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Abstract

For amenable discrete groupoids G and row-finite directed graphs E, let (G, E) be a self-similar groupoid
and let C∗(G, E) be the associated C∗-algebra. We introduce a weaker faithfulness condition than those in
the existing literature that still guarantees that C∗(G) embeds in C∗(G, E). Under this faithfulness condition,
we prove a gauge-invariant uniqueness theorem.
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1. Introduction

Roughly speaking, if parts of an object are similar to the whole, repeating the structure
of the object at all scales, then we call the object self-similar. If a group or a
groupoid acts self-similarly on a space, then we simply call it a self-similar group or
a self-similar groupoid. Self-similar groups were introduced by Grigorchuk in [2] and
Gupta and Sidki in [3] to answer the question of existence of groups with intermediate
growth. Recently, operator algebraists have made use of self-similar groups to study
C∗-algebras (for example, [1, 4]). Since a groupoid is a generalisation of a group, it is
then natural to think of this notion of self-similarity on a groupoid, as introduced in [5].
Self-similar groups act on the path-spaces of graphs with a single vertex. To study
self-similar actions on more general directed graphs and the associated Cuntz–Krieger
algebras, Laca et al. in [5] introduced the notion of a self-similar groupoid. In [5],
the authors are primarily interested in computing KMS states, so, informed by results
about graph C∗-algebras, they restricted their attention to finite graphs. They also
built their self-similar groupoids by generalising the process whereby automata are
used to build self-similar groups, so by definition their self-similar actions satisfy a
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[2] Self-similar action of groupoids 151

faithfulness condition that simplifies their analysis and, in particular, guarantees that
C∗(G) embeds in C∗(G, E).

Another approach to self-similar actions on graphs with multiple vertices was
developed by Exel and Pardo [1] and does not require a faithfulness condition. We
combine and generalise the constructions in [1, 5]. We consider self-similar actions
of groupoids G on the path spaces E∗ of row-finite directed graphs E that are not
necessarily faithful in the sense of [5]. We develop a new faithfulness condition that
is weaker than both faithfulness as in [5] and pseudo-faithfulness as in [1], but still
guarantees that C∗(G) embeds in C∗(G, E), and we prove a gauge-invariant uniqueness
theorem. In particular, our theorems apply to conventional actions of groups on graphs
(see Example 3.7). We also depart from [5] in that we work solely with generators and
relations, without employing the machinery of Hilbert modules and Cuntz–Pimsner
algebras.

The paper is organised as follows. We define our notion of a self-similar groupoid
(G, E) in Definition 2.1 and construct the associated C∗-algebras C∗(G, E) in Section 3
following the approach of [6]. We introduce our injectivity condition in our key
technical result Proposition 3.6. We analyse the fixed-point algebra C∗(G, E)γ for the
gauge action γ in Section 4. By applying all the results in the previous sections, we
prove the gauge-invariant uniqueness theorem in Theorem 5.1.

2. Self-similar groupoids

Recall that a groupoid G is a small category with inverses. We write G(0) for the
set of identity morphisms and r, s : G → G(0) for the maps induced by the codomain
and domain range maps. Throughout this paper, G will denote a countable discrete
groupoid. We will assume that G is amenable in the sense of [7]. Since G is discrete,
this is equivalent to requiring that its full and reduced C∗-algebras coincide, and is also
equivalent to requiring that each of its isotropy groups is amenable.

As in [6], a (directed) graph is a quadruple E = (E0, E1, r, s) consisting of countable
sets E0, E1 and maps r, s : E1 → E0. Elements of E1 are called edges and elements of
E0 are called vertices. We will assume that all our graphs are row-finite and have no
sources in the sense that 0 < |r−1(v)| < ∞ for all v ∈ E0. Let e, f ∈ E1 with s(e) = r( f ).
Then, e f is a path of length 2 and we write |e f | = 2. In general, a path μ of length n in
E is a sequence μ1μ2 · · · μn such that s( μi) = r( μi+1) for 1 ≤ i ≤ n − 1. The vertices are
viewed as paths of length 0. The paths of length n are collected in a set denoted by En.
We let E∗ :=

⋃
k≥0 Ek. It is natural to extend the maps r, s to E∗ by putting r( μ) = r( μ1)

and s( μ) = s( μ| μ|) where | μ| > 1, and r(v) = v = s(v) for v ∈ E0.

DEFINITION 2.1. Let E be a row-finite graph with no sources and let G be a groupoid
with G(0) = E0. Write

G ∗ E∗ := {(g, μ) ∈ G × E∗ | s(g) = r( μ)}
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152 I. Yusnitha [3]

and

E∗ ∗ G := {( μ, g) | s( μ) = r(g)}.

