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Abstract. We prove a random Ruelle–Perron–Frobenius theorem and the existence of
relative equilibrium states for a class of random open and closed interval maps, without
imposing transitivity requirements, such as mixing and covering conditions, which are
prevalent in the literature. This theorem provides the existence and uniqueness of random
conformal and invariant measures with exponential decay of correlations, and allows us to
expand the class of examples of (random) dynamical systems amenable to multiplicative
ergodic theory and the thermodynamic formalism. Applications include open and closed
non-transitive random maps, and a connection between Lyapunov exponents and escape
rates through random holes. We are also able to treat random intermittent maps with
geometric potentials.
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1. Introduction
Non-autonomous or random dynamical systems provide flexible mathematical models to
analyse a wide range of forced and noisy phenomena. They have been identified as an
important direction going forward in the study of chaotic systems [26]. One of the obstacles
in the investigation of the long-term properties of such systems stems from the difficulty in
identifying concrete examples for which the available theoretical results apply. This work
uncovers scenarios where ergodic-theoretical tools can be used to establish results related
to the thermodynamic formalism and decay of correlations for random dynamical systems,
without imposing requirements such as transitivity or covering, which are often difficult to
verify in this context.

For autonomous (time-homogeneous) finite-state Markov chains and systems whose
dynamics can be encoded by them, such as shifts of finite type and systems with a
Markov partition, one can use normal forms for reducible matrices [12, Vol. 2] to analyse
the dynamics using irreducible components as building blocks. In sharp contrast, there
is no available decomposition of non-autonomous (random) systems into transitive or
irreducible components. For instance, Buzzi [6, §0.2] noted difficulties in decomposing
one-dimensional piecewise expanding random systems into pathwise irreducible com-
ponents, and hence in the search for decompositions that could play the role of normal
forms in this setting. Accordingly, the study of decay of correlations and Ruelle–Perron–
Frobenius-type results in the random setting has so far relied on stronger hypotheses, such
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as mixing and/or covering conditions [1–6, 10, 14, 15, 19, 20, 24]. Similar assumptions
appear in the investigation of memory loss in time-dependent systems [7, 13, 21, 22, 25].

In this work, we exhibit new examples of random dynamical systems for which invariant
measures (relative equilibrium states) with exponential decay of correlations can be
constructed. We do not impose transitivity assumptions—so neither topological mixing nor
covering conditions are assumed—but instead require that the random maps and random
potentials satisfy a contracting-type condition, on average; see Definition 4.2 for details.
Naturally, when such results hold, one expects to obtain a one-dimensional top equivariant
direction for the (random) transfer operator. Indeed, under mild extra assumptions, we
also show that the multiplicative ergodic theorem of Froyland, Lloyd and Quas [11]
applies in this setting and yields a unique random Ruelle–Perron–Frobenius decomposition
and further information. Our approach builds on the concept of a contracting potential,
introduced in the autonomous setting by Liverani, Saussol and Vaienti [17], but we work
with random cones of functions, conveniently defined in terms of (essential) infimum and
variation. This work may also be regarded as a generalization, complementary to [1], of
the work of Liverani and Maume-Deschamps [16] to the random setting. Furthermore, our
approach allows us to prove results for both open and closed settings simultaneously, in a
concise manner.

Our main results may be summarized as follows. See §2 for the allowed class
of random open (and closed) maps, Definition 4.2 for the notion of strongly con-
tracting potential and §6.1 for precise statements and proofs. For the related random
Ruelle–Perron–Frobenius-type decomposition, see Theorem 6.6. Throughout this work,
Einf(f ) is the essential infimum of f with respect to the Lebesgue measure.

MAIN THEOREM. Let Lω be the transfer operator associated to a random strongly
contracting potential for a random open (or closed) map of the interval {(Tω, Hω)}ω∈�
(or {Tω}ω∈�), driven by an ergodic, invertible, probability-preserving transformation
σ : (�, m) → (�, m). Then, there exist equivariant families, {qω}ω∈� and {νω}ω∈�, of
bounded variation functions and probability measures respectively given by

qω = lim
n→∞

L
(n)

σ−nω1

Einf(L(n)

σ−nω1)
and νω(·) = lim

n→∞
Einf(L(n)

ω (·))
Einf(L(n)

ω 1)
,

such that Lωqω = λ−
ωqσω and νω(·) = λ+

ωνσω(Lω(·)), with
∫

log λω+ dm = ∫
log

λω− dm. The multipliers {λ±
ω }ω∈� also satisfy equations (5.2) and (5.7). (It will be

shown that λω− = νω(qω)λω+/νσω(qσω), see equation (6.4).) Define μω by
∫
f dμω :=∫

f qω dνω/νω(qω). Then, ∫
f dμσω =

∫
f ◦ Tω dμω,

and {μω}ω∈� yields the unique relative equilibrium state for the system. Furthermore,
there exist 0 < r < 1 and a measurable, tempered Cω > 0 such that for every f ∈ L1(νω),
f̃ ∈ L1(νσnω) and h ∈ BV ,

|μσ−nω(f ◦ T (n)
σ−nω · h)− μω(f )μσ−nω(h)| ≤ Cω‖f ‖L1(νω)

‖h‖BV rn, and

|μω(f̃ ◦ T (n)ω · h)− μσnω(f̃ )μω(h)| ≤ Cω‖f̃ ‖L1(νσnω)
‖h‖BV rn.
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FIGURE 1. A non-transitive open map.

(A function a : � → R is tempered if for m-almost every (a.e.) ω ∈ �, lim|n|→∞(1/n)
log |a(σnω)| = 0. Equivalently, for every ε > 0, there exists Aω > 0 such that for every
n ∈ N, a(σnω) ≤ Aωe

ε|n|.)

In §7.2, we show that our results indeed apply to non-transitive, non-mixing and
non-covering maps; see Figure 1 and Example 7.5. This is not a trivial example because,
depending on the potential, the random invariant measures may or may not be supported
inside the invariant interval around 1/2. As a special case, we also show (Lemma 7.9) that
when the geometric potential − log |T ′

ω| is strongly contracting, the random map is in fact
covering. In particular, − log |T ′

ω| is not strongly contracting in Example 7.5. Our results
also apply to open and closed random intermittent maps (§7.3), and allow us to investigate
escape rates for random open systems (§7.4).

In contrast to previous works requiring the identification of a (random) conformal
measure first, our approach decouples the construction of equivariant densities, qω, and
conformal measures, νω, and builds these dual objects in a symmetric fashion. In short,
densities depend on the past, while measures depend on the future. An extra element
arising in the random setting is that, unlike in the autonomous case, the forward and
backward multipliers λω± arising from these constructions are not necessarily equal, and
so the densities may not be normalized with respect to the conformal measures. Thus, to
find a (random) invariant measure μω, one should normalize: that is, μω = qωνω/νω(qω).

This work complements previous works of the authors [1, 2], where they have developed
a general thermodynamic formalism for random open and closed dynamical systems,
without the strongly contracting assumption of this work, but imposing covering-type
conditions. The present approach also incorporates the use of a random family of cones,
a strategy previously used in [15], the references therein and recently in [24]. Finally, it is
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worth pointing out that while we have aimed for simple and checkable assumptions for our
main results, generalizations could be sought in various directions. For instance, one could
relax the one-step full-branch condition to a k-step (or perhaps even random) full-branch
condition.

2. Notation and setting
The following notation will be used throughout the paper. Let I ⊂ R be a compact interval.
For Z ⊂ I , we denote by EinfZ(f ) the essential infimum of f on Z, with respect to the
Lebesgue measure. We also write Einf(f ) instead of EinfI (f ), and define Einf∅(f ) = 0.
Similar conventions apply to the essential supremum EsupZ(f ). Let the variation of f on
Z be varZ(f ) = supx0<···<xk , xj∈Z

∑k−1
j=0|f (xj+1)− f (xj )| and var(f ) := varI (f ). Let

BV ⊂ L∞(Leb) be the set of (equivalence classes of) functions of bounded variation
on I, with norm ‖f ‖BV := inf

f̃=f Leb almost everywherevarI (f̃ )+ ‖f ‖∞, where ‖f ‖∞ :=
Esup(f ). It follows from Rychlik [23] that BV is a Banach space, and that if f is a
function of bounded variation, then it is always possible to choose a representative of
minimal variation. From now on, we will work with such representatives, and will no
longer distinguish between functions of bounded variation and their equivalence classes
in BV . Furthermore, we recall that two functions of bounded variation f , f̃ : I → R

coincide Lebesgue almost everywhere if and only if the values of f and f̃ differ in an
at most countable set. Thus, if two BV functions coincide Lebesgue almost everywhere,
then they are also equivalent with respect to any other non-atomic measure.

