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ABSTRACT

A set of free energy values is suggested for RNA H-pseudoknot loops. The parameters are adjusted to be consistent
with the theory of polymer thermodynamics and known data on pseudoknots. The values can be used for estimates
of pseudoknot stabilities and computer predictions of RNA structures.
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INTRODUCTION

RNA pseudoknots are widely occurring structural mo-
tifs and were shown to be essential for various RNA
functions (for reviews, see Pleij, 1994; Deiman & Pleij,
1997). Therefore, elucidation of structural features of
pseudoknots and reliable prediction of pseudoknotting
using sequence data are very important for under-
standing structure—function relationships in many RNA
molecules. While thermodynamic parameters for the
structural elements of “classical” RNA secondary struc-
ture are measured or estimated with reasonable accu-
racy (SantalLucia & Turner, 1998; Xia et al., 1998), there
is no systematic study available of pseudoknot thermo-
dynamics.

Experimental measurements of thermodynamic pa-
rameters for some model pseudoknots have shown
them to be only marginally more stable than the sec-
ondary structures involved and to be strongly depen-
dent on ionic environment (Wyatt et al., 1990; Theimer
et al., 1998). Also, the conformational transitions in
pseudoknots may involve intermediate steps, mainly
constituent hairpins, so that it is rather difficult to de-
termine a contribution of pseudoknot loops to the sta-
bility of structures, especially because any pseudoknot
contains at least two loops. For classical RNA second-
ary structure, the lack of detailed data on loop thermo-
dynamics has been compensated by extrapolations
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optimized by estimates of success of predictions that
used various sets of parameters (Jaeger et al., 1989;
Mathews et al., 1998). In the case of pseudoknots, op-
timization of parameters using computer predictions
faces the problem that the most frequently used ap-
proach to predict RNA secondary structure by free en-
ergy minimization does not include them (Zuker, 1989).
Here we present an attempt to estimate the pseudo-
knot free energy parameters, based on the general
theory of polymer loop thermodynamics. The free en-
ergy values are adjusted to be consistent with available
data on experimentally and/or phylogenetically proven
pseudoknots. The suggested set of parameters can be
used for estimates of pseudoknot stabilities and in the
folding algorithms (e.g., Abrahams et al., 1990; Gultyaev
et al,, 1995; van Batenburg et al., 1995) that allow
pseudoknotting.

RESULTS AND DISCUSSION

Assumptions on pseudoknot thermodynamics

The simplest pseudoknot, the classical or so-called H-
(hairpin) pseudoknot (Pleij & Bosch, 1989), contains
two stems (S1 and S2) and two loops (L1 and L2;
Fig. 1). Such a pseudoknot is formed by the pairing of
a hairpin loop (closed by S1) with the downstream nu-
cleotides (S2 stem), or, alternatively, by interaction of
the upstream nucleotides with the interior of S2 hairpin
(S1 pairing). The free energy of an H-pseudoknot struc-
ture is mainly the sum of the free energies of stacking
in the stems (stabilizing negative values) and the pos-
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FIGURE 1. An equilibrium between an H-pseudoknot and alternate
hairpins.

itive destabilizing loop values. The stacking energy can
be calculated using the known nearest-neighbor model
parameters of helix propagation (SantalLucia & Turner,
1998). For the loop energies some estimate is needed.

A general theory of phase transition in polymers (Ja-
cobson & Stockmayer, 1950; Poland & Scheraga, 1970)
allows us to calculate the entropy of a loop of N sta-
tistical units as

S(N)=R{NInQ —[A+3InN]},

where R is the universal gas constant, the constant A
depends on how loop closure is defined, and RIn Q is
the conformational entropy of the free chain per statis-
tical unit. This formula also describes the loop entro-
pies in the helix-coil transitions of nucleic acids (Poland
& Scheraga, 1966). If effects of excluded volume are
taken into account, the coefficient 3 should be replaced
by 1.75 (Fisher, 1966). With the equation AG = AH —
TAS (Tis the temperature and AH is the loop formation
enthalpy), subtracting the term of free chain and as-
suming that loops have pure entropic nature (AH = 0),
the free energy AG of formation of a loop of N nucle-
otides can be approximated by the formula

AG = RT(Aop + 175N N),
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where Ayqp iS a constant that is defined by the loop
type. Such logarithmic extrapolations are succesfully
applied for hairpin, internal, and bulge loops in RNA,
making it possible to predict the secondary structures
by folding algorithms (Jaeger et al., 1989). Although the
recursive energy minimization algorithm requires a lin-
ear approximation for multibranch loops, the subsequent
recalculation of free energies, also involving subopti-
mal structures, according to the logarithmic size de-
pendence improves the quality of predictions (Walter
et al., 1994; Mathews et al., 1998). Here we assumed
that the Jacobson—Stockmayer function can be applied
for pseudoknot loops as well. To take into account spe-
cific features of pseudoknot topology, we made several
other assumptions.

