (Härtel, Meiburg
& Necker 2000), particle-laden gravity currents (Necker et al. 2002, 2005), gravity
currents propagating towards a linearly stratified ambient fluid (Maxworthy et al. 2002;
Kokkinos & Prinos 2023; Zahtila et al. 2024), moving through an array of obstacles
(Gonzalez-Juez, Meiburg & Constantinescu 2009; Gonzalez-Juez et al. 2010; Tokyay
et al. 2011a; Tokyay, Constantinescu & Meiburg 2011b, 2012), and over a sloping bottom
(Blanchette et al. 2006; Birman et al. 2007). Stancanelli, Musumeci & Foti (2018a), and
a few years later also Cui et al. (2022), investigated the effect of short-period surface
waves on (turbulent) mixing of gravity currents with LES and k − ε models. These studies
have been complemented with experimental measurements (Stancanelli, Musumeci &
Foti 2018b; Marino et al. 2023). All this work considers surface waves with finite
wavelength (including effects of free-surface deformation). However, to our knowledge,
the propagation of the front position and the generation of fine-scale density structures
in gravity currents in the presence of large-scale horizontally uniform oscillatory forcing
(without free-surface deformation), which can mimic long waves such as tides, have not
been addressed yet with neither DNS nor LES.

While including non-hydrostatic effects, applied oscillatory forcing and the requirement
to resolve small-scale dynamics leading to density redistributions by employing DNS or
LES, several inherent limitations have to be accepted: we stick to laboratory-scale gravity
currents with relatively small Reynolds number to resolve the smallest scales properly
(with DNS). Like in previous studies, 2-D gravity currents are preferred, assuming
(statistical) homogeneity in the spanwise direction and thus the absence of the spanwise
velocity component, to limit the necessary computational resources. This also implies that
we consider 2-D (shear) instabilities only and ignore three-dimensional (3-D) instabilities
affecting, for example, the lobes and clefts in the front of the gravity current, see Britter &
Simpson (1978), Hallworth et al. (1996) and Härtel et al. (2000). For 3-D gravity currents,
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even under the assumption of spanwise (statistical) homogeneity, we need to include the
spanwise velocity component to account for the (3-D) lobe and cleft instabilities. We have
carried out such 3-D simulations in the past (Härtel et al. 2000), with periodic boundary
conditions in the spanwise direction. These simulations showed that the third dimension
does have a significant impact on processes as turbulent mixing and on the size of the
interfacial vortices (which in 2-D simulations remain more coherent), but that the front
velocity in 2-D and 3-D simulations is very similar. However, a full 3-D simulation would
limit the Reynolds number even more (or one should rely on LES). Additionally, since our
main interest is on quantities like the front velocity, the lifting and squishing of the gravity
current, the interaction of the gravity current with the Stokes boundary layer, and allowing
a wide parameter scan of both amplitude and frequency of the oscillatory forcing, as a first
step, the exploration of the gravity current dynamics and associated density redistributions
should be based on a large series of 2-D simulations. Finally, oscillatory forcing of the
gravity current requires resolving many cycles of the applied forcing, implying long time
integration of the evolving gravity current. Full 3-D DNS, although feasible as a next
step (and we briefly discuss, in § 6.3, a qualitative comparison between a 2-D and two
3-D simulations), would limit the oscillation time scale of the external forcing compared
with the advection time scale of the propagating gravity current, thus hampering a full
parameter range exploration.

1.2. DNS of 2-D gravity currents under oscillatory forcing: the control parameters
We would like to distinguish two particular salt wedge configurations: the arrested salt
wedge, where the river discharge and the density current propagation is balanced, but
affected by tidal modulation, and the case of a propagating salt wedge, when the river
discharge cannot balance the propagation speed of the density current, like during long
and severe droughts. Motivated by such salt intrusions in estuaries and rivers, we propose
two canonical configurations: a gravity current propagating under influence of a uniform
oscillatory free-stream flow field, which is the topic of the present paper, and an arrested
gravity current affected by horizontally uniform oscillatory forcing. This second canonical
configuration will be the topic of a future paper.

Our objective in the following is to investigate the impact of an imposed oscillatory
forcing on density redistributions at the front of these currents, and its subsequent effect
on the advection and front position of gravity currents. For this purpose, we performed
2-D DNS of the lock-exchange set-up in the presence of an oscillatory horizontal pressure
gradient, and of freely evolving 2-D gravity currents. A comprehensive comparison
between these cases has been conducted. The lock-exchange set-up (see the sketch in
figure 1b) in a rectangular channel is commonly used to investigate gravity currents in
laboratory experiments and in canonical numerical studies (Härtel et al. 2000; Necker
et al. 2002, 2005; Cantero et al. 2006). By employing this well-established set-up as the
starting point, our findings regarding the effects of oscillatory forcing provide new insights
for the more general case of periodically modulated gravity currents.

The 2-D horizontally uniform laminar oscillating flow (induced by the oscillatory
pressure gradient) above a flat no-slip wall in our study is characterized by two parameters:
the amplitude of oscillations of the free-stream velocity, U0, and the period of the
oscillations Tosc. Our objective is to investigate the distinct effect of each parameter
individually on the dynamics of the gravity current (such as front position and lifting of the
current) and (small-scale) density redistributions in the gravity current. We hypothesize
that the external oscillatory forcing will induce a substantial shear in the velocity field
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near the bottom wall (due to the presence of a no-slip wall resulting in a Stokes boundary
layer), which will induce differential advection of fluid parcels originating from different
heights above the no-slip wall, promoting enhanced redistribution of heavy and light fluid.
We anticipate that Tosc, quantified by the Keulegan–Carpenter number (KCb, to be defined
in § 2.2), will have a significant influence on the (small-scale) redistribution of the density
in the gravity current. Our aim is to explore how the density redistribution changes by
varying KCb. Specifically, we will qualitatively compare the density fields obtained from
simulations with different KCb and fixed U0, which is expressed in non-dimensional terms
as the Froude number (Fr, see also § 2.2). Furthermore, we would like to identify the
range of KCb representative for tidal forcing. Finally, we will study a physical phenomenon
that we refer to as lifting of the gravity current as a result of differential advection.
Lifting and squishing strongly influence the density composition occurring at the front
of the gravity current. Here, we aim to understand the effect of varying KCb and Fr on
lifting and associated density redistribution occurring at the front of the gravity current.
Also, the effect of Fr on the front position and advection of the gravity current will be
considered. Finally, the role of salt diffusion (in terms of varying the Schmidt number) on
the redistribution of the density will be explored for a fixed set of Fr and KCb.

This paper is organized as follows. In § 2, the physical system, the governing equations,
the dimensionless numbers governing the flow characteristics, and non-dimensionalization
of the governing equations are introduced. The computational model, numerical set-up,
initial and boundary conditions, and the parameter space for simulations are introduced
in § 3. Subsequently, in § 4, we discuss the qualitative effects of the externally imposed
oscillatory forcing on the evolution of gravity currents as a function of KCb, while Fr is
kept fixed. Section 5 addresses the quantitative description of several aspects of the gravity
current such as the lifting area of the current, the front position, the density distribution at
the front, and the amount of high-density fluid passing through the gate for a range of KCb
and Fr. Finally, we summarize the key findings from the simulations of the lock-exchange
set-up in the presence of forcing by an oscillatory horizontal pressure gradient and present
the main conclusions.

2. Description of the physical system

2.1. The lock-exchange set-up
In this study, we aim to understand the behaviour of gravity currents in the presence
of external forcing by an oscillatory uniform horizontal pressure gradient using a 2-D
numerical set-up. We use the classical lock-exchange set-up (see a simplified sketch in
figure 1b), which is commonly used in DNS studies (Härtel et al. 2000; Necker et al.
2002, 2005; Cantero et al. 2006). Initially, there is heavy fluid (with density ρ1) in one side
of the domain (grey area in figure 1b) and there is light fluid (with density ρ0) in the other
side of the domain. Both fluid layers extend over the entire height H of the channel. There
is a gate between the heavy (ρ1) and light (ρ0) fluid, which is instantaneously removed at
time t = 0. A sketch of the gravity current interface separating the heavy and light fluid
after a certain time from the removal of the gate is schematically shown with a black line
in figure 1(b).

2.2. Governing equations
The equations of motion for fluid flow with density variations in the presence of gravity are
the continuity, Navier–Stokes and density transport equations. For fluids with small density
differences, the Boussinesq approximation can be applied to the governing equations.
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In this study, we are interested in gravity currents caused by small density differences
of a few percent which safely fall within this approximation. Therefore, we apply this
Boussinesq approximation simplifying the governing equations by keeping the density
constant in the Navier–Stokes equation except in the buoyancy term. The resulting
equations from this approximation are called the Boussinesq equations. These equations
formulated using Einstein’s notation in a Cartesian coordinate system xi = (x, y), with x
and y the streamwise and wall-normal directions, respectively, are

∂uj

∂xj
= 0, (2.1)

∂ui

∂t
+ ∂(uiuj)

∂xj
= − 1

ρ0

∂p
∂xi

+ ν
∂2ui

∂xj∂xj
− ρ̃

ρ0
gδi2 + U0ω cos (ωt)δi1, (2.2)

∂ρ

∂t
+ ∂(ρuj)

∂xj
= α

∂2ρ

∂xj∂xj
. (2.3)

Here, ui = (u, v) denotes the Cartesian velocity components, p the pressure, g the
gravitational acceleration acting in the negative y direction, ρ0 the reference density or
the density of the light fluid, ρ̃ the total density, ρ = ρ̃ − ρ0 the density variable with
respect to ρ0, δi1 and δi2 are the Kronecker delta symbols, ν the kinematic viscosity, and
α the molecular diffusivity of the density field.

The last term on the right-hand side of (2.2) represents a horizontal oscillating pressure
gradient force given by

− 1
ρ0

dp0

dx
= U0ω cos (ωt), (2.4)

where p0 represents an externally imposed pressure distribution, U0 denotes a free-stream
velocity amplitude, ω = 2π/Tosc is the frequency of oscillations (with Tosc the period
of oscillations) and t represents time. This pressure gradient results in a sinusoidal
free-stream velocity U0(t) = U0 sin(ωt), as shown in the inset of figure 2, where the
phase of the oscillation, φ = 360◦(t/Tosc), is shown in degrees. The horizontal free-stream
velocity reaches the maximum velocity at φ = 90◦ and φ = 270◦, and the vertical
distribution of the velocity for φ = 90◦ is shown in figure 2 for different values of the
oscillation period (quantified by KCb defined below).

Dimensional quantities that define the flow are shown in table 1. Dimensional analysis
results in four dimensionless numbers that govern the flow. The Reynolds number Re,
defined as

Re = ubH
ν

, (2.5)

represents the ratio of the inertial to viscous forces. Here, ub is the buoyancy velocity,

ub =
√

g′H, (2.6)

where g′ indicates the reduced gravitational acceleration defined as

g′ = g

ρ

ρ0
, (2.7)

with 
ρ = ρ1 − ρ0 > 0 the density difference between the two fluids. The Schmidt
number,

Sc = ν

α
, (2.8)

1002 A14-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

11
70

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1170


Gravity currents under oscillatory forcing

1.0
1

0U0

–1

KCb = 5

KCb = 10

KCb = 25

KCb = 50

KCb = 100

0.8

0.6
0 90 180

φ

270 360

0.4

y/H

0.2

0 0.5 1.0

u (φ = 90°)

1.5 2.0

Figure 2. Horizontal velocity profile caused by an oscillatory horizontal pressure gradient as a function of the
channel depth at φ = 90◦ (the inset shows that this is the instant when maximum positive sinusoidal free-stream
velocity U0 is reached). The Stokes boundary-layer thickness grows with increasing KCb.