Let

T1, T2, . . . : I → I

be a countable collection of maps such that for each j ∈ N, there exists a finite partition of
I (mod Leb) such that Tj is monotonic and continuous on each atom. Let

H1, H2, . . . ⊂ I

be such that for each j ∈ N, Hj ⊂ I is a (possibly empty) finite union of intervals, called
holes. Assume that for every j ∈ N, there is at least one full branch of Tj completely
contained in Xj := I \Hj . (This assumption rules out the possibility of periodicity, and
is used to control infima in our arguments.) Consider weights of bounded variation

g1, g2, . . . : I → R+, j = 1, 2, . . . ,

with associated potentials ϕj := log gj .
Let (�, m) be a complete probability space, and σ : (�, m) → (�, m) be an ergodic,

invertible, probability-preserving transformation, called the driving system. Let � =⋃∞
j=1 �j be an (at most) countable partition of � into measurable sets. For each ω ∈

�j , let Tω = Tj , Hω = Hj , Xω = Xj , gω = gj . These assumptions ensure the quantities
involved in the definition of strongly contracting potential (Definition 4.2) are measurable.
We refer to {(Tω, Hω)} as a random open map, and to {Tω} (or {(Tω, ∅)}) as a random
closed map.

For each ω ∈ � and n ∈ N, let T (n)ω := Tσn−1ω ◦ · · · ◦ Tσω ◦ Tω, T (0)ω := Id, and
g
(n)
ω := gσn−1ω . . . gσωgω. Let Z(n)

ω be the monotonicity partition of T (n)ω , and Z̊
(n)
ω be
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the coarsest partition of the survivor setXω,n := ⋂n−1
j=0(T

(j)
ω )−1(Xσjω) into intervals, such

that for each Z ∈ Z̊
(n)
ω , there exists Z′ ∈ Z

(n)
ω such that Z ⊂ Z′. We split Z̊(n)

ω into Z̊
(n)
ω,f

and Z̊
(n)
ω,p, corresponding to the full and non-full (or partial) branches of T (n)ω |Xω,n . That

is, Z ∈ Z̊
(n)
ω,f if and only if T (n)ω (Z) = I . A collection of intervals Z1, . . . , Zk ∈ Z̊

(n)
ω,p

is said to be a collection of contiguous non-full intervals for T (n)ω (or, more precisely, of
(T

(n)
ω , Hω,n), whereHω,n := I \Xω,n) if there is no element of Z̊(n)

ω,f in between them; that

is, if the convex hull of
⋃k
j=1 Zj does not contain any element of Z̊(n)

ω,f . (This condition

has been considered in [16, §6].) We denote by b(n)ω,f the cardinality of Z̊(n)
ω,f and by ξ (n)ω

the largest number of contiguous non-full (or partial) intervals for T (n)ω .
The transfer operator for the random (open or closed) map {(Tω, Hω)}ω∈� with potential

{log gω}ω∈�, acting on f ∈ BV is defined by

Lωf =
∑

Z∈Z̊(1)
ω

1Tω(Z)((fgω) ◦ T −1
ω,Z),

where T −1
ω,Z : Tω(Z) → Z is the inverse of Tω|Z . (In the following, we will exclude the

sub-index ω ∈ � from the notation, and write e.g. {log gω}.) Its n step iteration, L(n)
ω f :=

Lσn−1ω ◦ · · · ◦ Lσω ◦ Lω, is given by

L
(n)
ω f =

∑
Z∈Z̊(n)

ω

1
T
(n)
ω (Z)

((fg(n)ω ) ◦ T −n
ω,Z),

where T −n
ω,Z : T (n)ω (Z) → Z is the inverse of T (n)ω |Z .

3. Basic estimates
The estimates in this section generalize arguments developed in [16].

3.1. Infimum estimates. A direct estimate yields, for every ω ∈ �, f ∈ BV and n ∈ N,∑
Z∈Z̊(n)

ω,f

EinfZ |f | ≤ b
(n)
ω,f (var(f )+ Einf(|f |)).

By comparing the infimum over Z ∈ Z̊
(n)
ω,p with the infimum over its closest full-branch

neighbour, one gets

∑
Z∈Z̊(n)

ω,p

EinfZ |f | ≤ 2ξ (n)ω

(
var(f )+

∑
Z∈Z̊(n)

ω,f

EinfZ |f |
)

. (3.1)

Furthermore, if f ≥ 0,

Einf(L(n)
ω f ) ≥

∑
Z∈Z̊(n)

ω,f

EinfZ(g(n)ω f ) ≥ EinfXω,n(g
(n)
ω )

∑
Z∈Z̊(n)

ω,f

EinfZ f

≥ b
(n)
ω,f EinfXω,n(g

(n)
ω ) Einf(f ). (3.2)
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3.2. Variation estimates and Lasota–Yorke inequality. For every ω ∈ �, f ∈ BV and
n ∈ N, we have

var(L(n)
ω f ) ≤

∑
Z∈Z̊(n)

ω

var(1
T
(n)
ω (Z)

((fg(n)ω ) ◦ T −n
ω,Z)).

For each Z ∈ Z̊
(n)
ω , we have

var(1
T
(n)
ω (Z)

((fg(n)ω ) ◦ T −n
ω,Z)) ≤ varZ(fg(n)ω )+ 2 EsupZ|fg(n)ω |

≤ 3varZ(fg(n)ω )+ 2 EinfZ|fg(n)ω |
≤ 3‖g(n)ω ‖∞varZ(f )+ 3 EsupZ |f |varZ(g(n)ω )+ 2‖g(n)ω ‖∞ EinfZ |f |. (3.3)

An inductive argument starting from the bound var(f h) ≤ var(f )‖h‖∞ + var(h)‖f ‖∞,
and considering that T (n)ω is monotonic on Z, yields

varZ(g(n)ω ) ≤ ‖gω‖(n)∞
n−1∑
j=0

var(gσjω)
‖gσjω‖∞

,

where ‖gω‖(n)∞ := ∏n−1
j=0 ‖gσjω‖∞. Let S̃n,ω(g) := ∑n−1

j=0(var(gσjω)/‖gσjω‖∞). There-
fore, equation (3.3) yields

var(1
T
(n)
ω (Z)

((fg(n)ω ) ◦ T −n
ω,Z)) ≤ (3 + 3S̃n,ω(g))‖gω‖(n)∞ varZ(f )

+ (2 + 3S̃n,ω(g))‖gω‖(n)∞ EinfZ |f |.
Thus,

var(L(n)
ω f ) ≤ (3 + 3S̃n,ω(g))‖gω‖(n)∞ var(f )

+ (2 + 3S̃n,ω(g))‖gω‖(n)∞
( ∑
Z∈Z̊(n)

ω,f

EinfZ |f | +
∑

Z∈Z̊(n)
ω,p

EinfZ |f |
)

.

Grouping as in equation (3.1), one gets

var(L(n)
ω f ) ≤ (3 + 3S̃n,ω(g))(1 + 2ξ (n)ω )‖gω‖(n)∞ var(f )

+ (2 + 3S̃n,ω(g))(1 + 2ξ (n)ω )‖gω‖(n)∞
∑

Z∈Z(n)
ω,f

EinfZ |f |.

Furthermore, if f ≥ 0, equation (3.2) implies

var(L(n)
ω f ) ≤ (3 + 3S̃n,ω(g))(1 + 2ξ (n)ω )‖gω‖(n)∞

(
var(f )+ Einf(L(n)

ω f )

EinfXω,n(g
(n)
ω )

)
. (3.4)

4. (Strictly) invariant cones and strongly contracting potentials
Given a > 0, we consider the cones

Ca = {f ∈ BV : f > 0, var(f ) ≤ a Einf(f )} ⊂ BV.
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This is a positive, convex cone with non-empty interior. Also, Ca ∪ {0} is closed. Let a

be the partial order induced by Ca . That is, f a g if and only if f − g ∈ Ca ∪ {0}. Then,
(BV, a) is integrally closed. ((V , ) is integrally closed if for every αn → α ∈ R, f ,
g ∈ V such that 0  f , g and αnf g, αf g.) In addition, every f ∈ BV may be written
as f = f1 − f2 such that f1, f2 ∈ Ca , for instance, by choosing f1 = f + c, f2 = c for
sufficiently large c > 0.