1. The loop L1 spans the deep groove of RNA helix S2,
whereas the L2 crosses stem S1 in the shallow
groove. Therefore, the loops are not equivalent ste-
reochemically and their features depend on the
lengths of the corresponding stems (Pleij et al., 1985).
This should be taken into account by introducing
two variables Ageep(S2) and Aghaiow(S1) for the loops
L1 and L2, respectively.

2. The distances between phosphate atoms con-
nected by the loops along the RNA grooves are
minimal at S2 of 6—7 bp and at S1 of 3 bp (Pleij
et al., 1985). This is also consistent with frequen-
cies of natural occurrence of stem lengths (Dei-
man & Pleij, 1997). Therefore, we assumed that
Adeep is minimal for S2 of 6 or 7 bp, and Agpaiow IS
minimal for S1 = 3 bp.

3. Analysis of pseudoknot geometries (Pleij et al., 1985)
also suggests the minimal sizes of loops possible
for given stem lengths. In the deep groove, 7 bp can
be bridged by a loop of 1 nt only. Bridging over the
shallow groove requires at least 2 nt, and the dis-
tance to be crossed increases significantly with the
length of the stem (Pleij et al., 1985). However, a
bending and/or distortion of the RNA A-helical ge-
ometry is also possible, so the requirements for big
stems may be less rigid. We assumed the minimally
allowed size of loops L2 (shallow groove) as 2 nt for
an S1 of 3 bp, 3 nt for 4 bp, 4 for an S1 of 5 or 6 bp,
and a further increase of 1 nt for each increment of
2 bp. For the deep groove, a loop of 1 nt was al-
lowed for stems of 4—7 bp, and loops of 2 nt for
stems of 3 bp or more than 7 bp.

4. Instead of just using a logarithmic increase of en-
tropy with loop size, we introduced the dependence
on the difference between the loop length and the
minimally allowed length. Although deviating from
the dependence on the number of polymer statisti-
cal units in the loop (Jacobson & Stockmayer, 1950;
Poland & Scheraga, 1970), such an approximation
can partially reflect restrictions of conformational free-
dom imposed by the stem end-to-end distance.
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Integrating these assumptions, we get the following two
dependences for free energies (AG°37) of loops cross-
ing deep and shallow RNA grooves respectively:

AGLl = Adeep(SZ)
+ 1.75 RTIn(1 + N — Niindeep(S2))

AG, = ASha”OW(Sl)
+1.75 RTln(l +N-— Nminshallow(S]-)),

where Nyingeep aNd Niinshaliow are functions defining the
shortest loops, and the unity is added to make the
logarithm equal to zero for the minimal value of N.
We have restricted ourselves to H-pseudoknots that
contain two loops and not more than 1 nt at the junc-
tion between stems. For helix—helix interfaces, the
coaxial stacking is known to have a strong stabilizing
effect, about 1 kcal/mol more than the corresponding
nearest-neighbor energy in a regular helix (Kim et al.,
1996; Walter & Turner, 1994; Walter et al., 1994). A
similar increase of stacking contribution has been sug-
gested for junctions of pseudoknot stems on the basis
of mutational analysis of the pseudoknot in the viral
tRNA-like structure (Mans et al., 1992). Thus the bo-
nus of 1 kcal/mol for helixes without intervening nu-
cleotides and the mismatch values for 1 nt at the
junction were assumed to contribute to the free en-
ergies of pseudoknots. Such corrections for coaxial
stacking were shown to improve predictions of sec-
ondary structures (Walter et al., 1994; Mathews
et al., 1998). However, extrapolation of data on inter-
faces to pseudoknots has to be done with caution,
because stacking may be influenced by changed twist
of base pairs at the junction (Puglisi et al., 1990) or
by bending due to a mismatch (Shen & Tinoco, 1995).
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Estimates of loop energies using
proven pseudoknots

For proper estimates of the parameters in the formulas,
we used some sequences of known pseudoknots that
are evidenced by experiments and/or phylogenetic com-
parisons, assuming that the free energies of these
pseudoknots are lower than those of corresponding
hairpins formed by the pseudoknot stems. As seen in
Table 1, these H-pseudoknots cover rather broad ranges
of loop and stem sizes. The majority of pseudoknots,
available for analysis, are found in viral RNAs (ten Dam
et al., 1990; Deiman & Pleij, 1997) and representative
structures are shown in Figure 2.