Simulation Description Unit


ρ = ρ1 − ρ0 > 0 Density difference kg m−3

ν Kinematic viscosity m2 s−1

α Molecular diffusivity of mass m2 s−1

g Gravitational acceleration m s−2

H Channel height m
U0 Velocity amplitude of oscillation m s−1

Tosc = 2π

ω
Period of oscillation s

Table 1. Dimensional quantities that govern the fluid flow for our set-up.

represents the ratio of kinematic viscosity of the fluid to molecular diffusivity of the
density field. The Froude number Fr, defined as

Fr = U0

ub
, (2.9)

is the ratio between the free-stream velocity amplitude of oscillation U0 to the buoyancy
velocity ub. Lastly, we introduce the Keulegan–Carpenter number (KCb), which represents
the ratio between the oscillation period (Tosc) to the advection time scale associated with
the propagation of the gravity current (H/ub). It is given as

KCb = Toscub

H
. (2.10)

The Keulegan–Carpenter number KCb can also be interpreted as a dimensionless period
of the oscillations of the externally applied flow field.
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We will use the governing equations (2.1)–(2.3) in dimensionless form by using

ui
∗ = ui

ub
, xi

∗ = xi

H
, t∗ = t

H/ub
, p∗ = p

ρ0 u2
b
, ρ∗ = ρ̃


ρ
(2.11a–e)

to make velocity, length, time, pressure and density dimensionless. Henceforth, we will use
the dimensionless form of the equations and we eliminate the asterisk for convenience:

∂uj

∂xj
= 0, (2.12)

∂ui

∂t
+ ∂(uiuj)

∂xj
= − ∂p

∂xi
+ 1

Re
∂2ui

∂xj∂xj
− ρδi2 + Fr

KCb
2π cos

(
2πt
KCb

)
δi1, (2.13)

∂ρ

∂t
+ ∂(ρuj)

∂xj
= 1

ReSc
∂2ρ

∂xj∂xj
. (2.14)

The forcing of the flow above the flat no-slip bottom wall by the oscillatory horizontal
pressure gradient introduces a shear layer (the Stokes boundary layer) adjacent to the
bottom boundary and an oscillating uniform free-stream velocity in the bulk above this
layer. For later use (§ 4), it is instructive to compare the evolution of a gravity current
in each of the limiting cases (KCb → 0 and KCb → ∞) with the freely evolving gravity
current. On the buoyancy time scale, the propagating gravity current experiences a uniform
quasi-steady shear flow for KCb → ∞, while it does not, on average, experience a
free-stream flow field for KCb → 0 since Tosc � H/ub.

Let us first focus on the latter case, KCb → 0. For high-frequency oscillations, the
shear layer generated by the applied oscillating pressure gradient becomes very thin (see
figure 2) and the duration of a single oscillation cycle is very short compared with the
typical advection time scale associated with the buoyancy-driven dynamics of the gravity
current. We expect that these high-frequency oscillations hardly affect the evolution of the
gravity current on the buoyancy time scale, leaving its gross features almost untouched.
The externally imposed oscillatory flow can nevertheless significantly affect the fluid
motion near the stagnation point at the front of the current. The impact on details of
the front dynamics and density redistribution will then always be significantly different
compared with the freely evolving case, as will be illustrated in § 4.

However, when KCb → ∞, the period of oscillations of the applied pressure gradient
increases, and the Stokes boundary layer thickness grows and induces an ever thicker
region with (quasi-steady) shear flow adjacent to the wall. The gravity current is then for a
significant part embedded in and affected by this (quasi-steady) shear flow that, depending
on the phase φ of the forcing cycle, has a free-stream velocity in the propagation direction
of the gravity current (φ = 90◦) or in the opposite direction (φ = 270◦). Summarizing, the
gross features of the dynamics of the freely evolving gravity current will show similarities
with those of the externally forced cases with KCb small (high-frequency limit) and
behaves completely differently compared with oscillatory-forced gravity currents with KCb
very large (low-frequency limit). Visual evidence of these distinct behaviours for the low-
and high-frequency ranges will be provided in § 4.

2.3. Parameter settings for our numerical studies
The dimensionless numbers governing freely evolving gravity currents are Re and Sc.
The total number of grid points of a DNS of such 2-D gravity currents, for fixed Sc and
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assuming proper resolution of the small-scale turbulence, scales with O(Re) (while for
3-D gravity currents, we expect a scaling of the number of grid points with O(Re9/4)).
Restrictions on the time step typically provides an additional cost proportional with

√
Re.

Therefore, DNS studies are mostly limited to laboratory scale Re numbers, even more so
for 3-D turbulent gravity currents. Nonetheless, the results from such DNS studies are
used to understand a variety of physical processes in more detail and contribute to the
development of large-scale models suitable for higher Re applications. For our DNS, we
choose a fixed value of Re = 3000. This selection allows for a feasible parameter study
while aligning with the order of magnitude employed in earlier DNS studies of gravity
currents (Härtel et al. 2000; Necker et al. 2002, 2005; Cantero et al. 2006).

The Schmidt number displays significant variation, across several orders of magnitude
for different environmental flows, since the diffusivity of the scalar that causes the density
variation can differ significantly. For saline water, Sc 	 700. In the case of thermal density
differences in water, Sc 	 7, while in air, Sc 	 0.7 (which is also known as the Prandtl
number). However, the lower range Sc are mostly used for DNS studies of gravity currents
to decrease the computational cost (typically Sc = O(1)). This is justified by Necker
et al. (2002) indicating that the integral properties of the current are independent of the
actual Sc value as long as it is not much smaller than one. Moreover, Birman, Martin &
Meiburg (2005) stated that varying Sc between 0.2 and 5 has an influence although it is
small. For turbulent flows, the turbulent Schmidt number (the ratio of turbulent viscosity
and turbulent diffusion coefficient) is typically around 0.7 to 1, while it increases for
strongly stratified flows up to Sc 	 5. Ralston, Geyer & Lerczak (2008) found that the
effective Sc 	 2 for a salt wedge in an estuary. Donzis et al. (2014) showed, based on a
high-resolution homogeneous isotropic turbulence simulation, that the turbulent Schmidt
number is between 1 and 2 for Péclet number (Pe = Re Sc) higher than 300, which is
consistent with the findings by Necker et al. (2002). In our study, we use Sc = 5 in the
majority of our simulations, but we also investigate the effect of Sc by varying it in the
range 1–20 with the aim of understanding the effect of diffusion on our results.

The external forcing is characterized by the Froude and Keulegan–Carpenter numbers,
with the free-stream velocity amplitude characterized by Fr and the oscillation period by
KCb. The tidal Froude number, FrT , is the ratio between the maximum velocity in the tidal
cycle and buoyancy velocity. It varies for different estuaries. In some estuaries, the tidal
effect is smaller, and hence, FrT becomes smaller. Typical values reported in the literature
are FrT ≈ 0.35 for the Mississippi River, FrT ≈ 0.4 for the Connecticut River Estuary
and FrT ≈ 0.45 for the Tweed River (Ralston, Geyer & Lerczak 2010). Meanwhile, FrT is
higher for some other estuaries. Examples are FrT ≈ 0.7 for the Columbia River Estuary,
the Fraser River and the Merrimack River Estuary, and FrT ≈ 0.8 for the Snohomish River
Estuary (Geyer et al. 2010). Therefore, we vary Fr between 0.25 and 2 to understand the
effect of the amplitude of the external oscillatory forcing on gravity currents.

Finally, we need to discuss an appropriate range of KCb for our numerical simulations.
Based on previous DNS studies (Härtel et al. 2000; Necker et al. 2002, 2005; Cantero et al.
2006) on canonical freely evolving gravity currents, distinct characteristics are observed.
Specifically, at the leading edge of the gravity current, a pronounced front emerges. This
front is characterized by a steep increase in the current height, followed by a subsequent
decrease towards the body of the gravity current. The location where the maximum
current height occurs at the front is referred to as the head position. However, in nature,
gravity currents are not always freely evolving and can be subjected to different external
forces including an external oscillatory forcing. Salt wedges in estuaries are influenced by
surface waves which typically have periods of the order of seconds as well as tidal forcing
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with a period of 12.42 or 24.84 hours on average. Recently, the effect of surface waves
on gravity currents has been studied by using LES and k − ε models and experiments,
and it was demonstrated that the presence of oscillatory forcing modifies the (turbulent)
mixing happening at the front of the fresh-water current near the surface (Stancanelli et al.
2018a,b; Cui et al. 2022; Marino et al. 2023). However, the effect of surface waves on
the heavier current near the bottom was less significant. The density distribution of the
heavy front was actually similar in the absence of surface waves. Measurements of the
salt intrusion in the Rotterdam Waterway (de Nijs, Pietrzak & Winterwerp 2011) indicate
significant differences in the front characteristics of the heavy current compared with
freely evolving gravity currents. The front characteristics are also different compared
with those of gravity currents affected by surface waves (Stancanelli et al. 2018a,b;
Marino et al. 2023). For tidal forcing in the Rotterdam Waterway, with H ≈ 15 m and
ub = 1.5–1.8 m s−1 (depending on the salt concentration), the main tidal constituent
(M2) with a period of 12.42 h typically gives KCb 	 5000. However, computationally,
it is currently not feasible to use KCb numbers as high as 5000, since such simulations
would require a domain with a very large aspect ratio and they would need very long
integration times. We will show later that such simulations are fortunately not needed.
Since distinct characteristics are observed between freely evolving gravity currents (Härtel
et al. 2000; Cantero et al. 2006) and the salt wedge in the Rotterdam Waterway (de Nijs
et al. 2011), where the oscillation period is large, it is necessary to explore the effect of
different periods by varying KCb. We will start with smaller periods of oscillation and
increase the oscillation period to reach KCb values which can show similar flow features
as those observed in estuarine salt intrusions. For this purpose, we will use KCb values of
5, 10, 25, 50 and 100.

3. Numerical approach

3.1. Numerical model
A variety of approaches are available for computational modelling of gravity currents,
see, for example, the review by Meiburg, Radhakrishnan & Nasr-Azadani (2015) and
more recently the study by Van Reeuwijk, Holzner & Caulfield (2019) using SPARKLE
(Craske & Van Reeuwijk 2015). We perform 2-D DNS to solve the governing equations
(2.12)–(2.14) in non-dimensional form using the incompressible Navier–Stokes solver
PARTIES (Biegert, Vowinckel & Meiburg 2017a; Biegert et al. 2017b). The code is
based on a finite-difference approach, employing the fractional step method by Kim &
Moin (1985), and uses a third-order explicit Runge–Kutta scheme with three substeps
(Harten 1997) to discretize the equation in time. The projection method (Chorin 1968)
is used to ensure incompressibility, and the resulting Poisson equation is treated using
a direct fast Fourier transform (FFT) solver at each Runge–Kutta substep (Biegert et al.
2017a). The convective term in the momentum equation is explicitly solved, leading to
the well-known Courant–Friedrichs–Lewy restriction. Spatial derivatives of the diffusion
term in momentum equations are assessed using a second-order central finite differences
scheme. A second-order upwind scheme is used to handle convective terms in both
the momentum and transport equations. The diffusion term in both the momentum
equation and the density transport equation is treated implicitly using second-order central
differences in combination with a conjugate-gradient solver (Saad 2003). Furthermore,
the code has been parallelized using the MPI library to enhance performance. The code’s
accuracy and reliability have been rigorously validated through extensive testing, as
demonstrated by Nasr-Azadani & Meiburg (2011).
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Figure 3. Initial density field of the simulation set-up. The primary focus is the gravity current forming on
the right-hand side of the domain (x > −170). A visual representation of the interface between heavy and light
fluid for the gravity current, which will form at a certain time after removal of the gate, is shown with a solid
line. The gravity current at the left-hand side experiences oscillatory forcing with a phase difference of 180◦
compared with the right-hand side.

3.2. Numerical set-up, boundary and initial conditions
Initially, the entire fluid is in a state of rest. At t = 0, a (virtual) gate is removed and
due to buoyancy, a gravity current develops. Additionally, an external forcing in the form
of an oscillatory pressure gradient is imposed in the along-channel direction. To apply
periodic boundary conditions in the along-channel direction for pressure, velocity and
density, we propose a computational set-up as sketched in figure 3. The middle section of
the domain contains heavier fluid with a density ρ = 1 (the grey area in figure 3), while
the left- and right-hand sides of the domain contain light fluid with a density ρ = 0. Our
primary focus will be on the developing gravity current in the right half of the domain (in
particular, the region with x ≥ 0). The phase of the free-stream velocity, resulting from
the imposed oscillatory pressure gradient, is initialized at φ = 0◦ (see figure 2). On the
left-hand side of the domain (x < −170), we effectively replicate (at t = 0) the initial
density distribution as on the right-hand side (x > −170), but the gravity current (moving
to the left) experiences an effective free-stream velocity with a 180◦ phase difference
compared with the right-hand side. This deliberate configuration provides us with a
valuable opportunity to contrast the effect of oscillatory forcing starting from different
phases. In the subsequent discussions, we will refer to the right part of the channel, except
when the left part is explicitly mentioned. A no-slip boundary condition at the bottom
wall and a stress-free boundary condition at the top boundary of the channel (a rigid
free surface) are employed. The rigid free surface does not always accurately represent
the free-surface behaviour for gravity currents in laboratory studies or estuaries, but it is
commonly used for high-resolution numerical simulations of gravity currents.

