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CAR on Fock spaces

This chapter is devoted to the study of Fock representations of the canonical anti-
commutation relations, a basic tool of quantum many-body theory and quantum
field theory. It is parallel to Chap. 9, where Fock CCR representations were
studied.

The basic framework is almost the same as in Chap. 9. Throughout this chapter
Z is a Hilbert space, called the one-particle space. We will consider the Fock CAR
representation acting on the fermionic Fock space Γa(Z).

As in Sect. 1.3, we introduce the space

Y = Re(Z ⊕ Z) := {(z, z) : z ∈ Z},
which will serve as the dual phase space of our system. Recall that in the bosonic
case we equipped Y with the structure of the Kähler space consisting of the
anti-involution j, the Euclidean scalar product · and the symplectic form ω:

j(z, z) := (iz, iz), (13.1)

(z, z) · (w,w) := 2Re(z|w), (13.2)

(z, z)·ω(w,w) := 2Im(z|w) = −(z, z) · j(w,w). (13.3)

In our presentation of the fermionic case, we will need the Kähler anti-involution
j. The symplectic form ω will not be used. Instead of the scalar product (13.2)
we will use another scalar product,

(z, z)·ν(w,w) := Re(z|w) =
1
2
(z, z) · (w,w).

Again we will avoid identifing Z with Y.
CY is identified with Z ⊕ Z by the map

CY � (z1 + z1) + i(z2 + z2) �→ (z1 + iz2 , z1 − iz2) ∈ Z ⊕ Z.

Y# , the space dual to Y, is canonically identified with Re(Z ⊕ Z) by using the
scalar product (9.2), and CY# is identified with Z ⊕ Z.

13.1 Fock CAR representation

Consider the fermionic Fock space Γa(Z). Recall that, for z ∈ Z, a∗(z), resp.
a(z) denote the corresponding creation, resp. annihilation operators defined in
Sect. 3.4.
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338 CAR on Fock spaces

13.1.1 Field operators

Definition 13.1 For y = (z1 , z2) ∈ CY, the corresponding field operator acts
on Γa(Z) and is defined as

φ(z1 , z2) := a∗(z1) + a(z2). (13.4)

Recall that I := (−1)N .

Theorem 13.2 (1) Operators φ(z1 , z2) are bounded and

φ(z1 , z2)∗ = φ(z2 , z1).

In particular, φ(z, z) are self-adjoint.
(2) [φ(w1 , w2), φ(z1 , z2)]+ = (w2 |z1) + (z2 |w1). Hence, in particular,

[φ(w,w), φ(z, z)]+ = 2(w,w)·ν(z, z)1l.

(3) [φ(z1 , z2), I]+ = 0.
(4) If p ∈ B(Z), we have

Γ(p)φ(z1 , z2) = φ(pz1 , p∗−1z2)Γ(p).

(5) If h ∈ B(Z), we have

[dΓ(h), φ(z1 , z2)] = φ(hz1 ,−h∗z2).

(6) We have an irreducible CAR representation,

Y � (z, z) �→ φ(z, z) ∈ Bh
(
Γa(Z)

)
. (13.5)

For further reference let us record:

Proposition 13.3 Let A ∈ B
(
Γa(Z)

)
anti-commute with φ(y), y ∈ Y. Then A

is proportional to I.

Definition 13.4 (13.5) is called the Fock CAR representation over Y in Γa(Z).

Remark 13.5 Suppose that Z = Cm and (e1 , . . . , em ) is the canonical basis of
Cm . Clearly, Γa(C) can be identified with C2 . Therefore, we have the identifica-
tion

⊗m C2 � ⊗m Γa(C) � Γa(Cm ).

Under this identification, φJW
2j−1 , resp. φJW

2j acting on ⊗m C2 defined in (12.12)
coincides with φ(ej , ej ), resp. φ(iej ,−iej ) acting on Γa(Cm ). Note that

(e1 , e1), (ie1 ,−ie1), . . . , (em , em ), (iem ,−iem )

is an o.n. basis of (Y, ν). Thus, the Jordan–Wigner representation over R2m in
⊗m C2 coincides with the Fock representation over R2m on Γa(Cm ).
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13.1.2 Extended Fock representation

Note that I implements the parity transformation, since

Iφ(z, z)I−1 = −φ(z, z).