The inequalities in equations (3.2) and (3.4) yield the following.

LEMMA 4.1. If f ∈ Ca and n ∈ N, then L
(n)
ω f ∈ Ca′ , with

a′ = (3 + 3S̃n,ω(g))(1 + 2ξ (n)ω )
‖gω‖(n)∞

EinfXω,n(g
(n)
ω )

(
a

b
(n)
ω,f

+ 1
)

=: cω,na + dω,n. (4.1)

The next definition will be key for our arguments, as it allows for the construction of an
invariant family of random cones, using ideas going back to Kifer [15]; see also [24].

Definition 4.2. We say {log gω} is a (random) strongly contracting potential for the
random (open or closed) map {(Tω, Hω)} if log #Z̊ω, log ‖gω‖∞, log Einf(gω), (var(gω)/
‖gω‖∞) ∈ L1(m) and there exists n∗ > 0 such that

∫
log cω,n∗ dm < 0, where cω,n is

defined in equation (4.1).

Remark 4.3. This condition is related to, but more restrictive than, the definitions of con-
tracting potential in [17] (autonomous setting) and [2, Definition 2.15], [1, (Q1)] (random
setting). However, [1, 2, 17] also require a covering condition, which is not required in this
work. In [24], the authors investigate random (closed) non-uniformly expanding C1 maps
with C1 potentials satisfying a contracting-like condition. In Remark 7.4, we show that in
the one-dimensional setting, this condition is more restrictive than that of Definition 4.2.

LEMMA 4.4. Assume {log gω} is a random strongly contracting potential for the random
(open or closed) map {(Tω, Hω)}. Then, there exists n∗ ∈ N, 0 < γ < 1 and a family
of cones (Caω)ω∈� which is invariant under L

(n∗)
ω and satisfies L

(n∗)
ω Caω ⊂ Cγ aσn∗ω .

Furthermore, aω may be chosen as in equation (4.2), and therefore it may be assumed
to be tempered.

Proof. The hypotheses ensure there exists n∗ ∈ N such that
∫

log cω,n∗ dm < 0,
where cω,n∗ is defined in equation (4.1). Thus, one can find 0 < γ < 1 such that∫

log cω,n∗d m =: log γ̃ < log γ < 0. Then, it follows that the twisted cohomological
equation γ aσn∗ω = cω,n∗aω + dω,n∗ has a measurable, m-almost surely finite solution
given by

aω =
∞∑
j=0

γ−j−1dσ−j−1ω,n∗

j∏
k=1

cσ−kω,n∗ , (4.2)

where, for convenience, we let �0
k=1cσ−kω,n∗ := 1.

The fact that aω is m-almost surely finite and tempered is a consequence of the integra-
bility assumptions in Definition 4.2, combined with sub-multiplicativity of 1/ Einf(g(n)ω ).
Indeed, notice that b(n)ω,f , ξ (n)ω ≤ ∏n−1

j=0 #Z̊σjω. Hence, dω,n∗ is log-integrable, where dω,n∗
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is defined in equation (4.1). Hence, there exists ε > 0 satisfying e2εγ̃ ≤ αγ for 0 < α < 1
and a tempered measurable function Dω such that dσ−j−1ω,n∗ ≤ Dωe

εj . Similarly, there
is a tempered measurable function Cω such that

∏j

k=1 cσ−kω,n∗ ≤ Cωe
jεγ̃ j . Therefore,

substituting into equation (4.2), we get that aω ≤ CωDω/(γ − e2εγ̃ ) ≤ CωDω/(γ (1 − α))

is tempered. It is straightforward to verify that L(n∗)
ω Caω ⊂ Cγ aσn∗ω .

4.1. Contraction of projective metric. In the setting of Lemma 4.4, let ω be the partial
order induced by Caω . That is, f ω g if and only if f − g ∈ Caω ∪ {0}. Let �ω be the
Hilbert (projective) pseudo metric on Caω , given by

�ω(f , h) := log
ρω(f , h)
τω(f , h)

,

where f , g ∈ Caω , τω(f , h) := sup{λ > 0 : λf ω h} and ρω(f , h) := inf{μ > 0 :
μf �ω h}; the distance is infinite if the numerator is ∞ or the denominator is 0.

LEMMA 4.5. Assume 0 < γ < 1 and f ∈ Cγ aω . Then,

�ω(f , 1) ≤ log
1 + γ (aω + 1)

1 − γ
=: �ω/2. (4.3)

Thus, the diameter of Cγ aω as a subset of Caω is at most �ω < ∞.

Proof. Let f ∈ Cγ aω . First, λ ω f if and only if λ ≤ Einf(f ) and var(f ) = var(f − λ)

≤ aω Einf(f − λ). This happens if λ ≤ (1 − γ ) Einf f . Also, f ω μ if and only if
‖f ‖∞ ≤ μ and var(f ) = var(μ− f ) ≤ aω Einf(μ− f ). Since var(f ) ≤ γ aω Einf(f )
and ‖f ‖∞ ≤ (1 + γ aω) Einf(f ), this happens if μ ≥ (γ + 1 + γ aω) Einf(f ). Thus, we
conclude that �ω(f , 1) ≤ log(1 + γ (aω + 1))/(1 − γ ), as claimed.

LEMMA 4.6. Under the hypotheses of Lemma 4.4, there exists 0 < ϑ < 1 such that for
every k ≥ 0, and m-a.e. ω ∈ �,

�ω(L
n∗l
σ−n∗ lωf , Ln∗(l+k)

σ−n∗(l+k)ωh) ≤ �σ−ln∗ω(f , Lkn∗
σ−kn∗ωh)ϑ

l , (4.4)

for every sufficiently large l (depending on ω), every f ∈ Ca
σ−ln∗ω and every h ∈

Ca
σ−n∗(l+k)ω .

Proof. Lemma 4.4 implies L(n∗)
σ−n∗ lωCaσ−n∗lω ,σ−n∗ lω⊂Cγ a

σ−n∗(l−1)ω
and Lemma 4.5 implies

diam(L(n∗)
σ−n∗ lωCaσ−n∗ lω ) ≤ �σ−n∗(l−1)ω, where �ω is as in equation (4.3). Let ε > 0 and

D ∈ R be such that m({ω ∈ � : �ω ≤ D}) > 1 − ε/n∗. Recall the projective metric is
weakly contracted by L

(n∗)
ω for m-a.e. ω ∈ �, and, once the diameter of the image is finite,

it is strictly contracted by a factor of tanh(D/4) whenever �ω < D. Hence, by ergodicity
of σ , equation (4.4) holds for sufficiently large l, provided ϑ >(tanh(D/4))1−ε.

Remark 4.7. For simplicity and clarity of presentation, we assume from now on that

n∗ = 1.

[1, 2] address the possibility of n∗ > 1 in a related setting.
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5. Construction of equivariant densities and conformal measures
In this section, we construct equivariant densities and conformal measures for the
random map {(Tω, Hω)} with strongly contracting potential {log gω}. We point out that
these constructions are completely decoupled, in contrast to the standard approach of
establishing the existence of conformal measures first, and using them to build the
densities. (See Remark 5.3 for further details on this comparison.)

Note that the norm ‖f ‖∞ is compatible with ω. That is, for all f , h ∈ BV , if −f ω

h ω f , then ‖h‖∞ ≤ ‖f ‖∞. Also, the function Einf : Caω → R+ is homogeneous and
ω-preserving. Hence, as in [17, Lemma 2.2], for every f , h ∈ Caω such that Einf f =
Einf h > 0, we have

‖f − h‖∞ ≤ (e�ω(f ,h) − 1) min(‖f ‖∞, ‖h‖∞). (5.1)

5.1. Equivariant densities. In this section, we show the following.

LEMMA 5.1. Assume {log gω} is a strongly contracting potential for the random (open or
closed) map {(Tω, Hω)}, and aω is as in equation (4.2). Then, the following hold.
(i) For each f ∈ C1, the sequence L

(n)

σ−nωf /Einf(L(n)

σ−nωf ) is Cauchy with respect to

‖ · ‖∞. Hence, the following limit exists: qfω := limn→∞(L(n)

σ−nωf /Einf(L(n)

σ−nωf )).

