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Abstract
The purpose of this paper is to group the flight data phases based on the sensor readings that are most distinctive
and to create a representation of the higher-dimensional input space as a two-dimensional cluster map. The research
design includes a self-organising map framework that provides spatially organised representations of flight signal
features and abstractions. Flight data are mapped on a topology-preserving organisation that describes the similarity
of their content. The findings reveal that there is a significant correlation between monitored flight data signals and
given flight data phases. In addition, the clusters of flight regimes can be determined and observed on the maps. This
suggests that further flight data processing schemes can use the same data marking and mapping themes regarding
flight phases when working on a regime basis. The contribution of the research is the grouping of real data flows
produced by in-flight sensors for aircraft monitoring purposes, thus visualising the evolution of the signal monitored
on a real aircraft.

Nomenclature

X Input data set
x Input data
M Set of neurons
m Network neuron
W Set of weights
w Weight
BMU Best matching unit
d Unit distance
α Learning factor
h Neighbourhood function
rb, rj Node coordinates
δ Width – neighbourhood function

1.0 Introduction
Current trends in digital signal processing suggest a growing role in utilising and extracting information
from unprecedented volumes of data. While the large-scale data sets can be perceived as a significant
value source, big complications also arise with them. As with all commercial airliners, the operational
data is monitored under various phases or regimes, making analytics often a challenging task. These
phases or regimes can be difficult to identify and analyse as they may not conform to a normal distribution
or follow a predictable pattern. However, cluster analysis is a useful tool for analysing such data in distinct
groups, particularly for monitored data exhibiting different phases or regimes over time. Furthermore,
unsupervised clustering does not require ground truth while classifying the data, so there is no need
for an expert to attribute sample labels. Avoiding such a costly and time-consuming task has particular
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Figure 1. Flight phases.

advantages in making algorithm automatisation easier. Notwithstanding the fact that the clustering has
been addressed in many contexts with a broad appeal and efficacy in exploratory data analysis, it is a
combinatorially challenging task, and disparity in contexts has made the adaptation of concepts slow to
occur [1]. In flight operations, the data monitoring tends to involve multiple signals measured by sensors
present on the aircraft, and identifying phases of these data can help in understanding the safety events
which may result in a potentially hazardous state [2]. Considering the fact that many clustering methods
are proposed in the literature, they can be used for the categorisation of the flight phases by assigning data
together with common properties and separating the dissimilar ones in other phases. Thus, clustering
can play an important role in tracking similar behaviours, discovering hidden structures, and detecting
patterns during a flight [3].

Even though commercial operations generally involve well-defined flight phases (see Fig. 1), there
will always be missions with hard-to-identify phases which make it difficult to define a distinct stage and
flight patterns [2]. Moreover, there is a crucial need in the visual inspection of data in these phases to
have an intuition of the underlying structures [4]. These data often lie in a high-dimensional space, and
it is required to reduce the number of dimensions to a lower degree. In this context, this study addresses
the need by offering an automated flight identification system and comprehensive map visualisation.

The remainder of this paper is structured as follows: it first reviews the extant literature relevant to
unsupervised clustering and flight phases. Then, the research procedures and data analysis are presented
in the methodology section. This is followed by testing of the method and findings of the research inquiry.
The paper concludes with a discussion of implications and further work.

2.0 Background and related work
Efforts to improve safety have drawn attention to flight data monitoring – the routine data collection
and analysis implemented in commercial operations [5]. A large amount of flight data is generated each
day and it is impossible for human experts to manually review all the recorded data [6]. Instead, the
literature has witnessed various research undertaken on the use of data mining and machine learning
techniques to analyse flight data efficiently to provide information for corrective measures. Specifically,
these flight data analyses can compare various flight parameters and identify new or unknown patterns,
thus improving flight safety and operations while reducing fuel consumption, maintenance and insurance
costs [7].

Flight phases and their identification can help in analysing flight data, which might hint at valu-
able information. Chati and Balakrishnan [8] dealt with this subject and studied the variation of engine
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performance parameters using flight data with the altitude profile in all flight phases. With an alternative
goal, Li et al. [9] presented a method evaluating flight data and detecting anomalies without requiring
the predefined thresholds of particular parameters. Their work used cluster analysis to classify flight
data patterns and identify those that differ from the majority of the flight parameters.

