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Aprobabilistic framework for the polytomous extension of knowledge space theory (KST) is proposed.
It consists in a probabilistic model, called polytomous local independence model, that is developed as a
generalization of the basic local independencemodel. The algorithms for computing “maximum likelihood”
(ML) and “minimum discrepancy” (MD) estimates of themodel parameters have been derived and tested in
a simulation study.Results show that the algorithmsdiffer in their capability of recovering the true parameter
values. The ML algorithm correctly recovers the true values, regardless of the manipulated variables. This
is not totally true for the MD algorithm. Finally, the model has been applied to a real polytomous data
set collected in the area of psychological assessment. Results show that it can be successfully applied in
practice, paving the way to a number of applications of KST outside the area of knowledge and learning
assessment.
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1. Introduction

Knowledge space theory (KST) was introduced in 1985 by Jean-Paul Doignon and Jean-
Claude Falmagne (Doignon and Falmagne 1985, 1999; Falmagne andDoignon 2011) with the aim
of building “an efficient machine for the assessment of knowledge” (Doignon and Falmagne 1999,
Preface). This is pursued bydeveloping a nonnumerical representation of the individual knowledge
called knowledge state and defined as the set of all those problems that a student is capable of
solving. Although the very first formulation of the theory was essentially deterministic, after few
years the probabilistic concepts related to the concrete application of the theory were formalized
(Falmagne and Doignon 1988a; 1988b). Some probabilistic models have been developed, the
most popular being the basic local independence model (BLIM; Falmagne and Doignon 1988a).
The development of both the deterministic and the probabilistic frameworks leads KST to become
a rigorous and effective tool for both the assessment of knowledge and the implementation of
customized learning programs.

One of the core characteristics of KST is that it is applied to dichotomous problems. While
this response format is well suited for the assessment of knowledge, it appears to be restrictive
for the recent applications of the theory such as psychological assessment (e.g., Bottesi et al.
2015; Falmagne et al. Submitted; Spoto et al. 2010) and social sciences (Martin and Wiley 2000;
Wiley and Martin 1999). In fact, the use of polytomous items is quite common in these fields.
Therefore, the generalization of both the deterministic and probabilistic concepts of KST to the
case of polytomous items could, indeed, pave the way to its application to data that are much
more sophisticated than a mere dichotomy.
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The generalization of the deterministic concepts of KST to the case of polytomous items
has been already approached in the literature. Drawing upon a first and almost isolated attempt
by Schrepp (1997) to formalize KST in a polytomous fashion, Stefanutti et al. (2020) proposed
a new formulation of the polytomous KST (PolyKST). One element that immediately emerged
from this extension, given the combinatorial nature of KST, is the chance to deal with ordinal
measures without the assumption of either any kind of continuity in the measured latent trait
(as it happens, for instance, in traditional item response theory), or any additive properties of
item responses (as it happens, for instance, in classical test theory with Likert scale items). Both
these issues shed further light on some debated issues of the classically made assumptions in
psychometric measures, and they show that an approach based on the conceptual framework of
KST could fruitfully account for the great amount of information provided by polytomous items.

This article is aimed at filling the last gap in the generalization of KST to the case of polyto-
mous data by providing an extension of the BLIM to polytomous items.

KST is not the only framework providing a nonnumerical representation of individual knowl-
edge. A prominent role is also played by cognitive diagnostic models (CDMs; Bolt 2007; de la
Torre 2009b; DiBello and Stout 2007; Junker and Sijtsma 2001; Tatsuoka 1990), in which the
knowledge of an individual is described as the set of attributes she has, rather than as the set
of items she is able to solve. This theory was developed in the same years of KST and presents
some overlapping with it, although there have been rare interactions between the two. Recently,
Heller et al. (2015, 2016) have pointed out the connection between KST and CDMs highlighting
that the two frameworks not only share the aim of a nonnumerical assessment of knowledge,
but also some of the probabilistic models that were developed with this aim. More in detail, the
competence-based local independence model (CBLIM; Heller et al. 2015) developed in KST is
equivalent to the multiple strategy deterministic input, noisy AND gate (MS-DINA; de la Torre
and Douglas 2008) model which has, as special cases, the deterministic input, noisy AND gate
(DINA; Haertel 1989; Junker and Sijtsma 2001) model and the deterministic input noisy OR gate
(DINO; Templin and Henson 2006) model. All of these models are well suited for dichotomous
data.

The problem of extending the theory to the case of polytomous data has been approached also
within CDM. In fact, some of themost recent CDMmodels are for polytomous data (see e.g., Chen
and Zhou 2017; Chen and de la Torre 2018; de la Torre 2009a; DiBello et al. 1993; von Davier
2008). Theydiffer fromone another in theway they establish the association between attributes and
response categories. Such attribution, in turn, depends on the type of items forwhich themodels are
meant (e.g., nominal or ordinal). In the spirit of the earlyKST, the probabilistic approach presented
in this paper has a behavioral focus stating no assumptions on underlying attributes. In this respect,
our proposal is different from any existing CDM model for polytomous items. Furthermore, it
turns out to be general enough to be applied with various types of polytomous items (e.g., both
categorical and ordinal polytomous items). Ma and de la Torre (2016) proposed a sequential
CDM for polytomous items which can accommodate both ordinal and nominal responses. In that
model, ordinal response categories are assumed to be attained sequentially, from the lowest to
the highest. While this assumption is plausible for partial credit data, it may not be so for rating
data. In our proposal, there is no assumption about the particular mechanism underlying ordinal
responses. In addition, the sequential CDM deals with nominal responses by assuming that all
attributes required by an item are needed by each response category of that item (i.e., exactly the
same attributes are assigned to all response categories of an item). Thus, it is not clear to what
extent the particular response to the item is informative about the attribute profile of an individual.
Moreover, there seems to be no substantial difference between this type of polytomous nominal
items and standard dichotomous ones, in the sense that there is no loss of information when
collapsing polytomous nominal item categories into dichotomous ones. As already stated, in our
proposal no assumptions are made about the attributes underlying the response categories.
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The paper is organized as follows. Sections 2.1 and 2.2 introduce, respectively, the main
deterministic and probabilistic issues of the dichotomous KST. Section 2.3 presents the main
results obtained in the generalization of the theory to the polytomous case. Section 3 describes a
proposal for the extension of the probabilistic concepts of dichotomous KST to the polytomous
case, culminating in the polytomous local independence model (called PoLIM). Sections 4 and 5
present the results of an application of the PoLIM to simulated and real data, respectively. Finally,
all the theoretical and practical results as well as a list of open issues are discussed in Sect. 6.

2. Backgrounds

2.1. Deterministic Concepts in KST

In KST (Doignon and Falmagne 1985, 1999; Falmagne and Doignon 2011), the knowledge
domain Q is the set of items that can be formulated in order to explore students’ knowledge
with respect to a certain topic. In the classical formulation of KST, the answers to items are
dichotomously classified as correct or incorrect. The knowledge state of an individual is the set
K ⊆ Q of items she is able to solve. A knowledge structure is a pair (Q,K) where Q is the
knowledge domain and K is a collection of subsets of Q. The minimal structure on Q is the
collection containing only ∅ and Q. The maximal structure is the power set 2Q (i.e., the collection
of all subsets of Q, including ∅ and Q itself). Within these two extreme cases, a structure can
be defined by a precedence relation, named the surmise relation, among the items in Q, which
provides the admissible knowledge states K ∈ K. An item p is a prerequisite of another item q
iff (q ∈ K ) ⇒ (p ∈ K ) for all K ∈ K.

An example could be useful to clarify the above introduced concepts. Let us consider the
knowledge domain Q1 = {a, b, c, d, e} containing five problems about a specific topic. The
knowledge structure K1 defined on Q1 contains the following states:

K1 = {∅, {a}, {b}, {a, b}, {a, d}, {b, c}, {b, d}, {a, b, c}, {a, b, d}, {b, c, d}, {a, b, c, d}, Q1}.

Notice that both ∅ and Q1 are states inK1. Moreover, out of the 2|Q1| = 25 = 32 different subsets
of the power set on Q1, only 12 belong to K1. This is due to the prerequisite relations defined
among the items in Q1. For instance, it can be observed that items a and b are prerequisites of
items d and c, respectively. In fact, there is no state inK1 either containing d and not containing a,
or containing c and not b. Moreover, all the items are prerequisites of item e, which is contained
only in the state Q1. In other words, to solve item e a student has to master all the remaining
items. On the other hand, items a and b have no prerequisites, that is, it is possible to solve any
of them and not to master any other item in Q1.

Whenever a structure is closed under both union and intersection, it is a quasi-ordinal knowl-
edge space. The structure K1 of the example introduced above is closed under both union and
intersection: Any union of states in K1 produces a new state already contained in K1; moreover,
any intersection of states in K1 produces a new state already contained in K1. Therefore, it is a
quasi-ordinal knowledge space.

The theorem by Birkhoff (1937) established a one-to-one correspondence between the set of
all the quasi-ordinal knowledge spaces defined on the domain Q and the set of all the surmise
relations (i.e., quasi-order relations) on Q. Whenever a structure is closed only under set union,
it is a knowledge space; whenever it is closed only under intersection, it is called a closure space.
Doignon and Falmagne (1985) established a one-to-one correspondence between the set of all
the knowledge spaces on Q, and all the surmise functions defined on Q. The crucial difference
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between surmise functions and surmise relations is that the latter admit only one set of prerequisites
for each item q ∈ Q.