The length of the domain is selected such that the gravity current does not extend to the
sides of the domain during the full simulation covering 400 dimensionless time units. To
include a minimum of four oscillation cycles of the externally imposed pressure gradient
for the lowest frequency case (KCb = 100), we need to choose the length of our channel
equal to L = 680 (and we use this for all the simulations). We use an equidistant Cartesian
mesh with δx = δy = l. According to our convergence study, a non-dimensional grid size
of l = 0.008 for simulations with Sc = 1 and 5 is sufficient, while a grid size of l = 0.0025
is necessary for simulations with Sc = 20. Therefore, with our domain size of 680 × 1
dimensionless units, we need approximately 107 grid points for runs with Sc = 1 and 5,
while we need approximately 108 grid points for the simulations with Sc = 20.

We performed our simulations on the Dutch Super Computer Snellius, using 128 cores.
The simulations over 400 dimensionless time units using l = 0.008 required approximately
9000 CPU hours (approximately 71 wall-clock hours). For simulations with l = 0.0025,
the computational cost is nearly 528 000 CPU hours. We will cover a wide range of the
parameter space by varying the three dimensionless numbers KCb, Fr and Sc. In the next
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Simulation 1 2 3 4 5 6 7 8 9 10 11 12 13

Sc 5 5 5 5 5 5 5 5 5 1 1 20 20
Fr — 1 1 1 1 1 0.25 0.50 2 — 1 — 1
KCb — 5 10 25 50 100 50 50 50 — 50 — 50

Table 2. The parameters for the simulations in this study. Re = 3000 is maintained for all simulations. In the
next section, simulations 1 to 6 are compared to evaluate the effect of different forcing periods (by varying
KCb). To examine the impact of different ambient velocity amplitude (Fr), results from simulations 1, 5, 7,
8 and 9 are compared for Sc = 5. Additionally, the influence of diffusivity is analysed by contrasting results
from simulation 1, 5, 10, 11, 12 and 13, where three different Sc numbers are employed for two different KCb
numbers. The simulations 1, 10 and 12 represent freely evolving gravity currents.

sections, we present results from 13 simulations whose parameters are given in table 2,
and we discuss (first qualitatively and later on quantitatively) the effect of varying these
three parameters on the evolution and oscillatory dynamics of the gravity current. (For
fresh and saline water, with g′ ≈ 10−2 g, we obtain the following typical lab scale values:
H ≈ 5 cm and ub ≈ 7 cm s−1 based on Re = 3000.)

4. Qualitative description of gravity currents with oscillatory forcing

The dynamics of 2-D gravity currents, resulting from the canonical lock-exchange
configuration, is well known. By introducing external oscillatory forcing, the parameter
range describing the dynamical evolution of the gravity current will be extended with KCb
and Fr. Additionally, we need to consider the role of Sc and the phase φ of the oscillating
background flow. To illustrate qualitatively the propagation of the gravity current and the
(fine-scale) density redistribution in the gravity current in this section, we focus mostly on
the role of KCb and φ, and keep Sc and Fr constant (their impact will be discussed in § 5).

The basic features of the dynamical evolution of such gravity currents will first be
illustrated qualitatively by exploring and comparing snapshots of the density field. This
provides visual insights in the propagation characteristics of such density currents and
shows how external forcing and propagation of the density current affect the small-scale
density redistribution. Additionally, snapshots of the local current height during the
propagation of the gravity current are presented for different KCb. We compare the
dynamical evolution of the density fields for simulations 1–6 (with Re = 3000, Fr = 1
and Sc = 5, see table 2) at selected instances. (It should be noted that the horizontal and
vertical scales of the snapshots in figures 4–9, in the Supplementary Material available
at https://doi.org/10.1017/jfm.2024.1170, and in the movies are generally not equal. For
example, in figure 4, the horizontal axis is approximately compressed by a factor of four,
thus the aspect ratio of vertical to horizontal unit distance is LAR ≈ 4.0.)

4.1. Evolution of gravity currents during the forcing cycle
We start our exploration with an illustration of the gravity current evolution and the change
in the (fine-scale) density structure during one complete forcing cycle. The redistribution
of the density occurring at the front of the gravity current can be illustrated with snapshots
of the density field at different phases of the forcing cycle (see also the animation of the
density field evolution for 50 ≤ t ≤ 200 in supplementary movie 1). Here, we consider the
simulation with KCb = 50 (figure 4). In the beginning of the second oscillation cycle (φ =
0◦, starting at t = 50, see figure 4a), the gravity current propagates into the fresh-water
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Figure 4. Dimensionless density fields for KCb = 50 and Fr = 1 at different phases of the imposed ambient
flow (LAR ≈ 4.0): (a) φ = 0◦ at t = 50; (b) φ = 90◦ at t = 62.5; (c) φ = 180◦ at t = 75; (d) φ = 270◦ at
t = 87.5; (e) φ = 360◦ at t = 100 and ( f ) for the freely evolving gravity current, also at t = 100. The value of
the density (with 0 ≤ ρ ≤ 1) is indicated by the colour bar.

region near the bottom of the channel. In the first half of the oscillation cycle (0◦ ≤ φ ≤
180◦), the gravity current propagates in the same direction as the imposed oscillatory flow.
For 0◦ ≤ φ ≤ 90◦, the imposed ambient flow tends to accelerate the gravity current and to
decelerate it when 90◦ ≤ φ ≤ 180◦. The imposed flow has a height dependent velocity in
the (Stokes) boundary layer, which promotes differential advection. This is clearly visible
for φ = 90◦ in figure 4(b). Heavy fluid has moved over lighter fluid near the bottom wall.
We call this the lifting of the gravity current, and the area underneath the heavy current
the lifting area. During the deceleration phase (90◦ ≤ φ ≤ 180◦), the lifted part of the
gravity current becomes unstable and starts to promote eddy formation, inducing enhanced
(vertical) redistribution of the density field (see supplementary movie 1; 67 � t � 77 and
125 � t � 135). During the first half of the oscillation cycle, the thickness of the front of
the gravity current is thinner (see figure 4a,b,e) compared with the freely evolving gravity
current (shown in figure 4f ).

In the second phase of the oscillation cycle (180◦ ≤ φ ≤ 360◦), the externally applied
flow acts against the propagation direction of the gravity current. This situation no
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longer supports lifting. Since an unstable flow configuration already emerged during the
decelerating phase (90◦ ≤ φ ≤ 180◦), the flow reversal provokes strong (vertical) density
redistribution (figure 4c,d). As can be seen in supplementary movie 1, the heavy fluid
sinks while the lighter fluid rises towards the upper interface of the gravity current. This
lighter fluid subsequently moves further backwards towards the body of the gravity current
due to relatively strong horizontal advection. This process takes place predominantly for
180◦ ≤ φ ≤ 270◦ when the externally applied opposing flow accelerates to its maximum
value at φ = 270◦ (figure 4d).

4.2. Coincidence of the imposed flow with the current propagation (0◦ ≤ φ ≤ 180◦)
From the previous description, we derive two distinct behaviours regarding the
(small-scale) redistribution of the density field in the gravity current depending on the
relative direction of the external forcing with respect to the propagation direction of the
gravity current. When the oscillatory forcing (thus the externally imposed flow) coincides
with the propagation direction of the gravity current, the gravity current is subjected to
differential advection. This effect is most pronounced for φ = 90◦, when the oscillatory
forcing reaches a maximum value in the direction of the gravity current. The behaviour of
the gravity current is completely different when it is subjected to opposing flow (with a
maximum at φ = 270◦). This dissimilarity will be further explored in § 4.3, with density
field snapshots at φ = 360◦ (or equivalently φ = 0◦) to illustrate the significant changes
in the density distribution induced by the opposing flow. We shall first discuss the first half
of the oscillation period.

Snapshots of the different density fields provide us with a qualitative picture of how
differential advection affects the gravity current as a function of KCb (see also the
animation of the density field evolution for 0 ≤ t ≤ 200 in supplementary movie 2). Before
we proceed, it is useful to discuss the approach to present our data in this section. We
compare the density fields at the same phase of forcing, here at φ = 90◦, for simulations
covering all KCb. Therefore, we first select a time instance where, for all considered
KCb, an oscillation cycle concludes, thus φ = 360◦. Subsequently, we select instances
that coincide at φ = 90◦ for the different KCb, during the preceding oscillation cycle.
By choosing t = 100, we compare then the density fields at φ = 90◦ for KCb = 5, 10,
25, 50 and 100 at t = 96.25, 92.5, 81.25, 62.5 and 25, respectively. For the canonical
lock-exchange gravity current (without external forcing), we use the density field at
t = 96.25.

The density field of the gravity current forming from the classical lock-exchange set-up
(see figure 5a) illustrates the same characteristics as those observed in earlier DNS studies
(Härtel et al. 2000; Necker et al. 2002, 2005; Cantero et al. 2006; Anjum, McElwaine
& Caulfield 2013). At the leading edge of the gravity current, the height of the current
increases steeply to a local maximum and subsequently to a local minimum in the
body of the gravity current. The density fields at φ = 90◦ for gravity currents in the
presence of oscillatory forcing (figure 5b–f ) show distinct shapes when compared with
the freely evolving gravity current (figure 5a). Quite remarkably, the gravity currents
for KCb ≤ 25 have propagated a larger distance compared with the non-oscillatory case.
Since we have a no-slip bottom, the magnitude of the externally imposed flow field must
decrease towards the bottom and differential advection occurs. Heavier fluid farther from
the bottom experiences a larger along-stream flow velocity than fluid near the bottom wall.
Consequently, it moves over lighter fluid close to the bottom wall, particularly near the
nose of the gravity current. This results in an apparent lifting of the gravity current, and

1002 A14-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

11
70

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1170


Gravity currents under oscillatory forcing

1.0
(a)

0.5y
0
20 25 30 35 40

1.0
(b)

0.5y
0
20 25 30 35 40

1.0
(c)

0.5y
0
20 25 30 35 40

1.0
(d )

0.5y
0
20 25 30 35 40

1.0
(e)

0.5y
0
20 25 30 35 40

1.0
( f )

0.5y
0
15 20 25

x
30 35

1.0

0.8

0.6

0.4

0.2

0

Figure 5. Dimensionless density fields (with LAR ≈ 1.8) (a) for the non-oscillating case and (b–f ) those for
different KCb (and Fr = 1). For the oscillating cases, they are all obtained at the same phase of the forcing
cycle, φ = 90◦. The time instance for the snapshots of the density fields are: (a) t = 96.25; (b) t = 96.25 (gone
through 19.25 oscillation cycles; KCb = 5); (c) t = 92.5 (9.25 cycles; KCb = 10); (d) t = 81.25 (3.25 cycles;
KCb = 25); (e) t = 62.5 (1.25 cycle; KCb = 50) and ( f ) t = 25 (0.25 cycle; KCb = 100). For panel ( f ), we
plot the density field for 15 ≤ x ≤ 35 since the front of the gravity current is located at x ≈ 24 (thus including
a substantial part of the tail of the current in the figure). The value of the density (with 0 ≤ ρ ≤ 1) is indicated
by the colour bar.

the area beneath the gravity current is then called the lifting area. The lifting of the gravity
current usually does not occur, or is almost negligible, for the freely evolving gravity
current over a horizontal wall. The significant lifting is thus entirely due to the presence
of oscillatory forcing and subsequent differential advection. We clearly observe the lifting
and squishing of the gravity currents in figure 5(b–f ). Lifting is weak for KCb = 5, but
it increases with KCb because differential advection occurs for longer as the oscillation
cycles become longer (thus larger KCb). Additionally, the Stokes boundary-layer thickness
becomes larger with increasing KCb (see figure 2). The layer of slowly moving light fluid
becomes thicker, contributing to larger redistribution of light and heavy fluid beneath the
heavy fluid at the front. For a quantitative discussion, see §§ 5.1 and 5.2.

