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Abstract

For any abelian group A, we prove an asymptotic formula for the number of A-extensions
K/Q of bounded discriminant such that the associated norm one torus R1

K/Q
Gm satisfies

weak approximation. We are also able to produce new results on the Hasse norm principle
and to provide new explicit values for the leading constant in some instances of Malle’s
conjecture.

1. Introduction

Fix a finite abelian group A of order d. Let K/Q be a Galois extension with Gal(K/Q) ∼= A. We
can view K as d-dimensional Q vector space. Suppose that ω1, . . . , ωd is a basis; then consider
the affine variety T over Q defined by the equation NK/Q(x1ω1 + · · · + xnωn) = 1. (Alternatively,
T is the kernel R1

K/Q
Gm of the norm map from the Weil restriction of scalars RK/QGm → Gm.)

The arithmetic of this torus is particularly interesting as both a question in the study of rational
points on Fano varieties and in the context of arithmetic statistics. The close parallels between
counting number fields of bounded discriminant and studying rational points on varieties has
been the subject of much recent interest (see [ESZ23] and [DY22]). The torus will always have
rational points, so we can ask how the rational points are distributed (qualitatively) on T .

Definition 1.1. Let X/k be a smooth variety. We say that weak approximation holds for X if
the rational points X(k) are dense in the product of local points

∏
ν X(kν), under the product

topology.

If A is cyclic, then weak approximation is guaranteed on T by the Hasse norm theorem in
class field theory (or by (1.2)). However, it was recently shown by Frei, Loughran and Newton
[FLN18, Theorem 1.5] that for any non-cyclic abelian group A, there exist extensions K/Q with
Galois group A such that the associated norm one torus fails to satisfy weak approximation.
Our main result is to establish an asymptotic formula for precisely how many A-extensions,
when ordered by absolute discriminant, are such that weak approximation holds on the norm
one torus.

Theorem 1.2. Let A be a non-trivial finite abelian group and � the smallest prime divisor
of |A|. There exist constants C(A), δ(A) and α(A), all positive, such that for all X ≥ 100,
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Weak approximation on the norm one torus

we have

#{K/Q : Disc(K/Q) ≤ X,Gal(K/Q) ∼= A and R1
K/QGm satisfies weak approximation}

= C(A)X�/(|A|·(�−1))(logX)α(A)−1 +O(X�/(|A|·(�−1))(logX)α(A)−1−δ(A)).

The constant α(A) has the explicit expression

α(A) =
∑

a∈A[�]−{0}

|{b ∈ A : Hom(∧2(A),Q/Z) → Hom(∧2(〈a, b〉),Q/Z) is the zero map}|
(�− 1) · |A| ,

(1.1)
where ∧2 is the second exterior algebra and Hom(∧2(A),Q/Z) → Hom(∧2(〈a, b〉),Q/Z) is simply
the natural restriction map.

Frei et al. [FLN18, Theorem 1.5] established that 0% of A-extensions (of any given number
field) satisfy the weak approximation property when ordered by discriminant if the �-Sylow
subgroup of A is not cyclic (and otherwise a positive proportion do). This result is recovered
for abelian extensions of Q by combining our result with Wright’s theorem on the number of
A-extensions of bounded discriminant [Wri89, Theorem 1.2]. Their results gave density statements
but no information about the order of magnitude of the size of the set in Theorem 1.2. The only
case where an asymptotic formula had previously been known is when A ∼= (Z/2Z)2, by work of
the second named author [Rom18].

1.1 The Hasse norm principle
The problem of weak approximation on R1

K/Q
Gm is closely related to determining whether the

Hasse norm principle holds for K/Q. This problem asks: if an element of K is a norm for every
local extension Kp/Qp, is it also a norm for the global extension K/Q? In geometric language,
do all the principal homogeneous spaces for the torus R1

K/Q
Gm satisfy the Hasse principle? The

connection between the two problems is made explicit by the following short exact sequence due
to Voskresenskii [Vos70, Theorem 6]:

0 → A(T ) → H3(A,Z)∨ → X(T ) → 0, (1.2)

where X(T ) is the Tate–Shafarevich group of the torus and A(T ) = (
∏

νT (Qν))/T (Q) is the
defect of weak approximation. This sequence can also be viewed as an artifact of the fact that
the Brauer–Manin obstruction is the only obstruction to weak approximation for the torus and
to the Hasse principle for any principal homogeneous space under the torus (see [San81]).

If K/Q is cyclic then Tate’s theorem shows that H3(A,Z)∨ is trivial, guaranteeing both the
Hasse norm principle and weak approximation on the norm one torus. If the group H3(A,Z)∨ is
cyclic of prime order then either X(T ) = 0 or A(T ) = 0 but not both. In other words, the Hasse
norm principle fails if and only if R1

K/Q
Gm satisfies weak approximation. Therefore, in certain

cases, one can deduce information about Hasse norm principle failure from our main theorem.

Corollary 1.3. Suppose that A ∼= ∏r
i=1(Cpi)

ni for primes p1 < · · · < pr and natural numbers
ni such that

∏r
i=1 ni = 2. Then there exist constants C(A), δ(A) and α(A), all positive, such

that for all X ≥ 100, we have

#{K/Q : Disc(K/Q) ≤ X,Gal(K/Q) ∼= A and K/Q fails the Hasse norm principle}
= C(A)X�/(|A|·(�−1))(logX)α(A)−1 +O(X�/(|A|·(�−1))(logX)α(A)−1−δ(A)).

Moreover, if n1 
= 2, then a positive proportion of A-extensions fail the Hasse norm principle.
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When combined with Wright’s theorem [Wri89], this corollary recovers density results due to
Frei, Loughran and Newton [FLN18, Theorem 1.1] and the authors [KR23, Theorem 1.2] for such
A. In § 9, we give an explicit expression for the proportion of (C2 × C3 × C3)-extensions failing
the Hasse norm principle.

1.2 Proof structure
The arithmetic of the norm one torus is intimately connected with the arithmetic of the field K.
Write Dp for the decomposition group of a prime p.

Lemma 1.4. The norm one torus R1
K/Q

satisfies weak approximation if and only if the restriction
map Hom(∧2(A),Q/Z) → Hom(∧2(Dp),Q/Z) is identically zero for all primes p.

This lemma provides the key criterion by which we may distinguish fields with the weak
approximation property. Therefore, our main result can be reinterpreted as a problem concerning
counting the number of A-extensions, ordered by discriminant, with a set of allowed splitting
conditions at every finite place. In general, such problems are extremely difficult and of great
interest to the arithmetic statistics community. We are able to achieve success in this particu-
lar case by a combination of a clever parametrisation of the fields and detecting our splitting
conditions using character sums.

More specifically, in § 2, A-extensions will be parametrised by tuples of squarefree integers
(va)a∈A−{0}. In the formula for the discriminant, the higher the order of the group element a, the
larger the exponent of the component va. Therefore, the components va with a ∈ A[�] − {0} will
carry the most weight in the formula and we assume that the remaining variables are quite small.
In other words, we may fix an extension L/Q with Gal(L/Q) ∼= A/A[�] of small discriminant
and allow K to vary across A[�]-extensions of L. This reduces the problem to understanding the
number of multicyclic extensions of bounded discriminant with certain splitting conditions at
each prime. This also explains the form of the logarithmic exponent given in (1.1), since inertia
subgroups will typically live in A[�].

The nature of the splitting conditions imposed on the multicyclic extension is encapsu-
lated in the notion of f-correctness in § 5. Theorem 5.2 establishes the necessary count for
multicyclic extensions and this is used to establish the general statement in Theorem 5.3.
Sections 6–8 are devoted to proving Theorem 5.2. Finally, in § 9, we compute some explicit exam-
ples, elucidating the proof strategy and providing completely explicit leading constants in certain
cases.

Remark. The fact that we can essentially reduce the problem to the multicyclic case is a conse-
quence of the discriminant being an unfair counting function (in the language of Wood [Woo10]).
It is very plausible that a similar approach will be fruitful when ordering fields in another way,
but the task is made simpler under this parametrisation when ordering by discriminant.

Remark. Frei–Loughran–Newton [FLN22] also considered such problems when ordering fields
by conductor instead of discriminant. In this setting, 0% of fields have weak approximation on
the norm one torus, for any non-cyclic abelian group A. If A is a multicyclic group, then the
discriminant is a fixed power of the conductor. As such our main results (in particular, the
calculations in § 9.1) recover (and improve) this density result for extensions over Q.

It is also interesting to consider the problem of the statistics of the Hasse norm principle
and weak approximation on the norm one torus for non-abelian extensions. Macedo showed in
his thesis [Mac21] that 100% of D4 octics over Q satisfy the Hasse norm principle and that 0%
satisfy the weak approximation property, when ordering by either conductor or discriminant. The
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conductor ordering part of his work is unconditional (thanks to work of Altuğ, Shankar, Varma
and Wilson [ASVW21]) but the discriminant ordering part is conditional on work in progress
of Shankar and Varma on Malle’s conjecture for D4 octics. Macedo–Newton [MN22] have given
criteria for the failure of weak approximation and the Hasse norm principle in fields with normal
closure Sn and An. Combining this with the counting techniques of Bhargava [Bha05, Bha10],
Newton and Varma (in forthcoming work) study the frequency of Hasse norm principle failures in
non-quartic S4 fields and non-quintic S5 fields. (Note that the Hasse norm principle is guaranteed
in Sn extensions of degree n (see Voskresenskĭı [Vos89]), and in Dn extensions of degree n by
Bartels [Bar81].) There has also been recent work by Monnet [Mon22] on the related problem of
counting how often certain prescribed elements of a number field k are norms as one varies over
S4 quartic extensions of k.

1.3 Equidistribution of Frobenius
As mentioned above, the key step in our proof is a reduction to the case of multicyclic extensions.
It will be important that we can count multicyclic extensions which have the necessary local
properties to ensure that weak approximation is satisfied for the full extension. This is the crux
of Theorem 5.2, the main technical input into the proof, which should be viewed as a quantitative
Frobenius equidistribution result. Essentially it states that one can uniformly count multicyclic
extensions of a number field F while imposing that the Frobenius element of primes ramifying
in the multicyclic extension or the number field F lands in (essentially) any given subset of the
Galois group. This equidistribution is reflected nicely in the leading constants for these problems.

The total number of �-multicyclic fields (for � 
= 2) of bounded discriminant has the following
leading constant in its asymptotic formula:

(1 + (�n − 1)/�2)(�n − �n−1)−((�n−1)/(�−1))+1

Γ((�n − 1)/(�− 1))
∏n−1

i=0 (�n − �i)

∏
p≡1 mod �

(
1 +

�n − 1
p

)∏
p

(
1 − 1

p

)(�n−1)/(�−1)

.

This fact is proven in Theorem 9.1. When counting such extensions for which weak approximation
holds on the norm one torus the leading constant (cf. § 9.1) is

(1 + (�n − 1)/�2)(�n − �n−1)−((�n−1)/(�n−1(�−1)))+1

Γ((�n − 1)/(�n−1(�− 1)))
∏n−1

i=0 (�n − �i)

×
∏

p≡1 mod �

(
1 +

�n − 1
�n−1p

)∏
p

(
1 − 1

p

)(�n−1)/(�n−1(�−1))

.

One notes that the constants are remarkably similar and that one major change is to the terms
within the Euler product. The factors in the Euler product corresponding to the weak approxi-
mation count feature an extra 1/�n−1 which reflects the fact that at each prime p, if Frobenius
elements were distributed uniformly at random among all elements of the Galois group (quo-
tiented by inertia), the probability that the Frobenius element is trivial is 1/�n−1. More generally,
Theorem 5.2 features a product of factors corresponding to the probability that Frobenius lands in
the specified subgroups at each prime. This quantitative equidistribution is key for our purposes
but also likely to be highly useful in many further problems in arithmetic statistics.

1.4 Notations and conventions
– The symbol v denotes a place of Q, and p denotes a finite place of Q. Given a finite place p,

we write vp for the corresponding valuation.
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– We say that an integer d is squarefree if p | d implies p2 � d. In particular, squarefree integers
may be negative.

– We say that two squarefree integers d, e are coprime if we have gcd(d, e) = 1 and, furthermore,
d and e are not both negative.

– We write ∞ for the infinite place of Q. We say that ∞ divides d, written ∞ | d, if d < 0. Then
we have that two squarefree integers d, e are coprime if and only if there does not exist a place
v of Q such that v | d and v | e.

– A Galois extension K/Q is called multicyclic if Gal(K/Q) ∼= (Z/�Z)n for some prime �.
– Elements φ of Epi(GQ, A) will often be referred to as A-extensions. This is the same data as a

Galois extension K/Q together with an isomorphism between Gal(K/Q) and A. If a property
depends only on the field K, then we shall frequently abuse notation by also referring to K/Q
as an A-extension by forgetting the choice of isomorphism.

2. Parametrisation of abelian extensions

The following parametrisation is based on the methods of Koymans and Pagano [KP23]. Fix an
algebraic closure Q of Q and fix a finite abelian group A, which we view as a topological group
by using the discrete topology. Our goal is to describe the set

{K : Gal(K/Q) ∼= A,DK ≤ X},
where all our number fields K are implicitly taken inside Q. There is a natural surjective map ψ

Epi(GQ, A) → {K : Gal(K/Q) ∼= A}
from the set of continuous epimorphisms GQ → A to {K : Gal(K/Q) ∼= A}. The map ψ sends a
continuous epimorphism φ to the fixed field of ker(φ). If we define the discriminant of φ : GQ → A
to be the discriminant of the fixed field, then this map trivially preserves the discriminant.
Furthermore, a field K with Gal(K/Q) ∼= A has precisely |Aut(A)| preimages under ψ. Hence,
we will now shift our attention to Epi(GQ, A).

It turns out to be slightly easier to work with Hom(GQ, A), and we will later deduce results
for Epi(GQ, A) from this. We will now create a bijection between Hom(GQ, A) and certain tuples
of integers. Let us first define the space A.

Definition 2.1. Let A be a finite abelian group. Let A be the set of tuples (va)a∈A−{0} satisfying
the following conditions:

– va is a squarefree integer for every a ∈ A− {0};
– va and vb are coprime for all a, b ∈ A− {0} with a 
= b;
– we have

p ≡ 1 mod
ord(a)

pvp(ord(a))

for all prime divisors p of va;
– if ord(a) > 2, then va > 0.

To create the bijection, we make some arbitrary choices. Let

Kp :=

{
Q(ζp∞), if p > 2,
Q(ζ2∞)+, if p = 2,

where Q(ζ2∞)+ denotes the maximal real subfield of Q(ζ2∞). We have an isomorphism

Gal(Kp/Q) ∼= Zp ⊕ Z/(p− 1)Z.
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Since Gal(Kp/Q) is procyclic, we may choose a topological generator τp of Gal(Kp/Q). Let τ∞ be
a generator of Gal(Q(

√−1)/Q). Then the maximal abelian extension Qab of Q is the compositum
of Kp and Q(

√−1) over all primes p. Furthermore, these fields are linearly disjoint, which gives
an isomorphism

Gal(Qab/Q) ∼= Gal(Q(
√−1)/Q) ×

∏
p

Gal(Kp/Q).

Define σp and σ∞ to be the unique elements in Gal(Qab/Q) that project to respectively τp,
τ∞ and zero everywhere else. Then the σp and σ∞ together form a minimal set of topological
generators of Gal(Qab/Q).