A knowledge structure K is said to be backward graded (BG) in an item q if K \ {q} ∈ K
for every K ∈ K (Spoto et al. 2012; 2013). Thus, if the item q is removed from any state in K,
then the result will still be a state in K. Dually, a structure K is forward graded (FG) in an item
q if K ∪ {q} ∈ K for every K ∈ K. Thus, if the item q is added to any state in K, the resulting
subset of items will be a state in K. Forward and backward gradedness describes a quite frequent
condition in knowledge structures. For instance, quasi-ordinal spaces are both FG and BG in at
least one item, whereas knowledge spaces containing singletons are FG in the items contained in
such singletons. As described before, the structure K1 in the previous example is a quasi-ordinal
knowledge space. It can be observed that K1 is FG in both items a and b, and it is BG in item e.
In fact by adding, for instance, item a to any state not containing it, the result is a state already
contained in K1; if we remove item e from the only state containing it, that is, the state Q1, we
obtain {a, b, c, d} which belongs to K1. The same does not hold for any other item in Q1. The
BLIM, which is the mostly used probabilistic model in KST, has been found to be not identifiable
for FG or BG knowledge structures (Heller 2017; Spoto et al. 2012, 2013; Stefanutti et al. 2018).

2.2. The Basic Local Independence Model

LetK be the knowledge structure defined on the domain Q. Considering a certain population
of students, it is plausible to assume the existence of a probability distribution π (i.e., πK ≥ 0 for
all K ∈ K and

∑
K∈K πK = 1) on the collection of states belonging to K.

Let R ⊆ Q be the collection of all problems that received a correct response by a student,
named the response pattern. A knowledge state K ∈ K is a latent construct underlying the
response pattern R of a student; therefore, a perfect identity between K and R might not exist.
Their relationship is established by an unrestricted latent class model, where the states K ∈ K
are the latent classes.

In the BLIM, the probability P(R) of observing R in a randomly sampled student is defined
as

P(R) =
∑

K∈K
P(R|K )πK , (1)

where P(R|K ) is the conditional probability of observing the response pattern R given that the
knowledge state of the student is K .

The response rule assumption states that the conditional probability of obtaining a correct
response to an item q ∈ Q, given a certain knowledge state K ∈ K, depends on two parameters:
βq ∈ [0, 1), that is, the conditional probability of observing an incorrect answer to item q given
that q ∈ K , and ηq ∈ [0, 1), that is, the conditional probability of observing a correct answer to
item q given that q /∈ K . The βq and ηq parameters are called careless error and lucky guess,
respectively.

Under the response rule assumption and the assumption of local independence of the item
responses given the knowledge states, the conditional probability P(R|K ) takes on the form

P(R|K ) =
⎡

⎣
∏

q∈K\R
βq

⎤

⎦

⎡

⎣
∏

q∈K∩R

(1 − βq)

⎤

⎦

⎡

⎣
∏

q∈R\K
ηq

⎤

⎦

⎡

⎣
∏

q∈Q\(K∪R)

(1 − ηq)

⎤

⎦ . (2)

In this equation, each member of the product has the following meaning:
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• ∏
q∈K\R βq is the product of the probabilities of careless errors βq for the items belonging

to the latent state K , but not to the observed response pattern R;
• ∏

q∈K∩R(1− βq) is the product of the probabilities of not committing a careless error for
each item belonging to both the latent state K and the observed pattern R;

• ∏
q∈R\K ηq is the product of the probabilities of lucky guesses ηq for the items q contained

in the response pattern R, but not in the latent state K ;
• ∏

q∈Q\(K∪R)(1 − ηq) is the product of the probabilities of not committing lucky guesses
for all items neither belonging to the pattern R nor to the state K .

Once again, an example could better clarify the crucial elements involved in the above definitions.
Let now consider again the domain Q1 = {a, b, c, d, e}. Let, moreover, consider the case in
which the response pattern R = {a, b, c} is observed for a student whose knowledge state is
K = {a, c, d}. In the case at hand, the student committed a careless error on item d which
belongs to K , but not to R; she did not commit a careless error on items a and c which belong
to both K and R; the student made a lucky guess on item b, which belongs to R, but not to K ;
finally, she made no lucky guess on item e which does belong to neither R nor K . Therefore, the
conditional probability P(R|K ) in the present example is:

P({a, b, c}|{a, c, d}) = βd(1 − βa)(1 − βc)ηb(1 − ηe).

The βq , ηq and πK parameters of the BLIM can be estimated by maximum likelihood (ML) via
the expectation–maximization (EM) algorithm (Stefanutti and Robusto 2009) or by minimum
discrepancy (MD; Heller and Wickelmaier 2013). Moreover, methods for obtaining maximum
likelihood estimates from data in which some responses are missing are available in the literature
(Anselmi et al. 2016; de Chiusole et al. 2015), together with procedures for testing the invariance
of the βq and ηq parameters (de Chiusole et al. 2013). Some extensions of the model have been
proposed for the assessment of learning processes, as the gain–loss model (GaLoM; Anselmi et
al. 2012, 2017; de Chiusole et al. 2013; Robusto et al. 2010; Stefanutti et al. 2011), and a model
for the treatment of skills dependence (de Chiusole and Stefanutti 2013).

Concerning the identifiability of the BLIM, it has been widely explored in recent years (e.g.,
Heller 2017; Spoto et al. 2012; 2013; Stefanutti et al. 2012, 2018; Stefanutti and Spoto 2020)
providing a more in-depth understanding of the characteristics of the unidentifiable structures
and providing useful tools for testing identifiability of the model. It has been shown that several
important instances of knowledge structures happen to be forward or backward graded. Among
them, there are the quasi-ordinal spaces and the linear orders. In these structures, the forward
gradedness is established for all the items with no prerequisites, while backward gradedness is
established for non-background items (i.e., all those items that are not included in the background
knowledge of any other item). Any ordinal space contains a singleton for every item q ∈ Q in
which the structure is FG; respectively, any ordinal space contains a state of the form Q \ {q}
for every item q ∈ Q in which the structure is BG. The same holds in any quasi-ordinal space
in which the minimal and the maximal elements of the corresponding quasi-order are unique
(Heller 2017). Any linear order contains one singleton for the minimum item in the order (which
is the only item with no prerequisites) and a state Q \ {q} for the maximum one (which is the
only item not included in the background knowledge of any other item). As a consequence, any
quasi-ordinal space corresponding to a linear order is FG in the minimum item and BG in the
maximum one. In turn, this results in the unidentifiability of the η parameter of the minimum item
and of the β parameter of the maximum one.

In the BLIM, the restriction βq + ηq < 1, q ∈ Q, is usually a desirable property of the
model’s parameters. This is a kind of “monotonicity” condition stating that the probability of
failing an item q by a careless error should be strictly less than that of failing it because it is not
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mastered (βq < 1 − ηq ). Equivalently, it states that the probability of correctly solving the item
because it is mastered must be strictly greater than that of guessing it (ηq < 1 − βq ).

For any item q ∈ Q, the error parameters βq and ηq can be represented in matrix form:

E =
(
1 − ηq ηq

βq 1 − βq

)

Indicating with πq the probability that q belongs to the state of a randomly sampled individual,
and considering any probability vector π = (1 − πq , πq)

T , the product ETπ gives a column
vector (1 − pq , pq)T , where

pq = ηq(1 − πq) + (1 − βq)πq

= (1 − βq − ηq)πq + ηq

is the probability that q belongs to the individual’s response pattern. The term “monotonicity”
refers to the fact that such probability is monotone increasing inπq if and only if βq < 1−ηq . This
type ofmonotonicity could be named columnmonotonicity, because the two terms of the inequality
belong to the same column of the matrix E . Another, more restrictive type of monotonicity for
the dichotomous BLIM is to require that βq < 1 − βq and ηq < 1 − ηq for all q ∈ Q. Since
both βq and ηq are regarded as “error probabilities,” such inequalities follow the principle that
an error should be less likely than a non-error. This last type of monotonicity will be named row
monotonicity, because the two terms of the inequality belong to the same row of E . Then, it is
easily verified that row monotonicity implies column monotonicity.

As far as the BLIM is concerned, all these considerations about monotonicity are rather
straightforward. However, they are preparatory to a polytomous generalization of the BLIM,
where the matrix E may have an arbitrary number of rows and columns. This is the subject matter
of Sect. 3.

2.3. Polytomous KST

The crucial assumption at the basis of the extension of KST to polytomous items is the
possibility of scoring each item in the domain Q through levels in a set L . In this perspective,
the classical dichotomous KST becomes the special case in which the cardinality of the set L
is 2. This fundamental assumption implies the redefinition of a knowledge state as a function
K : Q → L that assigns levels to items (Schrepp 1997; Stefanutti et al. 2020). Since the items
of attitude and personality scales usually evaluate beliefs of individuals about themselves or the
world, the states will be sometimes denoted as belief states, rather than knowledge states.

A polytomous structure is any nonempty subset K ⊆ LQ , where LQ is the collection of all
the mappings K : Q → L . The mappings in LQ are partially ordered by the pointwise order 

such that, given any two mappings K1, K2 ∈ LQ ,

K1 
 K2 iff K1(q) � K2(q) for all q ∈ Q.

In a first generalization ofKST, Schrepp (1997) proposed a reformulation of themain deterministic
elements of the theory in order to have available, for each item q ∈ Q, more than two answer
alternatives taken from a linearly ordered set (L ,�). Each of these alternatives indicates, in an
ordinal way, the level of solution of a specific item q. In this perspective, as mentioned above, a
knowledge state becomes a mapping from Q to L , that is, it is redefined as a way to assign levels
of L to items in Q. In the approach proposed by Schrepp, this fundamental assumption allows for
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the generalization of the concepts of knowledge structure, knowledge space, and quasi-ordinal
knowledge space. Furthermore, the closure properties to be satisfied in order to have a one-to-one
correspondence between structures and surmise functions and relations in the polytomous case
are stronger than in the dichotomous one.

