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TRANSFORMATIONS OF #%-SPACE WHICH PRESERVE
A FIXED SQUARE-DISTANCE

J. A. LESTER

1. Introduction. Our interest here lies in the following theorem :

THEOREM 1. Assume there is defined on R" (n = 3) a “‘square-distance’’ of the
form

46,9) = 2 s’ = 36 = ¥)

where (gi;) 1s a given symmetric non-singular matrix over the reals and x =
(oo &™), vy = (..., y") € R Assume further that f is a bijection of R*
which preserves a given fixed square-distance p, t.e. d(x, y) = p if and only if
d(f(x), f(y)) = p. Then (unless p = 0 and (g;) 1s positive or negative definite)
fx) = Lx + f(0), where L is a linear bijection of R* satisfying d(Lx, Ly) =
+d(x, y) for all x, y € R* (the — sign is possible if and only if p = 0 and (g.,)

has signature 0).

Several special cases of this theorem are known; see for example [1]-[5].
We establish its full generality by proving the following theorem:

THEOREM 2. If the square-distance function is not Euclidean and f preserves a
fixed square-distance p, then f preserves the square-distance 0.

Since [1] covers the Euclidean case and [5] the non-Euclidean case with
p = 0, Theorem 2 in conjunction with [1] and [5] establishes Theorem 1.

Before proceeding further, some terminology and notation are in order.

The symmetric bilinear form ( , ) defined by

(v, 9) = X1 g™y’

for x, y € R" makes R" into a metric vector space; an exposition of the geometry
of such spaces appears in [6]. If (g;;) is congruent to &1,, both the space and
the square-distance function d are called Euclidean. When (g;;) is congruent to
+diag (4+1, —1, ..., —1), the space and d are called Minkowskian. In this
case, if (x, x) = X # 0 for some x € R*, A € R, both x and \ are called time-
like if X and g1 = =1 have the same sign, and spacelike if their signs differ (the
terminology is borrowed from special relativity theory).

Finally, some notation: for x, ¥, 2, . . . € R*, (x, v, 2, . . . ) denotes the sub-
space spanned by x, v, 2, . . . . Also, for any subspace U of R", U+t denotes the
orthogonal complement of U.
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2. Proof of theorem 2. We now assume that d is not Euclidean and that
p # 0. For arbitrary a € R”, define

Qa) = {x|x € R, d(x, a) = p};

then f[Q(a)] = Q[f(a)], i.e. “f preserves Q's”.
If Q(a) N Q(b) # B for all a, b € R* we may, with sufficient attention to

details, generalize the basic method of {2]. We then show that if Q(a) N Q(b) =
@ for some a, b € R”, the square-distance function must be Minkowskian and
the square-distance p timelike ; the proof of Theorem 2 in this case may then be
found in [4]. We proceed now to the details.

For distinct a, b € R*, define the hyperplane H(a, b) by

H(a, b) = {x|2(x,b —a) = (b,0) — (a, a), x € R*}.
Lemwma 1. 1) (Benz [2]) For distinct a, b € R”,

Q(a) N Q®) = Qa) M H(a, b) = Q(b) M H(a, b).
ii) For distinct a, b € R?,

Q@) MQ®) ={3@+b)+Ek|lkc (b—a)
Ak, k) = 4p — (b — a, b — a)}.

Proof. i) Any two of the equations of Q(a), Q(b), H(a, b) imply the third.

ii) A straightforward calculation verifies that any 3(a + b) + k for k as
described is in Q(a) M Q(b). Conversely, given any x € Q(a) M Q(b) define
k=x—3a+b) = (x —a) — 30 — a). Then x € H(a, b) implies k& €
(b — a)t, and x € Q(a) implies 4(k, k) = 4p — (b — a, b — a).

Lemwma 2. 1) (Benz [2]) If b — a is null for distinct a, b € R", then for some
¢ # a,bin R*, Qla) N\ Q(c) = Qa) N QD).

ii) (generalization of Benz [2]) If for distinct a, b, ¢ € R*, Q(a) N Q(b) =
Q(a) N Q(c), then either b — a is null or Q(a) M Q) = 0.

Proof 1) Define ¢ = %(a + b); then H(b, a) = H(c, a), and Lemma 1, i) com-
pletes the proof.

ii) Assume that Q(a) M Q(b) = Q(a) M Q(c) # @ for distinct «, b, ¢, and that
b — a is not null.

