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Summary

In vitro maturation of oocytes (IVM) represents an assisted reproductive technique that
involves the minimal or absence of ovarian stimulation and is beneficial to specific groups of
patients. These may include women with polycystic ovarian syndrome and/or patients who
need a fertility preservation option before undergoing gonadotoxic treatment. However, when
IVM is applied in cases where it is not recommended, it can be considered as an add-on
technique, as described by the ESHRE Guideline Group on Female Fertility Preservation.
Interestingly, IVM has not been proven yet to be as effective as conventional IVF in the
laboratory, in terms of clinical pregnancy and live birth rates, while concerns have been raised
for its long-term safety. As a result, both safety and efficacy of IVM remain still questionable and
additional data are needed to draw conclusions.

Introduction

Since the birth of the first baby conceived by in vitro fertilization (IVF, R. Edwards, 1978), a
series of innovative events throughout the years have taken place in the field of Human Assisted
Reproduction Technologies (ARTs), attempting to improve clinical outcomes. In particular, an
alternative method to conventional IVF has been introduced by reproductive scientists, through
which immature oocytes could mature in vitro, mimicking in vivo conditions, a technique
known as in vitro maturation of oocytes (IVM). This method was first described in mammals,
specifically using rabbit oocytes (Pincus and Enzmann, 1935), as a way to improve the efficiency
of animal breeding in agriculturally important species. Moving towards the application of IVM
in humans, the first successful fertilization of human in vitro matured oocytes was described in
the late 1940s (Rock and Menkin, 1944; Menkin and Rock, 1948), while the remarkable work of
Edwards defined the kinetics of oocyte nuclear maturation, as well as the ideal culture conditions
for a successful IVM protocol (Edwards, 1962, 1965; Edwards et al., 1969). Following the
significant work made to optimize the technique, the first IVM birth was reported in 1991 by
Cha and colleagues (Cha et al., 1991), paving the way for a novel ART technique translated into
clinical practice.

Application of IVM and clinical indications

IVM is based on the collection of immature cumulus-oocyte complexes (COCs) from antral
follicles that are subsequently cultured in vitro until they reach the metaphase II (MII) stage
(Edwards, 1965; Mikkelsen et al., 1999; De Vos et al., 2021). Patients undergoing IVM receive no
or minimal ovarian stimulation, instead of a conventional controlled ovarian stimulation IVF
(COS-IVF) protocol. Once maturation in the laboratory is completed, IVM oocytes are
normally fertilized and treated exactly as the oocytes retrieved after conventional IVF
(Thompson and Gilchrist, 2013).