Let p be a prime, let n ≥ 0 and let � be a prime congruent to 1 mod pn. Let

ψ�,p,n ∈ Hom(GQ,Z/p
nZ)

be the unique homomorphism that is unramified away from � and satisfies ψ�,p,n(σ�) = 1. Note
that it makes sense to evaluate ψ�,p,n in σ�, since any homomorphism ψ�,p,n : GQ → Z/pnZ must
factor through Gal(Qab/Q). Similarly, let

ψp,p,n ∈ Hom(GQ,Z/p
nZ)

be the unique homomorphism that is unramified away from p and sends σp to 1. Finally, let

ψ∞,2,1 ∈ Hom(GQ,Z/2Z)

be the unique surjective homomorphism that factors through Gal(Q(
√−1)/Q).

If x is a squarefree integer such that all its prime divisors are 1, p mod pn and such that x > 0
if (p, n) 
= (2, 1), we define

ψx,p,n =
∑
�|x

ψ�,p,n ∈ Hom(GQ,Z/p
nZ).

If � 
= p is not congruent to 1 mod pn, we let m ≥ 0 be the largest integer such that � is congruent
to 1 mod pm. Then we define ψ�,p,n to be any lift of ψ�,p,m, which means that qn,m ◦ ψ�,p,n = ψ�,p,m,
where qn,m is the unique map Z/pnZ → Z/pmZ sending 1 to 1. We let ψ∞,2,n be any lift of ψ∞,2,1,
while ψ∞,p,n is defined to be any lift of the zero map for p 
= 2. We may then still define ψx,p,n

as above.
Using these choices, we will construct a map Par : A → Hom(GQ, A). Take (va)a∈A−{0} ∈ A.

Choose a cyclic quotient Z/pnZ of A. Write π : A→ Z/pnZ for the quotient map and π∗ for the
induced map Hom(GQ, A) → Hom(GQ,Z/p

nZ). Then we demand that

π∗(Par((va)a∈A−{0})) =
∑

a∈A−{0}
π(a) · ψva,p,n (2.1)

for all π. We emphasise that each π(a) · ψva,p,n is a homomorphism despite the fact that ψva,p,n

need not be.
We claim that (2.1) uniquely specifies the homomorphism Par((va)a∈A−{0}). By the funda-

mental theorem of abelian groups, we may decompose A as

A =
k⊕

i=1

Z/pei
i Z.

Writing πi for the natural projection map A→ Z/pei
i Z, we see that each homomorphism πi ◦

Par((va)a∈A−{0}) is determined by (2.1). Therefore, (2.1) specifies at most one homomorphism
Par((va)a∈A−{0}).
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To prove existence, we observe that there certainly exists a homomorphism Par((va)a∈A−{0})
satisfying (2.1) for π ∈ {π1, . . . , πk}. Viewing each πi as taking values in Q/Z by fixing an inclusion
Z/pei

i Z → Q/Z, we see that each map π : A→ Z/pnZ → Q/Z is a Z-linear combination of the
πi, since the maps πi generate the dual space Hom(A,Q/Z). Therefore, (2.1) holds for all π by
linearity.

We conclude that Par is well-defined. Furthermore, we have the key property( ∑
a∈A−{0}

π(a) · ψva,p,n

)
(σ�) =

{
π(a), if a ∈ A− {0} satisfies � | va,

0, otherwise.
(2.2)

Theorem 2.2. The map Par is a bijection.

Proof. We will construct an explicit inverse Ev of Par. Take some φ ∈ Hom(GQ, A). Then Ev(φ)
is the unique tuple (va)a∈A−{0} of squarefree integers satisfying the property

p | va ⇐⇒ φ(σp) = a

for all a ∈ A− {0} and for all places p of Q (including the infinite place ∞). Using (2.2), one
directly checks that

Par(Ev(φ))(σ) = φ(σ)

for σ equal to σp or σ∞. This implies that

Par(Ev(φ)) = φ,

since the σp and σ∞ together form a set of topological generators of Gal(Qab/Q). A routine
verification shows that Ev ◦ Par = id, which completes the proof of the theorem. �

The map Par has two convenient properties. First of all, the space A is analytically easy to
describe. Second, we have good control of the discriminant, which we make precise in our next
theorem.

Theorem 2.3. Let v = (va)a∈A−{0} ∈ A be such that Par(v) ∈ Epi(GQ, A). Then we have

vp(Disc(Par(v))) = vp

( ∏
a∈A−{0}

v|A|·(1−1/ord(a))
a

)
(2.3)

for all primes p coprime to 2 · |A|.
Proof. Let v = (va)a∈A−{0} ∈ A and let p be a prime coprime to 2 · |A|. Write φ = Par(v) and
write L for the extension corresponding to φ. Recall that the inertia subgroup Ip of Gal(Qab/Q)
is topologically generated by σp (here we use that p 
= 2). Also recall that Ip surjects on the
inertia subgroup I ′p of Gal(L/Q).

Suppose that φ(σp) = a. We compute that

vp

( ∏
a∈A−{0}

v|A|·(1−1/ord(a))
a

)
= |A| ·

(
1 − 1

ord(a)

)
,

since vp(va) = 1 and the entries of v are coprime. In order to compute the discriminant, write K
for the field corresponding to π ◦ φ, where π : A→ A/〈a〉 is the natural quotient map. Then p is
unramified in the extension K/Q, and all places of K above p are totally, tamely ramified in the
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cyclic extension L/K of degree ord(a). Therefore, we have

vp(Disc(Par(v))) = |A| ·
(

1 − 1
ord(a)

)
as desired. �

It is most convenient to have a version of the above theorem that also deals with the wild
places.

Theorem 2.4. Let v = (va)a∈A−{0} ∈ A be such that Par(v) ∈ Epi(GQ, A). Then, for p > 2,
vp(Disc(Par(v))) depends only on the order of Par(v)(σp).

Proof. This is completely a local question. Let B be a finite abelian group and, furthermore,
let φ ∈ Epi(Gal(Qab

p /Qp), B). Then we have to show that the discriminant depends only on the
order of φ(σp).

Write K/Qp for the abelian extension corresponding to ker(φ) by Galois theory. Denote by
IK/Qp

the inertia subgroup of K/Qp, which is equal to φ(Ip). We have an exact sequence

0 → IK/Qp
→ Gal(K/Qp) → Gal(K/Qp)

IK/Qp

→ 0.

After replacing K by the compositum KL′ for L′/Qp an unramified extension of degree equal
to |Gal(K/Qp)|, we observe that the above exact sequence is split. We may now filter KL′

as KL′/M/Qp, where M is the unique subfield of Qp(ζp∞) of degree |IK/Qp
| followed by an

unramified extension. One may therefore directly compute the discriminant of M/Qp. Then the
theorem follows by several applications of the tower formula for the discriminant. �

3. Criterion for weak approximation

We recall the following results from [FLN18]. Let A be a finite abelian group, and write
A∨ := Hom(A,Q/Z) for the dual group. Recall that an A-extension is a surjective, continuous
homomorphism from GQ to A. We fix embeddings GQv → GQ for each place v of Q.

Theorem 3.1 [FLN18, Theorem 6.2]. Let K/Q be an A-extension. Then weak approximation
holds if and only if the natural surjective map

H3(A,Z)∨ → X(R1
K/Q,Gm)

is an isomorphism.

Theorem 3.2 [FLN18, Theorem 6.1]. We have

X(R1
K/Q,Gm)∨ = ker

(
H3(A,Z) →

∏
v

H3(im(GQv),Z)
)
.

Combining these two theorems, we see that weak approximation holds if and only if

H3(A,Z) = ker
(
H3(A,Z) →

∏
v

H3(im(GQv),Z)
)
.

Following [FLN18, Lemma 6.4], we see that the universal coefficient theorem gives canonical
isomorphisms

H3(B,Z) ∼= Ext(H2(B,Z),Z) ∼= Hom(∧2(B),Q/Z)
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for B any finite abelian group. Then we get the following diagram.

The bottom map ϕ in the above diagram is simply as follows. Consider the map im(GQv) → A.
By functoriality of ∧2, we get a map ∧2(im(GQv)) → ∧2(A), which gives ϕ after dualising. We
summarise our discussion as follows.

Theorem 3.3. Weak approximation holds if and only if the natural restriction map

Hom(∧2(A),Q/Z) → Hom(∧2(im(GQv),Q/Z)

is the zero map for each place v.

We decompose A as

A =
r⊕

i=1

ni⊕
j=1

Z/p
ej

i Z,

where p1 < · · · < pr are prime numbers, and e1, . . . , eni are non-negative exponents with
e1 ≤ · · · ≤ eni .

Theorem 3.4. There exists a subspace S of A[p1] with the following property. Suppose that
a ∈ A[p1] − {0}. Then for b ∈ A, we have that

Hom(∧2(A),Q/Z) → Hom(∧2(〈a, b〉),Q/Z)

is the zero map if and only if the following assertions hold.

– If a ∈ S, then b must be in a certain subset of A/A[p1] depending only on a.
– If a 
∈ S, then b ∈ p1A+ 〈a〉.
Proof. We take S = A[p1] ∩ p1A. Let us first suppose that a ∈ S. Also recall that we have a
canonical isomorphism

Hom(∧2(A),Q/Z) ∼= {alternating Z-multilinear maps A×A→ Q/Z}
by the universal property of ∧2. Let ϕ : A×A→ Q/Z be alternating and let t ∈ A[p1]. We claim
that

ϕ(a, t) = 0.

Once the claim is proven, we immediately see that Hom(∧2(A),Q/Z) → Hom(∧2(〈a, b〉),Q/Z)
is the zero map if and only if Hom(∧2(A),Q/Z) → Hom(∧2(〈a, b+ t〉),Q/Z) is the zero map.
Therefore, the first part of the theorem follows from the claim.

Let us now prove the claim. Since a ∈ p1A, we may take b ∈ A such that p1b = a. We then
have the equalities

ϕ(a, t) = p1ϕ(b, t) = ϕ(b, p1t) = ϕ(b, 0) = 0

as claimed.
It remains to prove the second part of the theorem. To this end, let a 
∈ S. One read-

ily verifies that the map Hom(∧2(A),Q/Z) → Hom(∧2(〈a, b〉),Q/Z) is identically zero for
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b ∈ p1A+ 〈a〉. Now suppose that b 
∈ p1A+ 〈a〉. We must show that the map Hom(∧2(A),Q/Z) →
Hom(∧2(〈a, b〉),Q/Z) is not identically zero. Write Γ := 〈a, b〉. We claim that the injection

0 → Γ[p∞1 ] → A[p∞1 ]

is split. This is equivalent to the claim that

pk
1A[p∞1 ] ∩ Γ[p∞1 ] = pk

1Γ[p∞1 ]

for all k > 0. Observe that the inclusion ⊇ is always true.
Let c ∈ pk

1A[p∞1 ] ∩ Γ[p∞1 ] and take d such that pk
1d = c. Then we have

pk
1d = n · a+m · b

for some integers n,m ∈ Z. In particular, we deduce that m · b ∈ p1A+ 〈a〉. Since A/(p1A+ 〈a〉)
has exponent p1 and since b 
∈ p1A+ 〈a〉 by assumption, it follows that m must be divisible
by p1. Therefore, we conclude that n · a is a multiple of p1 in A. Because a 
∈ S, this forces that
p1 divides n and thus n · a = 0. We conclude that c = pk

1d = m · b. Because b 
∈ p1A, we deduce
that pk

1 | m and then c ∈ pk
1Γ[p∞1 ] as desired.

We next claim that Γ ⊗Z Fp1 has dimension two. Once the claim is proven, we deduce that
∧2(Γ[p∞1 ]) ∼= Fp1 . Using that the injection 0 → Γ[p∞1 ] → A[p∞1 ] is split, one readily verifies that
the map

Hom(∧2(A),Q/Z) → Hom(∧2(Γ),Q/Z)

is not identically zero. Therefore, it is enough to establish the claim.
To prove the claim, we remark that the order of b is divisible by p1. Indeed, if not, we would

have b ∈ p1A contrary to our assumptions. We have an exact sequence

0 → 〈a〉 ∩ 〈b〉 Δ−→ 〈a〉 ⊕ 〈b〉 Σ−→ 〈a, b〉 → 0,

where Δ is the map x→ (x,−x) and Σ is the sum map (x, y) �→ x+ y. Therefore, it suffices to
show that 〈a〉 ∩ 〈b〉 = {0}. If not, then there must be some k ∈ Z such that k · b = a. Since a 
∈ S,
it follows that k is not divisible by p1. But then we deduce that b ∈ p1A+ 〈a〉, contrary to our
assumptions. This gives the claim upon tensoring the above sequence by Fp1 . �

4. Analytic tools

4.1 Sums of multiplicative functions
After the various reduction steps in the later sections, the count in which we are interested will
be expressed as a character sum. For � > 2, the main term will occur when the combinations
of characters are principal. In such cases, we will repeatedly call upon the following general
theorem of Koukoulopoulos [Kou19, Theorem 13.2] based on the earlier work of Granville and
Koukoulopoulos [GK19].

Theorem 4.1 [GK19, Theorem 1]. Let Q ≥ 2 be a parameter and let f be a multiplicative
function such that there exists α ∈ C with∑

p≤x

f(p) log p = αx+OA

(
x

(log x)A

)
(x ≥ Q) (4.1)
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for all A > 0. Moreover, suppose, for all n, that |f(n)| ≤ τk(n) for some positive real number k.
Fix ε > 0 and J ∈ Z≥1. Then we have∑

n≤x

f(n) = x
J−1∑
j=0

cj
(log x)α−j−1

Γ(α− j)
+O

(
x(logQ)2k+J−1

(log x)J+1−Re(α)

)
for x ≥ e(log Q)1+ε and some explicit constants cj . The implied constant depends at most on k, J ,
ε and the implied constant in (4.1) for A large enough in terms of k, J and ε only. Furthermore,
we have

c0 =
∏
p

(
1 +

f(p)
p

+
f(p2)
p2

+ · · ·
)(

1 − 1
p

)α

and cj �j,k (logQ)j+2k.

4.2 An abstract large sieve
To handle some of the combinations of characters with large modulus which are non-principal,
we will use a number field large sieve. Let K be a number field and let � be a prime number. If
f is an ideal, we write Sf for the subset of α ∈ OK coprime with f. We also write N(w) for the
absolute norm of an element. Let M ≥ 1 be an integer. Suppose that we are given a map

γ : SMOK
× SMOK

→ {0} ∪ {ζi
� : i = 0, . . . , �− 1}

and a subset Abad of Z≥0 satisfying the following properties.

(P1) Multiplicativity: we have

γ(w, z1z2) = γ(w, z1)γ(w, z2) for all w, z1 and z2

and
γ(w1w2, z) = γ(w1, z)γ(w2, z) for all w1, w2 and z.

(P2) Periodicity: if z1, z2, w ∈ SMOK
satisfy z1 ≡ z2 mod N(w) and z1 ≡ z2 mod M , then we

have γ(w, z1) = γ(w, z2). Furthermore, if N(w) 
∈ Abad, then we have∑
ξ mod MN(w)
gcd(ξ,M)=(1)

γ(w, ξ) = 0.

(P3) Bad count: we have ∑
n∈Abad
n≤X

1 ≤ C1X
1−C2

for some absolute constants C1 > 0 and 0 < C2 < 1.

Decompose
O∗

K = T ⊕ V,

where T is torsion and V is free. Such a decomposition is not unique, but we will fix one
such decomposition. Fix a fundamental domain D ⊆ OK as in [KM19, § 3.3] for the action of V
on OK . We will recite the properties of the fundamental domain that we need.