We will often denote the element ( μ, g) ∈ E∗ ∗ G by the shorthand μg. A self-similar
action of G on E∗ consists of two maps: (1) an action (g, μ) �→ g · μ of G on the set E∗

and (2) a map ϕ : G ∗ E∗ → G such that:

(i) g · (μβ) = (g · μ)(ϕ(g, μ) · β);
(ii) r(g · μ) = g · r( μ) and s(g · μ) = ϕ(g, μ) · s( μ);
(iii) |g · μ| = | μ|;
(iv) ϕ(g, v) = g;
(v) ϕ(gh, μ) = ϕ(g, h · μ)ϕ(h, μ);
(vi) ϕ(g, μβ) = ϕ(ϕ(g, μ), β); and
(vii) ϕ(g−1, μ) = (ϕ(g, g−1 · μ))−1.

We write this self-similar action of the groupoid G on E∗ as a pair (G, E) and call it a
self-similar groupoid (G, E).

3. The universal C∗-algebra C∗(G, E)

Recall that a Toeplitz–Cuntz–Krieger family for a row-finite directed graph E
with no sources consists of partial isometries {Te | e ∈ E1} and mutually orthogonal
projections {Wv | v ∈ E0} satisfying T∗e Te = Ws(e) and Wv ≥

∑
e∈vE1 TeT∗e for all v ∈

E0. It is a Cuntz–Krieger E-family if Wv =
∑

e∈vE1 TeT∗e for all v ∈ E0. A unitary
representation in a unital C∗-algebra A of a discrete groupoidG is a family {Ug | g ∈ G}
of partial isometries such that UgUh = δs(g),r(h)Ugh and Ug−1 = U∗g for all g, h ∈ G, and
such that

∑
v∈G(0) Uv = 1A.

DEFINITION 3.1. Let (G, E) be a self-similar groupoid. A Toeplitz (G, E)-family
consists of partial isometries {Te | e ∈ E1} and a unitary representation {Wg | g ∈ G}
of G such that {Te | e ∈ E1} ∪ {Wv | v ∈ E0} is a Toeplitz–Cuntz–Krieger E-family. It is
a Cuntz–Krieger (G, E)-family if {Te, Wv} is a Cuntz–Krieger E-family.

EXAMPLE 3.2. Suppose that G acts self-similarly on E. Let H := l2(E∗ ∗ G) with
orthonormal basis {eμg | μ ∈ E∗, g ∈ G}. For e ∈ E1 and h ∈ G, let Te, Wh ∈ B(H) be
the operators such that

Teeμg =

⎧⎪⎪⎨⎪⎪⎩
eeμg if s(e) = r( μ),
0 otherwise,

Wheμg =

⎧⎪⎪⎨⎪⎪⎩
e(h·μ)(ϕ(h,μ)·g) if s(h) = r( μ),
0 otherwise.
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For v ∈ E0, Wv is the projection onto l2({ μg | r( μ) = v}) ⊂ H , and a routine
calculation shows that for e ∈ E1,

T∗e eμg =

⎧⎪⎪⎨⎪⎪⎩
eμ′g if μ = eμ′,
0 otherwise.

It is routine to check that the family {Te | e ∈ E1} ∪ {Wh | h ∈ G} is a Toeplitz
(G, E)-family in B(H).

The proofs of the following two lemmas are more or less identical to those of the
cited results in [4–6].

LEMMA 3.3 (See [4, Lemma 3.4] and [5, Lemma 4.6]). Let (G, E) be a self-similar
groupoid. Suppose that {Te, Wg} is a Toeplitz (G, E)-family in a C∗-algebra B. Then for
all μ, β,α, ρ ∈ E∗, g, h ∈ G,

(TμWgT∗β)(TαWhT∗ρ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Tμ(g·α′)Wϕ(g,α′)hT∗ρ if α = βα′,
TμWgϕ(h,h−1·β′)T∗ρ(h−1·β′) if β = αβ′,

0 otherwise.

LEMMA 3.4 (See [6, Corollary 1.16]). Let (G, E) be a self-similar groupoid. Suppose
that {Te, Wg} is a Toeplitz (G, E)-family. Then

C∗(T , W) = span{TμWgT∗β | μ, β ∈ E∗, g ∈ Gs( μ)
s( β), s( μ) = g · s( β)}.