The large group of well-documented H-pseudoknots
are found at the very 3’ ends of plant viral RNAs (ty-
moviruses and tobamoviruses) as parts of tRNA-like
structures (for review, see, e.g., Mans et al., 1991).
These pseudoknots seem to have minimal loop sizes
and show little variation in stem lengths, with a stem S1
of 3 bp and S2 of 4 bp in tobamoviruses and 5-6 bp in
tymoviruses (Fig. 2A). Upstream of the tRNA-like struc-
ture in tobamoviruses, a conserved structure of three
consecutive pseudoknots is located (Fig. 2B), which
seems to be very important in regulation of viral multi-
plication and mRNA translation (van Belkum et al., 1985;
Leathers et al., 1993). Those three pseudoknots or only
two are duplicated in some tobamoviruses and satellite
tobacco mosaic virus, sometimes with a considerable
sequence variation (Gultyaev et al.,, 1994). Similar
pseudoknot stalks are conserved in some hordei-, furo-
and tobraviruses and satellite tobacco necrosis viruses
STNV-1 and STNV-2 (Pleij et al., 1986; Danthinne
et al., 1991; Solovyev et al., 1996; Koenig et al., 1998),
with different numbers of pseudoknots (Table 1). The
biggest variation in the sizes of pseudoknot loops and
stems is observed in the sites of pseudoknot-dependent

TABLE 1. The types of pseudoknot-forming sequences, used for estimates of free energy
parameters. Accession numbers are given for representative sequences. The complete
list of accession numbers is given in Materials and Methods.

S1 L2 S2 L1  Junction Accession

Types Number  (bp) (nt) (bp) (nt) (nt) number

tRNA-like 3’ ends of plant viral RNAs 47 3 2-3 4-6 2-3 0 J02415

X16378

PKstalks: J02415
PK1 26 3-8 2-6 4-7 1-5 0
PK2 50 3-4 2-4 5-7 1-3 0
PK3 48 3-6 2-9 4-8 1-5 0

Luteoviral frameshift sites 7 4-6 6-9 3-5 1-2 0-1 DO00530

Y07496

Retroviral frameshift sites 6 5-6 4-12 3-6 1-5 0-1 M16605

Coronaviral frameshift sites 2 11 30-32 7-11 1-2 0 M27472

Retroviral (type C) readthrough 5 8 17-18 6-7 1-3 0 K01803
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FIGURE 2. Representative structures of H-pseudoknots, used for
the estimates (see also Table 1). A: The 3’ end tRNA-like structure of
turnip yellow mosaic virus RNA. B: The pseudoknot domain of the
3'-UTR of tobacco mosaic virus RNA. C—E: Ribosomal frameshifting
sites in RNAs of the luteovirus potato leafroll virus (PLRV), simian
retrovirus-1 (SRV-1), and the coronavirus infectious bronchitis virus
(IBV). F: Readthrough signal of murine leukemia virus.
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ribosomal frameshift and readthrough (ten Dam et al.,
1990; Brierley et al., 1991; Chamorro et al., 1992; Gar-
cia et al., 1993; Kujawa et al., 1993; Wills et al., 1994).
Although large pseudoknot loops, like those found in
frameshift sites of coronaviruses (Fig. 2E), may have
an interior structure, we included them in our analysis
to test the performance of logarithmic extrapolation.

For each analyzed pseudoknot, the condition of lower
free energy than that of either of two hairpins formed
separately by stems S1 or S2 (Fig. 1) leads to the
requirement that the sum of loop energies be less than
some computable value. In these calculations, possible
coaxial stacking on stems adjacent to the pseudo-
knots, as in 3'-terminal tRNA-like structures or pseudo-
knot stalks (Fig. 2A,B), was also taken into account.
Possible extensions of stems, when they are formed
separately, were also considered. Also, in case of rel-
atively large pseudoknots (e.g., Fig. 2E,F) we com-
pared the pseudoknot energies with other structures
possible for a given region (between the 5’ end of S1
and the 3’ end of S2). We avoided structure predictions
for longer sequences with flanking regions because of
uncertainties about structures in these regions. Never-
theless, the inequalities derived from simple require-
ments for the pseudoknots to be more stable than
alternative structures in the same regions yield rough,
but reasonable estimates of upper limits of parameters
used in the suggested formulas for loop free energies.