Let us extend the scalar product ν to the space Y ⊕ R by

(z1 , z1)·ν(z2 , z2) + t1t2 := Re(z1 |z2) + t1t2 .

Clearly,

Y ⊕ R � (z, z, t) �→ φ(z, z) + tI ∈ B
(
Γa(Z)

)
(13.6)

is also an irreducible representation of the CAR.

Definition 13.6 (13.6) is called the extended Fock CAR representation over
Y ⊕ R in Γa(Z).

Remark 13.7 Extending Remark 13.5 in an obvious way, we note that the
representation (12.14) over R2m+1 in ⊗m C2 can be identified with the extended
Fock representation over R2m+1 in Γa(Cm ).

13.1.3 Slater determinants

Let W be a finite-dimensional oriented subspace of Z. (For the definition of an
oriented complex space see Subsect. 3.6.8.) Let (w1 , . . . , wn ) be an o.n. basis of
W compatible with the orientation. Then

a∗(w1) · · · a∗(wn )Ω =
√

n! w1 ⊗a · · · ⊗a wn (13.7)

is a normalized vector.

Definition 13.8 Vectors of the form (13.7) are called Slater determinants. If
W = Z, then (13.7) is called a ceiling vector.

If u ∈ U(W), then

a∗(uw1) · · · a∗(uwn )Ω = (det u)a∗(w1) · · · a∗(wn )Ω.

Thus a Slater determinant depends only on the oriented subspace W.

13.2 Real-wave and complex-wave CAR representation
on Fock spaces

In Subsects. 12.4.2 and 12.5.3 we introduced the concept of a real-wave CAR
representation by using the GNS representation for the canonical tracial state.
There exists a convenient alternative description of this representation that uses
the Fock CAR representation, which we will discuss in this section.
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340 CAR on Fock spaces

We will also introduce the complex-wave CAR representation – an analog of
the complex-wave CCR representation, which we discussed in Subsect. 9.2.1.

13.2.1 Real-wave CAR representation on Fock spaces

Let Y be a real Hilbert space. Clearly, CY is a complex Hilbert space possess-
ing a natural conjugation. For typographical reasons, this conjugation will be
sometimes denoted χ.

In this subsection we continue to discuss the real-wave representation in an
arbitrary dimension.

We will consider the Fock space Γa(CY) equipped with the corresponding
conjugation. Γa(Y) is its real subspace of elements fixed by the conjugation
Γ(χ). Linear operators that preserve Γa(Y) are called real.

Introduce the following operators on the fermionic Fock space Γa(CY):

φl(y) := a∗(y) + a(y),

φr(y) := Λ
(
a∗(y) + a(y)

)
Λ, y ∈ Y,

where we recall that Λ = (−1)N (N −1)/2 .

Theorem 13.9 (1) We have two mutually commuting CAR representations:

Y � y �→ φl(y) ∈ Bh
(
Γa(CY)

)
, (13.8)

Y � y �→ φr(y) ∈ Bh
(
Γa(CY)

)
. (13.9)

That means, for y1 , y2 ∈ Y,

[φl(y1), φl(y2)]+ = [φr(y1), φr(y2)]+ = 2y1 ·νy21l, [φl(y1), φr(y2)] = 0.

(2) We have

φl(w) = a∗(w) + a(χw), φl(w)∗ = φ(χw), w ∈ CY. (13.10)

(3) Let πl : CARC ∗
(Y) → B

(
Γa(CY)

)
be the ∗-homomorphism obtained by

Prop. 12.31 from the CAR representations (13.8). Then Ω is a cyclic vec-
tor representative for the state tr and the representation πl. Therefore, πl

is the GNS representation of CARC ∗
(Y) for the state tr and it extends to a

∗-isomorphism of CARW ∗
(Y) onto πl

(
CARC ∗

(Y)
)′′

.
(4) Let J be the modular conjugation for the state tr. Then J = ΛΓ(χ). We have

Jφl(y)J = φr(y), y ∈ Y.