The approach of cluster-based anomaly detection was extended by a further method that can help
domain experts to find anomalies and associated risks [10]. However, transient flight phases can reveal
much more information than safety, and clustering can help to discover hidden structures as well as
frequent or rare flight sequences. To that end, Faure et al. [3] provided an unsupervised network method –
self-organizing maps (SOM) – that can extract both transient and stabilised phases of flight signals.
While SOMs have been in existence for a while, their usage in the particular scenario of visualising
flight regimes is truly innovative. By employing SOMs in this context, significant advantages can be
gained. These include the ability to pinpoint regions for enhancing flight plans and facilitating better
analysis by categorising data into more similar flight phase states. A similar work using the same method
applied an automatic cluster to aircraft engine transient data phases and validate the results with expert
knowledge [11].

A massively parallel tool for SOM training on large data sets (such as the flight parameters) was
introduced by Wittek and Gao [12]. The library, called Somoclu, provides an advanced visual inspection
that can provide an intuition of the underlying structures. Therefore, this can contribute to clustering the
flight data in accordance with the flight phases. Also, there is a promising line of research with massively
parallel architectures and simplification of the workload distribution. These points are of central interest
as this research focuses on representations of flight signal features and abstractions. Essentially, this
paper responds to the call for a novel visualisation of the flight phases and aims to allow further signal
processing methods to discern new behaviours on the flight clusters never observed so far.

3.0 Methodology
SOM signifies an automatic data-analysis method in the unsupervised-learning category of artificial
neural networks (ANN) [13]. Its main objective is to transform complex, nonlinear statistical relation-
ships between an incoming signal pattern of arbitrary dimension into simple geometric relationships
on a low-dimensional mapping in a topologically ordered fashion [14]. This information compression
while preserving the most significant primary data relationships on the display can also be considered
to provide abstractions [15].

SOM configuration used in this paper consists of a finite two-dimensional regular nodes grid. Nodes
are associated with a weight vector – a position in the input space – and while they stay fixed in the
map space, training involves moving weight vectors toward the initial input data. These are illustrated in
Fig. 2 where each node is assigned a weight vector with the same dimensionality.

The SOM algorithm during training forms a nonlinear topology preserving the input data mapping
onto a set of neurons in the network [4, 16, 17]. The input data set with the start (t0) and the end (tf ) of
the current training session is expressed as:

X = {
x(t) |t ∈ {to, . . . , tf

}}
(1)

while the set of neurons is:

M = {m1, . . . , mk} (2)

The network neurons here {m1, . . . , mk} are arranged in a grid, with the corresponding weight
vectors [4].

W = {w1(t), . . . , wk(t)} (3)

An input is then compared with the weight vector of each node by computing the distance (d). Data
paints are mapped to their best matching (BMU) unit, which signifies the node whose weight vector is
most similar to the input.
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Figure 2. A simple Kohonen network, self-organising map.

BMU(x(t)) = nb ∈ M (4)

and the distance of the unit is the lowest.

d(x(t) , wb(t)) ≤ d
(
x(t), wj(t)

) ∀wj(t) ∈ W, (5)

The nodes are organised on a two-dimensional map, and each has two coordinates in a grid. The
weights of the BMU and nodes close to it in the grid are adjusted towards the input vector. The magnitude
of the change declines with iterations and with the distance of the grid from the BMU. The formula for
the adjustment towards the input pattern is:

wj(t + 1) = wj(t) + αhbj(t)
(
x(t) − wj(t)

)
(6)

where the learning factor (α) is between 0 < α < 1 and the neighbourhood function (hbj(t)) gives the
distance between the neurons in different iterations. hbj(t) reduces for nodes away from the BMU in
the grid. A Gaussian function like the following one is frequently used to describe the neighbourhood
function.

hbj = exp

(
− ∣∣∣∣rb − rj

∣∣∣∣
δ(t)

)
, (7)

The coordinates of the nodes are given by “rb” and “rj” and the width by “δ(t) ,” which reduces
through the iterations.