On the other hand, in some sequences we noted
that an introduction of relatively small values of loop
energies could lead to predictions of pseudoknots that
are not consistent with the proven structures. Such
inequalities estimate lower limits of values. Further-
more, the derived free energy parameters were
corrected by comparisons with thermodynamic mea-
surements (Wyatt et al., 1990; Theimer et al., 1998) for
some model pseudoknots with relatively small loops
(see also below).

Without a claim to be very precise, we suggest the
set of free energy (AG°3;) values given in Table 2,
which is consistent with both the suggested formulas
and all the pseudoknot data used for the adjustment.
This set seems to be the best possible with a lack of
systematic experimental results. Presumably it repre-
sents the loop energies in 1 M NacCl, because the val-
ues are adjusted to the nearest-neighbor parameters,
mostly measured at these conditions (see, e.g., Xia
et al., 1998). For minimal loop size at optimal stem
lengths, the value of 3.5 kcal/mol is suggested (a loop
of 1 nt bridging 6 or 7 bp in the deep groove or 2 nt
connecting 3 bp in the shallow groove). The logarith-
mic increment, similar to loop size dependence, was
implemented for the energies of the shortest loops
crossing the stems with lengths deviating from the
optimum [AAG = 1.75 RT In(1 + |Ad|), where Ad is
the difference between the stem length and the opti-
mal one].
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TABLE 2. The approximation for free energies (AG °37) of pseudoknot loops (kcal/mol). Values not given in the table

can be extrapolated as described in the text.

loop size

stem (nt)

size

(bp) 1 2 3 4 5 6 8 10 15 20 30

(S2) deep groove (L1)
2 — — — — — — — _ — — —
3 — 5.0 5.7 6.2 6.5 6.7 7.1 7.4 7.8 8.2 8.6
4 4.7 5.4 5.9 6.2 6.4 6.6 6.9 7.2 7.6 7.9 8.4
5 4.2 4.9 5.4 5.7 5.9 6.1 6.4 6.7 7.1 74 7.9
6 35 4.2 4.7 5.0 5.2 5.4 5.7 6.0 6.4 6.7 7.2
7 35 4.2 4.7 5.0 5.2 54 5.7 6.0 6.4 6.7 7.2
8 — 4.2 4.9 5.4 5.7 5.9 6.3 6.6 7.0 7.4 7.8
9 — 4.7 5.4 5.9 6.2 6.4 6.8 7.1 75 7.9 8.3

10 — 5.0 5.7 6.2 6.5 6.7 7.1 7.4 7.8 8.2 8.6

(S1) shallow groove (L2)
2 — — — — — — — — — — —
3 — 35 4.2 4.7 5.0 5.2 5.6 5.9 6.3 6.7 7.1
4 — — 4.2 4.9 5.4 5.7 6.1 6.4 7.0 7.3 7.8
5 — — — 4.7 5.4 5.9 6.4 6.8 7.4 7.8 8.3
6 — — — 5.0 5.7 6.2 6.7 7.1 7.7 8.1 8.6
7 — — — — 5.2 5.9 6.7 7.1 7.8 8.2 8.7
8 — — — — 5.4 6.1 6.9 7.3 8.0 8.4 8.9
9 — — — — — 5.6 6.8 7.3 8.1 8.4 9.0

10 — — — — — 5.7 6.9 7.4 8.2 8.6 9.2

Predicted stability of natural pseudoknots

The suggested set of parameters predicts that all
considered 3’-terminal pseudoknots in the plant viral
tRNA-like structures (e.g., Fig. 2A) are more stable than
alternative hairpins, with differences in the range of
2-5 kcal/mol. The individual stabilities of consecutive
pseudoknots in the stalks (Fig. 2B) are more difficult
to determine, because of coaxial stacking contribu-
tions between them. Nevertheless, the values given in
Table 2 clearly define the pseudoknot stalks as the
most stable structures in these regions. The more con-
served pseudoknots PK2 and PK3, which are probably
more important (Leathers et al., 1993), are mostly more
stable as well. However, the 5’-proximal pseudoknots
are also predicted to be energetically more favorable
than the hairpins formed by S2 stems, although the S1
stems in these pseudoknots are not stabilized by co-
axial stacking on the 5’-side.