As far as IVM protocols are concerned, there are four major protocols that are practiced in
the laboratory. To start with, the standard IVM protocol represents the original one that was
initially developed by Edwards (Edwards, 1965). The latter includes the collection of immature/
GV-stage COCs, which undergo in vitro maturation in a single step until they reach the MII
stage and are subsequently inseminated. It is of great importance that the cumulus cell-oocyte
communication structure remains intact during in vitro culture from the GV to the metaphase II
stage. Of note, follicle-stimulating hormone (FSH) might have been administered to patients, or
not, prior to oocyte pick-up. Second, the so-called biphasic IVM protocol, which was the
evolution of the standard IVM, involves a two-step procedure. The biphasic IVM protocol
represents a variation of the standard IVM protocol, whose main difference relies on the
additional pre-IVM step. More specifically, once collected, GV-stage COCs are cultured in a
pre-IVM medium for approximately 24 h, where meiosis is inhibited at the GV stage, due to the
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presence of meiotic inhibitors in the culture medium. In the next
step, oocytes finally mature from the GV to MII stage, through
meiosis-inducing factors, such as epidermal growth factor (EGF-
p)- The meiotic induction step lasts 30-48 h in humans (Gilchrist,
2011; Richani and Gilchrist, 2022). Interestingly, both oocyte
meiotic arrest and resumption are regulated by the C-type
natriuretic peptide/ cyclic guanosine monophosphate (CNP/
c¢GMP) signalling pathway, upstream of the intra-oocyte cyclic
adenosine monophosphate (cAMP) (Gilchrist et al., 2016). Based
on the above, the main principles of the biphasic IVM culture
system include 1) the maintenance of the oocyte in a meiotically
arrested- GV stage (in vitro), 2) the stable and not impaired
communication between oocyte and cumulus cells, 3) the
acquisition of the oocyte developmental competence during the
pre-IVM step, and lastly 4) the resumption of meiosis under
conditions mimicking the endogenous post-LH surge effect.
Concerning the FSH priming during the implementation of the
biphasic protocol, it remains optional. Finally, the pre-IVM
procedure, also known as “capacitation-IVM” (CAPA-IVM) was
tested for its safety and efficacy through pre-clinical trials, while its
use in clinical practice is associated with healthy live birth rates,
comparable to conventional IVF protocols (Gilchrist et al., 2024).
Furthermore, the hCG-Primed IVM protocol represents an
alternative protocol, where patients are triggered with human
chorionic gonadotropin (hCG), in order to increase maturation
success, while FSH priming still remains optional. The so-called
“Truncated” IVM protocol, thus results in the presence of both
immature (GV, MI) and mature (MII) stage oocytes, which are
inseminated at different time points in the laboratory (Son et al,
2008). In other words, oocytes are treated differently in the
laboratory, with the MII oocytes necessitating fertilization on the
same day of the oocyte retrieval, while the maturing and/or
immature oocytes require IVM culture before the fertilization step,
which might be a source of an additional laboratory burden. The
hCG-primed IVM protocol thus excludes the use of any pre-IVM
culture system. Finally, the “Rescue-IVM ” or Conventional IVF
protocol, includes the in vitro maturation of immature oocytes
(GV and/or MI stage), collected after a conventional IVF cycle,
where FSH is normally being administrated and ovulation
triggering is mostly followed after hCG priming. The oocytes
collected by such protocols are commonly regarded as non-usable
oocytes for medical practice and are normally discarded in the
corresponding cycles. The “rescue-IVM” oocytes are usually
denuded of their cumulus cells, after the oocyte retrieval and prior
to intracytoplasmic sperm injection (ICSI) and as a result, these
oocytes are invariably cultured in vitro in a denuded state, from the
GV to the MII stage. Overall, due to their suboptimal quality and
the presence of meiotic defects, the success of Rescue-IVM
procedures remains questionable (De Vos ef al., 2016).

In terms of clinical application, IVM was basically designed as
an alternative to standard ovarian stimulation protocols, in order
to overcome the negative effects and risks associated with ovarian
stimulation, such as ovarian hyperstimulation syndrome (OHSS)
in high responders. In this regard, women with polycystic ovary
syndrome (PCOS) represent the best candidates for IVM, as on the
one hand, these women are expected to have a higher number of
immature oocytes at oocyte pick-up, which is associated with
better clinical outcomes when using IVM, while on the other hand,
they risk being affected by OHSS (Cha et al, 2000). More
specifically, in women who are high responders and the final
oocyte triggering is performed by GnRH agonist, IVM would be a
useful approach. GnRH agonists have been successfully used to
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trigger final oocyte maturation in IVF cycles, occasionally leading
to the collection of immature and/or reduced number of oocytes, as
a preventive approach to OHSS (Casper, 2015; Gonen et al., 1990).
Indeed, IVM represents a possible alternative to ovarian hyper-
stimulation, while priming in IVM cycles using GnRH agonists
seems to be equally effective as hCG priming, although GnRH
priming seems to be best-suited for fertility preservation in
hormone-sensitive cancers and urgent fertility preservation cases
(Hachem et al., 2018).

Furthermore, a good indication for IVM is also considered to be
in cases of urgent fertility preservation, when conventional ovarian
stimulation protocols cannot be applied and/ or are contraindi-
cated. Such cases that cannot be treated with gonadotrophins
include cancer patients who are scheduled to be exposed to
gonadotoxic treatments and prepubertal girls (ESHRE Guideline
Group on Female Fertility Preservation et al., 2020). Lastly, IVM
should ideally be applied in rare cases of patients with resistant
ovary syndrome (ROS). ROS represents a rare endocrine disorder
whose symptoms include hypergonadotropic anovulation and
infertility, while patients experience primary or secondary
amenorrhoea (Talbert et al., 1984; Huhtaniemi and Alevizaki,
2006). On the other hand, IVM may not be suitable for a certain
group of patients. In fact, the use of IVM in normo-ovulatory
patients (patients with regular cycles) might end up with a lower
oocyte yield, compared to a conventional oocyte stimulation
protocol, meaning fewer usable embryos, thus resulting in lower
clinical pregnancy rates (Gilchrist and Smitz, 2023). Accordingly,
IVM is not indicated for poor responders with low ovarian reserve,
as well as women of advanced reproductive age, since the success of
IVM depends on the number of oocytes collected (the more the
better), as already mentioned (Braga et al., 2010). A higher number
of oocytes collected after IVM might be able to compensate for the
suboptimal clinical outcomes (De Vos et al, 2021; Gilchrist and
Smitz, 2023). Finally, a small group of patients presenting oocyte
meiotic defects, who obtain no mature oocytes after conventional
oocyte stimulation procedures, are not suitable for IVM either. In
fact, current IVM protocols are not able to “correct” oocyte meiotic
abnormalities and thus do not result in encouraging clinical
outcomes (Hourvitz et al., 2010; Galvao et al., 2018).