Furthermore, Einf(qfω ) = 1 and var(qfω ) ≤ γ aω. In addition, Lωq
f
ω = λωf q

f
σω,

with λωf = Einf(Lωq
f
ω ).

(ii) The functions qfω and multipliers λωf are independent of f. Call them qω and λ−
ω ,

respectively. Then, Lωqω = λ−
ωqσω,

qω = lim
n→∞

L
(n)

σ−nω1

Einf(L(n)

σ−nω1)
, λ−

ω = lim
n→∞

Einf(L(n+1)
σ−nω 1)

Einf(L(n)

σ−nω1)
= Einf(Lωqω). (5.2)

Proof. To show (i), first note that equation (4.2) implies aω ≥ 1. Thus, C1 ⊂ Caω for m-a.e.
ω ∈ �. Let fn := L

(n)

σ−nωf /Einf(L(n)

σ−nωf ). Using equation (5.1), we have, form > n ≥ 1,

‖fn − fm‖∞ ≤ (e�ω(fn,fm) − 1)‖fn‖∞. (5.3)

Since fn ∈ Cγ aω and Einf fn = 1, then ‖fn‖∞ ≤ 1 + γ aω. However, by equation (4.4),
for sufficiently large n, �ω(fn, fm) ≤ �σ−n+1ωϑ

n, where �ω is as in equation (4.3) and
ϑ < 1 is as in Lemma 4.6. Since aω is tempered, so is �ω, and equation (5.3) tends to 0
exponentially as n → ∞. Hence, the following limit exists in L∞:

qfω := lim
n→∞

L
(n)

σ−nωf

Einf(L(n)

σ−nωf )
.

Also, Einf(qfω ) = 1 and var(qfω ) ≤ lim sup var(fn) ≤ γ aω. Since

0 < Einf gω ≤ Einf(L(n+1)
σ−nω f )

Einf(L(n)

σ−nωf )
≤ ‖Lωfn‖∞ ≤ ‖Lω1‖∞(1 + γ aω) < ∞,

we have that there must be a sequence (nk)∞k=1 such that Einf(L(nk+1)
σ−nk ω f )/Einf(L(nk)

σ−nk ωf )
converges to some value, say λωf , as k → ∞. Now, since we can write
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Lωq
f
ω = lim

k→∞
L
(nk+1)
σ−nk ω f

Einf(L(nk+1)
σ−nk ω f )

Einf(L(nk+1)
σ−nk ω f )

Einf(L(nk)

σ−nk ωf )

= qfσω lim
k→∞

Einf(L(nk+1)
σ−nk ω f )

Einf(L(nk)

σ−nk ωf )
=: λωf q

f
σω, (5.4)

we must have that λωf = limn→∞(Einf(L(n+1)
σ−nω f )/Einf(L(n)

σ−nωf )) and does not depend

on the particular sequence (nk). Furthermore, the normalization of qfω implies that λωf =
Einf(Lωq

f
ω ).

To show (ii), we show there exists qω ∈ BV such that qω = q
f
ω for every f ∈ C1.

Indeed, for f , h ∈ C1, we have for every n ∈ N,

‖qfω − qhω‖∞ ≤ (e�ω(q
f
ω ,qhω) − 1)‖qfω ‖∞ ≤ (e

�ω(L
(n)

σ−nωq
f

σ−nω ,L(n)
σ−nωq

h

σ−nω) − 1)‖qfω ‖∞.
(5.5)

By equation (4.4), �ω(L
(n)

σ−nωq
f

σ−nω, L(n)

σ−nωq
h
σ−nω) ≤ �σ−n+1ωϑ

n−1 for sufficiently large

n, and ‖qfω ‖∞ ≤ 1 + γ aω. Using once again that �ω is tempered, we conclude that
the right-hand side of equation (5.5) tends exponentially fast to 0 as n → ∞. Thus,
q
f
ω = qhω =: qω. Hence, equation (5.4) implies that λωf is also independent of f, call it

λ−
ω . Thus, equation (5.2) holds.

5.2. Equivariant conformal measures. In this section, we show the following.

LEMMA 5.2. Assume {log gω} is a strongly contracting potential for the random (open or
closed) map {(Tω, Hω)}. Then, for each f ∈ C1, the sequence Einf(L(n)

ω f )/Einf(L(n)
ω 1) is

Cauchy. Its limit,

νω(f ) := lim
n→∞

L
(n)
ω f

L
(n)
ω 1

= lim
n→∞

Einf(L(n)
ω f )

Einf(L(n)
ω 1)

, (5.6)

defines a positive linear functional which can be extended by linearity to BV , and to a
non-atomic probability measure with support contained in Xω. Furthermore, νω satisfies
νσω(Lωf ) = λ+

ωνω(f ), where

λ+
ω = lim

n→∞
Einf(L(n+1)

ω 1)

Einf(L(n)
σω1)

= νσω(Lω1). (5.7)

Proof. We begin by showing that there exists Cω > 0 such that for every f ∈ C1,

λ
−,(k)
σnω (1 − Cωr

n) ≤ Einf(L(n+k)
ω f )

Einf(L(n)
ω f )

≤ λ
−,(k)
σnω (1 + Cωr

n), (5.8)

where λ
−,(k)
ω := λω−λ−

σω · · · λ−
σk−1ω

, λω− > 0 is as in equation (5.2) and ϑ < r < 1, with
ϑ is as in Lemma 4.6. To see this, we argue as in §5.1. Thus, there exists Cω > 0 such that∥∥∥∥ L

(n)
ω f

Einf(L(n)
ω f )

− qσnω

∥∥∥∥∞
<Cωr

n. (5.9)
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Hence,

Einf(L(n+k)
ω f )

Einf(L(n)
ω f )

= Einf L(k)
σnω

(
L
(n)
ω f

Einf(L(n)
ω f )

)

≤ Einf(L(k)
σnω(qσnω(1 + Cωr

n))) = λ
−,(k)
σnω (1 + Cωr

n),

where in the next to last step, we have used that Einf qσnω = 1. The lower bound in
equation (5.8) is obtained similarly.

Next we show that the limit limn→∞(L(n)
ω f /L

(n)
ω 1) exists. To that end, we first note

that for each k ≥ 1, we can write∥∥∥∥L
(n+k)
ω f

L
(n)
ω f

− λ
−,(k)
σnω

qσn+kω
qσnω

∥∥∥∥∞

=
∥∥∥∥ L

(n+k)
ω f

Einf L(n+k)
ω f

Einf L(n+k)
ω f

Einf L(n)
ω f

Einf L(n)
ω f

L
(n)
ω f

− λ
−,(k)
σnω

qσn+kω
qσnω

∥∥∥∥∞
, (5.10)

and using equations (5.8), (5.9), and the fact that Einf qσnω = 1, we see that the right-hand
side of equation (5.10) goes to zero (exponentially fast).

Thus, we have

lim sup
n→∞

∥∥∥∥L
(n)
ω f

L
(n)
ω 1

− L
(n+k)
ω f

L
(n+1)
ω 1

∥∥∥∥∞
≤ sup |f | lim sup

n→∞

(
L
(n)
ω f

L
(n+k)
ω f

L
(n+k)
ω 1

L
(n)
ω 1

− 1
)

= 0.

Thus, the sequence L
(n)
ω f /L

(n)
ω 1 is Cauchy, and must converge to some function. To see

that this limiting function is constant, we let (xn) and (yn) be sequences in [0, 1]. Using
Lemma 4.6 and the definition of �ω, we have∣∣∣∣L

(n)
ω f

L
(n)
ω 1

(xn)− L
(n)
ω f

L
(n)
ω 1

(yn)

∣∣∣∣ =
∣∣∣∣L

(n)
ω f

L
(n)
ω 1

(yn)

∣∣∣∣ ·
∣∣∣∣L

(n)
ω f

L
(n)
ω 1

(xn)
L
(n)
ω 1

L
(n)
ω f

(yn)− 1
∣∣∣∣

≤ sup |f | · lim sup
n→∞

| exp(�σnω(L(n)
ω f , L(n)

ω 1))− 1|

≤ sup |f | · lim sup
n→∞

| exp(�ω(f , 1)ϑn)− 1| = 0.