Ribosomal frameshift sites in the polymerase genes
from luteoviruses (Fig. 3) provide an interesting test
case for energy parameters. The presence of homolo-
gous pseudoknots in the analyzed sequences is sup-
ported by nucleotide base—base covariations in both
pseudoknot stems. There is also experimental evi-
dence of pseudoknot involvement in the frameshifting
signals of beet western yellows virus (BWYV) and po-
tato leafroll virus (PLRV) genes (Garcia et al., 1993;
Kujawa et al., 1993). However, in one of the PLRV
strains and in cucurbit aphid-borne yellows virus
(CABYV), the pseudoknot seems to be destabilized by
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a mismatch at the junction (Fig. 3C,D). Also, in a Ger-
man isolate of PLRV (PLRV-G) an alternative stem-
loop structure (Fig. 3E) was suggested (Prifer et al.,
1992). Our set of free energy values (Table 2) predicts
that in all sequences, the pseudoknots are more stable
than the alternate S1 or S2 hairpins, even in the two
cases with mismatches. The alternative structure in the
German strain is predicted to be only 3.7 kcal/mol more
stable at 25°C than the pseudoknot. However, its ex-
istence may be doubted, because it comprises an ad-
ditional 24 nt downstream of the pseudoknot and could
be disrupted because of competition with other down-
stream foldings. It is interesting that particularly in this
PLRV variant (Prifer et al., 1992) the pseudoknot is
also stabilized by an additional G-C pair in the S2 stem
(Fig. 3E).

Pseudoknots at the sites of ribosomal frameshifting
and readthrough in animal viruses contain stems with
many G-C pairs (Fig. 2D—F) and seem to be very sta-
ble. All analyzed pseudoknots are estimated to have
considerably lower free energies than the alternate hair-
pins. In case of readthrough sites from type C retro-
viruses and frameshifting sites from coronaviruses, both
the loops and the stems of pseudoknots are relatively
big (Table 1), so that the pseudoknots comprise rather
extended RNA regions that provide opportunities for
other alternative foldings. We compared the estimated
pseudoknot free energies with the predicted stabilities
of such structures. It turned out, however, that only one
(MoMuLV) of the five different readthrough sequences
was folded into a structure with free energy equal to
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FIGURE 3. The pseudoknots at the sites of ribosomal frameshifting
of luteovirises. A: Beet western yellows virus (BWYV). B: Potato
leafroll virus (PLRV). C: PLRV, Wageningen strain; D: Cucurbit aphid-
borne yellows virus (CABYV). E: Alternative folding in the RNA of
PLRV, German strain.

that of the pseudoknot. For the coronavirus MHYV, an
alternative structure was found to be 1.9 kcal/mol more
stable than the pseudoknot, whereas the infectious bron-
chitis virus (IBV) site pseudoknot is estimated to be 1.2
kcal/mol more stable than the closest alternative. It
should be noted that these pseudoknots may be fur-
ther stabilized by interior structures in large L2 loops.
Nevertheless, even in the absence of such stabilizing
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contributions our extrapolation for long loops predicts
competitive free energies for the formation of these
pseudoknots with loops up to 32 nt, as in the case of
the IBV frameshifting site.

Comparison with experiments

Systematic thermodynamic measurements on RNA
pseudoknots with various sequences and/or stem and
loop sizes are missing. Moreover, pseudoknot stabili-
ties are known to be strongly dependent on ionic con-
ditions, in particular, on the presence of Mg2* (Wyatt
etal., 1990; Puglisi et al., 1991), so that comparisons of
data obtained at different conditions may be mislead-
ing. Nevertheless, some qualitative comparisons can
be made.

For two model pseudoknot systems (Fig. 4), rather
detailed melting experiments are available (Wyatt
et al., 1990; Theimer et al., 1998). These studies pro-
vide measurements of pseudoknot stabilities by melt-
ing as monitored by NMR, UV absorbance and structure
probing. For calculation of the pseudoknot melting points
predicted by our set of AG°;; values for pseudoknot
loops (Table 2), we used known enthalpy and entropy
values for stacking in the stems and at coaxial stacking
(Walter & Turner, 1994). As stated above, we assumed
that the pseudoknot loops are purely entropic (AH = 0)
so that their entropies can be directly calculated from
Table 2 (AG°3; = —310 AS). The melting point of a
pseudoknot can easily be calculated using the condi-
tion that at this temperature T,, the total pseudoknot
free energy (AG = AH — T,AS) is equal to the free
energy of the most stable of alternative structures.