Taking into consideration the cases of patients that are suitable
for an IVM procedure, IVM itself is not considered an
experimental/add-on technique. On the contrary, this is not the
case for the group of patients where IVM is contraindicated and
therefore shouldn’t be applied, as recently declared by the ESHRE
Add-ons working group (ESHRE Add-ons working group et al.,
2023). It is worth mentioning that the need for universal guidelines
during the use of alternative IVF protocols, such as IVM, is urgent,
as well as the expertise of reproductive scientists who need to
discuss the clinical outcomes and protocol modifications, in the
context of an inter-centre communication and exchange of
knowledge and skills.

Effectiveness of IVM in clinical practice

Moving towards the efficacy of IVM on a clinical scale,
reproductive scientists are questioning whether IVM increases
success rates when applied to certain groups of patients (with an
indication of PCOS, high responders and/or fertility preservation
cases). Based on the recently published data, when comparing the
outcomes of conventional IVF protocols to standard IVM in
patients with a defined infertility cause (e.g. PCOS), IVM clinical
pregnancy rates still remain lower (Vuong et al., 2020; Gilchrist
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and Smitz, 2023). Interestingly, several studies suggest that oocytes
collected after an IVM procedure; once they reach the MII stage
and therefore are inseminated, result in lower fertilization rates, as
well as lower quality of embryos, contrasted to conventional IVF
outcomes (Braga et al., 2010). In fact, it is hypothesized that the
significantly low clinical outcomes might be the result of a
dysfunctional maturation process, an asynchronous nuclear-
cytoplasmic maturation, owing to the in vitro culture conditions
(De Vos et al., 1999; Bao et al., 2000). Concerning the implantation
capacity, a significant improvement in the success rates of IVM
embryo transfers has been observed when choosing the freeze-all
strategy and deferred transfer per cycle (De Vos et al., 2011; Chang
et al, 2014; Vuong et al, 2021). In particular, endometrial
development seems to be compromised and insufficiently prepared
for a fresh embryo transfer during an IVM cycle, compared to the
natural and/or stimulated ones (De Vos et al., 2011; Walls et al.,
2015; Ortega-Hrepich et al., 2019). Finally, IVM pregnancy rates
are still controversial between centres, as observational studies
demonstrate a live birth rate of 15,9% per retrieval (Child et al.,
2001; Buckett et al., 2004), while others report pregnancy rates at
approximately 22% (Soderstrom-Anttila ef al., 2005). Based on the
official report of the ESHRE Add-ons working group, ongoing
pregnancy rates following IVM range from 36.8 to 31.9% in
women aged from 20 to 39 years, while clinical pregnancies in
women over 40 years are rarely detected (ESHRE Add-ons working
group et al., 2023). Of note, a positive correlation between IVM live
birth rates and the number of oocytes collected at the time of egg
retrieval has been observed, with a minimum of five oocytes
needed to achieve a pregnancy (Al-Sunaidi et al., 2007; Fadini et al.,
2011; Yang et al., 2012). Interestingly, a very recent article by
Mostinckx and colleagues reported comparable reproductive
outcomes between patients undergoing a conventional ovarian
stimulation protocol and patients included in an IVM cycle, with
serum anti-Miillerian hormone levels >10 ng/ml. Data from a large
cohort of patients showed that ongoing pregnancy rates where not
different in predicted hyper-responders undergoing ART after
IVM compared with conventional IVF cycles (Mostinckx
et al., 2024)