During an epoch, the network is trained with all the data for one cycle. After each epoch, the neigh-
bourhood function decreases and the training stops when the map stops changing. A batch formulation
to update the weights in SOM is generally used in parallel implementations [4].

wj

(
tf

)=
∑tf

t′=t0
hbj(t

′)x(t′)∑tf
t′=t0

hbj(t′)
(8)
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Table 1. Selected flight parameters from NASA Sample Flight Dataset

Label Parameter The PH enumerated codes
FF_1 Fuel Flow 1 0 Unknown
GS Ground Speed 1 Preflight
MACH Mach 2 Taxi
MNS Selected Mach 3 Takeoff
N1_1 Fan Speed 1 4 Climb
OIP_1 Oil Pressure 1 5 Cruise
PI Impact Pressure 6 Approach
PLA_1 Power Level Angle 1 7 Rollout
PSA Average Static Pressure
TAS True Air Speed

PH Flight Phase from Aircraft Condition Monitoring System

4.0 Testing and results
4.1 Flight data
This study aims to thoroughly assess the technique across dynamic flight stages by employing the Sample
Flight Data of NASA’s “The Discovery in Aeronautics Systems Health” (DASHlink) website [18] – a
platform for aeronautics and data mining researchers to collaborate. With this de-identified aggregate
flight data source, it is possible to recognise and examine patterns and target resources, reduce oper-
ational risks, and also improve the overall safety in the airspace. While the actual data were recorded
onboard a single type of regional airliner in commercial operations over a three-year period with detailed
parameters of system performance, aircraft dynamics, and other engineering properties, the data source
claims that records are not part of any Flight Operational Quality Assurance program, and there is no
info that can be traced to a certain airline or manufacturer [18].

Table 1 is a list of flight parameters available in the NASA Sample Flight Data dataset. Even though
the complete list of parameters is longer, only the ones here are used in this work for the sake of successful
clustering. The flight phase from the aircraft condition monitoring system (PH) enumerated codes are
also provided in the table. Figure 3 demonstrates plotting a 3D surface of the x-axis: flight phases,
y-axis: time, and z-axis: flight parameters. Here, the figure shows how the parameters are located under
different regimes (phases). Among these, the unknown time, preparation for flight (preflight), and time
from the application of takeoff power to the altitude of the climb and rollout phase constitute a relatively
lesser portion of the operations. The clustering method is tested using the subset Flight Data For Tail
687_1 of Sample Flight Data. Since the data size is large and the algorithm performance remains stable
even with a smaller fraction, the data set is reduced by returning every hundredth data point of the top
hundred data files of Tail 687_1. Figure 3 shows these flight parameters and their corresponding flight
phases.

The bulk of the flight data (96.7%) in Fig. 3 is the phases of Taxi: moving on the aerodrome surface to
takeoff or after landing; Climb: time from the takeoff phase to a certain altitude above runway elevation
or the first prescribed power reduction; Cruise: the period after a climb to a set altitude and before the
descend; and finally Approach and Landing. In Fig. 4, the parameters in these major flight phases are
shown, and they will be used to test the ability of the methodology to relate the clustering concept
proposed in this work with what is in a real flight data scenario.

With the primary purpose of visualisation, the SOM model is trained to form a large map qualifying
as an emergent self-organising map for the selected data. To train and perform the analysis, the program
uses the Somoclu software library written for the Python programming language for massively paral-
lel implementation of SOM [12]. In particular, it offers fast execution by parallelisation and high-level
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Figure 3. Selected flight parameters in all flight phases.

visualisation of maps. The training network configuration is as follows: the neighbourhood function is
Gaussian, and the map type is planar. The number of columns and rows in the map are 200 and 320,
respectively. The computational resources utilised were provided by Google Colab with local runtime.
The training process was executed on a machine characterised by the following specifications: Linux sys-
tem, x86_64 processor, the release of ’5.15.107+’ and version #1 SMP Sat Apr 29 09:15:28 UTC 2023.
The duration of the training solely for the Somoclu model with reduced data amounted to approximately
1,226 seconds.
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Figure 4. Flight parameters in selected flight phases.

Figure 5 shows the component planes of data clusters in the Sample Flight Data. According to these
output maps, there are some visually recognisable clusters with plain colours. The first obvious one is
on the left of maps, especially on CAS, GS, MACH and TAS. Also, PSA component plane map has a
strong cluster in the same region with blue colour. While there are certain drift indications in the rest
of maps, some content-splitting tendencies can still be indicated. The second cluster can be seen on the
right bottom corner of ALTR and FF_1 as the colourings assigned to these areas cluster nicely. The
overall map results hint at an overlay of two remaining flight phase clusters in drift. However, the certain
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Figure 5. Component planes.

colour shifts in N1_1 A and PLA_1 component planes cast a new light on the separation between these
relatively similar groupings. The clusters on these maps are locally meaningful and can be considered
consistent on a neighbourhood level only. Consequently, some meaningful colour groupings such as the
left bottom in the maps of FF_1, N1_1, N2_1, OIP_1 AND PLA_1 might stand for a sub-cluster of a
flight phase or mostly inactive content. Overall from the results in Fig. 5, it is clear that there is more or
less turbulence in all maps.