Lemma 4.2. The fundamental domain D ⊆ OK has the following properties.

– For all α ∈ OK , there exists a unique v ∈ V such that vα ∈ D. Furthermore, we have

{u ∈ O∗
K : uα ∈ D} = {μv : μ ∈ T}.
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– Fix an integral basis η = {η1, . . . , ηn} of OK . Then there exists a constant Cη > 0 such that
α = a1η1 + · · · + anηn ∈ D (ai ∈ Z) implies that |ai| ≤ Cη ·N(α)1/n.

Proof. This is [KM19, Lemma 3.5]. �
We will consider bilinear sums of the type

B(X,Y, δ, ε, t1, t2) =
∑

w∈t1D(X)
w≡δ mod M

∑
z∈t2D(Y )

z≡ε mod M

αwβzγ(w, z),

where (αw)w and (βz)z are sequences of complex numbers bounded in absolute value by 1, δ
and ε are invertible congruence classes modulo M , t1 and t2 are fixed elements of T (so tiD is a
translate of the fundamental domain) and X,Y ≥ 2 are real numbers. Here we use the notation
(tiD)(X) for the subset of α ∈ tiD with N(α) ≤ X.

Proposition 4.3. Assume that X ≤ Y . Then we have

|B(X,Y, δ, ε, t1, t2)| �
(
X(−C2)/3n + Y (−1)/6n

)
XY (logXY )CK ,

where n = [K : Q] and CK is a constant depending only on K. The implied constant depends
only on K, M and the constants C1, C2.

Since 0 < C2 < 1, we achieve a power saving in both X and Y . Careful scrutiny of the proof
shows that the constant CK may be taken to depend at most on n. However, the same cannot
be said of the implicit constant, which will likely depend on the regulator of K with the current
argument. This will not be a cause for concern; however, as in our application this field will be
a fixed cyclotomic field of the form Q(ζ�).

Remark. This result should be compared with Heath-Brown’s sieve for quadratic characters,
see [Hea95, Corollary 4] or its number field analogues (e.g., [GL13, Theorem 1.1] and [BGL14,
Theorem 1.3]). There one considers bilinear sums of the Legendre symbol (z/w) (or an analogous
Hecke family), which naturally satisfies properties (P1)–(P3). Heath-Brown is able to produce a
greater power saving, but in his result the (logXY )CK,k term is replaced by (XY )ε. It will be
crucial in our application that this term is at worst a fixed power of the logarithm.

Proof of Proposition 4.3. The argument is a minor generalisation of [KM19, Proposition 3.6].
Pick an integer k ≥ 1 that we will optimise later. We start the proof by applying Hölder’s
inequality to

1 =
k − 1
k

+
1
k
,

which gives

|B(X,Y, δ, ε, t1, t2)|k ≤
( ∑

w∈t1D(X)
w≡δ mod M

|αw| ·
∣∣∣∣∣ ∑

z∈t2D(Y )
z≡ε mod M

βzγ(w, z)

∣∣∣∣∣
)k

≤
( ∑

w∈t1D(X)
w≡δ mod M

|αw|k/(k−1)

)k−1

·
( ∑

w∈t1D(X)
w≡δ mod M

∣∣∣∣∣ ∑
z∈t2D(Y )

z≡ε mod M

βzγ(w, z)

∣∣∣∣∣
k)

� Xk−1 ·
∑

w∈t1D(X)
w≡δ mod M

∣∣∣∣∣ ∑
N(z)≤Y k

β′zγ(w, z)

∣∣∣∣∣,
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where

β′z :=
∑

z1·...·zk=z
zi∈t2D(Y )

zi≡ε mod M

βz1 · . . . · βzk
.

Here we used property (P1) to expand the k-fold product.
Fix an integral basis η1, . . . , ηn of OK , where n = [K : Q]. We call an element z (C, Y )-well-

balanced if

z = a1η1 + . . .+ anηn, ai ∈ Z, (4.2)

implies that |ai| ≤ CY 1/n. From the construction of the fundamental domain D(Y ) (see the
second property of Lemma 4.2), it follows that there exists a constant C > 0 depending only on
k, K and the choice of integral basis such that β′z = 0 if z is not (C, Y k)-well-balanced. Fix such
a choice of absolute constant C. Then we may assume from now on that we are summing over
all z such that N(z) ≤ Y k and z is (C, Y k)-well-balanced. Write B(Y,C) for the set of z ∈ OK

such that |ai| ≤ CY 1/n upon expanding z as in (4.2) and such that z is coprime with M . For the
remainder of this proof, all our implied constants may depend on K, M , k, C1, C2, our choice of
C and our choice of integral basis. We rewrite

∑
w∈t1D(X)

w≡δ mod M

∣∣∣∣∣ ∑
N(z)≤Y k

z∈B(Y k,C)

β′zγ(w, z)

∣∣∣∣∣ =
∑

w∈t1D(X)
w≡δ mod M

ε(w)
∑

N(z)≤Y k

z∈B(Y k,C)

β′zγ(w, z)

=
∑

N(z)≤Y k

z∈B(Y k,C)

β′z
∑

w∈t1D(X)
w≡δ mod M

ε(w)γ(w, z),

where ε(w) are complex numbers of absolute value 1. We now drop the condition N(z) ≤ Y k.
This does not change the sum, since β′z = 0 if N(z) > Y k. Then the Cauchy–Schwarz inequality
yields

|B(X,Y, δ, ε, t1, t2)|2k � X2k−2 ·
( ∑

z∈B(Y k,C)

|β′z|2
)

·
( ∑

z∈B(Y k,C)

∑
w1∈t1D(X)

w1≡δ mod M

∑
w2∈t1D(X)

w2≡δ mod M

ε(w1)ε(w2)γ(w1w2, z)

)

thanks to property (P1). We bound the former sum by∑
z∈B(Y k,C)

|β′z|2 � Y k(log Y )CK,k ,

where CK,k is an effectively computable constant depending only on K and k. For the latter sum
we invert the order of summation to get∑

w1∈t1D(X)
w1≡δ mod M

∑
w2∈t1D(X)

w2≡δ mod M

ε(w1)ε(w2)
∑

z∈B(Y k,C)

γ(w1w2, z).
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We have the estimates∑
z∈B(Y k,C)

γ(w1w2, z) �
{
Y k, if N(w1w2) ∈ Abad,∑n

i=1X
2iY k(1−i/n), if N(w1w2) 
∈ Abad.

Indeed, the first inequality is just the trivial bound. For the second inequality, we use property
(P2) and split B(Y k, C) into boxes of side length MN(w1w2) ≤MX2.

From now on we shall take k ≥ 2n. Hence, we have Y k/n ≥ X2, since we assumed that Y ≥ X.
Therefore, the last bound can be simplified to X2Y k(1−1/n). Thanks to property (P3), we get the
bound ∑

w1∈t1D(X)
w1≡δ mod M

∑
w2∈t1D(X)

w2≡δ mod M

1N(w1w2)∈Abad �K,k,C1 X
2−2C2(logX)CK,k

for a potentially different effectively computable constant CK,k depending only on K and k. This
shows that ∑

w1∈t1D(X)
w1≡δ mod M

∑
w2∈t1D(X)

w2≡δ mod M

ε(w1)ε(w2)
∑

z∈B(Y k,C)

γ(w1w2, z)

� (
X2−2C2Y k +X4Y k(1−1/n)

)
(logXY )CK,k .

We conclude that

|B(X,Y, δ, ε, t1, t2)|2k � (
X2k−2C2Y 2k +X2k+2Y 2k−k/n

)
(logXY )CK,k .

We take k = 3n, which depends only on K, to finish the proof of the proposition. �

5. Reduction to multicyclic extensions

The aim of this section is to reduce our main theorem to the case of multicyclic extensions. This is
not quite possible, but instead we may reduce to multicyclic extensions where the decomposition
group condition is replaced by a splitting condition depending on p mod M , where we think of
M as being (almost) fixed. We formalise these types of conditions in our next definition. Write
P(X) for the power set of a set X.

Definition 5.1. Let A = Fn
� for some prime � and integer n > 0. Write S for the set of subspaces

of A of dimension at most one. Also write P for the set of prime numbers. Let M ∈ Z≥1 and
let B ⊆ A be a subspace. Let f : P × S → �S∈SP(A/S) be a function satisfying the following
properties.

– We have f(p, S) ⊆ A/S for all (p, S). Furthermore, if S ∩B = {0}, then f(p, S) is a coset of
B viewed as subgroup of A/S. If S ∩B 
= {0}, then f(p, S) = A/S.

– For every fixed S ∈ S, the function p �→ f(p, S) depends only on p mod M .

Let g : {p ∈ P : p |M} → {∅ ⊂ F ⊆ Fn
� }. We say that the pair (f, g) is a congruence function

for M . Moreover, let K be an A-extension of Q given by φ ∈ Epi(GQ, A). If p is a prime, we

write Kp for the extension of Q corresponding to GQ
φ−→ A→ A/φ(Ip). We say that K has the

correct Frobenius elements for (f, g) (abbreviated as (f, g)-correct or simply f -correct) if the
following assertions hold.
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– We have
FrobKp/Q(p) ∈ f(p, φ(Ip))

for all p dividing the discriminant of K such that p is coprime to 2M .
– We have that all p |M are unramified in K and that

FrobK/Q(p) ∈ g(p)

for all p dividing M , assuming that p 
= 2 or � 
= 2.

Observe that φ(Ip) can have dimension greater than one only if p = � = 2.
In the coming sections we will show the following result. We set d(�) equal to 16 if � = 2 and 1

if � > 2. Let Δ = Δ� be the unique strongly multiplicative function satisfying Δ(p) = p for p 
= �
and Δ(�) = �2.

Theorem 5.2. Let C > 0. Let A = Fn
� for some prime � and integer n > 0 and let B be a

subgroup of A. Then there exists δ > 0 such that the following statement holds. Let (f, g) be a
congruence function for M ∈ Z≥1. Let (ca)a∈A−{0} be a vector of integers. Let G be a subgroup of
(Z/MZ)∗. Let Ha be a union of cosets of G such that |Ha| = |Ha′ | for all a, a′ ∈ A−B. Assume
that M ≤ (logX)C and that [(Z/MZ)∗ : G] ≤ C. Let S be a subset of A− {0}. Further, assume
that

f(p, 〈a〉) = f(p′, 〈a〉) (5.1)

if p mod M and p′ mod M are in the same coset of G. Then there is Clead ≥ 0 such that for all
real numbers X ≥ 100,∑

v=(va)a∈A−{0}∈A∏
a∈A−{0} Δ(|va|)≤X

va 
=1 ∀a∈S
va≡ca mod d(�)
gcd(va,M)=1

p|va⇒p mod M∈Ha

1Par(v)f -correct = CleadX(logX)α−1 +O
(
X(logX)α−1−δ

)
,

where

α =
∑

a∈B−{0}

|Lift(Ha)|
ϕ(lcm(M, �))

+
∑

a∈A−B

|B|
�n−1

· |Lift(Ha)|
ϕ(lcm(M, �))

.

Here Lift(G) denotes the subset of (Z/lcm(M, �)Z)∗ consisting of elements that map to 1 in
(Z/�Z)∗ and to an element of G in (Z/MZ)∗. The implied constant depends only on C and A.

Furthermore, the leading constant Clead does not depend on S, and there exists a constant
Cmax, depending only on � and n, such that Clead ≤ Cmax. We have Clead > 0 if � > 2 or

– f(p, S) = B for all p coprime to M and all S such that S ∩B = {0};
– 0 ∈ g(p) for all p |M ;
– ca = 1 for all a ∈ A− {0}.

In our application, the A in the theorem will be the �-torsion subgroup of a fixed abelian
group A. In light of the work of § 3, we will take B to be A[�] ∩ �A. Then, in order to study
A-extensions failing to have the weak approximation condition, we must ensure that Frobenius
lands in one of the acceptable classes, as specified in Theorem 3.4. This is the purpose of the
notion of congruence functions and f -correctness. The conditions on primes dividing va allow us
to control the splitting behaviour of primes which do not ramify in the extension from Q to a
fixed field of A/A[�] but do ramify in the remaining A[�]-extension.
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Remark. This theorem is in many ways best possible. Further uniformity in M is plausible but
likely out of reach given the current state of knowledge regarding zeros of L-functions. Perhaps
the most interesting condition in the theorem is that the Ha all have the same cardinality for a ∈
A−B. Indeed, the theorem is no longer true if the Ha are allowed to be of arbitrary cardinality.
More precisely, the true log exponent may be bigger than α− 1.

Consider, for example, the situation that B = {0} and f(p, S) is always the zero element of
A/S. Fix some a ∈ A− {0}. If one takes |Hb| very small for b 
= a and |Ha| very large, then one
can obtain a larger log exponent by taking vb = 1 for b 
= a and letting va vary freely. Note that
this example critically depends both on the form of the congruence function and the sizes of |Ha|.

We will now show how to derive our main theorem from Theorem 5.2. It is important to remark
that the exponents appearing in the discriminant, (2.3), are not equal. In fact, the exponent is
minimised by taking a to be in A[�], where � is the smallest prime divisor of A. In the language
of [Woo10], the discriminant is not a fair counting function. It is precisely for this reason that we
may reduce to multicyclic extensions, which is certainly not possible for fair counting functions.

Write B for those tuples in A that give rise to an element in Epi(GQ, A) and we say that WA
holds for v if weak approximation holds on R1K/Q for K/Q the extension associated to v.

Theorem 5.3. Let A be a non-trivial, finite, abelian group. Write � for the smallest prime divisor
of A. Then there exist Cweak > 0 and δ > 0 such that for all X ≥ 100,∑
v=(va)a∈A−{0}∈B
Disc(Par(v))≤X

1WA holds = CweakX
�/(|A|·(�−1))(logX)α(A)−1 +O

(
X�/(|A|·(�−1)) · (logX)α(A)−1−δ

)
,

where

α(A) =
∑

a∈A[�]−{0}

|{b ∈ A : Hom(∧2(A),Q/Z) → Hom(∧2(〈a, b〉),Q/Z) is zero}|
(�− 1) · |A| .

The implied constant depends only on A.

Proof. Fix a large number C3. We split the sum as∑
v=(va)a∈A−{0}∈B
Disc(Par(v))≤X

1WA holds =
∑

v=(va)a∈A−{0}∈B
Disc(Par(v))≤X∏

a�∈A[�] va>(log X)C3

1WA holds

+
∑

v=(va)a∈A−{0}∈B
Disc(Par(v))≤X∏

a�∈A[�] va≤(log X)C3

1WA holds. (5.2)

The main term will come from the latter sum in (5.2). We will start by bounding the former sum.
It will be convenient to set

ea := |A| ·
(

1 − 1
ord(a)

)
.

Note that ea is minimal for a ∈ A[�] − {0}. We bound the former sum in (5.2) by∑
v=(va)a∈A−{0}∈B
Disc(Par(v))≤X∏

a�∈A[�] va>(log X)C3

1 ≤
∑

(wa)a∈A−A[�]

wa∈Z≥1∏
a�∈A[�] wa>(log X)C3

∑
(va)a∈A[�]−{0}

va squarefree coprime
p|va⇒p≡0,1 mod �∏

a∈A[�]−{0} v
|A|·(1−1/�)
a ≤X/(

∏
a∈A−A[�] wea

a )

1. (5.3)
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Writing |A[�]| = �n, classical analytic number theory shows that∑
(va)a∈A[�]−{0}

va squarefree coprime
p|va⇒p≡0,1 mod �∏

a∈A[�]−{0} v
|A|·(1−1/�)
a ≤X/(

∏
a∈A−A[�] wea

a )

1 ��

(
X∏

a∈A−A[�]w
ea
a

)�/(|A|·(�−1))

(logX)(�
n−1)/(�−1)−1.