In figure 6, we show the same density fields as in figure 5, but zoomed-in on the front
of the gravity current. The horizontal and vertical length scales in the panels of figure 6
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Figure 6. Dimensionless density fields for (a) the non-oscillating case and (b–f ) those for different KCb
(and Fr = 1), panels zoomed-in on the front of gravity current (LAR = 1). For the oscillating cases, they
are all obtained at the same phase of the forcing cycle, φ = 90◦. The time instance for the snapshots of the
density fields are: (a) t = 96.25; (b) t = 96.25 (KCb = 5); (c) t = 92.5 (KCb = 10); (d) t = 81.25 (KCb = 25);
(e) t = 62.5 (KCb = 50) and ( f ) t = 25 (KCb = 100). The value of the density (with 0 ≤ ρ ≤ 1) is indicated
by the colour bar.

are identical (in contrast with figure 5) to appreciate the fine-scale structure within and
beneath the gravity current, and the details of the front of the gravity current, including
distinctly different (small-scale) redistribution of the density for the different cases.

In some of the snapshots shown in figure 6, in particular for KCb = 100 and to a lesser
extent for KCb = 50, there seems to be evidence of the presence of a Rayleigh–Taylor
instability (see also figure 7b,c,d for KCb = 5, 10 and 25, respectively). For a closer
inspection, the reader is also referred to the supplementary movies. This is an intriguing
observation that deserves further exploration in future studies of both 2-D and 3-D DNS
of oscillatory-forced gravity currents.

4.3. Gravity current propagation with opposing ambient flow (180◦ ≤ φ ≤ 360◦)
We now consider the situation where the propagating gravity current is subjected to
an opposing externally imposed flow. This occurs for 180◦ ≤ φ ≤ 360◦. The maximum
amplitude of the opposing flow occurs at φ = 270◦, but the influence of the opposing
external flow is best appreciated when we consider its impact on advection and local
redistribution of the density field at the end of the cycle with the opposing flow, i.e. at
φ = 360◦. Hence, we compare the flow and density fields for each KCb always at the same
instance after the release of the gravity current. The choice of the fixed times is dictated by
the largest value of KCb and is typically t = 100, 200, 300 or 400. We choose to illustrate
advection and density redistribution with snapshots of the density field taken at t = 100
for all cases (non-oscillating and KCb = 5, 10, 25, 50 and 100, respectively), see figure 7.
These snapshots show a completely different structure compared with the case with a
coinciding ambient flow.

Before proceeding with the qualitative comparison of the behaviour of oscillatory-forced
gravity currents, it is necessary to address the representativeness of the density fields
obtained during the relatively early stages after the release of the gravity current (for t ≤
100). The freely evolving gravity current propagates in a quasi-steady fashion, only driven
by buoyancy due to the density difference between light and heavy fluid. Considering
snapshots of the density field for this case taken at different instances, here at t = 100 (see
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Figure 7. Dimensionless density fields (with LAR ≈ 1.3) (a) for the non-oscillating case and (b–f ) for different
KCb (KCb = 5 in panel b, KCb = 10 in panel c, KCb = 25 in panel d, KCb = 50 in panel e and KCb = 100
in panel f ). For all cases, Fr = 1. They are all shown for t = 100, which coincides with φ = 360◦ for the
oscillating cases. The front of the gravity current is well homogenized and has an inclined shape for KCb = 50
and 100. The gravity current front is steep and stays slightly lifted for KCb = 5 and 10. For KCb = 25, while
the front is more inclined, the density current is not very homogenized at the front. The value of the density
(with 0 ≤ ρ ≤ 1) is indicated by the colour bar.

figure 7a), 200, 300 and 400 (see figures S10, S11 and S12 of the Supplementary Material),
it can be observed that the front shape remains similar for all times, while the heavy
current (front and body) is diluted due to entrainment of light fluid (and scalar diffusion).
For the same times, the front of the gravity current in the presence of oscillatory forcing
shows distinctively different patterns of small-scale density redistributions depending on
the particular value of KCb, but for each value of KCb, this pattern of density redistribution
does not strongly change with increasing time (except dilution by also diffusive processes).
Signatures of flow instabilities (shear-induced eddy formation) and density-current lifting
is clearly visible for KCb = 5, 10 and 25 (see figure 7b–d for t = 100 and also the
snapshots shown in figures S1–S9 of the Supplementary Material for t = 200, 300 and
400, respectively). The main features of the evolution of the gravity current for KCb = 50
and 100 remain visible up to t = 400. From this comparison, we can conclude that for the
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purpose of this qualitative comparison, we can rely on the density fields evaluated in the
oscillation cycle ending at t = 100.

We first consider KCb ≤ 10 (figure 7b,c). The externally induced oscillating flow acts
against the propagation of the gravity current and could eliminate effects of density-current
lifting by advection and enhanced (vertical) density redistributions. The duration of the
opposing flow is apparently too short for these smaller values of KCb to achieve substantial
(vertical) redistribution of density. The front of the gravity current thus always stays lifted
and the interface (both beneath and above the current) is disturbed by eddies due to the
presence of shear layers. Clearly, no full vertical density redistribution is achieved. Gravity
currents in the presence of large-period oscillatory forcing (e.g. those with KCb = 50
and 100, in figure 7e, f ) experience strong changes in the density structure resulting in
significant horizontal homogenization of the density field. Shear instabilities and eddies at
the interface between heavy and light fluid have ample time to fully redistribute heavy and
light fluid near this interface. These gravity currents are horizontally well homogenized
at t = 100, and their shapes are clearly different from the front shape of gravity currents
with KCb � 25 (figure 7b–d). Furthermore, the front of the gravity current has a clear
inclined shape for KCb ≥ 50, which is similar to the inclined shape of salt intrusions at
the ebb phase, as observed with salinity measurements in, for example, the Rotterdam
Waterway reported by de Nijs et al. (2011). Therefore, we conclude that for KCb � 50,
the behaviour of density redistributions at the front and the shape of the gravity current
seem representative for salt intrusions as observed in environmental flows (usually in the
presence of large-period forcing, typically with KCb 	 5000). Lastly, for KCb = 25, see
figure 7(d), the front is not very homogenized compared with for KCb = 50 and 100,
although the front clearly has a more inclined shape compared with the cases with KCb = 5
and 10.

4.4. The evolution of the local current height h(x, t)
The shape of the gravity current can be displayed and easily compared for different KCb
by finding the vertical position of the interface as a function of the horizontal coordinate.
Consider first the situation of a density current without lifting. The vertical position of the
interface can be estimated by defining a local current height for which different methods
have been proposed in earlier studies by, for example, Shin, Dalziel & Linden (2004) and
Anjum et al. (2013). As suggested by Shin et al. (2004), the dimensionless local current
height hs(x, t) is defined by the vertical integration of the density,

hs(x, t) =
∫ 1

0
ρ(x, y, t) dy. (4.1)

This method is not suitable in the presence of significant vertical density redistributions
as observed by Anjum et al. (2013). They proposed to define a spatially and
temporally varying depth of the gravity current, denoted by ha(x, t), using the available
potential energy contained in the current. They derived ha(x, t) by first introducing the
dimensionless centre of mass position hcm(x, t) of the heavy current in the vertical
direction, which is defined as

hcm(x, t) =
∫ 1

0 ρ(x, y, t)y dy∫ 1
0 ρ(x, y, t) dy

. (4.2)

This definition implicitly assumes that hcm(x, t) is not defined right of the front position Xfr
as then hs(x, t) = 0. We determined the front position by approaching the gravity current
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Figure 8. Illustration of the different methods to find the current height based on a snapshot of the density
field for a simulation with KCb = 50 and Fr = 1, taken at t = 62.5 and φ = 90◦ (with LAR ≈ 1.7). The black
line indicates the local current height according to Shin et al. (2004), the grey line according to Anjum et al.
(2013) and the red line according to the proposed definition in this work using (4.3). The green line indicates
the lifting height, defined in (5.1).

from the right-hand side and finding the position x = Xfr of the first occurrence where
hs(x, t) = 0.005 (varying this threshold value to determine Xfr between 0.01 and 0.0025
affects the results by less than 1 %). This implies that the value of hcm(x, t) is always
clipped to zero for x ≥ Xfr.

The local current height ha(x, t) is then defined as twice the centre of mass height,
ha(x, t) = 2hcm(x, t). However, gravity currents in the presence of an imposed oscillating
flow field experience lifting, and therefore, ha(x, t) overestimates the local current height
for the cases with lifting. To include this effect, we propose to quantify the current height
h(x, t) as the sum of the (vertical) centre of mass position hcm(x, t) of the heavy current
and the local current height with respect to hcm(x, t) (which is not affected by the lifting
height):

h(x, t) = hcm(x, t) + 2

∫ 1
hcm(x,t) ρ(x, y, t)( y − hcm(x, t)) dy∫ 1

hcm(x,t) ρ(x, y, t) dy
. (4.3)

With our definition of Xfr and the constraint on hcm(x, t) introduced above, we immediately
see that h(x, t) = 0 for x ≥ Xfr.

In figure 8, we provide a comparison of the local current height according to the methods
introduced by Shin et al. (2004) and Anjum et al. (2013), given by hs(x, t) and ha(x, t),
respectively, with the method introduced in this work for the local current height h(x, t)
at the front of a gravity current. It clearly shows the suitability of the modified measure
introduced here (see the red line in figure 8).

The shape and evolution of gravity currents for a range of KCb are explored by
visualizing the local current height h(x, t), representing the interface between heavy and
light fluid, and computed according to (4.3), at t = 100, 200, 300 and 400 (figure 9). Since
we are not interested in the local details and features of the interface, such as instantaneous
variations due to the presence of small vortices at the interface between the heavy and
light fluid, we use a moving average of the data from 10 neighbouring grid cells to find
the average current height. From figure 9, it is clearly seen that, for KCb = 50 and 100,
the interface maintains an inclined shape at the end of each cycle. This is not the case for
smaller KCb. In particular, for the cases with KCb = 5 and 10, there is a steep increase in
the current height at the front of the gravity current. This is similar to the characteristics
of the front shape seen for the freely evolving gravity current.

4.5. Summary
The density field ρ(x, y, t) and current height h(x, t) for different simulations show that
the gravity current is lifted in the first half of the oscillation cycle (0◦ ≤ φ ≤ 180◦).
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Figure 9. Local gravity current height h(x, t), (4.3), evaluated with a moving average procedure, for
simulations with different KCb (and Fr = 1) and for the freely evolving gravity current (with LAR ≈ 3.0).
The results are displayed for: (a) t = 100; (b) t = 200; (c) t = 300 and (d) t = 400. The freely evolving gravity
current shows the distinctive front shape (black lines). The gravity currents with KCb = 5 and 10 (green and
blue lines, respectively) illustrate a steep front shape. The front of the gravity current has a more inclined shape
for simulations with KCb = 50 and 100 (red and purple lines, respectively). KCb = 25 (orange line) represents
an intermediate case.

During this part of the oscillation cycle, the externally imposed flow field aligns with
the propagation direction of the gravity current. In the second half of the oscillation
cycle (180◦ ≤ φ ≤ 360◦), the unstable situation of heavy fluid being above light fluid
causes enhanced (vertical) density redistributions within the gravity current. Enhanced
density redistributions already start when the coinciding imposed flow starts to decelerate
(for φ ≥ 90◦), and it is further strengthened when the imposed flow is opposite to the
propagation direction of the gravity current.