Schrepp’s approach is not the only attempt to generalize KST to the polytomous case. In fact,
from a quite different perspective, Bartl and Belohlavek (2011) proposed an extension of KST
which assumes that a knowledge state is a fuzzy (graded) set, with degrees representing levels to
which an individual has mastered the items. These two approaches make different assumptions on
the set L of levels. In fact, in the Schrepp’s proposal, L is any linearly ordered set. In the Bartl and
Belohlavek’s approach, L is a complete residuated lattice. Although this last assumption allows
Bartl and Belohlavek’s approach to be suitable for the case in which L is infinite, it implies the
existence of a kind of “concatenation” operator ⊗ among levels in L such that, given any two
levels a, b ∈ L , a⊗b is also in L . This last assumption may not correctly characterize the ordinal
nature of the elements in L , which are typical in polytomous KST applications (mostly social and
behavioral sciences).

In the generalization proposed by Stefanutti et al. (2020), the set L of levels is assumed to
be any linearly ordered complete lattice. This assumption makes the approach by Stefanutti and
colleagues more restrictive than that by Schrepp, but still less restrictive than that by Bartl and
Belohlavek. The approach to the polytomous extension of KST we refer to in this article is the
one proposed by Stefanutti et al. (2020) for L finite.

3. The Polytomous Local Independence Model

The BLIM, with all of its assumptions, can be generalized to polytomous structures and
response patterns with no further assumptions other than those admitting more than two response
alternatives. Let Q and L be finite sets, and let R ∈ LQ be the pattern of the observed responses
of an individual to the set Q of items. If the state of this individual is K ∈ K, then we allow that
R and K may differ to some extent, thus dissociating an observed response R(q) from a latent
response K (q) to an item q ∈ Q. Any difference between the two may be imputable to random
error.

For q ∈ Q, let Rq and Kq be random variables having realizations in L and representing
the observed and latent responses to item q, respectively. Furthermore, let R = {Rq}q∈Q be a
random vector with realizations in LQ and K = {Kq}q∈Q be a random vector with realizations
in K. The random vectors R andK represent, respectively, the observed response pattern and the
latent state of a randomly sampled individual.

The response rule of the BLIM is generalized as follows. Let q ∈ Q be any item, i, j ∈ L
be any two levels in L , and K ∈ K be any state, then

K (q) = i �⇒ P(Rq = j |K ) = εq(i, j),

with εq : L2 → (0, 1). This assumption states that the conditional probability of observing
response j to item q depends on the response itself, the level K (q) assigned by the latent state K
to q and nothing else.

The BLIM’s local independence assumption is generalized as follows. For R ∈ LQ and
K ∈ K, the responses to the items are locally independent given state K :

P(R = R|K = K ) =
∏

q∈Q
P(Rq = R(q)|K = K ).
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By combining these two assumptions, we obtain the first equation of the PoLIM:

P(R = R|K ) =
∏

q∈Q
εq(K (q), R(q)).

The marginal probability of a response pattern is obtained, as in the standard BLIM, by

P(R) =
∑

K∈K
P(R|K )πK

where πK ∈ (0, 1) is the probability of state K ∈ K. This gives the equation

P(R) =
∑

K∈K

∏

q∈Q
εq(K (q), R(q))πK .

Given the two constraints (which hold true even in the dichotomous BLIM)

∑

j∈L
εq(i, j) = 1, q ∈ Q, i ∈ L (3)

and

∑

K∈K
πK = 1,

the model has |Q||L|(|L| − 1) + |K| − 1 free parameters.
The dichotomous BLIM is the special case of the PoLIM in which L = {0, 1}. In fact, given

the constraint in (3), it suffices to set εq(1, 0) = βq and εq(0, 1) = ηq for each item q ∈ Q.
In the general case L = {l0, l1, . . . , ln}, n ≥ 1, the εq functions are represented by squared

matrices of the form

Eq =

⎛

⎜
⎜
⎜
⎝

εq(l0, l0) εq(l0, l1) . . . εq(l0, ln)
εq(l1, l0) εq(l1, l1) . . . εq(l1, ln)

...
...

...

εq(ln, l0) εq(ln, l1) . . . εq(ln, ln)

⎞

⎟
⎟
⎟
⎠

.

The off-diagonal elements of Eq are error probabilities. If the levels in L are totally ordered, with
l0  l1  · · ·  ln , then the probabilities belonging to the lower triangular matrix of Eq can
be regarded as “underrates” of the true level, whereas the probabilities belonging to the upper
triangular matrix can be regarded as “overrates” of the true level.
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3.1. Monotonicity and Other Restrictions

The model described in the previous section does not impose any restriction on the εq(i, j)
parameters, other than they must sum up to 1 across the levels j ∈ L for any q ∈ Q and any
i ∈ L . It says nothing about the interplay between these probability values and the levels in L .

As observed in Sect. 2.2, two distinct forms ofmonotonicity are possible for the parameters of
the dichotomousBLIM: row and columnmonotonicity.At least the less restrictive of the two forms
(i.e., columnmonotonicity) is required for having consistent assessment.We explore in this section
how such notions of monotonicity can be transferred from the dichotomous to the polytomous
case. When moving to a polytomous framework, there is no unique way of generalizing these two
types of monotonicity. For instance, there are at least three different ways of generalizing row
monotonicity: (1) If the state K assigns level i ∈ L (call it the “true level”) to an item q ∈ Q, then
it is highly reasonable that, in an assessment, this value will be the most likely to be observed; (2)
The restriction could even be stronger, by requiring that the overall probability of observing any
“false level” is less than that of observing the “true level”; (3) Moreover, it makes sense that, as
the “distance” of the observed level from the true one increases, the probability of the observed
level decreases. This type of assumption, for instance, is at the core of the statistical theory of
error in the classical (true score) test theory. In applications with continuous (latent) variables, it
is often assumed that error is distributed normally around the true score. A consequence of this
assumption is that the probability density of an error decreases as the distance from the true score
increases. A rather general definition of this type of monotonicity, which applies to either finite or
infinite countable sets, is as follows.We recall that a metric on a set X is any function δ : X2 → R

satisfying the following properties for all x, y, z ∈ X :

(i) identity of indiscernibles: δ(x, y) = 0 ⇐⇒ x = y;
(ii) symmetry: δ(x, y) = δ(y, x);
(iii) triangle inequality: δ(x, z) ≤ δ(x, y) + δ(y, z).

Furthermore, it is a consequence of (i), (ii), and (iii) that d(x, y) ≥ 0 for all x, y ∈ X .
Let δ : L2 → R be a metric on the set L of levels. A function f : L2 → R is said to be

δ-monotone if the double implication

δ(i, j) < δ(i, k) ⇐⇒ f (i, j) > f (i, k) (4)

holds true for all i, j, k ∈ L . Furthermore, the function f is named δ-half-monotone if Condition
(4) holds when confined to triples i, j, k ∈ L such that either i  min{ j, k} or max{ j, k}  i
holds (i.e., j and k are both predecessors and successors of i). It is an immediate consequence
that δ-monotonicity implies δ-half-monotonicity, whereas the opposite implication need not be
true.

To give an example, let L = {a, b, c, d} be a set of four levels linearly ordered by , with
a  b  c  d. Let, moreover, δ1 : L2 → R be a distance function defined by the following
|L| × |L| symmetric matrix:

δ1 =

⎛

⎜
⎜
⎝

0 1 3 5
1 0 2 3
3 2 0 1
5 3 1 0

⎞

⎟
⎟
⎠ ,

whose each entry represents a single pair (i, j) of levels in L . Thus, for instance, rows 1, 2, 3 and
4 represent levels a, b, c and d, respectively, so that δ1(a, b) = 1, δ1(a, c) = 3, δ1(a, d) = 5 and
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so on. Define the function f1 : L2 → R by the following square matrix:

f1 =

⎛

⎜
⎜
⎝

20 18 10 5
10 40 5 8
7 8 15 4
1 2 3 4

⎞

⎟
⎟
⎠ ,

so that, for instance, f1(a, a) = 20, f1(a, b) = 18, f1(a, c) = 10, and so on. Then, f1 respects δ1-
half-monotonicity, but not δ1-monotonicity. For testing δ1-monotonicity of function f1, condition
(4) has to be tested for each of the 43 = 64 triples (i, j, k) of levels in L . In particular, if
the condition is tested for the triple (c, d, a), one obtains δ1(c, d) = 1 < δ1(c, a) = 3, but
f1(c, d) = 4 < f1(c, a) = 7. This falsifies δ1-monotonicity of f1. On the other side, if only
triples satisfying i  min{ j, k} or max{ j, k}  i are considered (there are 44 in the whole), then
condition (4) is always satisfied, confirming δ1-half-monotonicity of f1.

3.1.1. Monotonicity in Unordered Sets of Levels The specific form taken by the δ-monotonicity
condition much depends on the chosen metric δ which, in turn, depends on the properties of the
set L of levels. When L is a finite and unordered set (e.g., in multiple choice items), the only
meaningful metric is the Hamming distance which, for i, j ∈ L , is defined as

δH (i, j) =
{
0 if i = j,

1 if i �= j.
(5)

The form that δ-monotonicity takes when the metric is δH is named modality. Thus, for q ∈ Q,
the function εq respects modality if and only if it is δH -monotone. The term “modality” stems
from the observation that δH -monotonicity only requires that the inequality εq(i, i) > εq(i, j)
stays true for all i, j ∈ L , meaning that the true level i is modal. We say that the PoLIM repects
modality if εq respects it for all q ∈ Q. We observe that modality is preserved after permutations
that leave unchanged the probability of the true value.