In Fig. 6, the component planes are plotted together with the best matching units for each data point.
Below each map, the units are colour-coded with the flight-phase classes of the data points. Depending
on the flight phase (PH) readings of Sample Flight Data, the corresponding elements of selected flight
parameters are chosen and returned with the phase colour.

The results of the SOM cluster analysis showed that there were eight distinct clusters that emerged
from the flight data. These clusters contained flight regimes that were characterised by the parameters;
therefore, they were likely influenced by the aircraft’s various flight dynamics. The identified clusters
also correspond to the expected patterns of each phase and suggest that each flight parameter plays a
role in determining the potential flight regimes experienced by the aircraft.

Overall, these results suggest that the cluster analysis was successful in grouping flight regimes into
distinct clusters based on the input data. Despite the tensions suggested by the results presented in
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Figure 6. Maps showing flight parameter patterns with data points coloured according to the SOM
clusters.

Fig. 5, the colour-coded labels in Fig. 6 represent the clusters that have shown the highest level of success.
This means that the point stacks within these clusters can be easily identified and distinguished.

The discussion section of this article is used to interpret and contextualise the results of the study,
and to discuss the implications of those results in flight settings. In such a case, it would be crucial
to address the importance of reducing flight regimes in order to better match the PH parameter that
was provided by the data set. There are multiple reasons why it would be beneficial to regroup these
regimes into four corresponding flight phases, as it helps in reducing clusters in this particular context.
First, the PH parameter is a measure of the variability of an aircraft’s flight regimes. By reducing the
number of clusters, it would be possible to closely analyse the clusters with PH parameters to the spe-
cific conditions under which the aircraft is operating. This could result in an improved understanding
of the aircraft under multiple operating conditions. With this information, flight plan optimisation can
yield several advantages. Firstly, it enables a more in-depth comprehension of flight dynamics, facilitat-
ing precise modeling and analysis of flight data. Consequently, actionable plans for enhancing aircraft
operations can be discerned. Secondly, processing flight data using the defined flight phases allows
for the extraction of more significant insights. This process contributes to the development of compre-
hensive indicators that offer valuable information across various courses of flight performance. These
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Figure 7. Maps showing flight parameter patterns with reduced SOM clusters.

indicators encompass prognostics and health management, diagnostics, estimation of remaining useful
life, efficiency, time management and operational costs. Leveraging these indicators empowers airlines
and aviation stakeholders to optimise their flight plans, thereby augmenting efficiency and minimising
environmental impact.

In Fig. 7 with the data points given with corresponding flight phase colours, the content can be
mapped and visually depicted to allow areas of regime clusters to be readily identified. For instance, the
flight phases of taxi (blue) and climb (orange) are grouped well with observable margins referring to
their difference from the surrounding clusters. However, this is not as consistent as with what has been
found in the flight phases of cruise (green) and landing (red).

The most plausible explanation is that while these are two separate flight phases, the transition from
cruise to approach is mostly smooth so that there is no strong track between the middle parts of these
clusters in Fig. 7. It can be clearly observed that there is a continuous flow with little deviation from
the expected trajectory. This lack of strong track between the middle parts of these clusters suggests
that the transition itself can be considered a transition regime, characterised by a relatively stable and
uniform progression. In other words, the movement from cruise to approach is not marked by significant
disruptions or deviations as like in other flight phases, but rather a smooth and consistent shift. This
stability is likely due to the consistency of flight operational conditions. Overall, the transition here can
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Table 2. Confusion matrix for the results of the SOM algorithm

Predicted Cluster 0 Pred. Cluster 1 Pred. Cluster 2 Pred. Cluster 3
Actual PHs 0 1877 0 0 11
Actual PHs 1 1 1,809 64 17
Actual PHs 2 31 3 2446 232
Actual PHs 3 93 0 21 1,953
PH/Cluster options are as follows: 0:Taxi; 1:Climb; 2:Cruise; 3:Approach.

Figure 8. U-Matrix with BMU for each data point.

be seen as a smooth and well-controlled process, rather than one marked by significant variations or
disruptions.