(5) We have

πl(c(A)
)

= Γ(χ)πl(A)Γ(χ), A ∈ CAR(Rn ).

Consequently, πl
(
Cliff(Y)

)
consists of real elements of πl

(
CAR(Y)

)
.

Proof Statements (1) and (2) are simple computations.
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Consider the GNS representation of CARC ∗
(Y) w.r.t. the state tr, denoted

(Htr , πtr ,Ωtr). The Hilbert space Htr contains CARC ∗
(Y) as a dense subspace,

equipped with the scalar product

trA∗B, A,B ∈ CARC ∗
(Y).

Let us define a linear operator
a l
Γa(CY) � a �→ Ua := Op(a) ∈ CARC ∗

(Y) ⊂ Htr .

The identity

trOp(b)∗Op(c) = (b|c) (13.11)

implies that U extends to a unitary operator

U : Γa(CY) → Htr .

U maps Ω ∈ Γa(CY) onto Op(1) = 1l = Ωtr.
We have

πtr(A)B = AB, A ∈ CARC ∗
(Y), B ∈ CARC ∗

(Y) ⊂ Htr .

In particular, consider A = Op(y) = φ(y), y ∈ Y, and B = Op(b). Adding up
(12.27) and (12.28) we obtain

πtr
(
φ(y)
)
Op(b) = Op

(
y·b + (νy)·∇v b

)
.

Therefore,

U∗πtr
(
φ(y)
)
U = y·v + (νy)·∇v

= a∗(y) + a(y) = πl(y).

This proves (3). �

By the above theorem, we can identify the representation πl with the real-wave
representation πtr considered in Subsect. 12.5.3.

13.2.2 Operators in the real-wave CAR representation

This subsection is parallel to Subsect. 9.3.5, where we studied operators in the
real-wave CCR representation. For brevity, we will write R for CARW ∗

(Y).
Let us use the terminology of non-commutative probability spaces, introduced

in Sect. 6.5. By Thm. 13.9, we have a canonical unitary identification

L2(R, tr
) � Γa(CY). (13.12)

Thus the real-wave representation acts on a “non-commutative L2 space”, which
we view as a justification for the name “real-wave representation of CAR” for
the constructions described above.
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342 CAR on Fock spaces

Definition 13.10 Let a be a contraction on Y. We define an operator Γrw(a)
on L2 (R, tr) = Γa(CY) by

Γrw(a) = Γ(aC).

Proposition 13.11 (1) Let a be a contraction on Y, b, c ∈ Γa(CY) and c =
Γrw(a)b. Then, if we use the identification (13.12), we have

Op(c) = Op
(
Γ(a)b

)
.

(2) Let Y1 be a closed subspace of Y and e1 the orthogonal projection onto Y1 .
Then

Γrw(e1) = EY1 ,

where EY1 is the conditional expectation introduced in Subsect. 12.5.4.
(3) Let r ∈ O(Y). Then r̂, defined originally as an automorphism of R, can be

extended to a unitary operator on L2(R, tr). If we denote this extension also
by r̂, we have

Γrw(r) = r̂.

The following fermionic analog of Prop. 9.29 is due to Gross (1972):

Proposition 13.12 Let a ∈ B(Y). Then if ‖a‖ ≤ 1, Γrw(a) is positivity pre-
serving. It follows that Γrw(a) extends to a contraction on Lp(R, tr) for all
1 ≤ p ≤ ∞.

Proof We follow the proof in Prop. 9.29, writing a as j∗uj. The map Γrw(j)
becomes

L2(R, tr) � A �→ A⊗ 1l ∈ L2(R, tr)⊗ L2(R, tr),

which is positivity preserving, as well as Γrw(j∗) = Γrw(j)∗. If A ∈ R⊗R, then
Γrw(u)A as an operator on Γa(CY ⊕ CY) equals Γ(uC)AΓ(uC)−1 , which belongs
to R⊗R and is positive if A is. Hence, Γ(uC) is positivity preserving. The second
statement then follows from Thm. 6.81. �

The following fermionic version of Nelson’s hyper-contractivity theorem is due
to Gross (1972) and Carlen–Lieb (1993):

Theorem 13.13 Let a ∈ B(Y), 1 < p ≤ q < ∞ and

‖a‖ ≤ (p− 1)
1
2 (q − 1)−

1
2 .