Plugging this in (5.3) yields the bound

X�/(|A|·(�−1)) · (logX)(�
n−1)/(�−1)−1

∑
(wa)a∈A−A[�]

wa∈Z≥1∏
a�∈A[�] wa>(log X)C3

1∏
a∈A−A[�]w

(�·ea)/(|A|·(�−1))
a

.

Since ea is minimal when a ∈ A[�], we see that the sum∑
(wa)a∈A−A[�]

wa∈Z≥1

1∏
a∈A−A[�]w

(�·ea)/(|A|·(�−1))
a

converges, because the exponent of wa is bigger than 1. Therefore, the tail can be bounded by

X�/(|A|·(�−1)) · (logX)(�
n−1)/(�−1)−1

∑
(wa)a∈A−A[�]

wa∈Z≥1∏
a�∈A[�] wa>(log X)C3

1∏
a∈A−A[�]w

(�·ea)/(|A|·(�−1))
a

� X�/(|A|·(�−1)) · (logX)(�
n−1)/(�−1)−1−δC3

for some δ > 0 depending only on A. This is negligible, provided that we pick C3 sufficiently large
in terms of A. It remains to deal with the latter sum in (5.2). �

5.1 The main term: the reduction step
To prepare for our application of Theorem 5.2, we start by fixing all the variables va with
a ∈ A−A[�]. The induced homomorphism ϕ : GQ → A→ A/A[�] depends only on the va with
a ∈ A−A[�]. Define for a ∈ A the set

Adm(a) := {b ∈ A : Hom(∧2(A),Q/Z) → Hom(∧2(〈a, b〉),Q/Z) is zero}.
Write π̃ : A→ A/A[�] for the natural quotient map. We make the following assumptions.

(P1) The homomorphism ϕ is surjective. Write K for the fixed field of ϕ, which is an A/A[�]-
extension of Q.

(P2) For all p | va, we have ϕ(Frobp) ∈ π̃(Adm(a)). Here and henceforth we make a fixed choice
of a prime ideal p of Z above p and we also make a fixed choice of an element Frobp ∈ {σ :
σ(p) = p} ⊆ Gal(Q/Q) lifting the Frobenius automorphism of Z/p ∼= Fp.

(P3) There exists an A-extension of Q containing K that satisfies weak approximation. We
remark that this condition in fact implies (P1) and (P2).

If these conditions are not met, we may freely ignore the variables va, since they do not contribute
to the counting function. There exists at least one tuple va satisfying (P1), (P2) and (P3) by
an application of [FLN18, Proposition 5.5] with k = Q and G = A. Indeed, weak approximation
certainly holds if all decomposition groups are cyclic. We will use this later on to guarantee that
our leading constant Cweak is strictly greater than zero.
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We will now work towards applying Theorem 5.2. We take M = f(K)2, where f(K) is the
conductor of K. There exists a subgroup G of (Z/MZ)∗ such that p splits completely in K if and
only if p mod M ∈ G. Then for a ∈ A[�] − {0} we take

Ha :=
⋃

b∈π̃(Adm(a))

FrobInv(b) ·G,

where FrobInv(b) is any prime p, not dividing M , with Artin symbol in K equal to b. By choosing
C sufficiently large in terms of the abelian group A, we see that the condition [(Z/MZ)∗ : G] ≤ C
in Theorem 5.2 holds.

We take B = A[�] ∩ �A. We have to check that |Ha| = |Ha′ | for all a, a′ ∈ A[�] −B. This is
equivalent to showing that

|π̃(Adm(a))| = |π̃(Adm(a′))| (5.4)

for all a, a′ ∈ A[�] −B. If 〈a〉 = 〈a′〉, then the result is correct. So now suppose that 〈a〉 
= 〈a′〉.
We claim that there exists an automorphism ψ of A such that ψ(a) = a′.

Let us first show that the claim implies (5.4). To this end, take an automorphism ψ that sends
a to a′. Consider the induced map ψ∗ : Adm(a) → Adm(a′), which sends b to ψ(b). To check that
this is well-defined, we further claim that

Hom(∧2(A),Q/Z) → Hom(∧2(〈a, b〉),Q/Z) is zero

if and only if
Hom(∧2(A),Q/Z) → Hom(∧2(〈ψ(a), ψ(b)〉),Q/Z) is zero.

The former statement is equivalent to all alternating maps λ : A×A→ Q/Z satisfying λ(a, b) =
0, while the latter statement is equivalent to all alternating maps λ : A×A→ Q/Z satisfying
λ(ψ(a), ψ(b)) = 0. As λ runs through all alternating maps, so does λ(ψ(−), ψ(−)) and therefore
the above statements are all equivalent. This shows that ψ∗ is well-defined. It is now readily
verified that ψ∗ is a bijection. We next observe that Adm(a) is a subgroup of A. Therefore,
to establish (5.4), it suffices to show that |Adm(a) ∩A[�]| = |Adm(a′) ∩A[�]|. But this is true
because ψ is an automorphism that restricts to an isomorphism between Adm(a) and Adm(a′).
We conclude that the claim indeed implies (5.4).

Let us now prove the claim. If the injection

0 → 〈a, a′〉 → A

is split, then it is straightforward to construct the desired bijection ψ. So now suppose that the
above injection is not split. Because a, a′ 
∈ B, this means that there exist n,m ∈ Z both not
divisible by � such that na+ma′ ∈ �A. Using that a 
∈ B, we may decompose A as an internal
direct sum 〈a〉 ⊕ C for some subgroup C of A. Now consider the homomorphism ψ that is the
identity on C and sends a to a′.

It remains to prove that ψ is surjective. By construction we have that C ⊆ im(ψ) and that
a′ ∈ im(ψ). Therefore, it suffices to show that a ∈ im(ψ). By the relation na+ma′ ∈ �A and
the inclusion �A ⊆ C, we deduce that na ∈ im(ψ). Because n is coprime to �, we conclude that
a ∈ im(ψ). We have proven the claim and thus (5.4).

We will now construct a congruence function (f, g) for M . Suppose that p 
= 2 is unramified
in K. Then, if p ramifies in Par(v), we have p | va for some a ∈ A[�] − {0}. Take S = 〈a〉 ∈ S,
which has dimension one. For weak approximation to hold, we certainly must have that
FrobK/Q(p) ∈ π̃(Adm(a)) (or equivalently p mod M ∈ Ha), which we will assume from now on.
We will now distinguish two cases.
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Case I: a ∈ B. In this case, Theorem 3.4 yields that Frobp automatically lands in Adm(a).
Correspondingly, we take f(p, S) = A/S.

Case II: a 
∈ B. In this case Theorem 3.4 tells us that Adm(a) = �A+ 〈a〉. Define xQ to be the
unique tuple that equals va for a ∈ A−A[�] and equals 1 for a ∈ A[�] − {0}. We claim that there
exists an element h(p, S) ∈ A[�] such that

Par(xQ)(Frobp) + h(p, S) ∈ Adm(a). (5.5)

By construction of xQ we have that π̃ ◦ Par(xQ) = ϕ. Therefore, it follows from FrobK/Q(p) ∈
π̃(Adm(a)) that (5.5) is true after applying π̃, establishing the claim. Then we take f(p, S) to be
the coset h(p, S) +B. One may now directly verify that condition (5.1) is satisfied.

5.2 The bad primes
Next consider a prime p 
= 2 that divides the conductor of K, which implies that p | va for some
a 
∈ A[�]. Let g(p) be the subset of a ∈ A[�] satisfying

Par(xQ)(Frobp) + a ∈ Adm(a).

We deduce from property (P2) of K that g(p) is non-empty.

5.3 Completing the reduction step
We now rewrite ∑

v=(va)a∈A−{0}∈B
Disc(Par(v))≤X∏

a�∈A[�] va≤(log X)C3

1WA holds

as ∑
(va)a∈A−A[�]∏

a�∈A[�] va≤(log X)C3

∑
(ca)a∈A[�]−{0}∈(Z/d(�)Z)A[�]−{0}

1(ca) nice

∑
w=(wa)a∈A[�]−{0}

v∈B
Disc(Par(v))≤X
wa≡ca mod d(�)

p|va⇒p mod M∈Ha

1WA holds,

where v is the tuple obtained by concatenating (va) and (wa) and where we will soon define when
(ca) is nice.

Fix the tuple vQ = (va)a∈A−A[�] satisfying assumptions (P1), (P2) and (P3) and fix a tuple
(ca)a∈A[�]−{0}. We first claim that the condition 1WA holds may be replaced by 1Par(w)f -correct.
First of all, we remark that Dp is certainly cyclic if p is unramified in Par(v). At the odd
ramified places this is true by construction of f . Finally, whether the natural restriction map
Hom(∧2(A),Q/Z) → Hom(∧2(im(GQ2),Q/Z) is zero is entirely determined by vQ = (va)a∈A−A[�]

and (ca)a∈A[�]−{0}. Indeed, if � > 2, then this map is always zero as 2 is necessarily unramified
in A. If � = 2, then this follows from the fact that the restrictions of ψva,2,1 and ψvb,2,1 to GQ2

are equal if va ≡ vb mod 16 (recall that d(2) = 16) combined with (2.1). Now we simply define
(ca) to be nice if the above map is zero.

Let us now explicate the condition v = (va)a∈A−{0} ∈ B in terms of the variables in A[�] − {0}.
One directly checks that

v ∈ B ⇐⇒ 〈a ∈ A− {0} : va 
= 1〉 = A

for all v ∈ A. Therefore, since ϕ is already assumed to be surjective by (P1), we have that there
exists a subspace T , containing B and depending on vQ = (va)a∈A−A[�], such that

v ∈ B ⇐⇒ T + 〈a ∈ A[�] − {0} : va 
= 1〉 = A[�]. (5.6)
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Next we compare Disc(Par(v)) with Disc(Par(w)). To do so, we compute the p-adic val-
uation of the discriminant using Theorem 2.3 for primes p � 2|A|. Locally at 2, we have just
proven that the restriction of Par(v) is unramified if � > 2 and completely determined by ca and
vQ = (va)a∈A−A[�] if � = 2. For the odd places p | |A|, we compute the p-adic valuation of the dis-
criminant using Theorem 2.4. More precisely, if Par(σp) is the identity, then vp(Disc(Par(v))) = 0.
If instead Par(σp) ∈ A−A[�], then vp(Disc(Par(v))) is determined by vQ as a consequence
of Theorem 2.4. Finally, if Par(σp) ∈ A[�] − {0}, then the proof of Theorem 2.4 shows that
vp(Disc(Par(v))) equals |A|/� multiplied by the p-adic valuation of the discriminant of the unique
degree � subfield of Qp(ζp∞). Therefore, the conductor–discriminant formula demonstrates the
validity of

vp(Disc(Par(v))) =

⎧⎪⎪⎨⎪⎪⎩
|A| ·

(
1 − 1

�

)
, if � 
= p,

2|A| ·
(

1 − 1
�

)
, if � = p.

Therefore, there exists C4 > 0, depending only on ca and vQ = (va)a∈A−A[�], such that

Disc(Par(v)) = C4 ·
( ∏

a∈A[�]−{0}
Δ(|wa|)

)(|A|·(�−1))/�

.

We are now ready to apply Theorem 5.2 to the innermost sum. We shall do so with every choice
of S ⊆ A[�] − {0} satisfying T + S = A[�], which allows us to detect the condition (5.6) using
inclusion–exclusion. Here we make essential use of the fact that the leading constant Clead from
Theorem 5.2 is independent of S.

5.4 The exponent of the logarithm in the main term
Let us compute α(A), the exponent of the logarithm appearing in Theorem 1.2. When we apply
Theorem 5.2, the exponent of the logarithm, denoted by α in the theorem statement, is equal to∑

a∈B−{0}

|Lift(Ha)|
ϕ(lcm(M, �))

+
∑

a∈A−B

|B|
�n−1

· |Lift(Ha)|
ϕ(lcm(M, �))

with n the dimension of A[�] as an F�-vector space. Since � is the smallest prime divisor of A, it
follows that Q(ζ�) and K are disjoint extensions of Q. Therefore, we have

|Lift(Ha)|
ϕ(lcm(M, �))

=
|Ha|

(�− 1)ϕ(M)
.

By construction, we have that

|Ha|
ϕ(M)

=
|π̃(Adm(a))| · |G|

ϕ(M)
=

|π̃(Adm(a))|
[K : Q]

=
|π̃(Adm(a))|
|A/A[�]| .

Finally, it follows from Theorem 3.4 that

|π̃(Adm(a))|
|A/A[�]| =

⎧⎪⎪⎨⎪⎪⎩
|Adm(a)|

|A| , if a ∈ B − {0},
|Adm(a)|

|A| · �
n−1

|B| , if a ∈ A−B.

This shows that α(A) is the correct exponent.
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5.5 The leading constant
To finish the proof, we now apply Theorem 5.2 for each tuple vQ = (va)a∈A−A[�] such that the
associated map ϕ : GQ → A/A[�] satisfies (P1), (P2) and (P3). Every such tuple vQ together
with a choice of c = (ca)a∈A[�]−{0} gives a leading constant that we denote by Clead(vQ, c) and
also a constant C4(vQ, c) > 0 satisfying

Disc(Par(v)) = C4(vQ, c) ·
( ∏

a∈A[�]−{0}
Δ(|wa|)

)(|A|·(�−1))/�

.

Then we take

Cweak =
∑
vQ

∑
c

Clead(vQ, c)
C4(vQ, c)

.

Because the exponent in the discriminant for all variables outside A[�] is bigger than the exponent
for the variables in A[�], one sees that the sum∑

vQ

∑
c

1
C4(vQ, c)

converges and also may be truncated (to those vQ satisfying that M ≤ (logX)C5) with an accept-
able error term. Since the leading constant Clead(vQ, c) is uniformly bounded, we conclude that
the sum defining Cweak may also be truncated. Hence, the contribution from the error term in
Theorem 5.2 is negligible.

In order to show that Cweak > 0, it suffices to show that Clead(vQ, c) > 0 for some choice
of vQ and c. We choose a splitting of A[�] as A[�] = B ⊕Bcomp and a splitting A = B̃ ⊕Bcomp

with B ⊆ B̃. By [FLN18, Proposition 5.5], we may find a surjective homomorphism ϕ′ : GQ → B̃
such that all decomposition groups are cyclic. In particular, ϕ′ satisfies weak approximation. We
extend ϕ′ to a homomorphism ϕ′′ : GQ → A by sending g to (ϕ′(g), 0), where we have implicitly
used our splitting A = B̃ ⊕Bcomp.

Now we apply Theorem 5.2 with M equal to the absolute discriminant of ϕ′′, B = A[�] ∩ �A
as above, f(p, S) = B for S intersecting B trivially, g(p) = {0} and ca = 1. Now twisting ϕ′′ with
such multicyclic extensions gives a new A-extension satisfying weak approximation. This forces
Clead(vQ, c) > 0 and therefore Cweak > 0.