From the comparison of both the density field of the gravity currents and the current
heights for different KCb (and for the freely evolving gravity current), three regimes,
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each with different behaviour of (small-scale) density redistributions, are observed. The
front of the gravity current exhibits instabilities and additional redistribution of the
density in the presence of the externally imposed oscillating flow field with KCb � 10.
The gravity current is lifted in the first half of the oscillation cycle and remains lifted
throughout the whole cycle since the oscillation period is too short compared with the
required time for full reattachment of the heavy current to the bottom of the channel.
As a consequence, the subsequent phase with coinciding imposed external flow promotes
lifting of the current again before reattachment occurs. Since the duration of the mean
shear caused by the imposed flow is shorter, the shape of the current front is similar
to the front shape for a freely evolving gravity current. Gravity currents with KCb � 50
show density redistributions similar in shape as those observed for salt wedges at the
end of the ebb phase in estuarine flow configurations. Such salt wedges also occur, for
example, in the Rotterdam Waterway with KCb 	 5000. The front of the gravity current
is well homogenized and has an inclined shape for KCb � 50. Lastly, the cases with
10 � KCb � 50 show an intermediate behaviour, where the current front has a more
inclined shape compared with a smaller period of oscillations. However, the heavy current
does not have enough time to become horizontally well homogenized.

5. The effect of varying KCb, Fr and Sc on gravity current dynamics

5.1. Impact of KCb on the lifting area and front shape
Observations from the evolving density field of several gravity currents, discussed in
the previous section, uncovered a new phenomenon: the lifting of the gravity current.
It happens primarily during the first half of the oscillation cycle (0◦ ≤ φ ≤ 180◦). The
second half of the oscillation cycle, for 180◦ ≤ φ ≤ 360◦, is inherently unstable, since the
heavy fluid has moved over light fluid in combination with the externally induced opposing
flow, and lifting is no longer supported. In this section, we introduce a measure for and
quantify the lifting area Al for gravity currents as a function of KCb, thus as a function of
the oscillation period of the external forcing. Additionally, we quantify the redistribution
of density as well.

We define the dimensionless lifting height hl(x, t) in a similar way as we determined
the current height h(x, t) in (4.3). More precisely, we quantify the lifting height as the
difference of the (vertical) centre of mass position hcm(x, t) of the heavy current and the
local current depth with respect to hcm(x, t):

hl(x, t) = hcm(x, t) − 2

∫ hcm(x,t)
0 ρ(x, y, t)(hcm(x, t) − y) dy∫ hcm(x,t)

0 ρ(x, y, t) dy
. (5.1)

We use the lifting height hl(x, t) to introduce a measure for the lifting area Al(t) beneath
the gravity current as a function of time (note that hl(x, t) = 0 for x > Xfr), so that

Al(t) =
∫ Xfr

0
hl(x, t) dx. (5.2)

The start of additional density transport due to the decelerating phase of the oscillatory
forcing can typically be observed after reaching a maximum lifting area Al,max. We
found that the lifting area becomes maximum at φ ≈ 200◦, 220◦, 240◦, 240◦, 250◦ for
KCb = 100, 50, 25, 10 and 5, respectively, and this occurs during each oscillation cycle.
Therefore, we determine the maximum lifting area observed during each cycle for the
full simulation and average Al,max over all cycles, and denote it with 〈Al,max〉. With
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Figure 10. (a) Average maximum lifting area 〈Al,max〉 (red symbols) and average minimum lifting area 〈Al,min〉
(black symbols) as a function of KCb (and Fr = 1). The freely evolving case is plotted on the vertical axis.
(b) Scaling of the average maximum lifting area 〈Al,max〉; the black dashed line indicates a scaling 〈Al,max〉 ∝
KC1.1±0.1

b . The fit is based on nonlinear least squares from the data KCb ∈(5, 10, 25, 50, 100).

the simulation taking 400 time units, we average over 400/KCb occurrences. A similar
procedure is applied for the minimum lifting area Al,min, since it is an indicator of whether
the unstable configuration (heavy fluid over light fluid) continues to exist during the
full cycle (which would imply 〈Al,min〉 > 0) or the frontal region reaches a stable and
vertically homogenized state within an oscillation cycle. The latter condition would mean
that 〈Al,min〉 ≈ 0.

The (averaged) maximum lifting area 〈Al,max〉, shown in figure 10(a), clearly increases
with KCb. For the freely evolving gravity current, the averaged maximum lifting area is
very small, but not zero, due to a thin boundary layer above the no-slip wall. This very thin
boundary layer contains light fluid left between the propagating gravity current and the
no-slip wall, and is not related to the differential-advection mechanism discussed for the
cases with KCb � 5. The data for the (averaged) minimum lifting area show that 〈Al,min〉 >

0 for KCb = 5, 10 and 25. Thus, a part of the lifting occurring during the first half of the
forcing cycle survives during the second half of the forcing cycle. This is distinctively
different for KCb = 50 and 100, where the heavy current is already vertically homogenized
before the next oscillation cycle starts.

We take a closer quantitative look at the averaged maximum lifting area. Therefore, we
replot the data for 〈Al,max〉 versus KCb logarithmically in figure 10(b), and the following
approximate scaling is found: 〈Al,max〉 	 1.62 × 10−2KC1.1

b . It is, thus, close to linear,
for the range 5 ≤ KCb ≤ 100. This scaling behaviour is consistent with the assumption
that the lifting phenomenon is due to differential advection with, in this case, Fr constant
(thus, the same amplitude U0 of the externally imposed oscillating flow in all cases).
During one half of the oscillation cycle, with the externally imposed flow aligned with
the propagation direction of the gravity current, the displacement of the heavy fluid in the
front of the gravity current due to the externally imposed flow scales with KCb. In contrast,
the light fluid near the bottom wall only moves marginally due to the no-slip condition.
An approximation for the lifting area would then take the form: 〈Al,max〉 ∝ 1

2 U0KCb (or
∝ FrKCb), consistent with our observation.

To quantify density redistributions in the presence of lifting and squishing phenomena,
we focus on the gravity current front. It can be deduced from figure 9 that within a certain
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Figure 11. (a) Average current thickness ht(t) of the gravity current front and (b) average density ρa(t) in
the gravity current front for the freely evolving gravity current and the five cases with an externally applied
oscillating pressure gradient. For all cases, Fr = 1. The horizontal extent of the gravity current front is taken
as 
L = 15. The inset in panel (a) shows the current thickness averaged over the times 200, 250, . . . , 400.
Estimated error margins are included. The inset in panel (b) shows the density relaxation time τρ for the same
cases. For both insets, the values for the freely evolving case are on the vertical axis.

distance 
L (for example, 
L = 15) from the front of the gravity current, the current
height is most dynamic and irregular. This allows us to illustrate and quantify the different
density redistribution behaviours from this part of the gravity current. We define the extent
of the gravity current front as the distance between the front position Xfr, defined in § 4.4,
and Xb = Xfr − 
L. The precise choice of 
L will be discussed later.

To illustrate the differences in density redistributions with varying KCb, we look at the
spatially averaged current thickness. This quantity serves as a geometrical indicator of how
much entrainment and redistribution of the density field happens between the heavy and
light fluid in the gravity current. For this purpose, we take the current area within the front
(Xb ≤ x ≤ Xfr) and normalize it with 
L = Xfr − Xb to find the average thickness of the
current defined as

ht(t) = 1

L

∫ Xfr

Xb

[h(x, t) − hl(x, t)] dx. (5.3)

A further indicator quantifying density redistributions is the average density in the
gravity current front, denoted by ρa(t) and defined as

ρa(t) = 1
ht(t)
L

∫ Xfr

Xb

(∫ h(x,t)

hl(x,t)
ρ(x, y, t) dy

)
dx. (5.4)

Both ht(t) and ρa(t) are evaluated with a predetermined length of the front region,

L = 15. The choice of 
L = 15 might seem subjective at first glance, but we will explain
this choice below.

In figure 11(a), we show ht(t) for the freely evolving and the five different
oscillatory-forced cases with 
L = 15. For all simulations, we show the results for t =
50, 100, . . . , 400. Similarly, we show ρa(t) in figure 11(b) for the same times. The freely
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Figure 12. Density probability distribution P(ρ) as a function of KCb (and Fr = 1, Sc = 5) taken at
(a) t = 100 and (b) t = 200.

evolving case is shown by the black filled squares. The average thickness of the gravity
current front decreases during the first part of the propagation phase (up to t ≈ 200) before
it tends to saturate at a constant value. The average density ρa(t) in the gravity current front
shows that, for increasing KCb, the entrainment and redistribution of the density field in the
gravity current front is enhanced compared with the freely evolving case, and we see that
increasing KCb implies smaller values for ρa(t). The curves shown in figure 11(b) suggest
an approximately exponential decay of the average density, ρa(t) ≈ exp(−t/τρ), with τρ

a density relaxation time scale which depends on KCb. We have computed ln ρa(t) for
the range of 
L between 5 and 20, and found that τρ becomes independent of the choice
of 
L for 
L � 15. This observation motivates our choice 
L = 15 for this quantitative
analysis. The inset in figure 11(b) shows τρ for the range of KCb explored in this study.
It is clear from the monotonic decrease of τρ with KCb in the range 0 ≤ KCb ≤ 100 that
density homogenization occurs faster with increasing KCb.

These conclusions can be further substantiated by considering the probability
distribution of the density, P(ρ), in the same area (defined by Xb ≤ x ≤ Xfr and hl(x, t) ≤
y ≤ h(x, t)) used to compute ρa(t). The density probability distribution is normalized
using ρa(t) such that

∫ 1
0 P(ρ) dρ = 1 for each set of KCb, Fr and Sc values. In figure 12,

we show P(ρ) at t = 100 (figure 12a) and t = 200 (figure 12b) for the freely evolving
and oscillatory-forced gravity currents (with Fr = 1 and Sc = 5). The characteristics of
the density redistributions for KCb = 5 and 10 are similar to those of the freely evolving
gravity current, and enhanced density homogenization is observed for KCb = 50 and 100.
Initially, the characteristics of the density redistributions for the case with KCb = 25 is
close to the freely evolving case, but at later times, it shows similar homogenization of
the density field as observed for the higher KCb runs. For t � 300, the density probability
distribution tends to a continuous uniform distribution given by P(ρ) = 1/(ρmax − ρmin)

for ρmin ≤ ρ ≤ ρmax and zero elsewhere. Typically, ρmin ≈ 0.1 and ρmax ≈ 0.5–0.7 (the
upper bound for small KCb and lower bound for large KCb). In this interval, density values
are more or less equally probable.

The data for ht(t) support the observation from the previous section that we can
distinguish three regimes. For KCb � 10, the gravity current front remains always thicker
than for the freely evolving case, while it is typically thinner for KCb � 50. The case
KCb = 25 represents a transition regime with the thickness of the gravity current front
being similar to that in the freely evolving gravity current. These observations suggest that,
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for KCb � 10, entrainment and density redistributions mostly take place near the gravity
current front, resulting predominantly in growth of its thickness. For larger KCb, there is
a strong interplay between entrainment and (vertical) density redistribution in the gravity
current front, which promotes enhanced thickness, with strong horizontal advection. The
latter mechanism removes parts of the top layer of the gravity current front to the rear,
effectively resulting in a thinner but nevertheless lighter gravity current front.

We now consider average values of the current thickness, 〈ht〉 = 1
5
∑8

n=4 h(t = 50n),
thus using only the values outside the transient regime occurring for t ≤ 150. In the inset
of figure 11(a), we show 〈ht〉 (with an estimated error margin) obtained for 
L = 15. The
results support the conclusion above that, for KCb ≤ 10, the average thickness of the front
is larger compared with the freely evolving case and the other way around for KCb ≥ 50.

5.2. Effect of velocity amplitude (or Fr) of the externally imposed oscillating flow
The overall behaviour of gravity currents with KCb � 50 show similarities with those
of salt intrusions in estuaries. Therefore, we explored the effect of Fr for simulations
with KCb = 50. It allows us to consider a substantial number of oscillation cycles (eight
in total) to distinguish between transient effects (typically during the first three cycles)
and quasi-steady oscillatory propagation of the gravity current during the last cycles. We
consider Fr = 0.25, 0.50, 1 and 2 and the freely evolving case (Fr = 0). This comparison
is thus based on the simulations 1, 5, 7, 8 and 9 in table 2. We will incorporate results from
simulations where the initial phase of forcing is φinit = 0◦ and 180◦. An animation of the
density field evolution for 50 ≤ t ≤ 200 is shown in supplementary movie 3.