Then Γrw(a) is a contraction from Lp(R, tr) to Lq (R, tr).

13.2.3 Complex-wave CAR representation in finite dimensions

One can reformulate the Fock CAR representation so that it becomes analo-
gous to the complex-wave CCR representation considered in Subsect. 9.2.1. For
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simplicity, at first we restrict ourselves to finite-dimensional spaces Z. We iden-
tify Z# with Z using the scalar product.

Recall that an alternative notation for Γa(Z) is Pola(Z). Elements of Pola(Z)
are treated as sequences whose n-th element is an anti-symmetric n-linear form
on Z. Thus to define F ∈ Pola(Z) we need to specify

F (z1 , . . . , zn ), z1 , . . . , zn ∈ Z, n = 0, 1, 2, . . . . (13.13)

In algebraic formulas we write F (z) instead of (13.13), treating z as the “generic
variable” in Z, as discussed in Subsect. 3.5.1.

Likewise, an alternative notation for Γa(Z) is Pola(Z). Applying the complex
conjugation to F ∈ Pola(Z), we obtain F ∈ Pola(Z) such that

F (z1 , . . . , zn ) = F (z1 , . . . , zn ), z1 , . . . , zn ∈ Z, n = 0, 1, 2, . . . . (13.14)

We will commonly write F (z) or F (z) instead of (13.14), treating z as the
“generic variable” in Z.

Let us fix a (complex) volume form dz on Z compatible with the scalar product
of Z, and let dz be the dual volume form on Z. As in Subsect. 7.2.1, if A ∈
CPola(Z ⊕ Z), we can define its Berezin integral,ˆ

A(z, z)dzdz.

Equip Pola(Z) with the scalar product

(F |G) :=
ˆ

F (z)G(z)ez ·zdzdz.

We define the map T cw : Γa(Z) → Pola(Z) by

T cwΨ(z1 , . . . , zn ) :=
1√
n!

(z1 ⊗a · · · ⊗a zn |Ψ), Ψ ∈ Γa(Z), z1 , . . . , zn ∈ Z.

Applying Thm. 7.23 (2) to Y = Z, Y# = Z, we obtain the following theorem:

Theorem 13.14 (1) The operator T cw is unitary, that is, for Φ,Ψ ∈ Γa(Z),

(Φ|Ψ) =
ˆ

T cwΦ(z)T cwΨ(z)ez ·zdzdz.

(2) For w ∈ Z we have

T cwΩ = 1,

T cwa∗(w) = w · z T cw ,

T cwa(w) = w · ∇z T cw ,(
T cwΓ(p)Ψ

)
(z) = (T cwΨ)(p# z), p ∈ B(Z), Ψ ∈ Γa(Z).

Proposition 13.15 For w ∈ Z, define an operator on Pola(Z) by

φcw (w,w) := w · z + w · ∇z .
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344 CAR on Fock spaces

The map

Re(Z ⊕ Z) � (w,w) �→ φcw (w,w) ∈ Bh
(
Pola(Z)

)
is a CAR representation unitarily equivalent to the Fock representation:

φcw (w,w) = T cw(a∗(w) + a(w)
)
T cw∗. (13.15)

Definition 13.16 (13.15) is called the basic form of the complex-wave CAR
representation.

13.2.4 Complex-wave CAR representation: the general case

If Z is infinite-dimensional, the Berezin integral does not exist anymore. There-
fore, strictly speaking, the definition of the complex-wave CAR representation
has to be modified. We will need to use the formalism of non-commutative prob-
ability spaces.

Let us start by defining an appropriate real-wave CAR representation with
a tracial state that will replace the Berezin integral. Consider the space Z ⊕ Z
equipped with a natural conjugation

χ(z1 , z2) := (z2 , z1), (z1 , z2) ∈ Z ⊕ Z,

whose real subspace is Re(Z ⊕ Z). Re(Z ⊕ Z) is equipped with the symmetric
form

(z, z)·ν(z′, z′) := 2Re(z|z′), (z, z), (z′, z′) ∈ Re(Z ⊕ Z).