3.1.2. Monotonicity in Ordered Sets of Levels If L is totally ordered by , then both the
Hamming and a discrete version of the Manhattan distance can be determined between any two
levels i, j ∈ L . The discrete Manhattan distance between any two levels i, j ∈ L is defined as

δM (i, j) = |(i↓ \ j↓) ∪ ( j↓ \ i↓)|
= abs(|i↓| − | j↓|), (6)

where, for any l ∈ L , l↓ = { j ∈ L : j  l} is the down set of l in the partially ordered set
(L ,). If i  j , then the discrete Manhattan distance counts the number of levels greater than
i that are less or equal to j in the totally ordered set L . For instance, if L = {a, b, c, d}, with
a  b  c  d, then δM (a, b) = 1, δM (a, c) = 2, δM (a, d) = 3, and so on.

The form that δ-monotonicity (respectively, δ-half-monotonicity) takes when δ is the Man-
hattan distance is simply namedmonotonicity (respectively, half-monotonicity). Thus, for q ∈ Q,
the function εq respects monotonicity if and only if it is δM -monotone. We further say that the
PoLIM respects monotonicity if εq respects it for all q ∈ Q. Monotonicity is preserved after
strictly increasing transformations.
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3.1.3. Order Respecting Metrics and δ-Monotonicity A metric that respects the order on the
levels is named an “order respecting metric.” Given the totally ordered set (L ,) of levels, call
δ : L2 → [0,∞) an order respecting metric if it is a metric that satisfies the condition

i ≺ j ≺ k �⇒ δ(i, k) > max{δ(i, j), δ( j, k)}. (7)

for all i, j, k ∈ L .
The form of δ-monotonicity may differ from one order respecting metric to another, in the

sense that, given two order respectingmetrics δ1 : L2 → [0,∞) and δ2 : L2 → [0,∞), a function
f : L2 → (0, 1) may be δ1-monotone while being not δ2-monotone. That is, f is not necessarily
δ-monotone under any arbitrary order respecting metric δ. To give an example, let L = {a, b, c}
be a set of three levels, with a  b  c, and consider the two metrics δ1 : L2 → [0,∞) and
δ2 : L2 → [0,∞) defined as follows:

δ1(a, b) = 1, δ1(a, c) = 3, δ1(b, c) = 2,

δ2(a, b) = 3, δ2(a, c) = 4, δ2(b, c) = 2.

It is easily verified that both metrics δ1 and δ2 respect the order  on the set of levels. Then, the
function f2 : L2 → (0, 1) such that

f2(b, a) = .2, f2(b, c) = .1,

is δ1-monotone, but it is not δ2-monotone.
Concerning δ-half-monotonicity, instead, the following theoretical result holds.

Proposition 1. A function f : L2 → R is δ-half-monotone for every order respecting metric δ if
and only if it is δ∗-monotone for some order respecting metric δ∗.

Proof. Let δ and δ∗ be any two order respecting metrics for (L ,), and let f : L2 → R be a
δ∗-monotone function. Suppose then that f is not δ-half-monotone. In that case, there must exist
a triple (i, j, k) ∈ L3 for which all the following three conditions hold true: (1) δ(i, j) < δ(i, k);
(2) f (i, j) < f (i, k); (3) i  min{ j, k} or max{ j, k}  i . Since f is δ∗-monotone, from
f (i, j) < f (i, k), we obtain δ∗(i, j) > δ∗(i, k). Suppose i  min{ j, k} holds true. Then,
it follows from δ∗(i, j) > δ∗(i, k) that i  k ≺ j . But then, δ(i, j) < δ(i, k) contradicts
the order preserving property of δ. Suppose now max{ j, k}  i holds. Then, it follows from
δ∗(i, j) > δ∗(i, k) that j ≺ k  i . But then, again, δ(i, j) < δ(i, k) contradicts the order
preserving condition. We thus conclude that f must be δ-half-monotone. ��
Thus, δ-half-monotonicity depends on the order on the levels in L , but not on the order of the
distances among the levels. In practice, this means, for instance, that if one chooses as a metric
the Manhattan distance δM , then any δM -monotone function is a δ-half-monotone function for
every order respecting metric δ. Thus, it is not necessary to know the true underlying metric δ

to conclude that a given conditional probability function εq is δ-half-monotone and thus respects
the order on the levels.

An additional condition that may turn out to be interesting is named overall error, and it
states that

εq(i, i) >
∑

j∈L\{i}
εq(i, j) (8)
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for all q ∈ Q and all i ∈ L . According to this condition, not only the true level is the more
probable one (modality), but its probability is larger than the sum of the probabilities of all the
other levels. In fact, it follows from this condition that εq(i, i) > 1/2.

So far, only row monotonicity conditions were examined. The δ-monotonicity condition is
easily adapted to columnmonotonicity: Just set f (i, j) = εq( j, i) inEq. (4).With this substitution,
each of the row monotonicity conditions considered above can be easily translated into a column
monotonicity condition.

It is always possible to make posterior tests of such conditions on the parameter estimates
of the unrestricted PoLIM. Otherwise, the monotonicity constraints can be directly incorporated
into the model.

3.2. A PoLIM with Monotonicity Constraints

Aversion of the PoLIM that incorporates monotonicity conditions is described in this section.
More precisely, let δ be any order respecting metric for (L ,). A version of the PoLIM that
respects the assumption under which, for every item q ∈ Q, the function εq is δ-half-monotonic,
is developed. The δ-half-monotonicity condition requires that

δ(i, j) < δ(i, k) ⇐⇒ εq(i, j) > εq(i, k)

for all i, j, k ∈ L such that i  min{ j, k} or max{ j, k}  i , which entails a system of linear
inequalities involving the model’s εq(i, j) parameters. If the aim is estimating such parameters,
then there is no trivial variant of the expectation–maximization algorithm that incorporates linear
inequalities among the parameters of a model. However, one can see if it is possible to resort to
some suitable reparameterization of the constrained model to an equivalent one where there are
no inequality constraints among the parameters. This is the route followed here. In particular, an
equivalent model is obtained, where inequalities of the form x < y are replaced by inequalities
of the form 0 < x < 1 and 0 < y < 1. For lightening notation, lowercase letters like i , j , k, l
denote integer subscripts, instead of levels in L .

Let L = {�0, �1, . . . , �n} (so that the number of levels is n+1) and, for q ∈ Q, letRq andKq

be random variables, whose realizations are the levels in L . The random variable Rq represents
the observed response to an item q, whereas Kq represents the “latent response” to q. Given any
two indexes i, j ∈ {0, 1, . . . , n} such that i ≤ j < n, let ωqi j denote the ratio between the two
conditional probabilities P(Rq = � j |Kq = �i ) and P(Rq = � j+1|Kq = �i ), that is:

ωqi j = εq(i, j + 1)

εq(i, j)
= P(Rq = � j+1|Kq = �i )

P(Rq = � j |Kq = �i )
, (9)

whereas, for 0 < j ≤ i , let υqi j denote the ratio:

υqi j = εq(i, j − 1)

εq(i, j)
= P(Rq = � j−1|Kq = �i )

P(Rq = � j |K = �i )
. (10)

The δ-half-monotonicity assumption is satisfied if and only if the ratesωqi j andυqi j are in the open
interval (0, 1). Confining the values of the two parameter types to this interval, the parameter ωqi j

can be regarded as a rate of decay of the probability of “overrating” item q as the overrate increases,
whereas the parameter υqi j is regarded as a rate of decay of the probability of “underrating” item q
as the underrate decreases. It follows from Eqs. (9) and (10) that, for any two indexes i ≤ j < n,

εq(i, j + 1) = ωqi jεq(i, j)
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and for any two indexes 0 < j ≤ i

εq(i, j − 1) = υqi jεq(i, j).

Therefore, all probabilities εq(i, j) can be expressed as functions of the diagonal probabilities
εqi := εq(i, i) and the two rates ωqi j and υqi j :

εq(i, j) =

⎧
⎪⎨

⎪⎩

εqi
∏i−1

k= j υqik if i > j,

εqi if i = j,

εqi
∏ j

k=i+1 ωqik if i < j.

(11)

Plugging this last equation into the equality constraints

n∑

l=0

εq(i, l) = 1, ∀i ∈ {0, 1, . . . , n}

we obtain that, for all i = 0, 1, . . . n,

εqi +
i−1∑

l=0

εqi

i−1∏

k=l

υqik +
n∑

l=i+1

εqi

l∏

k=i+1

ωqik = 1,

and, solving for the diagonal probability εqi ,

εqi =
(

1 +
i−1∑

l=0

i−1∏

k=l

υqik +
n∑

l=i+1

l∏

k=i+1

ωqik

)−1

.

Finally, by substituting εqi with the right-hand side of this last equation into (11), one obtains the
following equation, where εq(i, j) is a function of the two parameter types ω and υ:

εq(i, j) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

i−1∏

k= j

υqik

(

1 +
i−1∑

l=0

i−1∏

k=l

υqik +
n∑

l=i+1

l∏

k=i+1

ωqik

)−1

if i > j,

(

1 +
i−1∑

l=0

i−1∏

k=l

υqik +
n∑

l=i+1

l∏

k=i+1

ωqik

)−1

if i = j,

j∏

k=i+1

ωqik

(

1 +
i−1∑

l=0

i−1∏

k=l

υqik +
n∑

l=i+1

l∏

k=i+1

ωqik

)−1

if i < j.