6. The character sum

This section and the following two are devoted to the proof of Theorem 5.2. Let A = Fn
� and let

v = (va)a∈Fn
� −{0} ∈ A. Write πi for the projection map πi : Fn

� → F� on the ith coordinate. We
begin by expressing the indicator function for a tuple v being f -correct as an explicit character
sum. Define

ψi =
∑
a∈Fn

�
πi(a) 
=0

πi(a) · ψva,�,1

for i ∈ [n] := {1, . . . , n}. We write ψ : GQ → A for the homomorphism given by

ψ(σ) = (ψ1(σ), . . . , ψn(σ)),
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so ψ = Par(v) by construction. Our aim is to express the sum∑
v=(va)a∈A−{0}∈A∏
a∈Fn

�
−{0} Δ(|va|)≤X

va 
=1 ∀a∈S
va≡ca mod d(�)
gcd(va,M)=1

p|va⇒p mod M∈Ha

1Par(v) f -correct (6.1)

as a sum of Dirichlet characters. First we will see how to rewrite the indicator function. We have
a perfect bilinear pairing

A×A∨ → C∗, (a, χ) �→ χ(a).

Now take some a ∈ A. Then we get an induced perfect bilinear pairing
A

〈a〉 × {χ ∈ A∨ : χ(a) = 1} → C∗.

By definition of f -correct, we need to check the following conditions.

(Q1) For all a 
∈ B and all p | va coprime to 2M ,

ψ(Frobp) − εa,p mod M,f ∈ B + 〈a〉, (6.2)

where εa,p mod M,f is an element of A depending only on a, p mod M and f .
(Q2) Let p |M . Suppose that p 
= 2 or � 
= 2. Then we have that p is unramified and, furthermore,

ψ(Frobp) ∈ g(p). (6.3)

Write ei for the ith standard basis vector. Also denote by χi : Fn
� → 〈ζ�〉 the element in A∨

satisfying

χi(ej) = ζ
δ(i,j)
� .

Write Ba = B + 〈a〉. Then we have

{χ ∈ A∨ : χ(Ba) = 1} =

{ ∏
j∈[n]

χ
πj(x)
j : x ∈ Fn

� , 〈γ,x〉 = 0 for all γ ∈ Ba

}
.

Using orthogonality of characters on the abelian group Fn
� , we are now in a position to detect

condition (Q1) (i.e., (6.2)) by

1
�m

∑
x∈Fn

�
〈γ,x〉=0 ∀γ∈Ba

∏
j∈[n]

χj(ψ(Frobp))πj(x)
∏

j∈[n]

χj(εa,p mod M,f )
πj(x)

,

where m equals n− 1 − dimF�
B. We observe that χj ◦ ψ is simply ψj after identifying F� with

〈ζ�〉 by sending 1 to ζ�. Therefore, we can rewrite the above as
1
�m

∑
x∈Fn

�
〈γ,x〉=0 ∀γ∈Ba

∏
j∈[n]

ψj(Frobp)πj(x)δ
πj(x)
a,p mod M,j,f ,

where we have renamed χj(εa,p mod M,f ) as δa,p mod M,j,f . We may similarly detect condition (Q2)
(i.e., equation (6.3)) by the simultaneous conditions va 
≡ 0 mod p for all a and

1
�n

∑
α∈g(p)

∑
x∈Fn

�

∏
j∈[n]

ψj(Frobp)πj(x)χj(α)
πj(x)

. (6.4)
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We will now return the character sum for condition (Q1) only. It will be straightforward to then
insert condition (Q2) later. With this in hand, we are now able to rewrite the indicator function
for condition (Q1) as

1f satisfies (Q1) = �
−m

∑
a∈Fn

�
−B ω̃(va) ∏

a∈Fn
� −B

∏
p|va

p≡1 mod 2

∑
x∈Fn

�
〈γ,x〉=0 ∀γ∈Ba

∏
j∈[n]

ψ
πj(x)
j (Frobp)δ

πj(x)
a,p mod M,j,f ,

where ω̃ denotes the number of odd prime divisors. The product equals∏
a∈Fn

� −B

∑
(xp)p|va odd

xp∈Fn
�

〈γ,xp〉=0 ∀γ∈Ba

∏
p|va

p≡1 mod 2

∏
j∈[n]

ψ
πj(xp)
j (Frobp)δ

πj(xp)
a,p mod M,j,f ,

which is in turn ∑
(xp,a)p|va odd,a∈Fn

�
−B

xp,a∈Fn
�

〈γ,xp,a〉=0 ∀γ∈Ba

∏
a∈Fn

� −B

∏
p|va

p≡1 mod 2

∏
j∈[n]

ψ
πj(xp,a)
j (Frobp)δ

πj(xp,a)
a,p mod M,j,f .

For every a ∈ Fn
� −B and every b ∈ Fn

� with 〈γ, b〉 = 0 for all γ ∈ Ba, we introduce a new variable

wa,b =
∏
p|va

p≡1 mod 2
xp,a=b

p, wa,• = sgn(va) · 2v2(va).

We can recover va and the vectors xp,a from the wa,b. Indeed, we have

va = wa,•
∏

b∈Fn
�

〈γ,b〉=0 ∀γ∈Ba

wa,b.

Now to find xp,a, note that p | va by the definition of xp,a. Therefore, we may take the unique p
such that p | wa,b. Then we reconstruct xp,a by taking this b. This transforms the sum into∑

(va)a∈B−{0}

∑′

(wa,b)a,b∏
a Δ(|va|)

∏
a,b Δ(|wa,b|)≤X

�−m
∑

a,b ω̃(wa,b)
∏

a∈Fn
� −B

∏
p|va

p≡1 mod 2

∏
j∈[n]

ψ
πj(b)
j (Frobp)δ

πj(b)
a,p mod M,j,f ,

where
∑′

also includes the additional summation conditions

va ≡ ca mod d(�), gcd(va,M) = 1, p | wa,b ⇒ p mod M ∈ Ha

and
va 
= 1 ∀a ∈ S, p | va ⇒ p mod M ∈ Ha, v ∈ A.

We now expand ψj to deduce that the above sum equals∑
(va)a∈B−{0}

∑′

(wa,b)a,b∏
a Δ(|va|)

∏
a,b Δ(|wa,b|)≤X

�−m
∑

a,b ω̃(wa,b)
∏
a1,b1

ε′
∏

p|wa1,b1

∏
j∈[n]

∏
a2∈Fn

�
πj(a2) 
=0

ψ
πj(b1)πj(a2)
va2 ,�,1 (Frobp),

where
ε′ =

∏
j∈[n]

∏
p|wa1,b1

δ
πj(b1)
a1,p mod M,j,f .
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By construction we have 〈b1, a2〉 = 0 for a2 ∈ B. Therefore, we may further expand ψj to rewrite
the above sum as∑

(va)a∈B−{0}

∑′

(wa,b)a,b∏
a Δ(|va|)

∏
a,b Δ(|wa,b|)≤X

�−m
∑

a,b ω̃(wa,b)
∏
a1,b1

ε′
∏

p|wa1,b1

∏
j∈[n]

∏
a2∈Fn

�
πj(a2) 
=0

∏
b2

ψ
πj(b1)πj(a2)
wa2,b2

,�,1 (Frobp),

where the product over b2 includes •, while the product over b1 does not. Using the definition of
〈·, ·〉, we may finally rewrite this as∑

(va)a∈B−{0}

∑′

(wa,b)a,b∏
a Δ(|va|)

∏
a,b Δ(|wa,b|)≤X

�−m
∑

a,b ω̃(wa,b)
∏
a1,b1

ε′
∏
a2,b2

ψ
〈b1,a2〉
wa2,b2

,�,1(Frobwa1,b1
).

Inserting the conditions from (Q2) (see (6.4)) and writing out the implicit summation conditions
in
∑′, we conclude that ∑

v=(va)a∈A−{0}∈A∏
a∈Fn

�
−{0} Δ(|va|)≤X

va 
=1 ∀a∈S
va≡ca mod d(�)
gcd(va,M)=1

p|va⇒p mod M∈Ha

1Par(v) f -correct

equals

N(X) =
∑

(va)a∈B−{0}
p|va⇒p mod M∈Ha

∑
(wa,b)a,b∏

a Δ(|va|)
∏

a,b Δ(|wa,b|)≤X

va≡ca mod d(�)
gcd(va,M)=1

p|wa,b⇒p mod M∈Ha

1va 
= 1 ∀a∈S × 1v∈A

×
∏
p|M ′

(
1
�n

∑
α∈g(p)

∑
x∈Fn

�

∏
j∈[n]

ψj(Frobp)πj(x)χj(α)
πj(x)

)
× �−m

∑
a,b ω̃(wa,b)

∏
a1,b1

ε′
∏
a2,b2

ψ
〈b1,a2〉
wa2,b2

,�,1(Frobwa1,b1
), (6.5)

where

M ′ =

⎧⎨⎩
M

2v2(M)
, if � = 2,

M, if � > 2.

We will now see how to find the main term of the above sum.

7. Combinatorial considerations and the main term

When the characters appearing in the sum described above are non-trivial then they will oscillate,
giving rise to cancellation in the sum. However, should the combination of characters cancel
then the contribution to the sum will be much larger. The purpose of this section is to develop
combinatorial conditions on the indices a, b such that the resulting combination of characters
yields a principal character and hence a dominant contribution to the sum. The reader should
compare this process to that carried out in [Rom18] or [FK07] in order to identify the main term
of their sums of combinations of Legendre symbols.
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7.1 Multiquadratic case
Define

I := {(S, T ) : S, T ∈ Fn
2 , S 
∈ B, 〈γ, T 〉 = 0 ∀γ ∈ BS}.

For a subspace V of Fn
2 we write

V � = {S ∈ Fn
2 : 〈S, v〉 = 0 ∀v ∈ V }

for the complement under the pairing 〈·, ·〉. We have the following crucial lemma.

Lemma 7.1. Let X ⊆ I with |X| ≥ 2n − |B|. Suppose that

〈S1, T2〉 + 〈S2, T1〉 = 0 (7.1)

for all (S1, T1), (S2, T2) ∈ X. Then we have

X = {(S, f(S)) : S ∈ Fn
2 −B}

for some function f : Fn
2 −B → B� which is alternating with respect to the bilinear pairing 〈·, ·〉,

in the sense that

〈S, f(T )〉 = 〈T, f(S)〉 and 〈S, f(S)〉 = 0.

Proof. Denote by π1 and π2 the natural projection maps from I to Fn
2 . Write V1 for the subspace

generated by π1(X) and write V2 for the subspace generated by π2(X). By construction of I we
have that

V2 ⊆ B�. (7.2)

By the pigeonhole principle there exists some T0 ∈ π2(X) such that

|π−1
2 (T0) ∩X| ≥ 2n − |B|

|V2| . (7.3)

List the elements of π−1
2 (T0) ∩X as

(S1, T0), . . . , (Sα, T0).

Suppose that there exists T1 ∈ π2(X) such that

〈Si, T1〉 + 〈Sj , T1〉 = 1

for some 1 ≤ i, j ≤ α. We claim that this contradicts (7.1). Indeed, take such a T1 and such i, j.
Let U be such that (U, T1) ∈ X. Then either (U, T1) and (Si, T0) contradict (7.1) or (U, T1) and
(Sj , T0) do.

Therefore, we may assume from now on that for all T1 ∈ π2(X) and all 1 ≤ i, j ≤ α,

〈Si, T1〉 + 〈Sj , T1〉 = 0.

We conclude that Si − Sj ∈ V �
2 . We now claim that V1 contains V �

2 , so it contains in particular
B by (7.2). Since we have Si − Sj ∈ V �

2 , we now consider the elements

{Sj − S1 : 2 ≤ j ≤ α}.
This gives α− 1 = |π−1

2 (T0) ∩X| − 1 non-zero elements of V �
2 ∩ V1. Therefore, we get from (7.3)

that

|V �
2 ∩ V1| ≥ α ≥ 2n − |B|

|V2| = |V �
2 | − |B|

|V2|
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after also taking into account the zero element of V �
2 ∩ V1. If B has codimension zero or one,

then the lemma is trivial. Otherwise we have

|V �
2 | − |B|

|V2| ≥ |V �
2 | − |V �

2 |
4

.

We conclude that

|V �
2 ∩ V1| ≥ 3|V �

2 |
4

,

which readily implies the claim. Thanks to the claim we see that V1 contains B.
We next claim that V1 equals Fn

2 . We now fix some S0 ∈ π1(X). Arguing as before, we see
that

〈S1, Ti〉 + 〈S1, Tj〉 = 0
for all S1 ∈ π1(X) and all i and j such that (S0, Ti), (S0, Tj) ∈ X. In particular, we deduce that
|π−1

1 (S0) ∩X| ≤ |V �
1 |. We now sum to obtain

2n − |B| ≤ |X| =
∑

S0∈π1(X)

|π−1
1 (S0) ∩X| ≤

∑
S0∈π1(X)

|V �
1 | ≤ (|V1| − |B|) · |V �

1 | = 2n − |B| · |V �
1 |,

because V1 contains B. But this is only possible if |V �
1 | = 1 or equivalently V1 = Fn

2 . Therefore,
there exists a function f : Fn

2 −B → B� such that

X = {(S, f(S)) : S ∈ Fn
2 −B}.

It is readily verified that f must be alternating, completing the proof. �

7.2 Multicyclic case
Define

I := {(a, b) : a, b ∈ Fn
� , a 
∈ B, 〈γ, b〉 = 0 ∀γ ∈ Ba},

where we recall that 〈·, ·〉 is the standard bilinear form. We have the following crucial lemma.

Lemma 7.2. Let X ⊆ I with |X| ≥ �n − |B|. Suppose that

〈a2, b1〉 = 0 (7.4)

for all (a1, b1), (a2, b2) ∈ X. Then we have

X = {(a, 0) : a ∈ Fn
� −B}.

Proof. The proof is similar to the proof of Lemma 7.1. We write π1 and π2 for the natural
projection maps from I to Fn

� . We denote by N the number of elements in the subspace generated
by π2(X). If N = 1, then we have

X = {(a, 0) : a ∈ Fn
� −B}.

From now on we may and will assume that N > 1 and seek a contradiction.
Take some b0 ∈ π2(X) and suppose that |π−1

2 (b0) ∩X| ≥ (�n − |B|)/N . The existence of such
a b0 is guaranteed by the pigeonhole principle and our assumption |X| ≥ �n − |B|. We enumerate
the elements of π−1

2 (b0) ∩X as
(a1, b0), . . . , (ak, b0)

with k ≥ (�n − |B|)/N . Then we have, thanks to (7.4), the equality

〈ai, b〉 = 0

for all b ∈ π2(X) and all 1 ≤ i ≤ k. Since 〈·, ·〉 is non-degenerate and N is the cardinality of the
subspace generated by π2(X), it follows that there exists a subspace V of dimension n− log�N
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containing B such that ai ∈ V for all 1 ≤ i ≤ k. Furthermore, we know that the ai are not in B.
This gives the inclusion

{ai : 1 ≤ i ≤ k} ⊆ V \B
and therefore the bound k ≤ �n/N − |B|. Therefore, we conclude that

�n

N
− |B| ≥ k = |π−1

2 (b0) ∩X| ≥ �n − |B|
N

,

which is a contradiction for N > 1. �

8. Oscillation of characters

We now return to (6.5). We say that an integer x is large if

|x| > exp
(
(logX)A1

)
,

where A1 > 0 is a small constant that we will choose later.

8.1 Large variables
We split the character sum N(X) in two subsums

N(X) = Nsmall(X) +Nlarge(X),

where Nsmall(X) is by definition the contribution to N(X), where at most �n − |B| − 1 of the
variables wa,b are large, and Nlarge(X) is by definition the remaining contribution. We will make
use of the following well-known lemma.