Following Thm. 13.9, consider the real-wave CAR representation

Re(Z ⊕ Z) � (z, z) �→ φrw (z, z) := a∗(z, z) + a(z, z) ∈ Bh
(
Γa(Z ⊕ Z)

)
.

The fields φrw (z, z), z ∈ Z, generate a von Neumann algebra R isomorphic to
CARW ∗(

Re(Z ⊕ Z)
)
. As in (13.10), we extend these fields from Re(Z ⊕ Z) to

Z ⊕ Z by complex linearity, setting for (z1 , z2) ∈ Z ⊕ Z
φrw (z1 , z2) := a∗(z1 , z2) + a(z2 , z1) ∈ R.

We have

φrw (z1 , z2)∗ = φrw (z2 , z1),

[φrw (z1 , z2), φrw (z′1 , z
′
2)]+ = 2(z1 |z′2) + 2(z2 |z′1). (13.16)

Denote by Rc̃w the σ-weakly closed (but non-self-adjoint) sub-algebra of R gen-
erated by φrw (z, 0), z ∈ Z.

Theorem 13.17 There exists a unique bounded linear map

T c̃w : Γa(Z) → L2(R, tr)
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13.3 Wick and anti-Wick fermionic quantization 345

such that

T c̃wΩ := 1l,

T c̃wa∗(z) = φrw (z, 0)T c̃w , z ∈ Z.

The map is isometric, i.e.

(Φ|Ψ) = tr
(
T c̃wΦ

)∗
T c̃wΨ, Φ,Ψ ∈ Γa(Z). (13.17)

It satisfies

T c̃wa(z) = φrw (0, z)T c̃w , z ∈ Z,

T c̃wΓ(p) = Γrw(p⊕ p)T c̃w , p ∈ B(Z).

The image of T c̃w is a commutative sub-algebra of L2(R, tr).

Definition 13.18 The image of T c̃w is denoted by L2(Rc̃w , tr).

Proposition 13.19 For z ∈ Z, the multiplication by φrw (z, z) preserves
L2(Rc̃w , tr). Therefore,

φc̃w (z, z)A := φrw (z, z)A, A ∈ L2(Rc̃w , tr),

defines an operator on L2(Rc̃w , tr). The map

Re(Z ⊕ Z) � (z, z) �→ φc̃w (z, z) ∈ Bh
(
L2(Rc̃w , tr)

)
is a CAR representation unitarily equivalent to the Fock representation:

φc̃w (z, z) = T c̃w(a∗(z) + a(z)
)
T c̃w∗. (13.18)

Definition 13.20 (13.18) is called the alternate form of the complex-wave CAR
representation.

13.3 Wick and anti-Wick fermionic quantization

This section is parallel to Sect. 9.4, where the bosonic Wick and anti-Wick quan-
tizations were considered.

The framework of this section is the same as that of the whole chapter. Recall
that Z is a Hilbert space, Y = Re(Z ⊕ Z) and we identify Y# � Re(Z ⊕ Z).
Recall from Subsect. 3.5.6 that CPola(Y# ) is identified with Pola(Z ⊕ Z).

We consider the Fock CAR representation

Y � y �→ φ(y) ∈ Bh
(
Γa(Z)

)
.

Recall that CARalg(Y) is the ∗-algebra generated by φ(y), y ∈ Y. It can be
represented by operators on the space Γa(Z). Recall that Λ = (−1)N (N −1l)/2 .

We will define and study the fermionic Wick and anti-Wick quantizations.
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13.3.1 Wick and anti-Wick ordering

Recall that, with b ∈ Pola(Z), in Subsect. 3.4.4 we defined the multiple creation
and annihilation operators. We obtain two homomorphisms,

Pola(Z) � b �→ a∗(b) ∈ CARalg(Y),

Pola(Z) � b �→ a(Λb) ∈ CARalg(Y).