For the model pseudoknot PK5 (Fig. 4A), our param-
eters predict a melting temperature of 67.9°C in 1 M
NacCl, which is only 4 °C higher than the measured 64 °C
in 60 mM Na™ and 5 mM Mg?* (Wyatt et al., 1990).
Thus the suggested values slightly overestimate the

A
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CGC-CAGUC
5 I ELL 5. PK5
LIIUUUUU
B
———Ae-
-AGU
,Gwm-uséé’uéiéié&cs , T4 gene 32
MGUG

FIGURE 4. The model pseudoknots, studied experimentally. A: PK5
(Wyatt et al., 1990); B: bacteriophage T4 gene 32 pseudoknot (Thei-
mer et al., 1998).
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pseudoknot stability. It should be noted, however, that
this relatively small discrepancy may be determined by
reasons other than deficiencies in loop parameters, be-
cause actually the measured enthalpy of the pseudo-
knot formation (—50 kcal/mol) is higher than the
predicted sum of stacking contributions in the quasi-
continuous helix (=72 kcal/mol). It was suggested that
this could be due to a distortion in stacking or positive
enthalpic contributions of the loop regions (Wyatt et al.,
1990) that can be sequence specific and are not taken
into account by our approximation. It is interesting, how-
ever, that our parameters predict a single transition for
the melting of this pseudoknot, with the melting point
higher than those of both alternative hairpins, which is
consistent with experiments (Wyatt et al., 1990).

A two-transition sequential pseudoknot melting was
clearly detected for the pseudoknot (Fig. 4B) that is
involved in the translational regulation of bacterio-
phage T4 gene 32. Using a 35-nt fragment, the melt-
ing profiles were monitored by measurements of UV
absorbance at two wavelengths (280 and 260 nm),
taking advantage of the spectroscopic silence of the
pseudoknot—hairpin transition at 260 nm (Theimer
et al., 1998). The melting points predicted using the
values of Table 2 are consistent with the measure-
ments: the predicted pseudoknot—hairpin transition has
a midpoint of 64.6 °C (experimental value in the pres-
ence of 10 mM Mg?" is 67.1°C), whereas the S2 hair-
pin is predicted to melt at 77.6 °C (experimental value:
74.6°C). Here our parameters slightly underestimate
the pseudoknot stability (AT, = 2.5°C).

Some discrepancies between measured and pre-
dicted values may be attributed to differences in ionic
conditions. The values in Table 2 are adjusted at 1 M
NaCl, as in classic secondary structure parameters. It
is estimated that for nucleic acids 1 M Na* is approx-
imately equivalent to 100-150 mM Na™ in the pres-
ence of 10 mM Mg?2* (Williams et al., 1989; Xia et al.,
1998). Melting of the PK5 pseudoknot (Fig. 4A) is mea-
sured in 60 mM Na® with 5 mM Mg?* (Wyatt et al.,
1990); therefore a lowered stability may be expected.
Gene 32 pseudoknot (Fig. 4B) melting was measured
in 100 mM K™ over the range of 0—10 mM Mg?*, with
measured melting points between 32.3 and 67.1°C
(Theimer et al., 1998); therefore the predicted T,, of
64.6 °C corresponds to a Mg?* concentration slightly
lower than 10 mM. Bearing in mind the accuracy of the
melting experiments, it may be concluded that our pa-
rameters predict the pseudoknot melting curves very
closely.

For a pseudoknot from ribosomal protein S15 mRNA,
known to be in equilibrium with a mutually exclusive
folding (Philippe et al., 1995), our parameters consis-
tently predict a negligible difference between corre-
sponding free energies (the pseudoknot is more stable
by 0.3 kcal/mol). In this case the pseudoknot folding
may be further stabilized by interior interactions in the
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loop L2 of 31 nt. Although the three-dimensional mod-
eling (Philippe et al., 1995) also suggests possible sta-
bilizing contacts between this loop and the stem 1 in
the minor groove, it seems that the logarithmic extrap-
olation for large loops is in remarkable agreement with
the experimentally observed equilibrium.