Therefore, the sequence L
(n)
ω f /L

(n)
ω 1(xn) must converge to some constant value, which

we denote by νω(f ).
Positivity and linearity of νω are clear. Since C1 has non-empty interior, νω can be

extended by linearity to BV . Since |νω(f )| ≤ ‖f ‖∞ and νω(1) = 1, by the Riesz repre-
sentation theorem, νω gives rise to a probability measure ν̃ω, with supp(ν̃ω) ⊆ Xω. Now,
since it follows from equation (5.9) and the triangle inequality that ‖L(n)

ω f /Einf(L(n)
ω f )−

L
(n)
ω 1/Einf(L(n)

ω 1)‖∞ → 0 (exponentially fast), and since both terms are bounded below
by 1, we must have that

lim
n→∞

L
(n)
ω f

L
(n)
ω 1

= lim
n→∞

Einf(L(n)
ω f )

Einf(L(n)
ω 1)

= νω(f ).
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If Z ∈ Z̊
(k)
ω , then T (k)ω |Z : Z → I is injective, so ‖L(k)

ω 1Z‖∞ ≤ ‖g(k)ω ‖∞. Thus,

νω(1Z) = lim
n→∞

Einf(L(n−k)
σ kω

L
(k)
ω 1Z)

Einf(L(n)
ω 1)

≤ ‖g(k)ω ‖∞ lim
n→∞

Einf(L(n−k)
σ kω

1)

Einf(L(n−k)
σ kω

1) Einf(L(k)
ω 1)

≤ ‖g(k)ω ‖∞
b
(k)
ω,f EinfXω,k (g

(k)
ω )

.

Since {log gω} is strongly contracting, Kingman’s subadditive ergodic theorem ensures
the upper bound approaches 0 as k → ∞. Thus, limk→∞ max

Z∈Z̊(k)
ω
νω(1Z) = 0. Hence,

νω is non-atomic, and standard approximation arguments ensure that for every J ⊂ I ,
νω(1J ) = ν̃ω(J ), so we also write νω to refer to the measure ν̃ω.

For the final claim, we have

νσω(Lωf ) = lim
n→∞

Einf(L(n+1)
ω f )

Einf(L(n)
σω1)

= lim
n→∞

Einf(L(n+1)
ω f )

Einf(L(n+1)
ω 1)

Einf(L(n+1)
ω 1)

Einf(L(n)
σω1)

= νω(f )νσω(Lω1).

Remark 5.3. The construction of conformal measures here may be regarded as a random
version of that in [17]. However, the densities constructed in [17] differ from ours in the
normalization. If we denote their densities by q̃ω, they are normalized so that νω(q̃ω) = 1.
As it can be deduced from the upcoming equation (6.4), this choice ensures that their
corresponding multipliers, λ̃ω, satisfy λ̃ω = λω+ .

6. Main results
6.1. Equilibrium states and exponential decay of correlations. In this section, we show
the following.

THEOREM 6.1. Assume {log gω =: ϕω} is a strongly contracting potential for the ran-
dom (open or closed) map {(Tω, Hω)}. Let λ±

ω , qω and νω be as in §§5.1 and 5.2.
Then,

∫
log λω+ dm = ∫

log λω− dm =: �1. (We will show in Theorem 6.6 that �1 =
limn→∞(1/n) log ‖L(n)

ω ‖BV for m-a.e. ω ∈ �.) Define the probability measures μω by∫
f dμω := ∫

f qω dνω/νω(qω). Then,∫
f dμσω =

∫
f ◦ Tω dμω. (6.1)

Furthermore, there exist a tempered Cω > 0 and 0 < r < 1 such that for every f ∈
L1(νω), f̃ ∈ L1(νσnω) and h ∈ BV ,

|μσ−nω(f ◦ T (n)
σ−nω · h)− μω(f )μσ−nω(h)| ≤ Cω‖f ‖L1(νω)

‖h‖BV rn, and (6.2)

|μω(f̃ ◦ T (n)ω · h)− μσnω(f̃ )μω(h)| ≤ Cω‖f̃ ‖L1(νσnω)
‖h‖BV rn. (6.3)

In fact, equations (6.2) and (6.3) hold for any choice r > ϑ , with ϑ as in Lemma 4.6.
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Remark 6.2. The quantity �1 in Theorem 6.1 is called the maximal Lyapunov exponent
of the cocycle generated by {Lω} in the context of multiplicative ergodic theory; and the
expected pressure, denoted by EP(ϕ), in the thermodynamic formalism approach. The
proof of Theorem 6.6 will show that the second Lyapunov exponent of the cocycle satisfies
λ2 ≤ tanh(D/4), with the notation of Lemma 4.6. This bound is related to the upper bound
of [14].

We extend the notion of invariant measures corresponding to punctured potentials
introduced in [8] to the random setting. Let PHT ,m(I) denote the collection of T-invariant
probability measures η on �× I with marginal m on �, such that its disintegration {ηω}
satisfies ηω(Hω) = 0 for m-a.e. ω ∈ �.

Definition 6.3. We say that a measure η ∈ PHT ,m(I) is a relative equilibrium state for the
random map {(Tω, Hω)} with potential {ϕω} if

EP(ϕ) = hη(T )+
∫
�×I

ϕ dη,

where hη(T ) denotes the entropy of T with respect to η.

The proof of the next result follows similarly to the proof of Theorem 2.23 in [2] (see
also Remark 2.24, Lemma 12.2 and Lemma 12.3).

THEOREM 6.4. Assume {log gω =: ϕω} is a strongly contracting potential for the random
(open or closed) map {(Tω, Hω)}. Then, the random measure μ ∈ PHT ,m(I) with disinte-
gration {μω} produced in Theorem 6.1 is the unique relative equilibrium state for {ϕω}. It
satisfies the following variational principle:

�1 = EP(ϕ) = hμ(T )+
∫
�×I

ϕ dμ = sup
η∈PHT ,m(I)

hη(T )+
∫
�×I

ϕ dη.

Remark 6.5. The same conclusions hold for the random invariant measures {μω} in the
random open setting of [1].

Proof of Theorem 6.1. To show
∫

log λω+ dm = ∫
log λω− dm, we prove that for m-a.e.

ω ∈ �,

νω(qω)λω+

νσω(qσω)λω−
= 1. (6.4)

Indeed,

νω(qω) = lim
n→∞

Einf(L(n)
ω qω)

Einf(L(n)
ω 1)

= lim
n→∞

λω− Einf(L(n−1)
σω qσω)

Einf(L(n−1)
σω (Lω1))

= λω−νσω(qσω)

λω+
.

Next we show equation (6.1). In view of Lemmas 5.1 and 5.2,∫
f dμσω = 1

νσω(qσω)

∫
f · qσω dνσω = 1

νσω(qσω)λω−

∫
f · Lω(qω) dνσω

= 1
νσω(qσω)λω−

∫
Lω(f ◦ Tω · qω) dνσω
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= λω+

νσω(qσω)λω−

∫
f ◦ Tω · qω dνω

= νω(qω)λω+

νσω(qσω)λω−

∫
f ◦ Tω dμω.

Then, equation (6.1) follows from equation (6.4).
For the second part of the theorem, notice that for every h ∈ BV , (h+ ch)qσ−nω ∈

C√
γ aσ−nω for ch = (1 + 2

√
γ )/(

√
γ − γ )‖h‖BV . (We do not claim this choice of ch is

optimal.) This follows from basic properties of variation, and the facts that aσ−nω ≥ 1,
qσ−nω ∈ Cγ aσ−nω . Furthermore, the invariance property in equation (6.1) implies that the
left-hand side of equation (6.2) is unchanged if h is replaced by h+ c for any c ∈ R.
In the case of c = ch, the corresponding right-hand side changes in that ‖h‖BV must be
replaced by ‖h‖BV + ch ≤ (1 + (1 + 2

√
γ )/(

√
γ − γ ))‖h‖BV . Thus, to show equation

(6.2), we will assume, without loss of generality, that hqσ−nω ∈ C√
γ aσ−nω . (However, we

should keep this assumption in mind at the end of the proof, where apparently only ‖h‖∞
is relevant, and not ‖h‖BV.)