Note that the possibility of unambiguously defining a∗(b) and a(b) follows from
the fact that Z and Z are isotropic subspaces of CY for the bilinear symmetric
form νC.

Definition 13.21 For b1 , b2 ∈ Pola(Z) we set

Opa∗,a(b1b2) := a∗(b1)a(Λb2),

Opa,a∗
(b2b1) := a(Λb2)a∗(b1).

These maps extend by linearity to maps

CPola(Y# ) � b �→ Opa∗,a(b) ∈ CARalg(Y),

CPola(Y# ) � b �→ Opa,a∗
(b) ∈ CARalg(Y),

(13.19)

called the Wick and anti-Wick fermionic quantizations.

Definition 13.22 The inverse maps to (13.19) will be denoted by

CARalg(Y) � B �→ sa∗,a
B ∈ CPola(Y# ),

CARalg(Y) � B �→ sa,a∗
B ∈ CPola(Y# ).

The anti-symmetric polynomial sa∗,a
B , resp. sa,a∗

B is called the Wick, resp. anti-
Wick symbol of the operator B.

Remark 13.23 If we fix an o.n. basis (ei : i ∈ I) of Z parametrized by a totally
ordered set I, and write

b =
∑

{i1 ,...,im },{i′n ,...,i′i }⊂I

bi1 ,...,im ;i′n ,...,i1 zi1 · · · zim
zi′n · · · zi′1 ,

c =
∑

{i1 ,...,im },{i′n ,...,i′i }⊂I

ci1 ,...,im ;i′n ,...,i1 zi1 · · · zim
zi′n · · · zi′1 ,

then we have explicit formulas

Opa∗,a(b) =
∑

{i1 ,...,im },{i′n ,...,i′i }⊂I

bi1 ,...,im ;i′n ,...,i1 a
∗
i1
· · · a∗

im
ai′n · · · ai′1 ,

Opa,a∗
(c) =

∑
{i1 ,...,im },{i′n ,...,i′i }⊂I

ci1 ,...,im ;i′n ,...,i1 ai1 · · · aim
a∗

i′n
· · · a∗

i′1
.
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Proposition 13.24 (1) Opa∗,a(b)∗ = Opa∗,a(Λb) and Opa,a∗
(b)∗ = Opa,a∗

(Λb).
(2) Let w ∈ Z, b ∈ CPola(Y# ). Then

Opa∗,a(w·b) = a∗(w)Opa∗,a(b), Opa∗,a(b·w) = Opa∗,a(b)a(w),

a∗(w)Opa∗,a(b)−Opa∗,a(Ib)a∗(w) = Opa∗,a(w·∇z b),

a(w)Opa∗,a(b)−Opa∗,a(Ib)a(w) = Opa∗,a(w·∇z b).

(3) If Opa,a∗
(b−) = Opa∗,a(b+), then

b+(z, z) = e∇z ·∇z b−(z, z)

=
´

e(z−z1 )·(z−z 1 )b−(z1 , z1)dz1dz1 .

(4) If Opa∗,a(b1)Opa∗,a(b2) = Opa∗,a(b), then

b(z, z) = e∇z 1
·∇z 1 b1(z, z1)b2(z1 , z)

∣∣
z1 =z

=
´

e(z−z1 )·(z−z 1 )b1(z, z1)b2(z1 , z)dz1dz1 .

(5) The Wick quantization satisfies(
Ω|Opa∗,a(b)Ω

)
= b(0), b ∈ CPola(Y# ). (13.20)

Proof It suffices to prove (1) and (2) when b is a monomial, which is an easy
computation.

To prove (3) and (4), we use the complex-wave representation. We see that
the Wick, resp. anti-Wick, quantization can be seen as the z,∇z resp. ∇z , z

quantization. (3) and (4) follow then from Thm. 7.26. �

The following formula is the fermionic version of what is usually called Wick’s
theorem. We will give its diagrammatic interpretation in Chap. 20.

Theorem 13.25 Let b1 , . . . , bn ∈ CPola(Y# ). Let b ∈ CPola(Y# ) and

Opa∗,a(b) = Opa∗,a(b1) · · ·Opa∗,a(bn ).