Also, it is worth emphasising that the SOM maps reward the stability of flight data in a phase, versus
others changing over time. These can be further observed from the unified distance matrix (U-matrix)
in Fig. 8. The purpose here is to provide a better visual representation of the network topology. The
U-matrix is a representation of a SOM and it depicts the average Euclidean distance between neurons in
the input data dimension space. Assuming N(j) is the neighbours of a neuron j, the height of the unified
distance matrix is as:

U(j) = 1

|N(j)|
∑
i∈N(j)

d
(
wi, wj

)
(9)

Besides some minor clustering errors and outliers in Fig. 8, the SOMs tend to emphasise the com-
mon features of the flight parameters and bring them together. These results found clear support for the
method’s ability to provide meaningful groups or collections in flight data. This is specifically important
when trying to learn about the flight features and organise the data.

Additionally, Fig. 10 provides further results on how the actual PHs and the SOM estimations align
on two-dimensional plots where y axes are one-dimensional arrays of pressure altitude (LSP). These
plots show the clustering accuracy of the proposed method. The summary of prediction results is given
in Table 2 and also illustrated by Fig. 9. The number of both correct and incorrect estimations is given
by the count values and broken down by each cluster. Each row of the matrix represents a PHs class,
while each column is the instances in a predicted cluster. It is important to note that the existing actual
flight phase (PHs) labels are not exclusively relied upon as the definitive ground truth in this approach.
Rather, they are considered a useful indicator for comparison and validation of the model, particularly
in relation to the selected sensors that are believed to have a correlation with the actual flight phase
clusters.

To evaluate the performance of the SOM cluster with the original PHs, a confusion matrix is intro-
duced in Table 2 and also in Fig. 9. It summarises the number of correct and incorrect predictions made
by the SOM. In this context, the rows represent the actual PHs and the columns represent the predicted
regimes by SOM. The cells of the matrix contain the number of instances that fall into each combination
of actual flight phases and predicted clusters. In this sample, the classification matrix is being used to
show the similarities between the actual flight phases and the SOM algorithm predictions. It is important
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Table 3. Classification report for the results of the SOM algorithm

Precision Recall f1-score Support
Regime 0 0.94 0.99 0.97 1,888
Regime 1 1.00 0.96 0.98 1,891
Regime 2 0.97 0.90 0.93 2,712
Regime 3 0.88 0.94 0.91 2,067
Accuracy 0.94 8,558
Macro avg 0.95 0.95 0.95 8,558
Weighted avg 0.95 0.94 0.94 8,558
PH/Cluster options = 0:Taxi; 1:Climb; 2:Cruise; 3:Approach.

Figure 9. Confusion Matrix Plot for model performance – PH/cluster options are as follows: 0:Taxi;
1:Climb; 2:Cruise; 3:Approach.

to note that the confusion matrix is typically used for classification tasks, where the goal is to evaluate
the performance of predictions. In this context, the classification matrix is used solely for comparing the
predicted flight regimes with the actual PHs, without involving actual classification. This comparison
aims to highlight the similarities between the two clusters. PHs labels are not treated as the exclusive
priori truth; rather, they serve as valuable indicators for validation, especially in relation to the selected
sensors that are believed to correlate with the actual flight phase clusters.

Given predicted regimes and true PHs, Table 3 displays several evaluation metrics for each cluster
in the model, as well as the macro average (of the unweighted mean per metric) and weighted average
(of the support-weighted mean per metric). The high level of accuracy indicates that the model was able
to accurately cluster the data into the regimes to correct phases. In general, the results provide a balanced
assessment of the model’s performance.

The evaluation results, depicted in Table 2 and further visualised in Fig. 9, highlight a compara-
tively lower performance in Regime 3. This outcome is consistent with the observations made from the
Confusion Matrix presented in Table 3. It is noteworthy that the performance in Regime 3 may reflect a
transitional phase of the flight, necessitating careful attention to detail. Consequently, this regime may
not exhibit typical characteristics associated with the phase states under consideration. Overall, the eval-
uation results offer a balanced and informative assessment of the model’s performance in classifying
the data into distinct regimes. While the model demonstrates high accuracy in most cases, the specific
challenges encountered in Regime 3 warrant further investigation and potential refinement to ensure
accurate classification in all phases of the flight.
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Figure 10. Comparison of clusters by pressure altitude LSP.