Using Lemma 5.2 repeatedly and equation (6.4) in the last step yields

μσ−nω(f ◦ T (n)
σ−nω · h) = 1

νσ−nω(qσ−nω)

∫
f ◦ T (n)

σ−nω · hqσ−nω dνσ−nω

= 1

νσ−nω(qσ−nω)λ
+,(n)
σ−nω

∫
L
(n)

σ−nω(f ◦ T (n)
σ−nω · hqσ−nω) dνω

= 1

νσ−nω(qσ−nω)λ
+,(n)
σ−nω

∫
f · L(n)

σ−nω(hqσ−nω) dνω

= 1

λ
−,(n)
σ−nωνω(qω)

∫
f · L(n)

σ−nω(hqσ−nω) dνω. (6.5)

However,

μσ−nω(h) = νσ−nω(hqσ−nω)

νσ−nω(qσ−nω)
= lim
k→∞

Einf(L(n+k)
σ−nω (hqσ−nω))

Einf(L(n+k)
σ−nω (qσ−nω))

= νω(L
(n)

σ−nω(hqσ−nω))

νω(L
(n)

σ−nω(qσ−nω))
= νω(L

(n)

σ−nω(hqσ−nω))

λ
−,(n)
σ−nωνω(qω)

. (6.6)

Combining equations (6.5) and (6.6), we get

|μσ−nω(f ◦ T (n)
σ−nω · h)− μω(f )μσ−nω(h)|

= |νω(f · L(n)

σ−nω(hqσ−nω)− μω(f )L
(n)

σ−nω(hqσ−nω))|
λ

−,(n)
σ−nωνω(qω)

= |νω(L(n)

σ−nω(hqσ−nω)(f − μω(f )))|
λ

−,(n)
σ−nωνω(qω)
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≤ Einf(L(n)

σ−nω(hqσ−nω))|νω(qω(f − μω(f )))|
λ

−,(n)
σ−nωνω(qω)

+ 3‖qω‖∞‖L(n)

σ−nω(hqσ−nω)− Einf(L(n)

σ−nω(hqσ−nω))qω‖∞‖f ‖L1(νω)

λ
−,(n)
σ−nωνω(qω)

, (6.7)

where we have used that |νω(f − μω(f ))| ≤ 3‖qω‖∞‖f ‖L1(νω)
in the last line. Since

νω(qω(f − μω(f ))) = 0, it only remains to bound the last term. Lemmas 4.5 and 4.6,
as well as the fact that qσ−nω, hqσ−nω ∈ C√

γ aσ−nω , show that for sufficiently large n ∈ N,

�ω(L
(n)

σ−nω(hqσ−nω), L
(n)

σ−nω(qσ−nω)) ≤ �σ−nω(hqσ−nω, qσ−nω)ϑ
n

≤ 2 log
(

1 + √
γ (aσ−nω + 1)
1 − √

γ

)
ϑn,

where equation (4.3) has been used in the final step. Combining with equation (5.1) yields

‖L(n)

σ−nω(hqσ−nω)− Einf(L(n)

σ−nω(hqσ−nω))qω‖∞

≤ (e�σ−nω(hqσ−nω ,qσ−nω)ϑn − 1) Einf(L(n)

σ−nω(hqσ−nω))‖qω‖∞.

Hence, using the elementary estimate |ex − 1| ≤ 3x for 0 ≤ x ≤ 1, equation (6.7) implies
that for sufficiently large n,

|μσ−nω(f ◦ T (n)
σ−nω · h)− μω(f )μσ−nω(h)|

≤ 9 log((1 + 2
√
γ aσ−nω)/(1 − √

γ ))ϑn Einf(L(n)

σ−nω(hqσ−nω))‖qω‖2∞‖f ‖L1(νω)

λ
−,(n)
σ−nωνω(qω)

≤ 9 log
(

1 + 2
√
γ aσ−nω

1 − √
γ

)‖qω‖2∞
νω(qω)

‖f ‖L1(νω)
‖h‖∞ϑn

=: C′
σ−nω

‖qω‖2∞
νω(qω)

‖f ‖L1(νω)
‖h‖∞ϑn, (6.8)

where in the last inequality, we have used the fact that

Einf(L(n)

σ−nω(hqσ−nω)) ≤ ‖h‖∞ Einf L(n)

σ−nω(qσ−nω) = ‖h‖∞λ
−,(n)
σ−nω.

Since aω is tempered, C′
ω is tempered and since νω(qω) ≥ 1 and by Lemma 5.1, ‖qω‖∞ ≤

1 + γ aω, equation (6.2) holds for any r > ϑ , with ϑ as in Lemma 4.6, and some
tempered Cω.

The proof of equation (6.3) follows from replacing ω with σnω in equation (6.8), and
using temperedness.

6.2. Multiplicative ergodic theory and random Ruelle–Perron–Frobenius decomposition.
Under mild extra assumptions, the multiplicative ergodic theorem of [11] applies to
cocycles of random maps with strongly contracting potentials, providing uniqueness of
the measures μω from Theorem 6.1 and further information.
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THEOREM 6.6. Assume {log gω} is a strongly contracting potential for the random (open
or closed) map {(Tω, Hω)}. In addition, suppose � is a Borel subset of a separable
complete metric space, m is a Borel probability measure and σ is a homeomorphism.
Then, there is a unique, measurable random Ruelle–Perron–Frobenius-type decomposition
for the cocycle generated by {Lω}. That is, for m-a.e. ω ∈ �, there exists a unique
(measurable) tuple (ψω, νω, λω) with ψω ∈ BV, νω ∈ BV∗, the dual space of BV and
λω ∈ C\{0} such that

νω(1) = 1, Lω(ψω) = λωψσω and νσω(Lω(f )) = λωνω(f ), (6.9)

for all f ∈ BV, which also satisfies the following. Let Qω : BV → BV be defined by
λ−1
ω Lω(f ) = νω(f )ψσω +Qω(f ). Then,

Qω(ψω) = 0, lim
n→∞

1
n

log ‖Q(n)
ω ‖BV < 0 and νσω(Qω(f )) = 0 (6.10)

for all f ∈ BV, where Q(n)
ω := Qσn−1ω ◦ · · · ◦Qσω ◦Qω.

Furthermore,

�1 =
∫

log λω dm = lim
n→∞

1
n

log Einf(L(n)
ω 1) = lim

n→∞
1
n

log ‖L(n)
ω ‖BV for m a.e. ω ∈�.

(6.11)

Proof of Theorem 6.6. Let ω ∈ �. Connecting with the notation of §5, let λω = λω+
and ψω = qω/νω(qω). Then, the only condition in equations (6.9) and (6.10) that is not
straightforward to derive from Lemmas 5.1 and 5.2 is limn→∞(1/n) log ‖Q(n)

ω ‖BV < 0.
To show this, we first observe, by induction, that

Q(n)
ω (f ) = (λ(n)ω )−1

L
(n)
ω (f − νω(f )ψω) = (λ(n)ω )−1

L
(n)
ω (f )− νω(f )ψσnω. (6.12)

Next, using the notation of Lemma 4.4 and Theorem 6.1, assume f ∈ C√
γ and let

hn = νσ−nω(qσ−nω)f /qσ−nω. Then, recalling that Einf(qσ−nω) = 1, we get that ‖hn‖∞ ≤
‖qσ−nω‖∞‖f ‖∞. Also, hnqσ−nω = νσ−nω(qσ−nω)f ∈ C√

γ ⊂ C√
γ aσ−nω . Recalling equa-

tion (6.4) and writing the right-hand side of equation (6.7) with the choice (h, f ) =
(hn, 1), yields, as in equation (6.8),

‖L(n)

σ−nω(hnqσ−nω)− Einf(L(n)

σ−nω(hnqσ−nω))qω‖∞
λ

−,(n)
σ−nωνω(qω)

= (λ
(n)

σ−nω)
−1‖L(n)

σ−nω(f )− Einf(L(n)

σ−nω(f ))qω‖∞

≤ Cω‖hn‖∞ϑn ≤ Cω‖qσ−nω‖∞ϑn‖f ‖∞. (6.13)

Observe that

(λ
(n)

σ−nω)
−1 Einf(L(n)

σ−nω(f ))qω − νσ−nω(f )ψω

= Einf(L(n)

σ−nω(f ))

λ
(n)

σ−nω
νω

(
qω − L

(n)

σ−nω(f )

Einf(L(n)

σ−nω(f ))

)
ψω.
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Note also that for any r > ϑ , there exists Dω > 0 such that ‖qω − L
(n)

σ−nω(f )/

Einf(L(n)

σ−nω(f ))‖∞ ≤ Dωr
n, by equation (5.3). Recalling that λ

(n)

σ−nω = νω(L
(n)

σ−nω(1)) ≥
Einf(L(n)

σ−nω(1)), we get

‖(λ(n)
σ−nω)

−1 Einf(L(n)

σ−nω(f ))qω − νσ−nω(f )ψω‖∞ ≤ Dω‖ψω‖∞rn‖f ‖∞. (6.14)

The triangle inequality applied to equations (6.13) and (6.14), combined with equation
(6.12), shows that limn→∞(1/n) log ‖Q(n)

σ−nωf ‖∞ < 0.