(12)

Therefore, a PoLIM with monotonicity constraints is obtained via a reparameterization into a
model with parameters ωqi j , υqi j ∈ (0, 1) for each item q ∈ Q, and pairs of levels i, j ∈ L .

To exemplify, let L = {�0, �1, �2, �3, �4} be the set of levels, with �i ≺ �i+1, i ∈ {0, 1, 2, 3}.
For some q ∈ Q, suppose that

υq20 = 2

10
, υq21 = 1

10
, ωq23 = 3

10
, ωq24 = 5

10
.
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For the case i = 2, the probabilities εq(i, j), j ∈ {0, 1, . . . , 4} are obtained from these four rates,
by an application of the formulas in Eq. (12). Starting with the diagonal element εq(2, 2), one
has:

εq(2, 2) = (
υq20υq21 + υq21 + 1 + ωq23 + ωq23ωq24

)−1

=
(

2

10
· 1

10
+ 1

10
+ 1 + 3

10
+ 3

10
· 5

10

)−1

= 100

157
.

Then, one has

εq(2, 0) = εq(2, 2)υq20υq21 = 2

157
,

εq(2, 1) = εq(2, 2)υq21 = 10

157
,

εq(2, 3) = εq(2, 2)ωq23 = 30

157
,

εq(2, 4) = εq(2, 2)ωq23ωq24 = 15

157
.

Thus, we have:

εq(2, 0) + εq(2, 1) + εq(2, 2) + εq(2, 3) + εq(2, 4) = 1

and

εq(2, 0) < εq(2, 1) < εq(2, 2) > εq(2, 3) > εq(2, 4),

that is, the set {εq(2, j)}4j=0 is a probability distribution that respects δ-half-monotonicity. It is
also noticeable that δ-monotonicity is not respected in this case. In fact, for instance, εq(2, 4) >

εq(2, 1).

3.3. Parameter Estimation

The most frequently used procedures for estimating the parameters of the BLIM are by
maximum likelihood (ML) and byminimum discrepancy (MD). Both of them have been extended
for estimating the parameters of the PoLIM. Only ML has been extended for estimating the
parameters of the PoLIM with monotonicity constraints.

ML estimation is accomplished via an adaptation of the EMalgorithmdeveloped by Stefanutti
and Robusto (2009), whereas MD estimation is obtained as a generalization of the minimum
discrepancy method developed by Heller andWickelmaier (2013). The main differences between
the two procedures are:

(i) EM maximizes the likelihood of the data, given the model parameters, whereas
MD minimizes a measure of discrepancy between the data and the states in the
structure;

(ii) MD is based on the (rather strong) assumption that a response pattern has a positive
probability of being “generated” by a certain state only if this last is at minimum
distance from it. This assumption does not apply in the EM, where any response
pattern can be generated by any state with positive probability;
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(iii) theMDprocedure requires to assume the formof themetric that has to beminimized
(e.g., Hamming, Manhattan, Euclidean distance, etc.). Such an assumption is not
needed in the EM algorithm;

(iv) the EM is an iterative algorithm, whereas the MD provides analytic formulas for
computing the parameter estimates. As such, it requires no iterations;

(v) the EM algorithm can be adapted for estimating the PoLIM with monotonicity
(inequality) constraints; it is not obvious how this can be done with theMDmethod.

A detailed description of both the EM and theMD is found in Appendices A.1, A.2 and A.3. They
have been implemented in MATLAB and are available upon request to the authors.

4. Simulation Study

The aim of the study was to check the parameter recovery capability of the EM and the MD
algorithms with respect to the PoLIM, when the (row) half-monotonicity assumption is respected
or not in the data. For the EM, both the constrained and unconstrained estimation procedures were
considered. For theMD, both the Hamming and theManhattan distances were used for computing
the distances between the response patterns and the states.

4.1. Simulation Design, Data Set Generation and Methods

Let Q be a fixed set of 10 items and L = {0, 1, 2, 3} be a linearly ordered set of response
categories of the items q ∈ Q. Let⊥|Q| be the |Q|-tuple of all zeros, and�|Q| = (3, 3, · · · , 3) be
the maximum |Q|-tuple. A structureK of 1,000 states was obtained by computing {⊥|Q|,�|Q|}∪
P , where P was generated at random, using a sampling without replacement on the collection
L |Q| \ {⊥|Q|,�|Q|}. In this random structure, the proportion of states assigning to an item q ∈ Q
a given level l ∈ L is about 1/|L| = .25. The uniform probability distribution was assumed on
K.

Two different scenarios have been considered. In both of them, the model that generated the
datawas the PoLIM.What varied between the twowas the particular restriction used for generating
the PoLIM’s parameters εq(i, j). In the former scenario, only the overall error condition (Eq. (8))
held. In the latter scenario, both the overall error and the monotonicity (Eq. (12)) conditions held.

The procedure used for generating the εq(i, j) parameters consisted in two steps. The first
step was the generation of the “true positive” probability εq(i, i) (i.e., the probability that the level
observed for q in the response pattern is equal to the level of q in the state). For each item q ∈ Q
and each level i ∈ L , εq(i, i)was randomly extracted from the uniform distribution in the interval
[m, 1), with m > 1/2. For all q ∈ Q, the same values of εq(i, i) were used in the two scenarios.
In the second step, the εq(i, j), with i �= j , were generated differently in the two scenarios. In
the former scenario, they were extracted at random from the uniform distribution in the interval
(0, 1− εq(i, i)], and then, they were normalized to sum up to 1− εq(i, i). In the latter scenario, in
which both the overall error and the monotonicity (Eq. (12)) conditions held, the same values of
the εq(i, j) generated in the former scenario were used, with the difference that they were ordered
in size for respecting the monotonicity. For example, if the item q takes on level 0 in the state,
then εq(i, 1) ≥ εq(i, 2) ≥ εq(i, 3).

In each scenario, 100 different samples of size 2,000 and 5,000 were generated under three
different conditions. What varied across conditions was the value of m used for generating the
εq(i, i) parameters that wasm ∈ {.75, .85, .95}. These values have been chosen with the rationale
of simulating data by using not too high error rates. Referring to previous studies in which other
models (e.g., the BLIM, the DINA, or other KST and CDMmodels) were applied, values for item
error probabilities between .05 and .25 are rather typical.
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The structure K and the probability distribution on the states were held fixed across all
conditions of both scenarios.

A total number of 2 × 3 × 100 = 600 random data sets were generated. In each condition
of each scenario, the PoLIM was applied to the simulated data by using four different procedures
for the parameter estimation, that is,

(i) maximum likelihood via the EM algorithm imposing no constraint;
(ii) maximum likelihood via the EM algorithm imposing the monotonicity constraint

on the error parameters;
(iii) minimum discrepancy based on the Hamming distance (HD-MD);
(iv) minimum discrepancy based on the Manhattan distance (MD-MD).

In particular, in both the EM algorithms, the initial guesses of the model parameters were 1/|L|
for the εq(i, j) parameters and 1/|K| for the πK probabilities of the states.

The parameter recovery of the PoLIM estimated with the four different estimation methods
was analyzed. It is important to underline that the parameter recovery of a probabilistic model can
be analyzed correctly only if all of its parameters are identifiable. An empirical way for testing the
identifiability of the parameters of a probabilistic model consists in: (i) estimating the parameters
a large number of times on the same data, using different starting points, and (ii) checking the
variability of the estimates that yield the largest and identical likelihoods. If the variability of the
estimates of all parameters is small (e.g., in case of a probability, if the standard deviation is less
than 10−3), then it is plausible that the parameters of the model are identifiable.

This empirical test was performed for testing the identifiability of the unconstrained and
the constrained PoLIM parameters. Both versions of the model were estimated 50 times via the
corresponding EM algorithm, by using one of the simulated samples. The log-likelihoods of the
50 fitted models were very close to each other for both models (i.e., their values had a range
of 1.93 × 10−4 for that unconstrained and of 5.59 × 10−4 for that constrained). Moreover, the
maximum standard error of the estimates was 4.43 × 10−7 and 2.47 × 10−7, respectively, for
the unconstrained and the constrained model. All of this may suggest that the parameters are
identifiable in both cases. Of course, this result should be taken as provisional, until some formal
test of (local) identifiability of the PoLIM becomes available.

4.2. Results and Discussion

Results for the N = 2,000 case are presented in this section. Results for N = 5,000 do not
substantially differ from those for N = 2,000; thus, they are provided in the form of supplementary
material. Figure 1 shows the parameter recovery of the εq(i, j) PoLIM parameters in the first
condition (i.e., εq(i, i) = .95) of the first scenario, in which only the overall error condition holds
in the simulated data.

In each panel of the figure, true parameter values are on the x-axis, estimated parameter
values are on the y-axis, and the dotted line indicates that x = y. The y-axis labels indicate
the parameter estimation method among the unconstrained and constrained EM, HD-MD and
MD-MD. Panels to the left of the figure display the results of the εq(i, j) parameters when i > j
(i.e., K (q) > R(q)) and panels on the right that of the εq(i, j) parameters when i < j (i.e.,
K (q) < R(q)). The standard errors of the estimates are reported in Table 1, in which their
average and maximum values are given for each of the four estimation methods.