Safety issues and aspects of IVM

As expected, modified and/or newly performed ART protocols
raise safety and ethical concerns about their potential adverse
effects and the long-term safety of children conceived with these
techniques, such as IVM. To overcome safety issues, scientists are
investigating the impact of ART interventions performed on a
clinical scale in human populations by using animal models, which
represent an alternative approach to both understand the
complexity of such reproductive treatments, as well as to collect
useful data. Interestingly, the main advantage of studying ART
treatments in animal models, compared to human clinical studies,
is that animals selected for the studies normally do not present
fertility complications, which could introduce a confounding
factor of infertility in the population performing ART. Moreover,
animal populations are characterized by a higher genetic
homogeneity compared to human populations, which might also
play an important role in detecting the variability in ART
treatment effects.

As far as IVM is concerned, animal studies are primarily based
on the bovine model, while clinical and laboratory protocols are
slightly modified compared to human methodologies, during the
hormonal priming and the in vitro maturation steps (Krisher,
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2022). Overall, animal studies investigating the impact of IVM are
focusing on several clinical outcomes, such as birth weight, length
of gestation, cardiovascular (e.g. blood pressure) and metabolic
(fasting glucose, insulin) parameters, behavioural traits and finally
lifespan. First, results from a meta-analysis in bovine models
showed a significant increase in the birthweight of the IVM group,
when compared to the in vivo controls, while also a longer
gestational length was found in the IVM group versus the controls
(Beilby et al., 2023). Studies focusing on the mouse model reported
a significant increase in the systolic blood pressure in female mice
conceived with IVM (Le et al., 2019), where metabolic outcomes
from bovine studies (serum glucose and insulin levels after birth)
were not found to be significantly different in the IVM group
(Jacobsen et al., 2000; Sangild et al., 2000; Bertolini et al., 2002).
Finally, no differences were reported in newborn behavioural
traits, such as standing and suckling time, as well as respiratory
distress, between IVM and in vivo conceived calves (Bertolini et al.,
2002), although the need for a breathing stimulus at birth was
found to be significantly increased in calves conceived with IVM
when compared to in vivo conceived animals (van Wagtendonk-de
Leeuw et al., 2000). Lifespan data were not available for animals
conceived with IVM (Beilby et al., 2023).

On the other hand, in humans, currently available data do not
support a globally negative impact of the use of IVM in clinical
practice. To start with, very recent reports have evaluated the
quality and ploidy status of embryos generated by an IVM
procedure. These studies demonstrate that the ability of in vitro
matured oocytes to be fertilized and form good quality embryos, as
well as the production of euploid blastocysts, was similar to in vivo
matured oocytes, whereas pregnancy and perinatal outcomes of
these embryos were similar (Li et al, 2021, Li et al, 2024).
Furthermore, concerns have also been expressed about the
epigenetic abnormalities and imprinting errors in embryos
resulting from an IVM procedure, as oocyte meiosis occurs in
vitro. In fact, possible epigenetic modifications, such as methyla-
tion, as well as dysfunctional gene expression of imprinting genes,
might occur, although published data do not report imprinting
gene disorders in embryos/foetuses after IVM, suggesting that IVM
does not compromise the epigenetic landscape and genomic
imprinting establishment (Kuhtz et al., 2014; Pliushch et al,, 2015;
Saenz-de-Juano et al., 2019). However, while current data seem
reassuring, increased methylation levels of the KvDMRI locus
were observed in arrested immature oocytes of unstimulated PCOS
patients, compared to oocytes resulting from stimulated cycles,
suggesting that stimulation may exert an impact over imprinting
establishment (Khoueiry et al., 2008; Market-Velker et al., 2010),
making the subject a highly controversial one. Concerning
neonatal health, as well as the development of children born after
IVM, in the majority of cases, normal perinatal outcomes have
been observed, when compared to babies born after a conventional
IVE. In fact, factors such as miscarriage rate, preterm birth, birth
weight, congenital anomalies, mental development and other
pregnancy complications, seem to not be different from the ones
described for IVF babies (Mostinckx et al., 2019; Belva et al., 2020;
Strowitzki et al., 2021; Vuong et al, 2022). While some reports do
describe perinatal abnormalities (Cha et al., 2005; S6derstrom-Anttila
et al, 2006; Buckett et al, 2007), clinical outcomes cannot be
accurately assessed, as only a small number of babies are born after an
IVM procedure, highlighting the importance of data availability.
Indeed, the follow-up of children conceived from IVM is limited to <2
years, although current results from published studies have not
identified differences between children born after IVM compared
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with those born after a conventional IVF cycle (Strowitzki et al., 2021;
Vuong et al, 2022; 2023). Consequently, longitudinal data from
prospective studies with longer term follow-up are needed, in order to
draw solid conclusions about the safety of IVM (Vuong et al., 2023).