Since the limit in Lemma 5.1(i) satisfies q
f
ω ∈ BV, then limn→∞(1/n) log

‖L(n)

σ−nωf ‖BV = limn→∞(1/n) log Einf(L(n)

σ−nωf ) = limn→∞(1/n) log ‖L(n)

σ−nωf ‖∞.
Thus, equation (6.12) and the previous paragraph yield, for every f ∈ C√

γ ,

lim
n→∞

1
n

log ‖Q(n)

σ−nωf ‖BV = lim
n→∞

1
n

log ‖Q(n)

σ−nωf ‖∞ < 0. (6.15)

Since every f ∈ BV may be written as f = f1 − f2 such that fi ∈ C√
γ , and the

growth rate of a sum is bounded above by the largest of the terms’ growth rates, then
limn→∞(1/n) log ‖Q(n)

σ−nωf ‖∞ < 0 holds for every f ∈ BV. Thus, limn→∞(1/n) log

‖Q(n)

σ−nω‖BV < 0.
Finally, Kingman’s sub-additive ergodic theorem implies that limn→∞(1/n) log

‖Q(n)
ω ‖BV = limn→∞(1/n) log ‖Q(n)

σ−nω‖BV, so limn→∞(1/n) log ‖Q(n)
ω ‖BV < 0, as

claimed. In fact, our arguments show that limn→∞(1/n) log ‖Q(n)
ω ‖BV ≤ log ϑ , for any

ϑ > tanh(D/4), as in Lemma 4.6.
The multiplicative ergodic theorem [11] ensures uniqueness of a (measurable)

equivariant splitting, which in the present context translates into uniqueness of
the tuple (ψω, νω, λω). Furthermore, the theorem shows that �1 = ∫

log λω dm =
limn→∞(1/n) log ‖L(n)

ω ‖BV, for m-a.e. ω ∈ �.

7. Examples
7.1. Sufficient conditions for strongly contracting potentials. In this section, we present
conditions to ensure a random potential is strongly contracting. Assume

log #Z̊ω, log ‖gω‖∞, log Einf(gω),
var(gω)
‖gω‖∞

∈ L1(m).

Since 1/ Einf(gω,n) and 1/b(n)ω,f are sub-multiplicative, Kingman’s subadditive ergodic
theorem implies that the following limits exist and are m-almost everywhere constant,

−ϕ− := lim
1
n

log(1/ EinfXω,n(g
(n)
ω )), βf := lim

1
n

log b(n)ω,f .

In addition, they coincide with the limits of the respectively decreasing and increasing
sequences(

− ϕ−
n :=

∫
−1
n

log EinfXω,n(g
(n)
ω ) dm

)
n∈N

,
(
βf ,n :=

∫
1
n

log b(n)ω,f dm

)
n∈N

.

Furthermore, ‖gω‖(n)∞ is multiplicative, so by Birkhoff’s ergodic theorem, the limit ϕ+ :=
lim(1/n) log ‖gω‖(n)∞ exists, and is m-almost everywhere equal to

∫
log ‖gω‖∞ dm.
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Recalling that S̃n,ω(g) = ∑n−1
j=0(var(gσjω)/‖gσjω‖∞), Birkhoff’s ergodic theorem implies

lim(1/n) log(1 + S̃n,ω(g)) = 0.
The following bound on ξ (n)ω may be considered a random generalization of [16, Lemma

6.3]; see [1, Proposition 15.3] for a proof.

PROPOSITION 7.1. [1] The following inequality holds for ξ (n)ω , the largest number of
contiguous non-full intervals for T (n)ω :

ξ (n)ω ≤ n

n−1∏
j=0

(ξ
(1)
σ jω

+ 2).

Synthesizing the previous discussion, we get the following.

Example 7.2. Assume log #Z̊ω, log ‖gω‖∞, log Einf(gω), (var(gω)/‖gω‖∞) ∈ L1(m).
Then, {log gω} is a random strongly contracting potential for the random (open or closed)
map {(Tω, Hω)} if any of the following conditions hold.
(1) Case n∗ = 1:∫

log ‖gω‖∞ − log Einf(gω)+ log(3)+ log
(

1 + var(gω)
‖gω‖∞

)
+ log(1 + 2ξ (1)ω )

− log bω,f dm < 0.

(2) Either
∫

log ‖gω‖∞ − log Einf(gω)+ log(2 + ξ
(1)
ω )− log bω,f dm < 0; or, slightly

more generally,∫
log ‖gω‖∞ dm− ϕ− +

∫
log(2 + ξ (1)ω ) dm− βf < 0.

(3) There exist K , ξ ≥ 1 such that ξ (n)ω ≤ Kξn for m-a.e. ω ∈ � and every n ∈ N, and∫
log ‖gω‖∞ − log Einf(gω) dm+ log ξ − βf < 0.

Remark 7.3. Roughly speaking, Example 7.2(1) corresponds to having, on average,
potentials with small logarithmic amplitude and controlled variation, and open maps with
few contiguous non-full branches and lots of full branches. For constant potentials with
no (pairs of) contiguous non-full branches, this condition simplifies to

∫
log bω,f dm >

log(9).

Remark 7.4. Example 7.2(3) allows us to compare our setting with the one-dimensional
setting of [24], which deals with C1 potentials ϕω = log gω and C1 local diffeomorphisms
Tω satisfying a condition called (P). In that setting, the maps do not have discontinu-
ities, so ξ (n)ω = 0, and the condition in Example 7.2(3) reduces to

∫ ‖ϕω‖∞ − Einf(ϕω)
dm− βf < 0. Condition (P) may be written as

∫ ‖ϕω‖∞ − Einf(ϕω)+ log(1 + ‖Dϕω‖∞
diam(I )) dm < − ∫

log(Aω/bω,f ) dm, where, in the notation of [24], Aω = σ−1
ω pω +

Lωqω ≥ 1. Since βf ≥ ∫
log bω,f dm, the notion of strongly contracting potential is more

general than condition (P) in this case.
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7.2. Non-transitive systems and a covering criterion. The following example shows that
our results are applicable to non-transitive systems.

Example 7.5. Consider interval maps Tω : I → I as in Figure 1, where the (possibly
empty) left interval of the hole Hω is positioned within the given branch. Then,
bω,f ∈ {5, 6}, ξ (1)ω = 2 and

∫
log(2 + ξ

(1)
ω )− log bω,f dm ≤ log 4 − log 5 < 0. Thus,

Example 7.2(2) ensures the constant potential log gω = 0 is strongly contracting, provided
log ‖T ′

ω‖∞, log Einf |T ′
ω|, var(|T ′

ω|)/‖T ′
ω‖∞ ∈ L1(m). In this case, it also follows from

Definition 4.2 that −t log |T ′
ω| is strongly contracting for sufficiently small t > 0.

Remark 7.6. The map of Figure 1 is not topologically transitive. In fact, when the Tω have
a (common) Markov partition, the corresponding transition matrices have a (non-random)
absorbing set corresponding to the branches within the invariant interval around 1/2.

Remark 7.7. If a map Tω has an invariant interval J � I , as in Figure 1, and gω = 1/|T ′
ω|,

then

log ‖gω‖∞ + log(2 + ξ (1)ω ) ≥ 0 and log Einf(gω)+ log bω,f dm < 0.