By looking at the figure, it is clear that the only estimation method not obtaining biased
estimates was the unconstrained maximum likelihood via the EM algorithm. Indeed, whenever
monotonicity does not hold in the data, the constrained estimation is likely to be biased.Moreover,
unconstrained estimationmethodwasmore efficient than the constrained version (smaller variance
of the estimates, see Table 1).
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Figure 1.
Parameter recovery of the PoLIM obtained by using the EM algorithm without constraints and with constraints, and by
using the MD-HD and the MD-MD, when only the overall error condition holds in the data
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Table 1.
Average (columns 2, 4 and 6) and maximum (columns 3, 5 and 7) standard errors of the PoLIM’s parameter estimates
obtained for the four estimation methods unconstrained EM, constrained EM, MD-MD and HD-MD, in the first condition
of the simulation study

Model πK ε(i, j), i < j ε(i, j), i > j
σ max(σ̂ ) σ max(σ̂ ) σ max(σ̂ )

Unconstrained EM .0004 .0006 .0044 .0075 .0043 .0076
Constrained EM .0007 .0009 .0068 .0084 .0068 .0084
HD-MD .0004 .0006 .0038 .0061 .0037 .0062
MD-MD .0004 .0006 .0039 .0070 .0037 .0064

Table 2.
Average (columns 2, 4 and 6) and maximum (columns 3, 5 and 7) standard errors of the PoLIM’s parameter estimates
obtained by the four estimation methods unconstrained EM, constrained EM, MD-MD and HD-MD, in the second
condition

Model πK ε(i, j), i < j ε(i, j), i > j
σ max(σ̂ ) σ max(σ̂ ) σ max(σ̂ )

Unconstrained EM .0007 .0009 .0039 .0076 .0037 .0069
Constrained EM .0007 .0009 .0039 .0076 .0037 .0069
HD-MD .0007 .0009 .0039 .0071 .0037 .0064
MD-MD .0009 .0009 .0037 .0073 .0035 .0067

The MD method obtained biased estimates with both the Hamming and the Manhattan dis-
tances. Comparing the parameter estimates obtained by the two, it is interesting to note that they
produced very different parameter estimates. In the case of the Hamming distance (the twomiddle
panels of Fig. 1), the bias seems systematic. In particular, for true parameter values that are in the
middle of the interval (0, .05] no bias was observed; when true parameter values approach zero,
over-estimations were observed; when true parameter values approach the maximum value of the
interval, under-estimations were observed. This trend could suggest a sort of balancing between
over- and under-estimations due to the restriction

∑
j∈L εq(i, j) = 1, for each level i of each

item.
In the case of the Manhattan distance (the two bottom panels of Fig. 1), under-estimations

were observed when the distance between the true and the observed levels was 3 or 2, that is,
εq(3, 1), εq(4, 1), εq(4, 2), εq(1, 3), εq(1, 4), εq(2, 4), whereas over-estimations were observed
when that distance was 1, that is, εq(4, 3), εq(3, 2), εq(2, 1), εq(1, 2), εq(2, 3) and εq(3, 4).

Concerning the recovery of the states probabilities πK , the average absolute bias of the
estimates was equal to 3.55× 10−5, 5.73× 10−4, 3.81× 10−5 and 4.81× 10−5, respectively, for
the unconstrained and the constrained EM, the HD-MD and the MD-MD estimation procedures.

Figure 2 displays the results of the PoLIM’s εq(i, j) parameter recovery of the first condition
(i.e., εq(i, i) = .95) in the latter scenario, in which both the overall error and the monotonicity
conditions held in the simulated data. The figure reads as the previous one. The standard errors
of the estimates are reported in Table 2.

By looking at Fig. 2, it can be seen that, on the average, there are no differences between the
constrained and unconstrained EM estimates, which are both unbiased. This result could suggest
that the two estimation procedures perform equally well, in this condition. However, in the single
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Figure 2.
Parameter recovery of the PoLIM obtained by using the EM algorithm without constraints and with constraints, and by
using the MD-HD and the MD-MD, when both the overall error condition and the monotonicity condition hold in the
data
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sample this could not be true because there are no guarantees that the unconstrained parameter
estimates satisfy monotonicity.

Surprisingly, the recovery of the parameters estimated byusing theMD-MDmethod improved
a lot. Indeed, the biases observed in the former scenario were considerably reduced. The same
consideration does not apply to the HD-MD method, for which over- or under-estimations were
obtained that were similar to those found in the first scenario (Fig. 1). A plausible explanation of
this result could regard the type of the distance that is minimized in the twoMDmethods. Indeed,
only theManhattan distance respects the order on the response levels of L , as established in Eq. (7).
For the same reason, as long as the MD-MD estimates have small bias when monotonicity holds
true, they tend to have large bias when monotonicity does not hold. It is also interesting to note
that the parameter estimates obtained by the MD-MD and by the HD-MD are more similar to one
another when the monotonicity holds in the data than when it does not.

Concerning the estimates of the state parameters πK obtained by the three procedures, they
were very close to the true values also in this scenario. The average absolute bias was in fact
3.57 × 10−5, 5.47 × 10−4, 3.63 × 10−5 and 3.59 × 10−5, respectively, for the constrained and
unconstrained EM, the HD-MD and the MD-MD estimation procedures.

As regards conditions two and three of both scenarios, in which εq(i, i) ≥ .85 and εq(i, i) ≥
.75, respectively, similar results were obtained. The only difference was in the amount of the
under- and over-estimations obtained when the estimation method of the PoLIM’s parameters
was the HD-MD. As the amount of error in the data increased, the under- and the over-estimates
also increased (the figures corresponding to the results of these two conditions can be found in
the supplementary material of the paper).

5. Empirical Application

In this study, the parameters of the PoLIM with and without monotonicity constraints were
estimated on a real data set by using the correspondingmaximum likelihoodprocedures.Moreover,
the model was estimated also by minimum discrepancy by using both the Hamming and the
Manhattan distances. In the case of the MD estimation procedure, only the unconstrained model
was estimated. The likelihoods and the parameter estimates of the four models were compared.

5.1. The Data Set

The data were composed of the responses of N = 3, 673 individuals to the Italian version
(Pedrabissi and Santinello 1989; Vidotto and Bertolotti 1991) of the reduced form of the State
Trait Anxiety Inventory form Y-1 (STAI-Y-1; Spielberger 1983). It is a psychological self-report
questionnaire investigating the “state” anxiety. The STAI Y-1R consists of 10 items for which the
subject establishes his agreement on a 4-point Likert scale, from “not at all” (coded as 0) to “very
much” (coded as 3). Six items of the test have a positive wording (i.e., the higher the level, the
higher the state anxiety), whereas the others have a negative wording (i.e., the higher the level,
the lower the state anxiety). The responses to the latter items were re-scored prior to analyses.
All participants signed the informed consent and were asked to answer to all the items of the
questionnaire. No time limit was imposed.

5.2. Generation of the Belief Structure and Methods

For generating the structure, the data-driven extraction procedure recently proposed by de
Chiusole et al. (2019) has been used. It is an adaptation of the k-median clustering algorithm to
KST, when data consist in answers to items having more than two response categories. Thus, it
can be used for extracting structures from polytomous data.
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This k-median algorithm is an extension of the well-known k-means algorithm to ordinal
data. It consists of an iteration of two steps: the “pattern classification step” and the “centroid
adjustment step.” The former consists of partitioning the whole set of the observed patterns into
the classes represented by centroids (states) that minimize the intraclass dissimilarity based on
the Manhattan distance. The latter step consists in updating the centroids in order to minimize the
Manhattan discrepancy from the data by using the median.

The algorithm requires a set I of fixed cardinality, containing the initial centroids. These
centroids can be randomly extracted out of the observed response patterns.

The whole data sample D was randomly partitioned into three sets: The first set D1 of 1,782
subjects was used for extracting a given number of structures; the second set D2 of 891 subjects
was used for selecting the best extracted structure; and the third setD0 of 1,000 subjects was used
in the end, for testing the “best” extracted structure. The sizes of the two sets D1 and D2 were
obtained by subtracting 1,000 from the size ofD and by dividing the resulting number into about
two thirds for D1 and one third for D2.

A number of 100 different random partitions have been generated from D \ D0. For each of
them, sixteen different cardinalities for the set I were considered, which varied in the interval
{50, 100, ..., 800} with a step of 50. Thus, 100 × 16 = 1,600 different structures have been
extracted. The best one was selected by using the minimax criterion introduced by de Chiusole
et al. (2019) and described below.

The minimax criterion here considered is a discrepancy index computed on the two non-
symmetric discrepancies �(D2,K) and �(K,D2). They allow for computing the average “dis-
tance” between the validation set D2 and each of the extracted structures K. The former discrep-
ancy is computed by

�(D2,K) = 1

|D2|
∑

X∈D2

min{dM (X, K ) : K ∈ K},

where dM (X, K ) is theManhattan discrepancy between response pattern X and state K , computed
as in Eq. (18) in Appendix, whereas the latter is computed by

�(K,D2) = 1

|K|
∑

K∈K
min{dM (X, K ) : X ∈ D2}.

LetK be the collection of all the knowledge structures extracted by k-median. Let, moreover,

z = min
K∈K

max{�(K,D2),�(D2,K)}

be the minimum value across all the extracted structures of the maximum between the two dis-
crepancies�(K,D2),�(D2,K). In de Chiusole et al. (2019), it is proved that the structure K̂ ∈ K
for which max{�(K,D2),�(D2,K)} = z is the “best” in the sense that for any other structure
one of the two discrepancies �(K,D2),�(D2,K) is higher than z.