Through the iterative learning process, the SOM develops the capability to effectively classify and
represent input data. This is accomplished by fine-tuning the parameters of its neurons, including their
weights and positions, which play a pivotal role in shaping the SOM’s decision-making process. When
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analysing and comparing the shared states of these parameters in instances of accurate classification
(specifically, matching the actual phase states) and misclassification (specifically, deviating from the
actual phase states), the underlying factors used by the SOM to differentiate the phase state can be
revealed.

By examining the consistent patterns manifested by the parameters in cases of accurate classification,
it is possible to deduce the distinctive features that contribute to the precise identification of phase
states. Conversely, scrutinising the disparate states of the parameters when misclassification or deviation
from the actual phase states can shed light on the factors that lead to erroneous determinations. This
comparative analysis of parameter states, in conjunction with classification outcomes, provides valuable
insights into the decision-making mechanism of the SOM and facilitates a deeper comprehension of its
classification capabilities.

Furthermore, this can enable to identify of the critical attributes or their combinations that are influ-
ential in determining the phase state. By discerning these influential parameters, it is possible to refine
the SOM’s learning process and potentially enhance its classification accuracy. Exploring the states of
the parameters is an essential aspect of understanding the functionality of the SOM and its capability
to effectively capture and represent intricate patterns in complex data. It is crucial to emphasise that the
points labeled as “misclassified” in the aforementioned analysis can be more accurately described as
transitions or clusters that represent various flight phases or states. These points signify instances where
the algorithm identifies a change or shift between different phases or states throughout the course of the
flight. Instead of categorising these points as clear misclassifications, it is noteworthy to acknowledge
them as meaningful signals of the ever-changing characteristics of flight data. The presence of these
points at the boundaries between different states implies that the algorithm may exhibit uncertainty in
accurately classifying them due to the intricate and fluctuating nature of flight conditions.

Understanding these transitions and regime clusters becomes particularly significant when further
research, additional flight data processing, analysis or modeling is required. By separating and treating
these colourings and transitions as distinct entities, it is possible to gain deeper insights and interpret
the outcomes to formulate actionable plans.

Figure 10 supports the previous result by showing the graphs of pressure altitude versus the flight
parameters on scatter plots. The estimated flight regimes and actual PH clusters are represented by
different colours on the graph, with each colour corresponding to a particular flight regime or PH cluster.
The plots could allow to visualise the relationship between pressure altitude and the flight parameter and
to see how the values of these variables change and gather over the clusters. It also allows to compare
the estimated flight regimes and actual PH clusters to one another and to see the minor discrepancies
and overlapping cluster patterns in the data.

5.0 Conclusion
This study investigated the clustering of the flight parameters and their potential groupings at differ-
ent flight phases, which might provide valuable information for flight data analytics and data-driven
decisions. By analysing various flight parameters, the self-organising map was able to accurately group
similar data points together, allowing for a better understanding of the patterns and behaviours of the
flight. One potential application of this clustering analysis is in the optimisation of flight operations.
By identifying common patterns in flight data, it may be possible to develop more efficient flight plans
or to offer opportunities for flight data analysis that can automate analytical model building. Moreover,
the ability to group flight data points by operational regimes can allow for a more detailed analysis of
the specific challenges and requirements of each flight phase, which could inform the development of
target-oriented solutions for these phases. This can also provide insight into the relationships between
parameters and help identify potential issues that may occur during different phases of flight.

The study also validated that mapping from a higher-dimensional flight data space to a lower-
dimensional one can provide a classification by the smallest distance metric so that the segmentation can
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group the data according to their flight phases. The results reveal a significant relationship between the
cluster outputs and the given flight phases, indicating that the SOM network appears to have classified
the flight into distinct flight phase groups. Nevertheless, there are relatively uncertain transitions between
the cruise and approach phases along with some outliers and clustering errors. Enhancing the results
can be achieved by applying the proposed approach to additional flight data processing, analysis and
modeling endeavours, thereby enabling the interpretation of outcomes for the formulation of actionable
plans. This subsequent investigation holds the potential to establish a more comprehensive set of flight
data parameters, which can furnish more substantial and meaningful information. Acknowledging the
need for additional research and analysis is imperative to authenticate and fortify the outcomes derived
from the proposed approach. Expanding the scope of the proposed method to encompass larger datasets
and conducting meticulous data processing, analysis and modeling activities will engender a more pro-
found comprehension of flight dynamics. Additionally, this comprehensive investigation will facilitate
the development of concrete plans that can be executed to optimise flight operations.
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