Lemma 8.1. Let κ,C > 0 be fixed real numbers. Then we have the bounds∑
1≤n≤x

p|n⇒p mod M∈H

μ2(n)κω(n) �κ,C x(log x)(|H|·κ)/ϕ(M)−1

and ∑
1≤n≤x

p|n⇒p mod M∈H

μ2(n)κω(n)

n
�κ,C (log x)(|H|·κ)/ϕ(M)

for all M ≤ (log x)C and all subsets H of (Z/MZ)∗.

Proof. The first bound follows from Theorem 4.1 with

f(n) := μ2(n)κω(n)1p|n⇒p mod M∈H , α :=
|H| · κ
ϕ(M)

, k := κ, Q := exp
(
(log x)min(1/4κ,1/2)

)
and J := 1, ε := 1/10. Assumption (4.1) is guaranteed by the Siegel–Walfisz theorem. The second
bound follows from partial summation and the first bound. �

After choosing the constant A1 > 0 to be sufficiently small, it follows from Lemma 8.1 that
we have the bound

Nsmall(X) = O
(
X(logX)α−1−δ

)
for some δ > 0. It is precisely at this step that we make fundamental use of the assumptions
|Ha| = |Ha′ | for all a, a′ ∈ A−B and [(Z/MZ)∗ : Ha] ≤ C.
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8.2 Linked variables
We will now turn our attention to Nlarge(X). We say that an integer x is medium if

|x| > (logX)A2 ,

where A2 > 0 is a large constant to be chosen later. We also split the sum Nlarge(X) into two
subsums, namely

Nlarge(X) = Nlinked(X) +Nmain(X).

Here Nlinked(X) is the contribution to Nlarge(X) for which the following assertions hold.

– If � > 2, then there exists (a1, b1), (a2, b2) ∈ I such that the following conditions hold:
(1) we have 〈a2, b1〉 
= 0 or 〈a1, b2〉 
= 0;
(2) we have that wa1,b1 and wa2,b2 are both medium or we have that |wa1,b1 |, |wa2,b2 | > 1 and

one of the wai,bi is large.
– If � = 2, then there exists (a1, b1), (a2, b2) ∈ I such that the following conditions hold:

(1) we have 〈a2, b1〉 + 〈a1, b2〉 = 1;
(2) we have that wa1,b1 and wa2,b2 are both medium or we have that |wa1,b1 |, |wa2,b2 | > 2 and

one of the wai,bi is large.

Furthermore, Nmain(X) is by definition the remaining contribution.
Our next goal is to bound Nlinked(X). Our two principal tools are the large sieve, as presented

in Proposition 4.3, and the Siegel–Walfisz theorem over number fields as presented in the main
theorem of [Gol70].

8.2.1 Equidistribution with the large sieve. We will now bound Nlinked(X). We will first
suppose that there exist (a1, b1), (a2, b2) ∈ I with wa1,b1 and wa2,b2 both medium and sat-
isfying the aforementioned conditions. So fix such a choice of (a1, b1) and (a2, b2). Define
I ′ := I − {(a1, b1), (a2, b2)}. The corresponding contribution to Nlinked(X) is bounded by∑

(va)a∈B−{0}

∑
(wa,•)

∑
(wa,b)(a,b)∈I′

�−m
∑

(a,b)∈I′ ω̃(wa,b)

×
∣∣∣∣∣ ∑

wa1,b1
,wa2,b2

Δ(|wa1,b1
wa2,b2

|)≤X/(
∏

a Δ(|va|)
∏

(a,b)∈I′ Δ(|wa,b|))

αwa1,b1
βwa2,b2

ψ
〈b1,a2〉
wa2,b2

,�,1(Frobwa1,b1
)ψ〈b2,a1〉

wa1,b1
,�,1(Frobwa2,b2

)

∣∣∣∣∣,
(8.1)

where αwa1,b1
and βwa2,b2

are complex numbers of absolute value bounded by 1 depending only on
respectively wa1,b1 and wa2,b2 (and wa,b for (a, b) ∈ I ′). By changing the coefficients if necessary,
we may assume from now on that wa1,b1 and wa2,b2 are coprime to �.

We now work towards our goal of applying Proposition 4.3. We take K = Q(ζ�) and take the
M of Proposition 4.3 to be a sufficiently large power of �. Critically, the field K depends only on
the abelian group A. Write (·/·)Q(ζ�),� for the �th power residue symbol in Q(ζ�). We define

γ(w, z) :=
(
NQ(ζ�)/Q(w)

z

)〈b1,a2〉

Q(ζ�),�

(
NQ(ζ�)/Q(z)

w

)〈b2,a1〉

Q(ζ�),�

. (8.2)

Note that if we define γ̃(w, z) := γ(z, w), then γ̃(w, z) is still of the form (8.2). Therefore, if
we check properties (P1)–(P3) for all γ(w, z), then these properties will also hold for γ̃(w, z).
This allows us to circumvent the condition X ≤ Y in Proposition 4.3 by applying Proposition 4.3
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to γ(w, z) or γ̃(w, z) depending on whether X or Y is larger. Let us now verify
(P1)–(P3).

Property (P1) is clear. We take Abad to be the set of squarefull integers. In particular, property
(P3) is immediate for C2 = 1/2 if we take C1 sufficiently large. The first part of property (P2)
follows from reciprocity and the periodicity of power residue symbols provided that we take the
M from Proposition 4.3 to be a sufficiently large power of �. It remains to prove the final part of
property (P2).

To this end, fix some w. Then the application z �→ γ(w, z) is a multiplicative character with
period MNQ(ζ�)/Q(w) by assumption. Therefore, by orthogonality of characters, it suffices to
show that the character z �→ γ(w, z) is not the principal character. By assumption, we have that
NQ(ζ�)/Q(w) is not squarefull. Therefore, we may take a prime ideal p of Q(ζ�) of degree one that
divides w such that none of the conjugates of p divides w. By the Chinese remainder theorem,
we may find an element z ∈ Z[ζ�] such that

z ≡ 1 mod M, z ≡ 1 mod q for all q | NQ(ζ�)/Q(w) with q 
= p, z ≡ α mod p,

where α is any generator of the cyclic group (Z[ζ�]/p)∗ ∼= F∗
p. Using our assumptions on 〈b1, a2〉

and 〈b2, a1〉, it is not hard to show now that z �→ γ(w, z) is not the principal character. We have
finished checking that γ(·, ·) satisfies all the conditions of Proposition 4.3.

However, in (8.1), we are at the moment summing over rational integers and not over elements
of Z[ζ�]. Therefore, we aim to replace the sum over the integers by a sum taking place in Q(ζ�).
The following lemma is critical.

Lemma 8.2. Fix a root of unity ζ� ∈ C inducing an identification between F� and 〈ζ�〉 by sending
1 to ζ�. Let p be a prime number such that p ≡ 1 mod �. Then there are canonical bijections

{φ ∈ Epi(GQ,F�) : φ ramified only at p} ↔ {Dirichlet characters modulo p of order �}
↔ {prime ideals of Q(ζ�) above p}.

Proof. Given a map φ ∈ Epi(GQ,F�) that is only ramified at p, class field theory implies that φ
factors through Gal(Q(ζp)/Q), which is canonically isomorphic to (Z/pZ)∗. Therefore, we may
associate to φ an epimorphism from (Z/pZ)∗ to F�. Using our identification between F� and 〈ζ�〉,
φ induces a map (Z/pZ)∗ → C∗. Extending φ in the usual way to Z gives a Dirichlet character
modulo p of order equal to �. This defines the first bijection.

For the second bijection, suppose that we are given an ideal p of Q(ζ�) above p. Since p has
degree one, one readily verifies that the map

n �→
(
n

p

)
Q(ζ�),�

is a Dirichlet character. One directly shows that this is a bijection as well, completing the proof
of the lemma. �

By Lemma 8.2, the choice of ψp,�,1 from § 2 is equivalent to choosing a prime ideal p of Q(ζ�)
above p. Observe that p indeed splits in Q(ζ�), because we have the congruence p ≡ 1 mod � if
ψp,�,1 is a homomorphism. We write this unique ideal p as Pref�(p). We extend the definition of
Pref�(p) multiplicatively to a function Pref�(x) for all squarefree integers x supported in primes
congruent to 1 modulo �.

We fix a set of integral ideals I1, . . . , It representing every ideal class of Cl(Q(ζ�)). We now
split (8.1) into t2 sums, where we insert the additional condition that

Pref�(wa1,b1) ∼ Is1 , Pref�(wa2,b2) ∼ Is2 ,
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where we fixed some integers 1 ≤ s1, s2 ≤ t. We introduce new variables w and z in the
fundamental domain of K such that

(w)Is1 = Pref�(wa1,b1), (z)Is2 = Pref�(wa2,b2).

We also define new coefficients

αw =

⎧⎪⎨⎪⎩αNQ(ζ�)/Q(wIs1)
·
(
NQ(ζ�)/Q(w)

Is2

)〈b2,a1〉

Q(ζ�),�

·
(
NQ(ζ�)/Q(Is2)

w

)〈b1,a2〉

Q(ζ�),�

, if (w)Is1 ∈ Im(Pref�),

0, otherwise

and

βz =

⎧⎪⎨⎪⎩βNQ(ζ�)/Q(zIs2 ) ·
(
NQ(ζ�)/Q(z)

Is1

)〈b1,a2〉

Q(ζ�),�

·
(

NQ(ζ�)/Q(Is1)

z

)〈b2,a1〉

Q(ζ�),�

, if (z)Is2 ∈ Im(Pref�),

0, otherwise.

Then the inner sum of (8.1) becomes t2 sums of the form

1
(�− 1)2

∣∣∣∣∑
w

∑
z

αwβzγ(w, z)
∣∣∣∣, (8.3)

where we divide by 1/(�− 1)2, because the fundamental domain of Q(ζ�) contains �− 1 = ϕ(�)
generators for each principal ideal.

Finally, there is one more barrier to overcome before we are ready to apply Proposition 4.3.
The implicit condition in (8.3) is that

NQ(ζ�)/Q(wz) ≤ B

for some boundB > 0, while Proposition 4.3 applies only to box shapes given byNQ(ζ�)/Q(w) ≤W
and NQ(ζ�)/Q(z) ≤ Z. To this end, we split w and z into intervals of the form

W ≤ NQ(ζ�)/Q(w) ≤W

(
1 +

1
(logX)A3

)
, Z ≤ NQ(ζ�)/Q(z) ≤ Z

(
1 +

1
(logX)A3

)
.

This does not cover the entire region, but for sufficiently large A3 one may bound the resulting
leftover trivially. Inserting the bound of Proposition 4.3 for each such sum into (8.1) and summing
trivially shows that Nlinked(X) ends up in the error term, in the case where wa1,b1 and wa2,b2 are
both medium, upon choosing A2 sufficiently large in terms of A3.

8.2.2 Equidistribution with Siegel–Walfisz. It is now time to bring the Siegel–Walfisz theorem
into play. Let (a1, b1) ∈ I be such that wa1,b1 is large. By definition of Nlinked(X), we know that
there exists (a2, b2) ∈ I satisfying

– |wa2,b2 | > 2;
– 〈a2, b1〉 
= 0 or 〈a1, b2〉 
= 0 if � > 2;
– 〈a2, b1〉 + 〈a1, b2〉 = 1 if � = 2.

Furthermore, by the work done in § 8.2.1, we may assume that all pairs (a2, b2) satisfying the
above properties are such that wa2,b2 is not medium. Define I ′ := I − {(a1, b1)}. We now expand
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the product over the primes p dividing M ′. Then we bound the corresponding contribution by∑
(αp)p|M′

∑
(xp)p|M′

∑
(va)a∈B−{0}

∑
(wa,•)

∑
(wa,b)(a,b)∈I′

�−m
∑

(a,b)∈I′ ω̃(wa,b)

×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∑
Δ(|wa1,b1

|)≤X/(
∏

a Δ(|va|)
∏

(a,b)∈I′ Δ(|wa,b|))
wa1,b1

≡c′ mod d(�)

gcd(wa1,b1
,M)=1

p|wa1,b1
⇒p mod M∈Ha1

�−mω̃(wa1,b1
)

⎛⎝∏
j∈[n]

∏
p|wa1,b1

δ
πj(b1)
a1,p mod M,j,f

⎞⎠

×
⎛⎝ ∏

(a2,b2)∈I′
ψ
〈b1,a2〉
wa2,b2

,�,1(Frobwa1,b1
)ψ〈b2,a1〉

wa1,b1
,�,1(Frobwa2,b2

)

⎞⎠

×
⎛⎝∏

p|M ′

∏
j∈[n]

ψwa1,b1
,�,1(Frobp)πj(xp)πj(a1)χj(αp)

πj(xp)

⎞⎠

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (8.4)

where we also stipulate that the wa,b are squarefree, pairwise coprime and satisfy p | wa,b ⇒ p ≡
0, 1 mod �. We now define the multiplicative function h supported on squarefree integers and
given on the primes coprime to � by

h(q) = �−m × 1gcd(q,M
∏

a va
∏

(a,b)∈I′ wa,b)=1 × 1q mod M∈Ha1
× 1q≡1 mod �

×
∏

j∈[n]

δ
πj(b1)
a1,q mod M,j,f ×

∏
(a2,b2)∈I′

ψ
〈b1,a2〉
wa2,b2

,�,1(Frobq)ψ
〈b2,a1〉
q,�,1 (Frobwa2,b2

)

×
∏
p|M ′

∏
j∈[n]

ψq,�,1(Frobp)πj(xp)πj(a1)χj(αp)
πj(xp)

.

We claim that ∑
1≤q≤X

h(q) log q = OA

(
X

(logX)A

)
(8.5)

for every A > 0. Applying Theorem 4.1 then shows that∑
1≤n≤X

h(n) = OA

(
X

(logX)A

)
for every A > 0. Using this for a sufficiently large A and inserting it into (8.4) gives the desired
upper bound for (8.4) after a trivial summation.

1334

https://doi.org/10.1112/S0010437X24007103 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X24007103


Weak approximation on the norm one torus

It remains to prove (8.5). For now we assume that � > 2, and we will later sketch the
modifications to get the case � = 2. Before we proceed, let us remark that the sum∑

1≤q≤X

ψq,�,1(Frobwa2,b2
)

need not oscillate. Indeed, recall that ψq,�,1 depends on our choice of σq, and for a dramatically
poor choice we might (for example) have

ψq,�,1(Frobwa2,b2
) ∈ {1, ζ�}.

With this in mind, let us now work towards the proof of (8.5). We now pass to Q(ζ�). We have
already seen in Lemma 8.2 that the choice of ψq,�,1 is equivalent to a choice of prime ideal p of
Q(ζ�) above q. We also remind the reader that this ideal was called Pref�(q). Consider the Hecke
character ρ of Q(ζ�) defined as

ρ(p) = 1gcd(NQ(ζ�)/Q(p),M
∏

a va
∏

(a,b)∈I′ wa,b)=1

×
∏

(a2,b2)∈I′

(
NQ(ζ�)/Q(p)
Pref�(wa2,b2)

)〈b1,a2〉

Q(ζ�),�

(
wa2,b2

p

)〈b2,a1〉

Q(ζ�),�

×
∏
p|M ′

∏
j∈[n]

(
p

p

)πj(xp)πj(a1)

Q(ζ�),�

.