The four versions of the PoLIM based on this “best” selected structure were fitted to D0.
Concerning the two models obtained by the EM estimation procedures, it is not trivial to compare
them because one is an unconstrained model and the other one is constrained. In this specific
case, they have the same number of free parameters but different parameter spaces. Nonetheless,
the two versions of the model were compared with respect to their log-likelihoods. The same was
done for the PoLIM versions based on the two MD estimation procedures.

Downloaded from https://www.cambridge.org/core. 09 Jan 2025 at 10:14:12, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


L. STEFANUTTI ET AL. 705

5.3. Results and Discussion

The procedure used for extracting the structure from the data selected a structure containing
148 states. Surprisingly, the extracted structurewas quite small, compared to the 410 = 1, 048, 576
potential states (and response patterns). This may be due to the sample size of the data set D1
used for extracting the structure (i.e., 1,782 with 842 distinct response patterns), which is also
somewhat limited compared to the large number of possible response patterns. Nevertheless, this
particular structure represents the best trade-off between “fit” and “complexity” provided by the
minimax criterion.

The PoLIM parameters were estimated by using the constrained and the unconstrained EM
algorithms, and by minimum discrepancy based on both the Hamming and the Manhattan dis-
tances. The empirical test of the model identifiability described in Sect. 4.1 did not detect any
kind of problem. In fact, the maximal standard deviation of the parameter estimates obtained by
repeatedly estimating them on the same sample from different starting points was 3.17 × 10−5.

The log-likelihoods of the two PoLIMs estimated with the EMwere 7,329 and 7,336, respec-
tively, for the unconstrained and the constrained versions. The log-likelihoods of the two PoLIMs
estimated with the MD were 7,646 and 7,597, respectively, when the Hamming and the Manhat-
tan distances were used. The following considerations can be drawn: (1) The two EM estimation
procedures obtained smaller log-likelihoods than the twoMD procedures; (2) Comparing the two
MD procedures, the one based on the Manhattan distance obtained the smallest log-likelihood;
(3) Comparing the two EM procedures, the unconstrained PoLIM exhibited the smallest log-
likelihood, even if by a small amount. On the whole, these results could suggest that for the most
part of the items the monotonicity constraint holds in the data, with few exceptions. For verify-
ing this, the unconstrained parameter estimates were analyzed (the estimates of the constrained
PoLIM are provided as supplementary material of the paper).

Figure 3 displays the unconstrained PoLIM’s parameter estimates obtained for each item
q ∈ Q (x-axis of the panels). Each panel of the figure displays the estimates of a particular εq (i, j).
Rows of the figure represent the K (q) values, whereas columns represent the R(q) values. The
error bars represent the bootstrapped standard errors of the estimates. Several interesting results
have been found. In most cases, the highest estimates were observed for the ε̂q(i, i) parameters
(diagonal panels), with the exception of ε̂4(3, 3), which was smaller than ε̂4(3, 2), and of ε̂6(4, 4),
which was smaller than ε̂6(4, 3). This result suggests that the modality condition is respected by
the ε̂q(i, j) parameters for almost all the levels of almost all the items.

Concerning the other εq(i, j) parameters, moving away from the diagonal values, an overall
decrease in the estimates was observed. This result could suggest that a monotonicity condition
across the εq(i, j) parameters is plausible. Nonetheless, some parameter estimates did not satisfy
the monotonicity (e.g., ε̂6(4, 3) > ε̂6(4, 4) > ε̂6(4, 2) > ε̂6(4, 1)).

A separate comment has to be done on Item 4. It is rather evident that the standard errors
of the estimates of parameters ε̂4(2, 2), ε̂4(2, 3), ε̂4(2, 4), ε̂4(3, 3), ε̂4(3, 4), ε̂4(4, 1), ε̂4(4, 2),
ε̂4(4, 3), ε̂4(4, 4) of Item 4 are quite large. A possible explanation could be a poor information
in the data concerning some levels of Item 4 (only 7 subjects out of 1,000 chose level 4 for this
item).

Figure 4 displays the parameter estimates obtained by the MD estimation procedure applied
by using the Hamming (circles in the panels) and theManhattan (stars in the panels) distances. It is
worth noticing that standard errors of the estimates are not given here. This is because, at the best
of our knowledge, there is not yet a way for obtaining them for the parameters estimated by MD.
The interesting result here is that the MD-MD estimates are quite similar to the ones obtained
by the HD-MD. In the simulations, this happens when the monotonicity condition holds in the
data. This provides further evidence supporting the conjecture that the monotonicity condition is
respected by the data.
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Figure 3.
Parameter estimates of the PoLIM obtained by using the unconstrained EM on real data. The error bars represent the
bootstrapped standard errors of the estimates
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Figure 4.
Parameter estimates of the PoLIM estimated via the MD on a real data set. Stars in the panels refers to the estimates
obtained by using theManhattan distance, whereas circles refers to the estimates obtained by using the Hamming distance
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6. Conclusion

Building upon the polytomous extension of KST proposed in the literature (Schrepp 1997;
Stefanutti et al. 2020), the present work defined a probabilistic framework over it. A version of
the BLIM for polytomous data has been proposed that is called PoLIM. Similar to the BLIM,
the PoLIM considers a probability distribution over the states of the structure (which accounts
for the different frequency of the states in the population) and error probabilities for the items
(which account for inconsistencies between “true” and observed item levels). At least two relevant
differences between the BLIM and the PoLIM can be outlined. The first one concerns the number
of error probabilities that are needed to account for the aforementioned inconsistencies. While
two error probabilities per item are sufficient in the BLIM, a larger number is required in the
PoLIM. This is because the number of ways in which “true” and observed item levels can differ
increases with the number of levels in L . The second difference between the two models concerns
the ways in which monotonicity of the error probabilities can be defined. There are only two
distinct forms of monotonicity for the error probabilities of the BLIM that are named row and
column monotonicity in this article. In the PoLIM, each of these two forms of monotonicity can
be generalized in at least three different ways, which have been denoted as modality, monotonicity
and overall error.

Two different types of algorithms for estimating the PoLIM’s parameters have been derived.
The former type is the well-knownmaximum likelihood estimation via the EM algorithm.More in
detail, two different variants of the EM have been derived, one imposing monotonicity constraints
across the error parameters of the items and one without any kind of constraints. The latter type
of algorithm developed for estimating the PoLIM is by minimum discrepancy.

All the algorithms have been tested in a simulation study. The algorithms differed in their
capability of recovering the true parameter values. The unconstrained EM estimates of the error
probabilities largely resembled the true values, whether (row) monotonicity was satisfied or not.
Instead, the constrained EM produced unbiased estimates only when the (row) monotonicity was
satisfied by the data. Some rather small biases were observed in HD-MD estimates whose size
was not affected by monotonicity. Conversely, the MD-MD estimates largely reproduced the true
values only when monotonicity was satisfied.

An application of the PoLIM to empirical data showed that the model can be successfully
applied to polytomous data from psychological assessment, paving the way to a number of appli-
cations of KST outside the area of knowledge and learning assessment.

As for the most part of latent class models, the identifiability of the parameters of the BLIM
is an important issue. In general, the BLIM is not globally identifiable. Nonetheless, it proved to
be locally identifiable under rather standard conditions. In the last years, the identifiability of the
BLIM has been widely explored e.g., Heller 2017; Spoto et al. 2012, 2013; Stefanutti et al. 2012,
2018; Stefanutti and Spoto 2020 providing a more in-depth understanding of the characteristics of
the unidentifiable dichotomous structures and providing useful tools for testing the identifiability
of the model. For what concerns the PoLIM, this issue has not been studied in detail yet. Possible
ways for detecting PoLIM’s unidentifiability, other than its empirical evaluation conducted in the
present research, may refer either to the classical analysis of the rank of the Jacobian matrix, or to
a tentative extension to the polytomous case of the transformational approach developed for the
dichotomous one (Spoto et al. 2012, 2013; Stefanutti et al. 2018; Stefanutti and Spoto 2020). For
the dichotomous case, some solutions have been provided to cope with the unidentifiability issue,
although not completely effective. The most promising one was the introduction of equivalent
items, that is, items that are contained in all the same states in a structure (Spoto et al. 2013).
This operation proved to be effective in most cases, but Heller (2017) showed that it fails to solve
unidentifiability issues under particular conditions. The analytical study of the identifiability of
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PoLIM needs to be carried out, especially with respect to local identifiability, while it should be
reasonable to assume that it is not globally identifiable.