Then

b(z, z)

= exp
(∑

i>j

∇z i
·∇zj

)
b1(z1 , z1) · · · bn (zn , zn )

∣∣
z=z1 =···=zn

,

(
Ω|Opa∗,a(b1) · · ·Opa∗,a(bn )Ω

)
= exp

(∑
i>j

∇z i
·∇zj

)
b1(z1 , z1) · · · bn (zn , zn )

∣∣
0=z1 =···=zn

.
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348 CAR on Fock spaces

13.3.2 Relation between Wick, anti-Wick

and anti-symmetric quantizations

We can introduce the anti-symmetric quantization

Pola(Z ⊕ Z) � CPola(Y# ) � b �→ Op(b) ∈ B
(
Γa(Z)

)
as in Sect. 12.4.

Proposition 13.26 Let b, b+ , b− ∈ CPola(Y# ). Let

Opa∗,a(b+) = Op(b) = Opa,a∗
(b−).

(1) The anti-symmetric symbol is given in terms of the Wick symbol by

b(z, z) = e
1
2 ∇z ·∇z b+(z, z)

= 2d
´

e2(z−z 1 )·(z−z1 )b+(z1 , z1)dz1dz1 .

(2) The anti-symmetric symbol is given in terms of the anti-Wick symbol by

b(z, z) = e−
1
2 ∇z ·∇z b−(z, z)

= 2d
´

e−2(z−z 1 )·(z−z1 )b−(z1 , z1)dz1dz1 .

Proof To prove (1) we can assume that b+(z, z) = b1(z)b2(z), so that

Opa∗,a(b+) = a∗(b1)a(b2) = Op(b1)Op(b2) = Op(b),

using that Z,Z are isotropic for the scalar product ν. Using Prop. 12.42 we get
that

b(z, z) = e(∇z 1
,∇z 1 )·ν (∇z 2

,∇z 2 )b1(z1)b2(z2)
∣∣
z1 =z2 =z

= e
1
2 ∇z ·∇z b1(z)b2(z),

which proves (1). Statement (2) follows then from Prop. 13.24. �

13.3.3 Wick quantization: the operator formalism

This subsection is parallel to Subsect. 9.4.5 about the bosonic case.
We will now treat Wick symbols as operators acting on the Fock space. We

will restrict ourselves to a rather small class of such operators.
Recall that if N is the number operator, then 1l{n}(N) is the projection from

Γs(Z) onto Γn
s (Z). Similarly to the bosonic case, for b ∈ B

(
Γa(Z)

)
we set bn,m :=

1l{n}(N)b1l{m}(N) and

Bfin(Γa(Z)
)

=
{
b ∈ B

(
Γa(Z)

)
: there exists n0 such that bn,m = 0 for n,m > n0

}
.
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13.3 Wick and anti-Wick fermionic quantization 349

Definition 13.27 Let b ∈ Bfin
(
Γa(Z)

)
. The Wick quantization of b is defined

as the quadratic form on Γfin
a (Z) such that for Φ,Ψ ∈ Γfin

a (Z),

(Φ|Opa∗,a(b)Ψ)

=
∞∑

n,m=0

∞∑
k=0

√
(n + k)!(m + k)!

k!
(Φ|bn,m ⊗ 1l⊗k

Z Ψ). (13.21)

The above definition can be viewed as a generalization of Def. 13.21.

Proposition 13.28 Let b ∈ CPola(Y# ) � Pola(Z ⊕ Z) be identified with b ∈
Bfin
(
Γa(Z)

)
by

(zn ⊗a · · · ⊗a z1 |bn,m z′m ⊗a · · · ⊗a z′1) (13.22)

=
(n + m)!

n!m!
bn,m (zn ⊗a · · · ⊗a z1 ⊗a z′1 ⊗a · · · z′m ), z1 , . . . , zn , z′1 , . . . , z

′
m ∈ Z.

Then Opa∗,a(b) in the sense of Def. 13.21, which involves b in the first meaning,
coincides with Opa∗,a(b) in the sense of Def. 13.27, involving b in the second
meaning.