We have the fundamental identity

�m · h(q) = 1q mod M∈Ha1
· ρ(Pref�(q)) · ζ(q), (8.6)

where ζ(q) is an �th root of unity depending only on q mod M . Since |wa2,b2 | > 2 and since wa2,b2

is coprime to M , we see that ρ is a non-trivial character and so is ρχ for any Dirichlet character
χ modulo M . Then the main theorem of Goldstein [Gol70] yields∑

NQ(ζ�)/Q(p)≤X

(ρχ)(p) = OA

(
X

(logX)A

)
(8.7)

for every A > 0. Note that Goldstein’s result formally only applies to primitive characters, but
one readily passes to non-primitive characters by trivially bounding the contribution of the primes
dividing the conductor. Here we use that the norm of the conductor is bounded by a suitable
power of logX depending only on our starting abelian group.

Our goal is now to deduce (8.5) from (8.6) and (8.7). But as we have emphasised before,
this may not be possible if we made a dramatically poor choice of σq. We say that a choice
(Pref�(q))q≡1 mod �,q≤X is poor if there exists some integer exp((logX)A1) ≤ n ≤ X, some Hecke
character ψ of Q(ζ�) of order � such that the norm of the conductor is bounded by X and some
a ∈ F∗

� such that∣∣∣∣|{q ≤ n : ψ(Pref�(q)) = ζa
� }| −

|{q ≤ n : ψ(Pref�(q)) 
= 1}|
�− 1

∣∣∣∣ ≥ n3/4. (8.8)

For fixed n, ψ and a, observe that this is an entirely combinatorial condition. Indeed, ψ(Pref�(q))
runs through all values of ζa

� with a ∈ F∗
� exactly once as we run through the choices of Pref�(q).

For fixed n, ψ and a, we bound the event (8.8) using Hoeffding’s inequality with the probability
space corresponding to the set of choices (Pref�(q))q≡1 mod �,q≤X . This also gives a bound for the
event that (Pref�(q))q≡1 mod �,q≤X is poor by using the union bound. This shows that for X large
enough, we may pick σq such that (Pref�(q))q≡1 mod �,q≤X is not poor. In particular, we may pick
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one such choice of σq at the start of our proof. Then we have that∑
1≤q≤X

(ρχ)(Pref�(q)) = OA

(
X

(logX)A

)
,

which implies that ∑
1≤q≤X

q≡a mod M

ρ(Pref�(q)) = OA

(
X

(logX)A

)

for every invertible class a mod M .
Thanks to the above equation and (8.6), we obtain that

�m ·
∑

1≤q≤X

h(q) =
∑

λ∈(Z/MZ)∗
λ∈Ha1

ζ(λ)
∑

1≤q≤X
q≡λ mod M

ρ(Pref�(q)) = OA

(
X

(logX)A

)
.

We deduce that (8.5) holds by partial summation.
In the case � = 2, we must also contend with the congruence condition wa1,b1 ≡ c′ mod 16.

We detect this congruence condition using Dirichlet characters and may now proceed as above.

8.3 The main term
We now use the results from § 7 to finish the proof. We distinguish two cases.

Let us start with the case � > 2. We apply Lemma 7.2 with

Y = {(a, b) ∈ I : wa,b large}.
By construction of Nmain(X) we have that:

– |Y | ≥ �n − |B| thanks to § 8.1;
– 〈a2, b1〉 = 0 for all (a1, b1), (a2, b2) ∈ Y thanks to § 8.2.

Therefore, all conditions of Lemma 7.2 are satisfied. We conclude that

Y = {(a, 0) : a ∈ Fn
� −B}.

We now observe that for every (a1, b1) ∈ I with b1 
= 0 there exists some (a, 0) ∈ Y such that
〈a, b1〉 
= 0. By § 8.2 and by definition of Nmain(X), this forces wa,b = 1 for all b 
= 0. Therefore,
Nmain(X) becomes

Nmain(X) =
∑

(va)a∈B−{0}
p|va⇒p mod M∈Ha

∑
(wa,0)a

wa,0 large∏
a Δ(|va|)

∏
a Δ(|wa,0|)≤X

va≡ca mod d(�)
gcd(wa,0,M)=1

p|wa,0⇒p mod M∈Ha

1v∈A × �−m
∑

a,0 ω̃(wa,0)

×
∏
p|M ′

(
1
�n

∑
α∈g(p)

∑
x∈Fn

�

∏
j∈[n]

ψj(Frobp)πj(x)χj(α)
πj(x)

)
,

where we also demand that all wa,0 are large. Expanding the product over M ′, we get a com-
bination of non-principal characters of small conductor unless x is the zero vector. Another
application of Siegel–Walfisz, where we sum over an appropriate variable wa,0 depending on x,
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yields the asymptotic

Nmain(X) =
∑

(va)a∈B−{0}
p|va⇒p mod M∈Ha

∑
(wa,0)a

wa,0 large
v∈A∏

a Δ(|va|)
∏

a Δ(|wa,0|)≤X
va≡ca mod d(�)
gcd(wa,0,M)=1

p|wa,0⇒p mod M∈Ha

�−m
∑

a,0 ω̃(wa,0)
∏
p|M ′

|g(p)|
�n

+OA

(
X

(logX)A

)
.

We may also remove the condition that wa,0 is large with an acceptable error term. Therefore,
we conclude that

N(X) =
∑

(va)a∈B−{0}
p|va⇒p mod M∈Ha

∑
(wa,0)a

v∈A∏
a Δ(|va|)

∏
a Δ(|wa,0|)≤X

va≡ca mod d(�)
gcd(wa,0,M)=1

p|wa,0⇒p mod M∈Ha

�−m
∑

a,0 ω̃(wa,0)
∏
p|M ′

|g(p)|
�n

+OA

(
X(logX)α−1−δ

)

for some δ > 0. Since � is odd, we have d(�) = 1. We directly evaluate the above sum using
Theorem 4.1 with

α =
∑

a∈B−{0}

1
ϕ(lcm(M, �))

∑
λ∈(Z/lcm(M,�)Z)∗

1λ≡1 mod � · 1λ mod M∈Ha

+
1
�m

∑
a∈A−B

1
ϕ(lcm(M, �))

∑
λ∈(Z/lcm(M,�)Z)∗

1λ≡1 mod � · 1λ mod M∈Ha ,

which is readily verified to be the correct exponent for the logarithm. One also finds that the
leading constant equals the conditionally convergent product

Clead =
∏

p≡1 mod �
gcd(p,M)=1

⎛⎜⎝1 +

∑
a∈B−{0}

p mod M∈Ha

1 +
∑

a∈A−B
p mod M∈Ha

1/�m

p

⎞⎟⎠ ·
∏
p

(
1 − 1

p

)α

·
⎛⎝∏

p|M ′

|g(p)|
�n

⎞⎠ · 1
Γ(α)

·

⎛⎜⎜⎜⎜⎜⎜⎝
∑

(da)a∈A−{0}
da|�

gcd(da,M)=1

μ2
(∏

a∈A−{0} da

)
∏

a∈A−{0} d2
a

⎞⎟⎟⎟⎟⎟⎟⎠ .

In particular, if � > 2, we always have Clead > 0. It is also clear from the above expression that
Clead is uniformly bounded.

Let us now see how to modify the above argument for � = 2. In this case we apply Lemma 7.1
with

Y = {(a, b) ∈ I : wa,b large}.

By construction of Nmain(X) we have that:

– |Y | ≥ 2n − |B| due to § 8.1;
– 〈a1, b2〉 + 〈a2, b1〉 = 0 for all (a1, b1), (a2, b2) ∈ Y due to § 8.2.
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Lemma 7.1 yields

Y = {(a, f(a)) : a ∈ Fn
2}

for some alternating map f . The case B = Fn
2 is easy, so let us suppose that B is a proper subspace

of Fn
2 . We now observe that for every (a1, b1) ∈ I with b1 
= f(a1) there exists some (a, f(a)) ∈ Y

such that

〈a1, f(a)〉 + 〈a, b1〉 
= 0.

Indeed, take any a 
∈ B such that 〈a, f(a1) − b1〉 
= 0.
By § 8.2 and by definition of Nmain(X), this forces |wa,b| ≤ 2 for all (a, b) ∈ I − Y and there-

fore wa,b ∈ {−2,−1, 1, 2} and thus wa,b = 1 unless b = •. We now analyze Nmain(X) by splitting
over congruence conditions on wa,f(a) modulo 16M and the parity of the number of prime divisors
p such that p mod M lies in a given coset of G. Crucially, this fixes both∏

j∈[n]

∏
p|wa1,f(a1)

δ
πj(f(a1))
a1,p mod M,j,f

and ∏
p|M ′

(
1
2n

∑
α∈g(p)

∑
x∈Fn

2

∏
j∈[n]

ψj(Frobp)πj(x)χj(α)
πj(x)

)
.

Therefore, using quadratic reciprocity and the values of ca modulo 16 to also eliminate the terms
of the form

ψwa2,b2
,�,1(Frobwa1,b1

)ψwa1,b1
,�,1(Frobwa2,b2

),

our main term Nmain(X) becomes

Nmain(X) =
∑

f

∑
(ca)

∑
(ea,λ)

∑
(va)a∈B−{0}

p|va⇒p mod M∈Ha

ε((ca), (ea))
∑

(wa,f(a))a

v∈A∏
a Δ(|va|)

∏
a Δ(|wa,f(a)|)≤X

va≡ca mod 16M
gcd(wa,f(a),M)=1

p|wa,f(a)⇒p mod M∈Ha

ωλ(va)≡ea,λ mod 2

2−m
∑

a ω̃(wa,f(a)),

where ε((ca), (ea)) is a real number, bounded in absolute value by 1, depending only on ca and
ea, where ωλ(va) denotes the number of prime divisors p of va such that p mod M is in the coset
λ+G and where the sum over f is over all alternating maps. We now detect the congruence
condition va ≡ ca mod 16M using Dirichlet characters and the condition ωλ(va) ≡ ea,λ mod 2
using

1
2

(
1 + (−1)ea,λ+ωλ(va)

)
.

To finish the proof, we proceed as in the case � = 2 to get the asymptotic formula for Nmain(X)
by several applications of Theorem 4.1.

Let us now check the final part of Theorem 5.2. It is still readily verified that Clead is bounded
in terms of n only. For the final part, one gets that Clead > 0 by directly adapting the above
argument for � > 2 (including the application of Siegel–Walfisz to get the main term for the
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conditions on the primes p dividing M ′), observing that

δ
πj(f(a1))
a1,p mod M,j,f = 1

and

ψwa2,b2
,2,1(Frobwa1,b1

)ψwa1,b1
,2,1(Frobwa2,b2

) = 1

under the assumptions of the final part of Theorem 5.2.

9. Explicit constants

In general, the leading constant in Theorem 1.2 is an infinite sum of Euler products, which is
unlikely to be expressible in a simple fashion. However, in specific cases it is possible to write down
an explicit description of the leading constant. In particular, for purely multicyclic extensions,
since Clead in Theorem 5.2 can be made explicit so can the leading constant in the count of
extensions satisfying the weak approximation property. As a further example, in this section
we will also compute the leading constant for C2 × C3 × C3 as this is the smallest group A for
which a positive proportion of fields, when ordered by discriminant, have the weak approximation
property.

9.1 Multicyclic extensions
Before writing down the explicit asymptotic for the number of Fn

� -extensions of Q whose norm
one torus satisfies weak approximation, we start by explicitly enumerating the Fn

� -extensions of
bounded absolute discriminant, for the purpose of comparison. While the asymptotic formula,
with an inexplicit constant, dates back to the work of Wright [Wri89], to the authors’ knowledge,
the only examples where the leading constant is explicitly known are following the cases:

– � = 2 (due independently to de la Bretèche, Kurlberg and Shparlinski [dlBKS21] and
Fritsch [Fri19]),

– � = 3, n = 2 (due to Mammo [Mam10]),
– n = 1, for any prime � over any base field (due to Cohen, Diaz-y-Diaz and Olivier [CDO02]).

For a survey of some of the results known about explicit constants in Malle’s conjecture, see
Cohen, Diaz-y-Diaz and Olivier [CDO06]. We restrict attention to the case � > 2, to avoid the
additional complications of the oddest prime, and n ≥ 2, since weak approximation always holds
on the norm one torus of a cyclic extension. In this setting, every case of the following theorem
but the simplest is new.

Theorem 9.1. Let � > 2 be a prime and n > 0 an integer. For a real number X > 1, denote
by N�,n(X) the number of field extensions K/Q such that Gal(K/Q) ∼= Fn

� and Disc(K/Q) ≤ X.
Then, as X → ∞, we have

N�,n(X) =
C

Γ((�n − 1)/(�− 1))
X1/(�n−�n−1)(logX)(�

n−1)/(�−1)−1

+O
(
X1/(�n−�n−1)(logX)(�

n−1)/(�−1)−2
)
,

where

C =
1∏n−1

i=0 (�n − �i)
(1 + (�n − 1)/�2)

(�n − �n−1)(�n−1)/(�−1)−1

∏
p≡1 mod �

(
1 +

�n − 1
p

)∏
p

(
1 − 1

p

)(�n−1)/(�−1)

.
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Remark. The authors are fairly confident that one could prove an asymptotic with an explicit
degree (�n − 1)/(�− 1) − 1 polynomial in logX and power-saving error term by replacing the
application of Theorem 4.1 in the proof with a customised application of the Selberg–Delange
approach (perhaps multidimensional in nature, as in [dlBKS21]).

Proof. To begin, we parametrise Fn
� -extensions of Q as in § 2. That is to say, each such exten-

sion corresponds to a tuple (va)a∈Fn
� −{0}, where the entries are squarefree and pairwise coprime.

Furthermore, we stipulate that the va must satisfy:

– for all prime divisors p of va,

p ≡ 1 mod
ord(a)

pvp(ord(a))
;

– if ord(a) > 2, then va > 0.

The latter condition forces each entry in the tuple to be positive, while the former requires each
prime divisor of va which is not equal to � to be congruent to 1 modulo �. Finally, we observe
that the discriminant of the field associated to such a tuple is given by{∏

v�n−�n−1

a , if � � va for all a,
�2(�

n−�n−1)
∏

(v′a)�n−�n−1
, if ∃a s.t. � | va,

where v′a = va�
−v�(va).

Note that the parametrisation just discussed does not parametrise Fn
� -extensions of Q

but rather homomorphisms from GQ to Fn
� . However, for each field there are several such

homomorphisms. In order to correct this overcount, we need to divide by the size of the
automorphism group of Fn

� .
Hence, splitting up the two cases where � �

∏
va and � |∏ va, we find that the count for

N�,n(X) may be given by the sum

1
|Aut(Fn

� )|

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
∑

v∈Z
�n−1
>0

p|vi⇒p≡1 mod �
gcd(vi,2�)=1∏
i v�n−�n−1

i ≤X

μ2

(∏
i

vi

)
+ (�n − 1)

∑
v∈Z

�n−1
>0

p|vi⇒p≡1 mod �
gcd(vi,2�)=1∏

i v�n−�n−1

i ≤X/�2(�
n−�n−1

)

μ2

(∏
i

vi

)
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

We can compute the size of the sums appearing here using Theorem 4.1. Indeed, for any V , we
may write ∑

v∈Z
�n−1
>0

p|vi⇒p≡1 mod �
gcd(vi,2�)=1∏

i vi≤V

μ2

(∏
i

vi

)
=

∑
v∈Z>0
v≤V

μ2(v)g(v),

where g(v) is the (�n − 1)-fold convolution of the indicator function 1p|v⇒p≡1 mod �(v). Note that
we have dropped the coprimality condition gcd(vi, 2�) = 1, since it is already implied by the
constraint that prime divisors of v must be congruent to 1 mod �. On primes, we can estimate
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the sum ∑
p≤x

g(p) log p =
∑
p≤x

(�n − 1)1p|v⇒p≡1 mod �(v) log p

= (�n − 1)
∑
p≤x

p≡1 mod �

log p =
�n − 1
�− 1

x+OA

(
x

(log x)A

)

by the classical Siegel–Walfisz theorem. Therefore, applying Theorem 4.1, we have∑
v∈Z>0
v≤V

μ2(v)g(v) =
V (log V )(�

n−1)/(�−1)−1

Γ((�n − 1)/(�− 1))

∏
p≡1 mod �

(
1 +

�n − 1
p

)∏
p

(
1 − 1

p

)(�n−1)/(�−1)

+O

(
V (log V )(�

n−1)/(�−1)−2

)
.