One of the most relevant applications of KST is adaptive assessment. It aims at uncovering
the state of a student by presenting her with only a minimal number of items. Adaptive assessment
has been found to be a better experience for individuals because the test is tailored on each of
them instead of being fixed (Deville 1993; Linacre 2000). The probabilistic framework introduced
in this article could form the basis for the development of a polytomous version of the adaptive
assessment procedure proposed in KST by Falmagne and Doignon (1988a). This procedure has
been studied by Anselmi et al. (2016), Heller and Repitsch (2012), and Hockemeyer (2002), and
applied to psychological assessment byDonadello et al. (2017). The procedure is currently used by
the ALEKS (acronym for Assessment and LEarning in Knowledge Spaces) system to adaptively
assessing students’ knowledge in mathematics, business, science and behavioral science (see,
e.g., Reddy an Harper 2013; Falmagne and Doignon 2011) . Such a procedure would require the
introduction of a likelihood function over the structure that expresses the plausibility of the states.
The likelihood function is updated at each step of the assessment, according to an individual’s
response to the presented item and to the error probabilities of the PoLIM. The assessment would
stop when a large enough portion of the likelihood is concentrated on a unique state, which then
is regarded as the uncovered state of the individual.
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A. Estimating the Parameters of the PoLIM

A.1. Estimation by Unconstrained Maximum Likelihood

Maximum likelihood estimation of the parameters of the BLIM model via the expectation–
maximization (EM) algorithm was developed by Stefanutti and Robusto (2009). In this section,
an EM algorithm is described which can be applied for estimating the parameters of the PoLIM.
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For both Q and L nonempty and finite, the data set is denoted by the pair (LQ, F), where
F : LQ → R

+ is a frequency distribution over the response patterns R ∈ LQ . Thus, F(R) ≥ 0
is the observed frequency of response pattern R ∈ LQ . The sample size is N = ∑

R∈LQ F(R).
For i = 1, 2, . . . , N , let Ri ∈ LQ denote the response pattern of the i-th subject in the data set.
Let Ki ∈ K be the (unobservable) state of this subject. The “complete log-likelihood” of the
PoLIM model is

L =
N∑

i=1

ln P(Ri |Ki )πKi

=
N∑

i=1

ln

⎛

⎝
∏

q∈Q
εq(Ki (q), Ri (q))

⎞

⎠ +
N∑

i=1

ln πKi

=
N∑

i=1

∑

q∈Q
ln εq(Ki (q), Ri (q)) +

N∑

i=1

ln πKi .

The conditional expectation of the complete log-likelihood, given the vector θ of the model
parameters, and the data set (LQ, F) is

E =E

⎛

⎝
N∑

i=1

∑

q∈Q
ln εq(Ki (q), Ri (q)) +

N∑

i=1

ln πKi |θ
⎞

⎠

=
N∑

i=1

∑

q∈Q
E

(
ln εq(Ki (q), Ri (q))|θ) +

N∑

i=1

E
(
ln πKi |θ

)
.

Concerning the left-hand term of the sum:

E1 =
N∑

i=1

∑

q∈Q
E

(
ln εq(Ki (q), Ri (q))|θ)

=
N∑

i=1

∑

q∈Q

∑

K∈K
Pθ (K |Ri ) ln εq(Ki (q), Ri (q))

=
∑

q∈Q

∑

R∈LQ

∑

K∈K
F(R)Pθ (K |Ri ) ln εq(Ki (q), Ri (q)),

where

Pθ (K |Ri ) = Pθ (Ri |K )πK
∑

K ′∈K Pθ (Ri |K ′)πK ′

is the posterior probability of K , given response pattern Ri , obtained by an application of the
Bayes theorem with model parameters θ .
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As for the right-hand term,

E2 =
N∑

i=1

E
(
ln πKi |θ

)

=
∑

R∈LQ

∑

K∈K
F(R)Pθ (K |R) ln πK .

This completes the so-called expectation step of the EM. The “maximization step” consists of
finding model parameter values that maximize the negative of (thus, indeed, minimize) the two
quantities E1 and E2. It is important to observe that E1 only depends on the εq parameters, whereas
E2 only depends on the πK parameters. For both quantities, minimization is constrained. For E1,
the constraint is given by the fact that

∑

j∈L
εq(i, j) = 1 (13)

for all i ∈ L and all q ∈ Q. For E2, the constraint is
∑

K∈K
πK = 1. (14)

In both cases, Lagrange multipliers can be applied. Given the constraints, the quantity that has to
be maximized by the εq parameters is thus

E∗
1 = E1 +

∑

q∈Q

∑

i∈L
λqi

⎛

⎝1 −
∑

j∈L
εq(i, j)

⎞

⎠ ,

=
∑

q∈Q

∑

R∈LQ

∑

K∈K
F(R)Pθ (K |R) ln εq(K (q), R(q)) +

∑

q∈Q

∑

i∈L
λqi

⎛

⎝1 −
∑

j∈L
εq(i, j)

⎞

⎠ ,

where λqi is the Lagrange multiplier for level i of item q. Differentiating with respect to εu(v, z),
u ∈ Q, v, z ∈ L ,

∂E∗
1

∂εu(v, z)
= 1

εu(v, z)

∑

Kuv

∑

Ruz

F(R)Pθ (K |R) − λuv.

By setting to zero this derivative and solving for εu(v, z), one obtains

εu(v, z) = 1

λuv

∑

Kuv

∑

Ruz

F(R)Pθ (K |R). (15)

Summing both sides of the equation across all z ∈ L ,

∑

z∈L
εu(v, z) = 1

λuv

∑

z∈L

∑

Kuv

∑

Ruz

F(R)Pθ (K |R).
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By the constraint (13),
∑

z∈L εu(v, z) = 1, hence

λuv =
∑

z∈L

∑

Kuv

∑

Ruz

F(R)Pθ (K |R).

By inserting the right-hand side of this last equation into (15), one finally obtains the re-estimation
equation of the εq(i, j) parameters by the EM algorithm:

εu(v, z) =
∑

Kuv

∑
Ruz

F(R)Pθ (K |R)
∑

z∈L
∑

Kuv

∑
Ruz

F(R)Pθ (K |R)
.

The re-estimation equation of theπK probabilities is identical to those for the dichotomous BLIM,
described in, e.g., Stefanutti and Robusto (2009).

A.2. Estimation by Constrained Maximum Likelihood

Themaximum likelihood estimation of the parameter of the PoLIMwithmonotonicity constraints
can be obtained via the EM algorithm in a rather straightforward way. The reparameterization
described in Sect. 3.2 is a bijective transformation of the conditional probabilities εq into the odds
υq and ωq . The monotonicity constraints are respected if both these odds lie with the (0, 1) open
interval for each of the items q and every pair i, j ∈ L of levels.
The EM algorithm described in the previous section for the unconstrained model can be modified
as follows. At the outset, the initial guesses of the υq and ωq parameters are randomly generated
so that all of them lie within the (0, 1) open interval. The initial guesses of the εq probabilities
are obtained from the υq and ωq via the proper transformation (Sect. 3.2). Then, at each iteration

n > 0 of the EM algorithm, the ε
(n+1)
q parameters are obtained by applying the unconstrained

updating formulae of the EM. They are then transformed into the ω
(n+1)
q and υ

(n+1)
q odds. For

each item q ∈ Q, and pair of levels i, j ∈ L such that i < j the condition υ
(n+1)
qi j ∈ (0, 1)

is tested. If the test is successful, then nothing need be done; if the test fails (in this case one
has υ

(n+1)
qi j > 1), then υ

(n+1)
qi j is set to a value in between υ

(n)
qi j and 1 (different criteria can be

applied for choosing such value; randoms generation with continuous uniform distribution in the
interval [υ(n)

qi j , 1] was chosen in the implemented procedure). A similar procedure is followed for

the ωq parameter updates. After all checks are accomplished, the υ
(n+1)
q and ω

(n+1)
q parameters

are transformed back to the ε
(n+1)
q parameters, and if a termination criterion is not reached, a new

iteration of the EM algorithm takes place.

A.3. Estimation by Minimum Discrepancy

This section presents an extension of the minimum discrepancy (MD) method (Heller and Wick-
elmaier 2013) for estimating the parameters of the PoLIM. Assumptions of the MD method are:

A1 The response pattern is always generated by a belief state that is at a minimum distance
from it.

A2 The belief states at a minimum distance from the response pattern have the same prob-
ability of generating it.

The data set is denoted via a function F : LQ → R
+ assigning observed frequencies to elements

in LQ and a collectionR = {R ∈ LQ : F(R) > 0} of observed elements in LQ , which are called
response patterns.
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Let d : LQ × LQ → R
+ ∪ {0} be a metric. The distance of a response pattern R ∈ LQ from the

structure K, based on the metric d, is defined to be

D(R,K) = min{d(R, K ) : K ∈ K}. (16)

Among possible metrics d, the Hamming and the Manhattan distances are considered here. The
Hamming distance between R ∈ LQ and K ∈ K is defined as

dH (R, K ) =
∑

q∈Q
δH (R(q), K (q)), (17)

where δH is given in Eq. (5). The Manhattan distance between R ∈ LQ and K ∈ K is defined as

dM (R, K ) =
∑

q∈Q
δM (R(q), K (q)), (18)

where δM is defined in Eq. (6).
Under Assumption A1, let zRK be an indicator function obtained by defining, for all R ∈ R and
all K ∈ K

zRK =
{
1 if d(R, K ) = D(R,K),

0 otherwise.

For a given response pattern R ∈ R, let zR+ = ∑
K∈K zRK denote the number of belief states in

K that are at a minimum distance from R. Under Assumption A2, the estimate of the conditional
probability of a belief state K ∈ K, given a response pattern R ∈ R, is P(K |R) = zRK /zR+.
The MD estimators are derived in the following way. The probability distribution over the belief
states K ∈ K is estimated by

π̂K =
∑

R∈R(zRK /zR+)F(R)
∑

R∈R F(R)
.

With i, j ∈ L being any two levels, the conditional probability of observing response R(q) = j
to item q, given the level K (q) = i assigned by the belief state K to q, is estimated by

ε̂q(i, j) =
∑

K∈Kq (i)
∑

R∈Rq ( j)(zRK /zR+)F(R)
∑

K∈Kq (i)
∑

R∈R(zRK /zR+)F(R)
,

where Kq(i) is the collection of belief states in K assigning level i to item q and Rq( j) is the
collection of response patterns inR assigning level j to item q. Unlike the EM algorithm, theMD
method calculates π̂K and ε̂q(i, j) in a non-iterative way. This makes it particularly appealing for
its computational efficiency.
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