Accuracy and limitations of the estimates

Of course, the rough estimation presented does not
take into account many additional effects that could be
sequence-dependent. NMR studies of a few pseudo-
knot structures provide evidence for loop interactions
with helical grooves, which may diminish destabilizing
energies (Kolk et al., 1998). Possible positive enthalpic
contributions in the loops were also suggested (Wyatt
et al., 1990). This means that a logarithmic approxima-
tion of the size dependence for loop entropies could be
rather simplistic. Also, the coefficient in the formula may
slightly differ from 1.75, derived for loop closure by a
base pair (Fisher, 1966), due to different excluded vol-
ume and end-to-end distance effects in pseudoknot
loops. Such effects are difficult to estimate because
they should depend on a complex interplay between
loop and stem dimensions, but they do not seem to
lead to a considerable variation in the coefficient values.
As RNA pseudoknots are tertiary structure elements,
Mg?" ion binding could be specific, with significant sta-
bilizing effects (Puglisi et al., 1991) and complex con-
centration dependence (Theimer et al., 1998). Another
important contribution to the stability is the stacking at
the junctions between the coaxial stems, which could
be influenced by some distortions. On the other hand,
even in bent pseudoknots an unpaired nucleotide at
the junction is stacked with neighboring bases (Shen &
Tinoco, 1995).

Thus some deficiencies in our approximations could
compensate for each other. Without taking into account
stabilizing or destabilizing sequence-specific energy
contributions, we believe that the proposed parameters
are valid with an accuracy of about +1 kcal/mol and
could be used as rough approximations of pseudoknot
stabilities and for computer predictions of structures.
Applying these parameters in the program STAR for
RNA structure prediction (Abrahams et al., 1990;
Gultyaev et al., 1995) did not result in an overrepre-
sentation of pseudoknots in the predictions. Although
this is indirect evidence, it indicates that the proposed
values do not overestimate pseudoknot stabilities sig-
nificantly. Compared to the previous estimate of the
single value of 4.2 kcal/mol for all pseudoknot loops
(Abrahams et al., 1990), the current approximation sug-
gests smaller or equal energies for short loops and
greater values for large sizes, as expected. Thus this
approximation can improve the prediction programs,
being able to predict proven pseudoknots without in-
correctly predicted pseudoknotting due to possible un-
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derestimation of destabilizing effects in the loops by
pseudoknot-including algorithms (Abrahams et al., 1990;
Gultyaev, 1991; Gultyaev et al., 1995). Presumably, fu-
ture experiments will improve these parameters and
provide an opportunity to speculate about energies of
more complicated pseudoknotted structures.

MATERIALS AND METHODS

Sequences with the following database accession numbers
were taken: J02415, X02144, AF012917, M34077, M25782,
D12505, X72587, L35073, AB000709, U03387, U30944,
D38444, AB003936, 229370, D63809, E04305, AF033848,
X78966, U34586, X72586, D13438 (tobamoviruses); X16378,
AF035199, S97776, X54354, AF035201, AF035202, Y16104,
J04374, AF035402, U91413, AF035633, AF035200, J04375
(tymoviruses); LO7937, X81639, D30753, 297873, U64512,
766493, X78602, LO7269, X99149, AJ223596, AJ223597,
AJ223598 (furoviruses); U13916, M81486, M81487 (hordeivi-
ruses); M64479, J02399 (STNV-1 and STNV-2); D00530,
Y07496, X13063, L25299, L04573, X76931 (luteoviruses);
M16605, AF033815, AF033818, AF033820, AF033807,
M25381 (retroviral ribosomal frameshift sites); M27472,
X73559 (coronaviral ribosomal frameshift sites); AF033811,
M54993, K01803, M26927, D10032 (readthrough sites in type
C retroviruses). Some database entries with identical pseudo-
knot sequences were excluded from consideration.

The nearest-neighbor and hairpin loop values were taken
from the updated set of parameters by D. Turner and cowork-
ers (http://www.ibc.wustl.edu/~zuker/rna/energy/index.shtml).
When the stems contained bulges or internal loops, the loop
and mismatch contributions were also taken into account.
For plant viral RNAs, we used the parameters for 25 °C, for
animal RNAs, those for 37 °C. For computer-assisted struc-
ture predictions, two algorithms, implemented in the package
STAR, were used as described by Abrahams et al. (1990)
and Gultyaev et al. (1995).
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