In §§ 4 and 5.1, we have discussed the basic mechanisms that affect the lifting height, its
temporal evolution, the maximum lifting area Al,max and the role of KCb (with Fr kept
fixed) on these quantities. In figure 13, we show Al,max at the end of each oscillation
cycle for Fr = 0, 0.25, 0.5, 1 and 2. From these data, it is clear that the first three
cycles represent a transient period before the lifting area reaches an almost steady state.
From the steady-state range, we get confirmation of our earlier hypothesized scaling of
the maximum lifting area, Al,max ∝ FrKCb. This observation holds for both initialization
phases, φinit = 0◦ and φinit = 180◦.

To understand the effect of Fr on the distance travelled by the front of the gravity
current, we investigate the front position Xfr, as defined in § 4.4, for different Fr and
compare it with the freely evolving case (Fr = 0). The front positions Xfr as a function of
time are shown in figure 14(a). To distinguish the effect of externally imposed oscillatory
forcing on the front position, we determine the front position relative to the freely evolving
case (with front position Xfr,0), denoted by 
Xfr = Xfr − Xfr,0 (figure 14b). The first
three oscillation cycles are affected by transient behaviour and are, hence, disregarded
in further discussions. To quantify the effect of the oscillatory forcing on Xfr, we consider
the following cycle-averaged quantity:

〈
Xfr〉n =
√

1
KCb

∫ (n+1)KCb

nKCb


X2
fr dt, (5.5)

with 3 ≤ n ≤ 7. It represents the averaged effect of the oscillatory forcing on 
Xfr in
each individual forcing cycle. The results for 〈
Xfr〉n are shown in figure 14(c). We
have computed the average 〈
Xfr〉 = 1

2(〈
Xfr〉6 + 〈
Xfr〉7) for the case with φinit = 0◦.
The results show that 〈
Xfr〉 ∝ Fr and advances the freely evolving case (see the solid
curves in figure 14b,c). Furthermore, if we focus on simulations with varying KCb

1002 A14-25

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

11
70

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1170


C. Bingol, M. Duran-Matute, R. Zhu, E. Meiburg and H.J.H. Clercx

6
1.0

0.5y/H

0 1

u (φ = 90°)
2

Fr = 0

Fr = 0.25

Fr = 0.50

Fr = 1.00

Fr = 2.00

5

4

3

2

A l
,m
ax

1

0 100 200

t
300 400

Figure 13. (a) Maximum lifting area Al,max for each cycle of the oscillatory forcing of the different gravity
currents under consideration (KCb = 50). Two initializations are considered: φinit = 0◦ (solid line) and φinit =
180◦ (dotted line). Inset shows the vertical profile of the horizontal velocity of the externally imposed flow field
at φ = 90◦. The results from the steady-state range support our hypothesis Al,max ∝ Fr and hardly depend on
φinit.
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Figure 14. Front position of the gravity current for simulations with varying Fr with (a) Xfr, (b) front position
for simulations with varying Fr relative to the non-oscillating case, 
Xfr = Xfr − Xfr,0, and (c) period-averaged
propagation speed 〈
Xfr〉n. The solid and dotted curves represent results with φinit = 0◦ and φinit = 180◦,
respectively. The colour code indicates Fr.

and keep Fr = 1, we observe that 〈
Xfr〉 ∝ KCb. Carrying out the same approach for
simulations with φinit = 180◦ shows again that 〈
Xfr〉 ∝ Fr, but lags behind the freely
evolving case (see the dotted curves in figure 14b,c). Our results provide strong indications
that 〈
Xfr〉 ∝ FrKCb, which makes sense intuitively, because 〈
Xfr〉 will scale with the
maximum velocity of the oscillation and the period of the oscillation. This suggests that
differential advection is the key process determining the relative front position.

1002 A14-26

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

11
70

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1170


Gravity currents under oscillatory forcing

0.6

Fr = 0.25 Fr = 0.50 Fr = 1.00 Fr = 2.00

1.0

0.8

0.6

0.4

0.2

0

0.4

0.2

〈�
M
Fr

〉n

〈�
M
l,F
r〉n

0 1 2 3 4 5 6 7 8

Number of cycle

2 3 4 5 6 7 8

Number of cycle

(b)(a)

Figure 15. (a) Relative total mass difference 〈
MFr〉n for different Fr (and KCb = 50) in the gravity current
front averaged for each cycle compared with the freely evolving case. (b) Relative total mass through the
gate 〈
Ml,Fr〉n averaged for each oscillation cycle for the four values of Fr relative to the freely evolving
case. Solid lines, φinit = 0◦; and dotted lines, φinit = 180◦. The frontal region is defined by Xb ≤ x ≤ Xfr, with
Xb = Xfr − 
L (with 
L = 15).

The frontal region of the gravity current becomes thinner and more diluted in the
presence of oscillatory forcing with large KCb; see, for example, figures 7 and 11. To
quantify the change in density within the current, we first introduce the total mass of
the heavy fluid, MFr(t) = ht(t)
Lρa(t), in the frontal region of the gravity current. Note
that the dimensionless density of the light fluid is ρ = 0 and of the heavy fluid ρ = 1,
and 0 ≤ ρa(t) ≤ 1. The frontal region is defined by Xb ≤ x ≤ Xfr, with Xb = Xfr − 
L
(with 
L = 15), and MFr(t) can be determined for each Fr. The relative mass difference
in the frontal region compared with the freely evolving case is defined as 
MFr(t) =
[MFr(t) − M0(t)]/M0(t), with M0(t) the total mass in the frontal region for the freely
evolving gravity current. For Fr ≥ 0.5, we find that the period-averaged value of 
MFr(t)
is negative, and for Fr = 0.25, it is approximately zero. We start by considering φinit = 0◦.
The period-averaged relative mass difference 〈
MFr〉n in the frontal region is defined as

〈
MFr〉n =
√

1
KCb

∫ (n+1)KCb

nKCb


M2
Fr dt, (5.6)

and is by definition positive. It increases significantly with increasing Fr, see figure 15(a),
and also shows transient behaviour for t ≤ 150. Therefore, we focus on the average of
〈
MFr〉n for 200 ≤ t ≤ 400, denoted by 〈
MFr〉 = 1

4
∑7

n=4〈
MFr〉n. Due to the fact that
the period-averaged value of 
MFr(t) is typically negative, there is no ambiguity in
the interpretation of 〈
MFr〉 (which is always positive). Figure 15(a) shows an increase
of 〈
MFr with Fr. For φinit = 180◦, very similar behaviour is found for 〈
MFr〉n (see
figure 15a).

Also here, we can consider the probability distribution of the density, P(ρ). In figure 16,
we show P(ρ) at t = 100 (figure 16a) and t = 200 (figure 16b) for the freely evolving
and oscillatory-forced gravity currents with KCb = 50 and Fr = 0, 0.25, 0.5, 1 and 2
(with Sc = 5). We observe a gradual increase of the redistribution of the density with
Fr with a strong impact for Fr � 1. This behaviour can also be observed qualitatively
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Figure 16. Density probability distribution P(ρ) as a function of Fr (and KCb = 50, Sc = 5) taken at
(a) t = 100 and (b) t = 200.

with animations of the density fields from simulations with varying Fr (for 50 ≤ t ≤ 200)
shown in supplementary movie 3.

The decrease of the total mass in the frontal region supports our qualitative observations
that the upper part of the gravity current front is pushed further backwards to its rear by the
strong opposing flow (for KCb = 50). The net advection of heavy fluid towards the frontal
region is thus, on average, less in the presence of oscillatory forcing, which reduces the
gravity current thickness and its average density. However, its propagation properties are
dominated by differential advection, as discussed in the previous paragraph.

To further understand the bulk density transport, we compare the mass of heavy fluid
passing through the gate (at x = 0) for gravity currents with KCb = 50 and Fr = 0.25, 0.5,
1 and 2, and the freely evolving case (Fr = 0). To find the total mass of heavy fluid that
passed the gate position, we introduce Ml,Fr(t), defined as

Ml,Fr(t) =
∫ (1/4)L

0

∫ 1

0
ρ(x, y, t) dx dy. (5.7)

In a similar way as before, we introduce 
Ml,Fr(t) = [Ml,Fr(t) − Ml,0(t)]/Ml,0(t), which
also depends on φinit. For φinit = 0◦, the period-averaged value of 
Ml,Fr is positive,
while it is negative for φinit = 180◦ due to asymmetry of the forcing. The averaged total
mass of heavy fluid passing through the gate is defined in a similar way as 〈
MFr〉
and results shown in figure 15(b) suggest 〈
Ml,Fr〉 ∝ Fr. For φinit = 0◦, the total mass
transport through the gate is always larger compared with the freely evolving case for
0.25 ≤ Fr ≤ 2. For φinit = 180◦, the total mass transport through the gate is less for 0.25 ≤
Fr ≤ 2 compared with the freely evolving case (note that, according to our definition,
〈
Ml,Fr〉 > 0). For both cases, the data show that 〈
Ml,Fr〉 ∝ Fr, thus is connected with
the excursion length of the oscillations and differential advection.

5.3. Effect of the Schmidt number on lifting area and propagation speed
The rate of molecular diffusivity changes according to the scalar that causes the density
difference. Additionally, the effective Prandtl–Schmidt number also changes for different
applications and conditions in estuaries with different stratification. Therefore, we are
interested to see the effect of diffusivity on mass transport (of heavy fluid) and gravity
current dynamics. For this purpose, we carried out simulations with Sc = 1, 5 and 20,
while we kept the other parameters fixed: KCb = 50, Fr = 1 and Re = 3000.
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Figure 17. (a) Period-averaged front position of the oscillatory-forced gravity current with respect to
propagation of the freely evolving gravity current, 〈
Xfr〉n, (b) maximum lifting area of gravity current, Al,max,
for simulations with different Sc and (c) relative total mass difference 〈
MSc〉n for different Sc at the gravity
current front for each cycle compared with the freely evolving case. The initial phase of the forcing is φinit = 0◦
and the frontal region is defined by Xb = Xfr − 
L ≤ x ≤ Xfr (with 
L = 15). The colour indicates Sc.

To show the effects of varying Sc on the front position of the gravity current, we
only focus on oscillatory-forced gravity currents with φinit = 0◦. The cycle-averaged front
position of the gravity current,

〈
Xfr〉n =
√

1
KCb

∫ (n+1)KCb

nKCb

[Xfr,1 − Xfr,0]2 dt, (5.8)

represents an averaged propagation difference between the gravity current in the presence
of oscillatory forcing (with front position Xfr,1) compared with the freely evolving gravity
current (with front position Xfr,0) for varying Sc. The average 〈
Xfr〉 over the last two
forcing cycles (300 ≤ t ≤ 400) shows that the cycle-averaged front position of the gravity
current advances the freely evolving case by a similar amount for the three values of Sc,
see figure 17(a), and hardly influences the relative propagation of gravity currents. The
maximum lifting area Al,max of the gravity currents, using the definition from (5.2), shows
a similar trend for different Sc (see figure 17b). They show a transient behaviour, where
Al,max increases for n ≤ 3, before saturating. Since the molecular diffusion for Sc = 1 is
higher, the gravity current becomes more diluted at the front while differential advection
occurs. Therefore, we expect that 〈Al,max〉 will be somewhat smaller for Sc = 1 compared
with Sc = 5 and 20.

The relative mass of heavy fluid in the frontal region is defined as 
MSc(t) =
[MSc(t) − MSc,0(t)]/MSc,0(t), with MSc,0(t) the total mass in the frontal region of the freely
evolving gravity current for the Schmidt number under consideration. The cycle-averaged
relative mass of heavy fluid in the frontal region for varying Sc is expressed as

〈
MSc〉n =
√

1
KCb

∫ (n+1)KCb

nKCb


M2
Sc dt. (5.9)

Also for the cases evaluated here, there is a reduction in the amount of mass in the frontal
region, so there is no ambiguity in the meaning of 〈
MSc〉n. The cycle-averaged relative
mass 〈
MSc〉n shows a significant decrease for Sc = 1, see figure 17(c), while those for
Sc = 5 and 20 saturate. This is also reflected in the probability distribution of the density
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P(ρ) for different Sc, not shown. The averaged value of 〈
MSc〉n for 300 ≤ t ≤ 400 shows
that the relative mass at the front region for each Sc is significantly reduced, particularly
for Sc = 5 and 20. This indicates that the relative mass difference at the frontal region
between the oscillating and freely evolving case is larger for higher Sc values since the
freely evolving gravity current is less diluted at the front for those cases.