IVM and mitochondrial function

While safety issues and complications after an IVM procedure
have not yet been fully elucidated, concerns about critical
components of oocyte competence are still a matter of discussion
and need to be further investigated. For instance, mitochondria
play a pivotal role during oocyte maturation and growth, as these
procedures require a large amount of energy in the form of ATP.
As a result, the correct functioning of mitochondria is crucial,
otherwise these important steps will be compromised.
Mitochondria, also known as the power-house of the cell, are
semi-autonomous organelles containing their own genetic infor-
mation, called mitochondrial DNA (mtDNA). Their main
functions include energy production for the cells, Ca?" homeo-
stasis, cell death regulation, iron metabolism and biosynthesis of
several organic compounds (Spinelli and Haigis, 2018; Rossi et al.,
2019; Bock and Tait, 2020; Boyman et al., 2020; Lill and Freibert,
2020). During oogenesis and follicular growth, the number of
mitochondria in oocytes increases exponentially, rising from
approximately 10,000 to 20,0000 organelles (Jansen and de Boer,
1998), while also the mtDNA copy number reaches up to 50,000
mtDNA copies in a mature oocyte (Reynier et al., 2001). This
highlights the importance of an adequate number and good quality
of mitochondria required to sustain oogenesis and the early stages
of embryogenesis. However, before oocyte maturity completion,
the energy needed to support the process must be provided by the
surrounding granulosa and cumulus cells, as mitochondria from
immature oocytes remain in a naive state (Dumollard et al., 2008).
As oocytes lose progressively their connections with the cumulus
cells, they need to activate their own mitochondria to complete the
final stages of maturation. Any deviation from this well-defined
mechanism may result in diminished ovarian reserve. In fact, in
women with primary ovarian insufficiency, which is also known as
premature ovarian failure, oocytes were found to contain less
mtDNA copies, compared to women with a normal ovarian
profile, suggesting that low values of mtDNA copy number are
associated with an abnormal mitochondrial biogenesis (May-
Panloup et al., 2005). Accordingly, mitochondrial distribution is
also a crucial component during oocyte maturation, as it needs to
be well-structured and dynamic (Takahashi et al., 2016). In fact,
mitochondria preferentially migrate towards the perinuclear
region and represent 80% of the cytoplasmic volume. After the
germinal vesicle breakdown stage and until oocytes reach the MII
stage, mitochondria are equally distributed and occupy almost the
whole of cytoplasmic volume (Trebichalska et al., 2021).
However, during IVM, oocytes are exposed to different in vitro
conditions, which may subsequently modify the well-defined pattern
of mitochondrial function and localization. For instance, as
mentioned before, upon maturation, mitochondria localize towards
the perinuclear/central region of the oocyte, while their homogeneous
distribution represents a sign of cytoplasmic maturity. On the
contrary, the peripheral localization of mitochondria has been
associated with meiotically incompetent oocytes (Sanchez et al,
2015). Notably, it has been demonstrated that mitochondria from
IVM oocytes tended to localize more abundantly in the peripheral
region, instead of the inner cytoplasmic region, when compared to
in vivo matured oocytes (Liu ef al., 2010). To continue, while both
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mitochondrial number and ultrastructure were not found to be
different between IVM and in vivo matured oocytes (Coticchio
et al, 2016), data from mitochondrial DNA copy number
assessment are scarce. Several studies based on the murine model
have actually demonstrated that the mitochondrial DNA number
of in vitro matured oocytes was significantly lower, compared to
control oocytes, which was hypothesized to be a sign of a
compromised mitochondrial biogenesis, as well as cytoplasmic
immaturity (Ge et al., 2012; Tao et al., 2017). Furthermore, reports
from mice showed that both mitochondrial membrane potential
and the ATP amount were not found to be different between in
vitro and in vivo oocytes (Ge et al., 2012). However, single-cell
transcriptomic data from both in vitro and in vivo human oocytes
demonstrated a significant number of alterations in gene pathways
associated with mitochondrial function in the IVM group (Zhao
et al., 2019), making this subject a highly controversial one.