A standard argument along the lines of Propositions 1.20 and 1.21 of [6] shows
that there exists a C∗-algebra TC∗(G, E) generated by a Toeplitz (G, E)-family {te, wg}
that is universal in the sense that for any Toeplitz (G, E)-family {Te, Wg}, there is a
homomorphism πT ,W : TC∗(G, E)→ C∗(T , W) such that πT ,W(te) = Te for all e ∈ E1

and πT ,W(wg) = Wg for all g ∈ G.
Let I be the ideal of TC∗(G, E) generated by {wv −

∑
r(e)=v tet∗e | v ∈ E0}. Then

se := te + I for all e ∈ E1 and ug := wg + I for all g ∈ G defines a Cuntz–Krieger
(G, E)-family and C∗(G, E) := TC∗(G, E)/I is universal for Cuntz–Krieger (G, E)-
families. We will need to know that the generators of C∗(G, E) are nonzero. For this,
we construct a concrete Cuntz–Krieger (G, E)-family (see Proposition 3.6).

LEMMA 3.5. Let (G, E) be a self-similar groupoid. Let π : C∗(T , W)→ B(l2(E∗ ∗ G))
be the representation induced by the Toeplitz (G, E)-family {Te, Wg} of Example 3.2.
For every a ∈ I and every ε > 0, there exists N ∈ N such that for all n ≥ N,

‖π(a)|span{eλg |λ∈En,g∈Gs(λ)}‖ < ε.

PROOF. First, note that for v ∈ E0, λ ∈ E∗ and k ∈ Gs(λ),
(
Wv −

∑
e∈vE1

TeT∗e
)
eλk =

⎧⎪⎪⎨⎪⎪⎩
0 if λ � v,
eλk otherwise.

(3.1)
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Now fix v ∈ E0, μ, β ∈ E∗ and g ∈ Gs( μ)
v , h ∈ Gs( β)

v . Then,

TμWg

(
Wv −

∑
e∈vE1

TeT∗e
)
W∗hT∗βeλk

=

⎧⎪⎪⎨⎪⎪⎩
TμWg(Wv −

∑
e∈vE1 TeT∗e )e(h−1·λ′ )ϕ(h−1,λ′ )k if λ = βλ

′
,

0 otherwise.

By (3.1), this equals 0 if |λ′ | > 0. Hence,
∥∥∥∥∥TμWg

(
Wv −

∑
e∈vE1

TeT∗e
)
W∗hT∗βeλk

∥∥∥∥∥ = 0 whenever |λ| > | β|. (3.2)

Fix a finite linear combination a0 =
∑

aμ,g,h,β
TμWg(Wv −

∑
e∈vE1 TeT∗e )W∗hT∗β . Let

N = max{| β| | aμ,g,h,β � 0}. Then (3.2) implies that ‖a0eλk‖ = 0 whenever |λ| > N.
Finally, fix a ∈ I, and ε > 0. A routine argument gives

I = span
{
tμwg

(
wv −

∑
e∈vE1

tet∗e
)
w∗ht∗β | μ, β ∈ E∗, g, h ∈ G, v ∈ E0

}
.

So there exists

a0 ∈ span
{
TμWg

(
Wv −

∑
e∈vE1

TeT∗e
)
W∗hT∗β | μ, β ∈ E∗, g, h ∈ G, v ∈ E0

}
,

such that ‖π(a) − a0‖ < ε.
Take N as above and fix n ≥ N. Then,

‖π(a)|span{eλk |λ∈En,k∈Gs(λ)}‖≤‖π(a) − a0‖+‖a0|span{eλk |λ∈En,k∈Gs(λ)}‖ < ε. �

The following proposition will be used in describing our fixed-point algebra in
the next section. Let G be a discrete group and let H = l2(G) = span{δg | g ∈ G}. For
g ∈ G, define λg ∈ U(l2(G)) by λg(δh) = δgh for all h ∈ G. We get a representation
λ : C∗(G)→ B(H) such that λ(ug) = λg for all g ∈ G; we call this the regular
representation. If G is amenable, then the representation λ is faithful. Since our
groupoid is an amenable (discrete) groupoid, its (discrete) isotropy groups are also
amenable.

PROPOSITION 3.6. Let (G, E) be a self-similar groupoid. Let {se, ug} be the universal
Cuntz–Krieger (G, E)-family in C∗(G, E). Then each se and each ug is nonzero.
Fix v ∈ E0. The universal property of C∗(Gv

v) gives a homomorphism πu : C∗(Gv
v)→

C∗(G, E) such that πu(δh) = uh for all h ∈ Gv
v. Suppose that for each k ∈ N, there exists

λ ∈ vEk such that the map g �→ (g · λ)ϕ(g, λ) is injective. Then πu is injective.