6. Discussion

We have investigated the effect of externally imposed oscillatory forcing on gravity
currents using 2-D DNS. Our study focused on the effect of KCb, Fr (both characterizing
the oscillatory forcing) and Sc on the dynamics of the gravity current and its (fine-scale)
density redistribution properties. The Reynolds number of the flow, based on the buoyancy
velocity ub, was kept constant, Re = 3000.

6.1. Summary of the main results
A qualitative exploration of the overall characteristics of periodically forced gravity
currents, with Fr = 1, Sc = 5 and varying KCb, showed the existence of three distinct
regimes. For KCb � 10, the flow shows instabilities and density redistributions at the front
of the gravity current similar to the freely evolving gravity current. However, for KCb �
50, the flow shows different advective density transport and (vertical) density distributions
that are reminiscent of those observed for some propagating salt intrusions at the end of the
ebb phase in estuaries. Specifically, the front of the gravity current is well homogenized
and inclined. For 10 � KCb � 50, the flow displays intermediate characteristics with an
inclined front but with less efficient density redistribution properties than for larger KCb
values.

A detailed quantitative analysis focused on the role of KCb and Fr on key characteristics:
the front position, the averaged maximum lifting area, the current thickness, the density
in the front and mass deficits in the front of the gravity current. In general, the front
displacement after a full oscillation cycle is hardly affected by the oscillatory background
flow, but the transport of mass is reduced because both the thickness and the density
at the front are lower when oscillations are present. This quantitative analysis supports
our qualitative observation of three distinct regimes, and further points to differential
advection as the crucial mechanism to produce the distinct characteristics. First, the
gravity current is lifted by differential advection when the background flow coincides
with the propagation direction of the gravity current, resulting in an unstably stratified
water column. When the background flow reverses, the unstable stratification translates
into vigorous density redistributions in the gravity current. Although the lifting area varies
linearly with KCb, the effects of the density redistributions quantified through, for example,
the current thickness and the relaxation time of the density at the front vary in a nonlinear
way. In fact, we see a difference in the dependence of these quantities with KCb for
KCb � 10 and for KCb � 50. For KCb � 10, the average current thickness is larger than
for the freely evolving case; for KCb � 50, it is smaller. For all oscillatory-forced cases,
we observe an increased reduction of the density at the front compared with the freely
evolving case with increasing KCb.

The regime for KCb � 50 was further explored through simulations with KCb = 50
and varying Fr (i.e. the amplitude of the oscillation). The mass of heavy fluid in the
gravity current front is smaller than in the freely evolving gravity current, and becomes
even smaller for increasing Fr. This deficit tends to be proportional to Fr for the range
considered in this study. In a similar spirit, we have explored the total mass of heavy
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fluid that passes the gate position compared with the freely evolving gravity current. For
φ = 0◦, more heavy fluid passes through the gate compared with the freely evolving case,
and for φ = 180◦, less fluid passes the gate. In both cases, the mass deficit scales with Fr,
suggesting that differential advection plays a crucial role in mass transport for large KCb.
The impact of the Schmidt number, which took the values Sc = 1, 5 and 20, turns out to
be limited. The average lifting area and mass of heavy fluid in the frontal region is similar
for Sc = 5 and 20. These quantities are only affected when diffusion of mass is significant,
as is the case for Sc = 1.

6.2. A different cross-section of the Fr − KCb parameter space
For salt intrusions in estuaries, Fr (quantifying U0) and KCb (quantifying Tosc) are
fully independent quantities. The local geometrical and bathymetrical conditions of the
estuary determines Fr, and the tidal frequency determines KCb. In the present study, we
either kept KCb fixed and varied Fr (mimicking the estuarine configuration) or the other
way around to explore the transition from the freely evolving to the oscillatory-forced
gravity current and the different transition regimes, if any. Both approaches imply that
the dimensionless amplitude of the forcing term, which is proportional to Fr/KCb,
varies for each combination of Fr and KCb. A set of simulations has been performed
keeping Fr/KCb = 0.02 and varying KCb in the range from 5 to 100 to isolate the effect
of the oscillating time period on the flow dynamics. The main observations are (see
figures S13–S16 in the Supplementary Material): up to KCb = 25, the gross behaviour
of the gravity current is very similar to the freely evolving gravity current, and the gravity
current front has a similar shape and lifting is virtually absent (except for KCb = 25). Also,
the average current thickness ht(t) and average density in the gravity current front, ρa(t),
show very similar behaviour. Differences emerge for KCb � 50. The average maximum
lifting area 〈Al,max〉 is significant, and we still observe 〈Al,max〉 ∝ FrKCb.

6.3. Qualitative comparison between 2-D and 3-D simulations for Fr = 1 and KCb = 5
We have made a qualitative comparison between results from one of our 2-D simulations
(with Fr = 1, KCb = 5) with two 3-D simulations under the same forcing conditions. For
the 3-D simulations, we applied either periodic or no-slip lateral boundary conditions.
The width of the channel was equal to the height of the channel. The simulations have
been carried out over 50 time units. The comparison is based on snapshots of the density
field at the midplane of the channel in our 3-D simulations. The front speed of the gravity
current is marginally higher (few percent) for the 3-D oscillatory-forced gravity current
compared with its 2-D analogue. The shape and steepness of the front of the gravity current
is very similar for the three cases. The lifting and squishing processes are clearly visible
in the 3-D simulations and comparable with our observations from the 2-D simulation,
and the average thickness of the front of the gravity current is similar for the 2-D and 3-D
periodic case, while it is slightly thinner for the 3-D case with no-slip lateral boundaries.
The vigorous mixing processes occur in all three cases during opposing flow conditions
(including phenomena that suggest the presence of Rayleigh–Taylor instabilities), but the
density redistribution in the front region of the 2-D gravity current is more strongly
governed by small-scale coherent vorticity patches. In the 3-D gravity currents, these
patches are quickly destroyed, most likely due to intrinsic 3-D dynamics of vortex tubes
and lateral instabilities. In summary, we can conclude that our 2-D simulation provides
good insight to the main characteristics of the dynamics of an oscillatory-forced gravity
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current under current conditions (Fr = 1 and KCb = 5). A further exploration of the
Fr − KCb parameter regime might be worthwhile to confirm these observations.

There is one major difference between the three different simulations discussed above
and this is related to the presence of vortical structures. For 2-D simulations, the
Kelvin–Helmholtz billows are and remain clearly present for many combinations of Fr
and KCb. For our case with Fr = 1 and KCb = 5, we observe that, for the 3-D case
with periodic lateral boundary conditions, similar Kelvin–Helmholtz billows are present
up to t ≈ 15, but they gradually disappear for t � 15. For the 3-D case with no-slip
lateral sidewalls, shear-induced vortical structures generated near the front of the gravity
current are quickly destroyed, most probably due to the presence of the lateral no-slip
walls (at a distance H/2 from the midplane), which does not easily support the presence
of shear-induced vortex tubes perpendicular to it. As is the case for the freely evolving
gravity current, the presence or absence of the shear-induced vortices at the gravity current
interface does not have a significant effect on the gross features of the gravity current
dynamics, mixing properties and front shape. It also has no visible impact on the lifting
and squishing phenomena.

Although qualitatively 2-D and 3-D oscillatory-forced gravity currents behave similarly
(except for the presence of relatively persistent 2-D vorticity patches in the 2-D case), we
expect that a more extensive (and computationally expensive) exploration of the Fr − KCb
parameter regime is needed to understand details of the turbulent mixing processes in
combination with lifting and squishing. This should be a topic for future studies and would
allow a better connection with laboratory experiments and field observations.

6.4. Prospects for laboratory experiments
We have addressed the dynamics of gravity currents under oscillatory forcing with
numerical studies. One could wonder whether the observed phenomena, while consistent
with similar processes, reflect reality sufficiently well. Answers can undoubtedly be
obtained from physical experiments allowing a study of a full 3-D system and also for
larger values of the Reynolds number (based on the buoyancy velocity of the flow). This
is challenging but not entirely impossible provided suitable (infrastructural) facilities are
available. For this purpose, we need a large tank for the lock-exchange experiments,
allowing the gravity current to evolve over sufficiently long time scales and periods
of oscillatory forcing (particularly relevant for large KCb). Comparing with current day
laboratory experiments on gravity currents (see, for example, Sher & Woods 2015;
Ottolenghi et al. 2017; Longo et al. 2018; Maggi, Adduce & Negretti 2022; Chiapponi
et al. 2023), we need for our application a tank with a length between approximately 50 and
100 m (provided the height of the tank is in the range between 0.1 m and 0.2 m, according
to the experimental works mentioned above). For practical reasons, this is not immediately
possible. The sheer length will also put severe constraints on the application of optical
measurement tools to quantify the flow dynamics and (turbulent) mixing properties as
a large section of the tank needs to be visualized at once (typically 5–10 m in length).
Additionally, dynamic translation of the optical system is required to track the developing
gravity current over many oscillation cycles. The current 2-D numerical study can already
provide valuable insight and input for the design of this kind of experimental campaign.

7. Conclusion

Although this study is limited to 2-D DNS and relatively low Reynolds numbers, our
results allow us to discern fundamental effects of an externally imposed oscillatory forcing
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and compare with previous results from literature. One of the interesting observations
is that, for the parameter settings Re = 3000, Sc = 5, KCb = 50 and 0.25 ≤ Fr ≤ 2, we
enter a regime that might be representative for salt intrusions in environmental flows.
Exploration of this regime in more depth requires an extension to fully 3-D simulations,
including full 3-D (fine-scale) density redistribution processes (i.e. 3-D mixing), flows
with substantially higher Reynolds numbers to arrive to the turbulent regime, and gravity
currents under oscillatory forcing in stratified ambients. Such numerical studies can
provide further insights into the interaction of the gravity current with the 3-D Stokes
boundary layer, the role of vorticity in the development of these boundary layers, and its
impact on lifting and mixing. Additionally, the variation of the lifting process in spanwise
direction (whether it is similar, as observed for the lobe-and-cleft structure including
the spanwise wavelength, or not), and the presence, characteristics and impact of the
Rayleigh–Taylor instability and associated mixing processes can then be explored in more
detail. For a better understanding of more realistic turbulent geophysical gravity currents,
interesting future research directions could include effects of background rotation and
non-flat bottom walls. Additionally, and to get closer to environmental configurations,
a mean flow should be added to the current externally imposed oscillatory forcing to
generate a so-called arrested gravity current. These are the topics of current studies.

Supplementary material and movies. Supplementary material and movies are available at https://doi.org/
10.1017/jfm.2024.1170.

Acknowledgement. E.M. gratefully acknowledges support by the NSF grant CBET-2138583. The authors
thank R. Uittenbogaard for helpful discussions and suggestions.

Funding. This work is part of the Perspectief Program SALTIsolutions, which is financed by NWO Domain
Applied and Engineering Sciences (2022/TTW/01344701) in collaboration with private and public partners.
This work used the Dutch national e-infrastructure, supported by the SURF Cooperative through grant number
EINF-4757.

Declaration of interests. The authors report no conflict of interest.

Author ORCIDs.
Cem Bingol https://orcid.org/0000-0002-8436-0470;
Matias Duran-Matute https://orcid.org/0000-0002-1340-339X;
Rui Zhu https://orcid.org/0000-0001-8790-4712;
Eckart Meiburg https://orcid.org/0000-0003-3670-8193;
Herman J.H. Clercx https://orcid.org/0000-0001-8769-0435.

REFERENCES

ANJUM, H.J., MCELWAINE, J.N. & CAULFIELD, C.P. 2013 The instantaneous Froude number and depth of
unsteady gravity currents. J. Hydraul. Res. 51 (4), 432–445.

BIEGERT, E., VOWINCKEL, B. & MEIBURG, E. 2017a A collision model for grain-resolving simulations of
flows over dense, mobile, polydisperse granular sediment beds. J. Comput. Phys. 340, 105–127.

BIEGERT, E., VOWINCKEL, B., OUILLON, R. & MEIBURG, E. 2017b High-resolution simulations of turbidity
currents. Prog. Earth Planet. Sci. 4 (1), 33.

BIRMAN, V.K., BATTANDIER, B.A., MEIBURG, E. & LINDEN, P.F. 2007 Lock-exchange flows in sloping
channels. J. Fluid Mech. 577, 53–77.