Indeed, the first inequality comes from two facts: (i) if N is the number of monotonic
branches of Tω|J , then N ≤ 2 + ξ

(1)
ω , as all except for possibly the leftmost and rightmost

branches of the invariant interval are non-full; and (ii) Einfx∈J |T ′
ω(x)| ≤ N . The second

inequality follows from Esupx∈I |T ′
ω(x)| > bω,f .

In particular, if all maps {Tω} have a common invariant interval, then the geometric
potential {− log |T ′

ω|} is not strongly contracting. This is in agreement with the fact that
such a system has at least one non-fully supported random invariant measure absolutely
continuous with respect to Lebesgue measure.

To show a stronger result in this direction, we introduce a notion of covering in the
random (closed) setting, due to Buzzi [6], and show it is satisfied in wide generality,
provided the potential − log |T ′

ω| is strongly contracting.

Definition 7.8. A random map {Tω} is called covering if for every open interval J ⊂ I ,
there exists Mω(J ) ∈ N such that

Einf L(Mω(J ))
ω 1J (x) > 0. (7.1)

In the context of this work, equation (7.1) is equivalent to T (Mω(J ))
ω (J ) = I .

LEMMA 7.9. Consider a random map {Tω} and assume the random potential − log |T ′
ω|

is strongly contracting. Furthermore, assume � is a Borel subset of a separable complete
metric space, m is a Borel probability and σ is an homeomorphism. Then, {Tω} is covering.

Proof. Let Leb denote the normalized Lebesgue measure on I. A simple but crucial
observation is that in this case, νω(f ) = ∫

f dLeb, where νω is as in §5.2. Indeed,∫
Lωf dLeb = ∫

f dLeb holds by the change of variables formula and hence f �→∫
f dLeb is an equivariant functional (in fact, it is invariant by all Lω, and λω+ = 1).
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Theorem 6.6 ensures uniqueness of the equivariant conformal measure, so νω(f ) =∫
f dLeb.
Now we show the random map is covering. Let J ⊂ I be an open interval. Then,

0 < Leb(J ) = νω(1J ) = limn→∞(Einf L(n)
ω 1J /Einf L(n)

ω 1). In particular, there exists
M > 0 such that Einf L(M)

ω 1J > 0, as needed.

7.3. Random intermittent maps. For 0 < γ < 1, consider the Manneville–Pomeau map
fγ : [0, 1] → [0, 1], given by

fγ (x) =
{
x(1 + 2γ xγ ) 0 ≤ x < 1

2 ,

2x − 1 1
2 ≤ x ≤ 1.

This is a class of intermittent maps, with a neutral fixed point at 0, which have been
investigated as a model of non-uniformly hyperbolic behaviour since the work of Liverani,
Saussol and Vaienti [18]. More recently, Demers and Todd have investigated open and
closed intermittent maps with geometric potentials −t log |f ′

γ | in [9]. The next example
shows a family of strongly contracting geometric potentials for random intermittent maps.

Example 7.10. For j = 1, 2, . . . , let γj ∈ (0, 1). Let � = ⋃∞
j=1 �j be an (at most)

countable partition of � into measurable sets, and for each ω ∈ �j , let Tω = fγj . Let
0 ≤ t < log 2/log 3 ≈ 0.63. Then, the geometric potential {log gω := −t log |T ′

ω|} is
strongly contracting for {Tω}. Indeed, we note that for all 0<γ < 1, we have Einf |f ′

γ | = 1

and ‖f ′
γ ‖∞ < 3. Furthermore, ξ (n)ω = 0, b(n)ω,f = 2n for all n ∈ N. Thus, Example 7.2(3)

(with K = ξ = 1) yields the claim, since var(log |T ′
ω|) ∈ L1(m) and∫

log ‖gω‖∞ − log Einf(gω) dm+ log ξ − βf ≤ 0 + t log 3 + 0 − log 2 < 0.

The following example treats random intermittent maps with holes.

Example 7.11. Let� = ⋃∞
j=1 �j be an (at most) countable partition of� into measurable

sets, and for each ω ∈ �j , let Tω = Tj : I := [0, 1] → [0, 1] be a piecewise smooth map
with a hole Hω = Hj satisfying the following conditions:
(i) Tω(0) = 0 and T ′

ω(0) = 1 = EinfI |T ′
ω|;

(ii) ‖T ′
ω‖∞ ≤ Kω, with log Kω ∈ L1(m);

(iii) var(log |T ′
ω|) ≤ vω, with vω ∈ L1(m);

(iv) (Tω, Hω) has at most two contiguous non-full branches, for instance, this happens if
Tω only has full branches and Hω consists of a single interval; and

(v) (Tω, Hω) has bω,f full branches, and β := ∫
log bω,f dm > log 4 + t0

∫
log Kω dm,

for some 0 ≤ t0 < 1. (Note that Kω ≥ bω,f .)
Then, for every 0 ≤ t ≤ t0, the geometric potential {log gω := −t log |T ′

ω|} is strongly
contracting for {(Tω, Hω)}. Indeed, Example 7.2(2) yields the claim, since∫

log ‖gω‖∞ − log Einf(gω)+ log(2 + ξ (1)ω )

− log bω,f dm ≤ 0 + t log Kω dm+ log 4 − β < 0.
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7.4. Random open systems and escape rates. The following example, similar to [1, §13],
relates the maximal Lyapunov exponent of open and closed systems to the escape rate of a
conformal measure through the holes.

Example 7.12. Assume {log gω} is a strongly contracting potential for the random closed
map {Tω}. Assume (Hε

ω)0<ε≤ε0 is an increasing family of holes for each ω ∈ �. That is,Hε
ω

is a finite union of intervals, and ∅ := H 0
ω ⊂ Hε′

ω ⊂ Hε
ω for ε′ < ε. Let bεω,f be the number

of full branches of {(Tω, Hε
ω)} and ξεω be the largest number of contiguous non-full intervals

for {(Tω, Hε
ω)}. Suppose there exist bω, ξω > 0 such that for every ε ≥ 0, bεω,f ≥ bω and

ξεω ≤ ξω, and assume∫
log ‖gω‖∞ − log Einf(gω)+ log(2 + ξω)− log bω dm < 0.

Then, for each 0 < ε ≤ ε0, {log gω} is a strongly contracting potential for the random
open map {(Tω, Hε

ω)}. Let νεω and qεω be the conformal measures and equivariant densities
from Theorem 6.1, respectively, and let �ε the maximal Lyapunov exponent (expected
pressure). Then ε �→ �ε is non-increasing. Indeed, if ε′ < ε, because of the monotonicity
of the holes, for every ω ∈ �, n ∈ N, we have Einf(Lε′,(n)

ω 1) ≥ Einf(Lε,(n)
ω 1). Since�ε =

limn→∞(1/n) log Einf(Lε,(n)
ω 1), ε �→ �ε is non-increasing.

Furthermore, for 0 ≤ ε′ < ε,�ε
′ −�ε gives the escape rate of the measure νε

′
through

{Hε
ω}. That is, − lim(1/n) log νε

′
ω (X

ε
ω,n) = �ε

′ −�ε, where Xεω,n is the n−step survivor
set for {(Tω, Hε

ω)}. Indeed,

νε
′
ω (X

ε
ω,n−1) = 1

λ
ε′,(n)
ω

νε
′
σn(ω)(L

ε′,(n)
ω (1Xε

ω,n−1
)) = 1

λ
ε′,(n)
ω

νε
′
σn(ω)(L

ε,(n)
ω 1)

= Einf(Lε,(n)
ω 1)

λ
ε′,(n)
ω

(
νε

′
σn(ω)(q

ε
σn(ω))− νε

′
σn(ω)

(
L
ε,(n)
ω 1

Einf(Lε,(n)
ω 1)

− qεσn(ω)

))
.

Lemma 5.1 implies that limn→∞(1/n) log ‖Lε,(n)
ω 1/Einf(Lε,(n)

ω 1)− qεσn(ω)‖∞ < 0.

Since νε
′
σn(ω) is a probability measure, Einf qεσn(ω) = 1 and ‖qεσnω‖∞ is tempered, then

limn→∞(1/n) log νε
′
σn(ω)(q

ε
σn(ω)) = 0. Thus,

lim
n→∞

1
n

log νε
′
ω (X

ε
ω,n) = lim

n→∞
1
n

log Einf(Lε,(n)
ω 1)− lim

n→∞
1
n

log λε
′,(n)
ω = �ε −�ε

′
,

as claimed.
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