Combining this with our previous expression for N�,n(X) completes the claim. �

Remark. To compare with Mammo’s result, set � = 3 and n = 2. Then the main term for N3,2(X)
is given by

1
(32 − 1)(32 − 3)

(
1 +

32 − 1
32

)
X1/6(logX)3

63Γ(4)

∏
p≡1 mod 3

(
1 +

8
p

)∏
p

(
1 − 1

p

)4

=
1
48

17
9
X1/6(logX)3

64

(
2
3

)4 ∏
p≡1 mod 3

(
1 +

8
p

)(
1 − 1

p

)4 ∏
p≡2 mod 3

(
1 − 1

p

)4

.

This Euler product can be simplified by comparison with L(1, χ)4 for χ the non-principal Dirichlet
character mod 3. Thus our leading constant becomes

17X1/6(logX)3

24311
L(1, χ)4

∏
p≡1 mod 3

(
1 +

8
p

)(
1 − 1

p

)8 ∏
p≡2 mod 3

(
1 − 1

p2

)4

.

By the analytic class number formula, L(1, χ) = 2π/6
√

3. This means that we have

N3,2(X) ∼ 17π4X1/6(logX)3

24317

∏
p≡1 mod 3

(
1 +

8
p

)(
1 − 1

p

)8 ∏
p≡2 mod 3

(
1 − 1

p2

)4

,

which recovers the result of [Mam10, § 7, Case 2]. Since the proof in [Mam10] relies on an appli-
cation of the Ikehara–Delange Tauberian theorem, there is no error term given, so our result
represents an improvement in that respect.

We now turn to the problem of weak approximation on the norm one torus. Our count will
be provided by Theorem 5.2; however, many of the complications arising in the case of general
abelian extensions are not necessary for multicyclic extensions. In particular, we may set M = 1,
which makes the subgroups Ha trivial, and we have by definition that d(�) = 1. Note also that
m := n− 1 − dimF�

B = n− 1. Thus, by the work of the previous section in concluding the proof
of Theorem 5.2, the number of Fn

� -extensions of Q with absolute discriminant at most X whose
norm one torus satisfies weak approximation is equal to

1∏n−1
i=0 (�n − �i)

CleadX
1/(�n−�n−1) log(X1/(�n−�n−1))α−1 +O

(
X1/(�n−�n−1)(logX)α−1−δ

)
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for some δ > 0, where

Clead =
∏

p≡1 mod �

(
1 +

∑
a∈Fn

� −{0} �
−n

p

)∏
p

(
1 − 1

p

)α 1
Γ(α)

( ∑
(da)a∈Fn

�
−{0}

da|�

μ2(
∏

a da)∏
a d

2
a

)
,

α = 0 +
1

�n−1

∑
a∈Fn

� −{0}

1
ϕ(�)

∑
λ∈(Z/�Z)∗

1λ≡1 mod � =
�n − 1

�n−1(�− 1)
.

We observe that, as in the proof of Theorem 9.1, we have divided by a factor of |Aut(Fn
� )| =∏n−1

i=0 (�n − �i). Using the fact that( ∑
(da)a∈Fn

�
−{0}

da|�

μ2(
∏

a da)∏
a d

2
a

)
= 1 +

�n − 1
�2

,

the main term becomes

X1/(�n−�n−1)(logX)(�
n−1)/(�n−1(�−1))−1

Γ((�n − 1)/(�n−1(�− 1)))
(1 + (�n − 1)/�2)

(�n − �n−1)(�n−1)/(�n−1(�−1))−1
∏n−1

i=0 (�n − �i)

×
∏

p≡1 mod �

(
1 +

�n − 1
�n−1p

)∏
p

(
1 − 1

p

)(�n−1)/(�n−1(�−1))

as desired.

9.2 A positive proportion of fields satisfying weak approximation
In order to parametrise A = (C2 × C3 × C3)-extensions, using the method of § 2, we need a
17-tuple of squarefree, pairwise coprime integers. The tuple is indexed by the non-identity ele-
ments of C2 × C3 × C3 and hence we will write the tuple as (u1, . . . , u8, v1, . . . , v8, w) where
the ui are those components indexed by elements of order 3 in C2 × C3 × C3, the vi are those
components indexed by elements of order 6, and w is the component indexed by the order two
element. The ui and vi must be positive, but w can be either positive or negative. To complete
the parametrisation we must impose the further conditions that:

– p | ui ⇒ p ≡ 0, 1 mod 3;
– p | vi ⇒ p ≡ 1, 3 mod 6.

The proof will proceed by fixing the ui and vi and thus determining a (C3 × C3)-extension F
of small discriminant, after which we will vary w. To ensure that the extension K/Q is such
that the norm one torus satisfies weak approximation we must turn to the criteria in § 3. The
subset 2A ∩A[2] contains only the identity and therefore, by Theorem 3.4, once the ui and
vi are chosen, there is no additional condition on w. In other words, R1

K/Q
Gm satisfies weak

approximation if and only if R1
F/Q

Gm does. Hence, in the general setup in § 5, we can take Ha to
be the full group (Z/MZ)∗. This means that in order to compute A = (C2 × C3 × C3)-extensions
of bounded absolute discriminant satisfying the weak approximation condition, we must consider
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sums of the form ∑
u,v∈Z8

>0

Par(u,v) satisfies WA
disc(Par(u,v))≤(log X)100

p|ui⇒p≡0,1 mod 3
p|vi⇒p≡1,3 mod 6

∑
w∈Z�=0

disc(Par(u,v,w))≤X

μ2

(
w
∏

i

ui

∏
j

vj

)
.

Next, we describe the discriminant of the extension K/Q. We observe that the valuation of the
discriminant at the primes 3 and p for p any prime greater than 3 are given by

v3(ΔK/Q) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, if 3 � u1 · · ·u8v1 · · · v8w,
9, if p | w,
24, if p | ui,

27, if p | vi,

and

vp(ΔK/Q) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, if p � u1 · · ·u8v1 · · · v8w,
9, if p | w,
12, if p | ui,

15, if p | vi.

Finally, at 2 (noting that 2 never ramifies in a C3 × C3-extension), we find that the discriminant
has valuation

v2(ΔK/Q) =

⎧⎪⎨⎪⎩
0, if w ≡ 1 mod 4,
18, if w ≡ 3 mod 4,
27, if w ≡ 2 mod 4.

The innermost sum will be handled using the well-known estimate for odd d,∑
gcd(w,d)=1
w≡a mod 4
0<w9≤W

μ2(w) =
3
π2
W 1/9

∏
p|2d

(
1 +

1
p

)−1

+O
(
W 1/18τ(d)

)
. (9.1)

To compute the count for A-extensions whose norm one torus satisfies weak approximation, we
will consider four cases:

(i) 3 � u1 · · ·u8v1 · · · v8w;
(ii) there is some i such that 3 | ui;
(iii) there is some i such that 3 | vi;
(iv) 3 | w.

Note that these cases are both disjoint and exhaustive.
We start with case (i). In this case, the sum that has to be computed can be written as

Σ1(X) :=
∑

u,v∈Z8
>0

Par(u,v) satisfies WA∏
i u12

i

∏
j v15

j ≤(log X)100

p|ui⇒p≡1 mod 3
p|vi⇒p≡1 mod 6

∑
a∈{1,2,3}

∑
w∈Z�=0

w≡a mod 4
(c(a)|w|)9≤X/(

∏
i u12

i

∏
j v15

j )

μ2

(
3w

∏
i

ui

∏
j

vj

)
,
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where c(1) = 1, c(2) = 4 and c(3) = 4. We can express this as

Σ1(X) =
∑

u,v∈Z8
>0

Par(u,v) satisfies WA∏
i u12

i

∏
j v15

j ≤(log X)100

p|ui⇒p≡1 mod 3
p|vi⇒p≡1 mod 6

μ2

(∏
i

ui

∏
j

vj

) ∑
a∈{1,2,3}

∑
w∈Z�=0

w≡a mod 4
|w|≤(c(a))−1(X/(

∏
i u12

i

∏
j v15

j ))1/9

gcd
(
w,3

∏
i ui

∏
j vj

)
=1

μ2(w).

Applying (9.1) to the inner sums over a and w, we see that they are equal to

2 × 3
π2

(
X∏

i u
12
i

∏
j v

15
j

)1/9(
1+

1
4

+
1
4

) ∏
p|6∏i ui

∏
j vj

(
1+

1
p

)−1

+Oε

((
X∏

i u
12
i

∏
j v

15
j

)1/18+ε)
.

Since the ui and vj all have log power size, this error term is negligible when summed over the
remaining variables. Thus

Σ1(X) ∼ 9
π2
X1/9

∑
u,v∈Z8

>0

Par(u,v) satisfies WA
p|ui⇒p≡1 mod 3
p|vi⇒p≡1 mod 6

μ2
(∏

i ui
∏

j vj

)
∏

i u
4/3
i

∏
j v

5/3
j

∏
p|∏i ui

∏
j vj

(
1 +

1
p

)−1

.

Unfortunately, at this stage it seems that no further simplification is possible. The condition that
Par(u,v) satisfies WA is not a multiplicative condition on the variables u and v and thus this
convergent sum cannot be expressed as an Euler product. One could detect this condition using
character sums as discussed in § 6, but it is unclear that doing so will give a path towards writing
the sum in any kind of simpler form. Henceforth, we will simply refer to this infinite sum as κ.

We now move to case (ii). Suppose that 3 | ui0 and write ũi = ui for all i 
= i0 and ũi0 = ui0/3.
Then the sum which has to be computed is

Σ2(X) :=
∑

ũ,v∈Z8
>0

Par(u,v) satisfies WA∏
i ũ12

i

∏
j v15

j ≤(log X)100

p|ũi⇒p≡1 mod 3
p|vi⇒p≡1 mod 6

∑
a∈{1,2,3}

∑
w∈Z�=0

w≡a mod 4
(c(a)|w|)9≤X/324(

∏
i ũ12

i

∏
j v15

j )

μ2

(
3w

∏
i

ũi

∏
j

vj

)
.

Evidently, we have Σ2 = 3−24/9Σ1. The argument in case (iii) is almost exactly the same. We
find that the sum we need to compute in this setting, Σ3(X) satisfies Σ3 = 3−27/9Σ1. Finally, in
case (iv), write w̃ = w/3. Then we consider

Σ4(X) :=
∑

u,v∈Z8
>0

Par(u,v) satisfies WA∏
i u12

i

∏
j v15

j ≤(log X)100

p|ui⇒p≡1 mod 3
p|vi⇒p≡1 mod 6

∑
a∈{1,2,3}

∑
w̃∈Z�=0

w̃≡a mod 4
(c(a)|w̃|)9≤X/39(

∏
i u12

i

∏
j v15

j )

μ2

(
3w̃

∏
i

ui

∏
j

vj

)
,

and thus Σ4 = 3−9/9Σ1. Combining these, we have

Σ1 + Σ2 + Σ3 + Σ4 =
(

1 +
1

38/3
+

1
81

+
1
3

)
Σ1(X)
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Just as in the last subsection, this sum counts each field extension multiple times and hence we
must divide by the order of the automorphism group of A = C2 × C3 × C3 which is 48.

Our work so far has lead us to the following result.

Theorem 9.2. The number of (C2 × C3 × C3)-extensions K/Q with absolute discriminant less
than or equal to X such that R1

K/Q
Gm satisfies weak approximation is

109 + 3 3
√

3
2433π2

κX1/9 +Oε

(
X1/18+ε

)
.

We can compare this count to the number of A-extensions of bounded absolute discriminant
which we compute in a fairly similar manner. The explicit value for the leading constant in the
following asymptotic formula is new, as far as the authors are aware.

Theorem 9.3. The number of (C2 × C3 × C3)-extensions K/Q with absolute discriminant less
than or equal to X is

109 + 3 3
√

3
2433π2

X1/9
∏

p≡1 mod 6

(
1 +

8
p1/3(p+ 1)

+
8

p2/3(p+ 1)

)
+Oε

(
X1/18+ε

)
.

Proof. The proof follows exactly the same lines as the previous proof, but we no longer need
to impose the condition that weak approximation holds in the (C3 × C3)-extension. We will
parametrise the extensions in the exact same way and similarly consider four cases depending
on the ramification of the prime 3. In the first instance, when 3 does not ramify in the whole
extension, we need to compute

Σ̃1(X) :=
∑

u,v∈Z8
>0∏

i u12
i

∏
j v15

j ≤(log X)100

p|ui⇒p≡1 mod 3
p|vi⇒p≡1 mod 6

μ2

(∏
i

ui

∏
j

vj

) ∑
a∈{1,2,3}

∑
w∈Z�=0

w≡a mod 4
|w|≤(c(a))−1(X/(

∏
i u12

i

∏
j v15

j ))1/9

gcd
(
w,3

∏
i ui

∏
j vj

)
=1

μ2(w).

Thus, similarly, we have

Σ̃1(X) =
9
π2
X1/9

∑
u,v∈Z8

>0

p|ui⇒p≡1 mod 3
p|vi⇒p≡1 mod 6

μ2
(∏

i ui
∏

j vj

)
∏

i u
4/3
i

∏
j v

5/3
j

∏
p|∏i ui

∏
j vj

(
1 +

1
p

)−1

+Oε

(
X1/18+ε

)

We can express the remaining convergent sum as an Euler product so that

Σ̃1(X) ∼ 9
π2
X1/9

∏
p≡1 mod 6

(
1 + 8

1
p1/3(p+ 1)

+ 8
1

p2/3(p+ 1)

)
.

The proof now follows exactly the same lines as the previous theorem to conclude. �

Observe that, as we expect, the order of magnitude of these two counts is the same. Therefore,
we can combine these results to establish the precise (positive) proportion of A-extensions whose
norm one torus satisfies weak approximation.
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Corollary 9.4. The proportion of (C2 × C3 × C3)-extensions of Q whose norm one tori satisfy
weak approximation is

κ
∏

p≡1 mod 6

(
1 +

8
p1/3(p+ 1)

+
8

p2/3(p+ 1)

)−1

.

As discussed in § 1.1, since we have H3(C2 × C3 × C3,Z) ∼= C3, weak approximation is satis-
fied if and only if the Hasse norm principle fails. Therefore, we are able to determine the precise
proportion of Hasse norm principle failures in this setting as well.

Corollary 9.5. The proportion of (C2 × C3 × C3)-extensions of Q which fail the Hasse norm
principle is

κ
∏

p≡1 mod 6

(
1 +

8
p1/3(p+ 1)

+
8

p2/3(p+ 1)

)−1

.
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