BIRMAN, V.K., MARTIN, J.E. & MEIBURG, E. 2005 The non-Boussinesq lock-exchange problem. Part 2.
High-resolution simulations. J. Fluid Mech. 537, 125–144.

BLANCHETTE, F., PICHE, V., MEIBURG, E. & STRAUSS, M. 2006 Evaluation of a simplified approach for
simulating gravity currents over slopes of varying angles. Comput. Fluids 35 (5), 492–500.

BRITTER, R.E. & SIMPSON, J.E. 1978 Experiments on the dynamics of a gravity current head. J. Fluid Mech.
88 (2), 223–240.

1002 A14-33

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

11
70

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1170
https://doi.org/10.1017/jfm.2024.1170
https://orcid.org/0000-0002-8436-0470
https://orcid.org/0000-0002-8436-0470
https://orcid.org/0000-0002-1340-339X
https://orcid.org/0000-0002-1340-339X
https://orcid.org/0000-0001-8790-4712
https://orcid.org/0000-0001-8790-4712
https://orcid.org/0000-0003-3670-8193
https://orcid.org/0000-0003-3670-8193
https://orcid.org/0000-0001-8769-0435
https://orcid.org/0000-0001-8769-0435
https://doi.org/10.1017/jfm.2024.1170


C. Bingol, M. Duran-Matute, R. Zhu, E. Meiburg and H.J.H. Clercx

CAI, H., SAVENIJE, H.H.G., YANG, Q., OU, S. & LEI, Y. 2012 Influence of river discharge and dredging on
tidal wave propagation: modaomen estuary case. ASCE J. Hydraul. Engng 138 (10), 885–896.

CANTERO, M.I., BALACHANDAR, S., GARCÍA, M.H. & FERRY, J.P. 2006 Direct numerical simulations of
planar and cylindrical density currents. Trans. ASME J. Appl. Mech. 73 (6), 923–930.

CHEN, W.B., LIU, W.C. & HUANG, L.T. 2013 The influences of weir construction on salt water intrusion
and water quality in a tidal estuary – assessment with modeling study. Environ. Monit. Assess. 185 (10),
8169–8184.

CHIAPPONI, L., ZEMACH, T., PETROLO, D., UNGARISH, M. & LONGO, S. 2023 Experimental study on
gravity currents with internal stratification in semicircular channels. Eur. J. Mech. (B/Fluids) 97, 12–27.

CHORIN, A.J. 1968 Numerical solution of the Navier–Stokes equations. Math. Comput. 22 (104), 745–762.
CRASKE, J. & VAN REEUWIJK, M. 2015 Energy dispersion in turbulent jets. Part 1. Direct simulation of

steady and unsteady jets. J. Fluid Mech. 763, 500–537.
CUI, T., KAMATH, A., WANG, W., HAN, D. & BIHS, H. 2022 Large-eddy simulations of gravity currents in

the presence of waves. J. Hydraul. Res. 60 (5), 770–791.
DONZIS, D.A., ADITYA, K., SREENIVASAN, K.R. & YEUNG, P.K. 2014 The turbulent Schmidt number.

Trans. ASME J. Fluids Engng 136 (6), 060912.
FRINGER, O.B., MCWILLIAMS, J. & STREET, R.L. 2006 A new hybrid model for coastal simulations. Adv.

Comput. Oceanogr. 19 (1), 64–77.
GEYER, W.R., LAVERY, A.C., SCULLY, M.E. & TROWBRIDGE, J.H. 2010 Mixing by shear instability at

high Reynolds number. Geophys. Res. Lett. 37 (22), L22607.
GEYER, W.R. & RALSTON, D.K. 2012 The dynamics of strongly stratified estuaries. In Treatise on Estuarine

and Coastal Science, 1st edn. (ed. E. Wolanski & D.S. McLusky), vol. 2, chap. 2.03, pp. 37–51. Elsevier.
GONZALEZ-JUEZ, E., MEIBURG, E. & CONSTANTINESCU, G. 2009 The interaction of a gravity current with

a circular cylinder mounted above a wall: effect of the gap size. J. Fluids Struct. 25 (4), 629–640.
GONZALEZ-JUEZ, E., MEIBURG, E., TOKYAY, T. & CONSTANTINESCU, G. 2010 Gravity current flow past

a circular cylinder: forces, wall shear stresses and implications for scour. J. Fluid Mech. 649, 69–102.
HALLWORTH, M.A., HUPPERT, H.E., PHILLIPS, J.C. & SPARKS, R.S.J. 1996 Entrainment into

two-dimensional and axisymmetric turbulent gravity currents. J. Fluid Mech. 308, 289–311.
HÄRTEL, C., MEIBURG, E. & NECKER, F. 2000 Analysis and direct numerical simulation of the flow at a

gravity-current head. Part 1. Flow topology and front speed for slip and no-slip boundaries. J. Fluid Mech.
418, 189–212.

HARTEN, A. 1997 High resolution schemes for hyperbolic conservation laws. J. Comput. Phys. 135 (2),
260–278.

KIM, J. & MOIN, P. 1985 Application of a fractional-step method to incompressible Navier–Stokes equations.
J. Comput. Phys. 59 (2), 308–323.

KOKKINOS, A. & PRINOS, P. 2023 On the dynamics of gravity current motion in a stratified ambient.
J. Hydraul. Res. 61 (5), 703–719.

KUIJPER, K. & VAN RIJN, L.C. 2011 Analytical and numerical analysis of tides and salinities in estuaries.
Part II. Salinity distributions in prismatic and convergent tidal channels. Ocean Dyn. 61 (11), 1743–1765.

LONGO, S., UNGARISH, M., DI FEDERICO, V., CHIAPPONI, L. & PETROLO, D. 2018 Gravity currents
produced by lock-release: theory and experiments concerning the effect of a free top in non-Boussinesq
systems. Adv. Water Resour. 121 (July), 456–471.

MAGGI, M.R., ADDUCE, C. & NEGRETTI, M.E. 2022 Lock-release gravity currents propagating over
roughness elements. Environ. Fluid Mech. 22 (2–3), 383–402.

MARINO, M., STAGNITTI, M., STANCANELLI, L.M., MUSUMECI, R.E. & FOTI, E. 2023 Dynamics of
wave-supported gravity currents in intermediate water. Cont. Shelf Res. 267, 105082.

MAXWORTHY, T., LEILICH, J., SIMPSON, J.E. & MEIBURG, E.H. 2002 The propagation of a gravity current
into a linearly stratified fluid. J. Fluid Mech. 453 (May), 371–394.

MEIBURG, E., RADHAKRISHNAN, S. & NASR-AZADANI, M. 2015 Modeling gravity and turbidity currents:
computational approaches and challenges. Appl. Mech. Rev. 67 (4), 1–23.

MOHAMMED, R. & SCHOLZ, M. 2018 Critical review of salinity intrusion in rivers and estuaries. J. Water
Clim. Change 9 (1), 1–16.

NASR-AZADANI, M.M. & MEIBURG, E. 2011 TURBINS: an immersed boundary, Navier–Stokes code for
the simulation of gravity and turbidity currents interacting with complex topographies. Comput. Fluids 45
(1), 14–28.

NECKER, F., HÄRTEL, C., KLEISER, L. & MEIBURG, E. 2002 High-resolution simulations of particle-driven
gravity currents. Intl J. Multiphase Flow 28, 279–300.

NECKER, F., HÄRTEL, C., KLEISER, L. & MEIBURG, E. 2005 Mixing and dissipation in particle-driven
gravity currents. J. Fluid Mech. 545, 339–372.

1002 A14-34

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

11
70

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1170


Gravity currents under oscillatory forcing

DE NIJS, M.A.J., PIETRZAK, J.D. & WINTERWERP, J.C. 2011 Advection of the salt wedge and evolution of
the internal flow structure in the rotterdam waterway. J. Phys. Oceanogr. 41 (1), 3–27.

OTTOLENGHI, L., ADDUCE, C., ROMAN, F. & ARMENIO, V. 2017 Analysis of the flow in gravity currents
propagating up a slope. Ocean Model. 115, 1–13.

RALSTON, D.K., GEYER, W.R. & LERCZAK, J.A. 2008 Subtidal salinity and velocity in the Hudson River
estuary: observations and modeling. J. Phys. Oceanogr. 38 (4), 753–770.

RALSTON, D.K., GEYER, W.R. & LERCZAK, J.A. 2010 Structure, variability, and salt flux in a strongly
forced salt wedge estuary. J. Geophys. Res.: Oceans 115 (6), 1–21.

RIGTER, B.P. 1973 Minimum length of salt intursion in estuaries. J. Hydraul. Div. ASCE 99 (9), 1475–1496.
SAAD, Y. 2003 Iterative Methods for Sparse Linear Systems, 2nd edn. SIAM.
SAVENIJE, H.H.G. 2006 Salinity and Tides in Alluvial Estuaries. Elsevier Science.
SHER, D. & WOODS, A.W. 2015 Gravity currents: entrainment, stratification and self-similarity. J. Fluid

Mech. 784, 130–162.
SHIN, J.O., DALZIEL, S.B. & LINDEN, P.F. 2004 Gravity currents produced by lock exchange. J. Fluid Mech.

521, 1–34.
STANCANELLI, L.M., MUSUMECI, R.E. & FOTI, E. 2018a Computational fluid dynamics for modeling

gravity currents in the presence of oscillatory ambient flow. Water 10, 635.
STANCANELLI, L.M., MUSUMECI, R.E. & FOTI, E. 2018b Dynamics of gravity currents in the presence of

surface waves. J. Geophys. Res.: Oceans 123 (3), 2254–2273.
TOKYAY, T., CONSTANTINESCU, G., GONZALEZ-JUEZ, E. & MEIBURG, E. 2011a Gravity currents

propagating over periodic arrays of blunt obstacles: effect of the obstacle size. J. Fluids Struct. 27 (5–6),
798–806.

TOKYAY, T., CONSTANTINESCU, G. & MEIBURG, E. 2011b Lock-exchange gravity currents with a high
volume of release propagating over a periodic array of obstacles. J. Fluid Mech. 672, 570–605.

TOKYAY, T., CONSTANTINESCU, G. & MEIBURG, E. 2012 Tail structure and bed friction velocity distribution
of gravity currents propagating over an array of obstacles. J. Fluid Mech. 694, 252–291.

VAN REEUWIJK, M., HOLZNER, M. & CAULFIELD, C.P. 2019 Mixing and entrainment are suppressed in
inclined gravity currents. J. Fluid Mech. 873, 786–815.

ZAHTILA, T., LAM, W.K., CHAN, L., SUTHERLAND, D., MOINUDDIN, K., DAI, A., SKVORTSOV, A.,
MANASSEH, R. & OOI, A. 2024 On the propagation of planar gravity currents into a stratified ambient.
Phys. Fluids 36 (3), 036601.

1002 A14-35

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

11
70

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1170

	1 Introduction
	1.1 Salt intrusions under tidal forcing: need for a canonical approach
	1.2 DNS of 2-D gravity currents under oscillatory forcing: the control parameters

	2 Description of the physical system
	2.1 The lock-exchange set-up
	2.2 Governing equations
	2.3 Parameter settings for our numerical studies

	3 Numerical approach
	3.1 Numerical model
	3.2 Numerical set-up, boundary and initial conditions

	4 Qualitative description of gravity currents with oscillatory forcing
	4.1 Evolution of gravity currents during the forcing cycle
	4.2 Coincidence of the imposed flow with the current propagation (0180)
	4.3 Gravity current propagation with opposing ambient flow (180360)
	4.4 The evolution of the local current height h(x,t)
	4.5 Summary

	5 The effect of varying KCb, Fr and Sc on gravity current dynamics
	5.1 Impact of KCb on the lifting area and front shape
	5.2 Effect of velocity amplitude (or Fr) of the externally imposed oscillating flow
	5.3 Effect of the Schmidt number on lifting area and propagation speed

	6 Discussion
	6.1 Summary of the main results
	6.2 A different cross-section of the Fr-KCb parameter space
	6.3 Qualitative comparison between 2-D and 3-D simulations for Fr=1 and KCb=5
	6.4 Prospects for laboratory experiments

	7 Conclusion
	References