If Q(a) M Q(b) is a point, Lemma 1, ii) implies that exactly one k& €
(b — a )t satisfies 4(k, k) = 4p — (b — a, b — a). Since —k also satisfies this
condition, 8 = —k = 0, and Q(a) N Q(b) = {(¢ + b)/2}. Similarly, Q(a) N
Q(c) = {(a + ¢)/2} ; thus b = ¢, a contradiction.

If Q(a) M Q(b) is more than a point, then, since (b — a )* is non-singular,
the set of all 'sin (b — a )L with (k, k) = p — (b — @, b — a) is a cone or
non-degenerate quadric in (b — a )t. It follows that there exist &y, ..., &, €
(b — a)t with (ky, k;) = p — (b — a, b — a) whose endpoints do not all lie
on any hyperplane in (J — a )*.
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Define y; = 3(b — a) + k41 = 1, ..., n; then we easily verify that y; €
Q(0) N H(0,b — a). We next prove the y,'s to be linearly independent : assume
that >°1 psy; = 0 for some py, . .., p, € R. Then

%(Zq p)(b —a) + Zq piky = 0;
thusif >1p;#0, b—a € {(ky, ...,k ) (b — a)t, an impossibility since

b — aisnot null. It follows that X1 p; = 0 and > 1p#; = 0;if some p; # 0,
then these two conditions then imply that the endpoints of the k;'s lie on a
hyperplane in (b — a )t, another impossibility. Thus 41, ..., ¥, are linearly
independent.

Since translations preserve Q’s, we obtain from our original assumptions
Q)N QDL —a) =Q0) NQ(c —a); Lemma 1, i) then yields Q(0) N
H©O,b —a) = Q) N H(, ¢ — a). Then both H(0, b — a) and H(0, ¢ — a)
contain the endpoints of the linearly independent yi, ..., ¥,, and hence are
equal, which implies that b — a = u(c — a) for some u € R. But the equations
of H(0, b — a) and H(0, ¢ — a) then imply that u? — x = 0, which is impos-
sible since @, b and ¢ are distinct.

LeEMMA 3. Assume that for distinct a, b € R* with b — a not null, Q(a) N
Q(b) # 0. Then Theorem 2 holds, 1.e. d(p, ¢) = 0 1f and only if d[f(p), f(g)] = 0.

Proof. 1f d(p, ¢) = 0, p — ¢ is null; thus for some r # p, ¢, Q(p) N Q(q) =
Q(r) M Q(g). Since f preserves Q's, we have Q[f(p)] M Qlf(g)] = Qlf(r)] M
Qlf(¢)], thus by part ii) of the previous lemma, f(p) — f(¢) is null, i.e.
dlf(p), f(¢)] = 0. The proof of the converse is identical.

We may now assume that for some ¢ # b in R*, Q(a) N Q(b) = Band b — a
is not null.

LeMMA 4. The square-distance d is Minkowskian and p is timelike.

Proof. Assume that Q(a) N\ Q(b) = @and b — ais not null. Lemma 1, ii) im-
plies that the non-singular hyperspace (b — a )t contains no k with (k, k) =

— (b — a,b — a);thus (b — a )+ must be Euclidean, since any non-singular
non-Euclidean space contains k’s with (k, k) = X\ for any N € R. Hence our
space is the orthogonal direct sum of a line and a Euclidean hyperspace, and is
therefore Minkowskian.

Assume p is spacelike ; then pand (b — @, b — a) have opposite signs. But then

— 3( — a, b — a) has sign opposite that of (b — a, b — a), so some
k€ (b — a)t satisfies (k, k) = p — (b — a, b — a). Since Q(a) N Q) = 0,
Lemma 1, ii) shows that such &'s do not exist, a contradiction. Thus p is time-
like, as required.

As mentioned previously, the proof of Theorem 2 for the Minkowskian case
may be found in [4]; we have thus demonstrated the Theorem’s full generality.

One final note: with sufficient attention to the algebraic details we can
easily show that the method of Benz [2] also generalizes to square-distances
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over more arbitrary fields, provided all pairs of Qs intersect. If not, then either
the space is anisotropic (contains no non-zero null vectors) or it has Witt
index 1 (i.e. its largest totally null subspace has dimension 1). For these cases
the results of [1], [4] or herein do not generalize, since they all use the order
properties of R ; thus, for fields other than R, the complete validity of Theorem
1 remains an open question.
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