Whether in vitro conditions exert an impact over mitochondrial
patterns still remains an open question. Nevertheless, the degree of
the possible alterations previously mentioned, might depend on
the specific cultured conditions and protocols used during an IVM
procedure that might influence both nuclear and cytoplasmic
maturity of the oocyte. In fact, it remains unclear whether IVM
media influence the mitochondrial integrity of oocytes, as there is a
large variety of protocols used in clinical practice. For instance,
studies on the bovine model demonstrated that during an IVM
procedure, relatively high oxygen concentrations (20%) resulted in a
better embryonic yield, when compared to lower oxygen concen-
trations (5-7%) (Pinyopummintr and Bavister, 1995; Whitty et al,
2021). However, attention should be paid to the oxygen concen-
trations applied, as excessive oxygen levels may result in increased
production of reactive oxygen species (ROS), which subsequently
compromise mitochondrial function. Although the impact of
different oxygen concentrations, as a component of culture
conditions, is not clear yet, it is likely that culture media
composition might affect the redox state of the cells and ROS
production (Cobley, 2020).

To overcome these issues, several studies propose the
supplementation of IVM culture media with antioxidants, in
order to enhance the mitochondrial function of in vitro matured
oocytes, as well as to ameliorate the oocyte and embryonic
competence upon IVM application. In fact, the supplementation of
IVM media with the follicular fluid-derived melatonin has been
shown to significantly increase the implantation rates in PCOS
patients (Kim et al., 2013), as well as the blastocyst formation rate
in rescue-IVM oocytes (Hao et al., 2017; Zou et al., 2020). Other
antioxidants that might improve IVM clinical outcomes include
resveratrol, which resulted in improved spindle morphology and
intact chromosomal localization in human rescue-IVM oocytes
(Liu et al., 2018), quercetin, which was proven to improve the
mitochondrial function in porcine, mice, goat and human IVM
oocytes (Kang et al, 2013; Silva et al, 2018; Cao et al., 2020),
leading to increased fertilization and blastocyst formation rates
(Cao et al., 2020). Finally, addition of the antioxidant anethole in
IVM culture media for bovine oocytes has resulted in higher
cleavage, better embryonic development and higher cell number
per blastocyst rates (Sa et al, 2019), while supplementation with
the mitochondrial inner membrane coenzyme Q10 (CoQ10), is
directly associated with increased mitochondrial function and
better embryonic outcomes (Abdulhasan et al., 2017; Heydarnejad
et al., 2019). Surprisingly, addition of CoQ10 in the IVM culture
medium of human oocytes resulted in a 20% increase of the
maturation rate, as well as a significant decrease in aneuploidy rates
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in the first polar body of patients with an advanced maternal age
(Ma et al., 2020). Taken together, supplementation of the IVM
media with antioxidants should be taken into consideration and be
applied in clinical practice, by selecting the right combination and
concentration of the agents, to avoid possible detrimental effects
on the oocytes and embryos.

Conclusion

To summarize, IVM represents a procedure where minimal or
absence of ovarian stimulation is required in patients with specific
indications. As such, it is supposed to be an advantageous
technique, as it requires less time, minimal medical monitoring
and fewer to no hormone injections and blood monitoring. Cost-
effectiveness studies also suggest that IVM is a less expensive
choice, compared to a conventional ovarian stimulation protocol,
while these characteristics are associated with a better mental and
psychological status of patients undergoing such procedures
(Braam et al., 2021; Practice Committees of the American Society
for Reproductive Medicine, the Society of Reproductive Biologists
and Technologists, and the Society for Assisted Reproductive
Technology. Electronic address: jgoldstein@asrm.org, 2021).

If hormone-free protocols for both fertility preservation and in
vitro fertilization represent the new era in ART, it still remains an
open question. It is therefore crucial to highlight the importance of
research and well-designed randomized controlled trials, in order
to be able to resolve safety and effectiveness issues, as well as to
improve protocols and culture conditions that are currently used
during oocyte in vitro maturation. In conclusion, IVM requires
specific expertise from both medical doctors and embryologists,
while the follow-up of children born after IVM is urgently needed
in order to ensure better clinical outcomes.
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