Proof Choose a totally ordered o.n. basis in Z. Let

b = ei1 ⊗a · · · ⊗a ein
⊗a ejm

⊗a · · · ⊗a ej1 .

Then Opa∗,a(b) in the sense of Def. 13.21 equals

a∗
i1
· · · a∗

in
ajm

· · · aj1 . (13.23)

(13.22) identifies b with the operator

|ei1 ⊗a · · · ⊗a ein
)(ej1 ⊗a · · · ⊗a ejm

|.
Opa∗,a(b) in the sense of Def. 13.27 is the quadratic form on Γfin

a (Z) equal to
∞∑

k=0

√
(n + k)!(m + k)!

k!
|ei1 ⊗a · · · ⊗a ein

)(ej1 ⊗a · · · ⊗a ejm
| ⊗ 1l⊗k

Z . (13.24)

It is easy to see that (13.23) and (13.24) are equal. �

Proposition 13.29 Let b ∈ Bfin
(
Γa(Z)

)
, h ∈ B(Z) ⊂ Bfin

(
Γa(Z)

)
, p ∈

B(Z,Z). Then

Opa∗,a(b)∗ = Opa∗,a(b∗),

Opa∗,a(h) = dΓ(h),

[dΓ(h),Opa∗,a(b)] = Opa∗,a(hb− bh∗),

Γ(p)Opa∗,a(bΓ(p)
)

= Opa∗,a(Γ(p)b
)
Γ(p),

Γ(p)Opa∗,a(b) = Opa∗,a(Γ(p)bΓ(p∗)
)
Γ(p) if p is isometric,

Γ(p)Opa∗,a(b)Γ(p∗) = Opa∗,a(Γ(p)bΓ(p∗)
)

if p is unitary.
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350 CAR on Fock spaces

The following proposition describes the special class of particle preserving
operators. Recall that the operator Θ(σ) is defined in Def. 3.11.

Theorem 13.30 If b ∈ B
(
Γm

a (Z)
)
, then

(Φ|Opa∗,a(b)Ψ) =
∞∑

k=0

(m+k)!
k ! (Φ|b⊗ 1lkZΨ) .

Thus

1
m!

Opa∗,a(b)
∣∣
Γm + k

a (Z) =

( ∑
1≤i1 < ···<im ≤m+k

bm+k
i1 ,...,im

)∣∣
Γm + k

a (Z) ,

where the operators bm+k
i1 ,...,im

∈ B
(
Γm+k

a (Z)
)

are defined as follows:

bm+k
i1 ,...,im

:= Θ(σ) b⊗ 1l⊗k
Z Θ(σ)−1

∣∣
Γm + k

a (Z) ,

where σ ∈ Sm+k is any permutation that transforms (1, . . . , m) onto (i1 , . . . , im ).

13.3.4 Estimates on Wick polynomials

Fermionic Wick monomials tend to be bounded more often than bosonic ones.
Here is an example of this phenomenon:

Proposition 13.31 Let h ∈ B1(Z) be positive. Then ‖dΓ(h)‖ = Trh.

We also have a fermionic analog of bosonic Nτ estimates described in Prop.
9.50. The proof in the fermionic case is fully analogous to that in the bosonic
case.

Proposition 13.32 Let b ∈ B
(
Γq

a(Z),Γp
a (Z)

) ⊂ Bfin
(
Γa(Z)

)
for p, q ∈ N. Let

m > 0 be a self-adjoint operator on Z. Then for all Ψ1 , Ψ2 ∈ Γa(Z) one has∣∣∣(dΓ(m)−p/2Ψ1 |Opa∗,a(b)dΓ(m)−q/2Ψ2

)∣∣∣
≤ ‖Γ(m)−

1
2 bΓ(m)−

1
2 ‖‖Ψ1‖‖Ψ2‖.

13.4 Notes

The Wick theorem goes back to Wick (1950).
The fermionic real-wave representation is due to Segal (1956). Second quan-

tized operators in the fermionic real-wave representation were studied by Gross
(1972) and Carlen–Lieb (1993).

The fermionic complex-wave representation was developed by Shale–
Stinespring (1964).
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