PROOF. By the universal property, it suffices to construct a Cuntz–Krieger
(G, E)-family {Se, Ug} consisting of nonzero partial isometries. If {Se, Ug} is a
Cuntz–Krieger (G, E)-family and each Uv � 0, then Se � 0 for all e ∈ E1 and Ug � 0
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[6] Self-similar action of groupoids 155

for all g ∈ G, because Us(e) = S∗eSe and Us(g) = U∗gUg. So, it suffices to construct a
(G, E)-family with Uv � 0 for all v ∈ E0.

Let {Te, Wg} be the Toeplitz (G, E)-family of Example 3.2. For v ∈ E0, we have
Wv · eμs( μ) = eμs( μ) for all μ ∈ vE∗. So,

‖Wv|span{eλg |λ∈vEn,g∈Gs(λ)}‖ = 1.

Thus, Lemma 3.5 gives Wv � I. Therefore, Se := Te + I and Ug := Wg + I is a
(G, E)-family with each Uv � 0.

Now fix v ∈ E0. Let πW : C∗(Gv
v)→ B(l2(E∗ ∗ G)) be the homomorphism such

that πW(δh) = Wh. Fix k ∈ N. Choose λ ∈ vE∗ such that the map h �→ (h · λ)ϕ(h, λ)
is injective. Let Hλ := span{e(h·λ)ϕ(h,λ) | h ∈ Gv

v} ⊆ l2(E∗ ∗ G). By construction, Hλ is
invariant for πW .

Since the map g �→ (g · λ)ϕ(g, λ) is injective, there is an inner-product preserv-
ing map φλ : l2(Gv

v)→ Hλ that maps the element eg of the orthonormal basis of
l2(Gv

v) to the element e(g·λ)ϕ(g,λ) of the orthonormal basis of Hλ. For h ∈ Gv
v, define

Vλh ∈ U(l2(Gv
v)) by Vλh = φ

∗
λWhφλ. We get

Vλh eg = φ
∗
λWhφλeg = φ

∗
λWhe(g·λ)(ϕ(g,λ)) = φ

∗
λe(h·(g·λ))(ϕ(h,g·λ)ϕ(g,λ))

= φ∗λe((hg)·λ)(ϕ(hg,λ)) = ehg.

Hence, {Vλh | h ∈ G
v
v} ⊆ B(l2(Gv

v)) is the regular representation of Gv
v and induces a

faithful representation of C∗(Gv
v). Hence, the reduction of πW to Hλ is injective, so

its reduction to l2(Ek ∗ G) is injective. Since k was arbitrary, the reduction of πW to
l2(Ek ∗ G) is injective, and hence isometric for all k.

Now, fix a ∈ C∗(Gv
v) \ {0}. Then for all k,

‖πW(a)|span{eμg |μ∈Ek ,g∈Gs( μ)}‖ = ‖a‖ � 0.

Thus, Lemma 3.5 implies a � I. We have πu(a) = a + I � 0. Therefore, the homomor-
phism πu is injective. �

To see that our faithfulness condition is strictly weaker than that of [5], we provide
the following example.

EXAMPLE 3.7. Let E be the graph with one vertex and n edges e0, . . . , en−1 and let
G = Z. Define an action of G on E by m · ei = ei+m where addition is mod n, and define
ϕ(m, ei) = m for all m. Then G does not act faithfully in the sense of [5], because
n · ei = ei for all i. However, the map (m, λ) �→ (m · λ,ϕ(m, λ)) is injective for each λ
because ϕ(m, λ) = m and then λ = ϕ(m, λ)−1 · (m · λ). It is routine to see using universal
properties that C∗(G, E) = On � Z.

4. The gauge action and the core

Let {se, ug} be the universal Cuntz–Krieger (G, E)-family in C∗(G, E). Then for
z ∈ T, the family {zse, ug} is also a Cuntz–Krieger (G, E)-family. So, the universal
property gives a homomorphism γz : C∗(G, E)→ C∗(G, E) such that γz(se) = zse and
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γz(ug) = ug for all e, g. Since γ1 agrees with the identity and γz ◦ γw agrees with γzw
on generators, z �→ γz is an action. A standard ε/3 argument shows that it is a strongly
continuous action, which we call the gauge action on C∗(G, E). The fixed-point algebra
of γ is the ∗-subalgebra

C∗(G, E)γ := {a ∈ C∗(G, E) | γz(a) = a for all z ∈ T}
of C∗(G, E). The following corollary describes C∗(G, E)γ concretely.

COROLLARY 4.1. Let (G, E) be a self-similar groupoid and let Φ : C∗(G, E)→
C∗(G, E)γ be the conditional expectation, Φ(a) =

∫
T
γz(a) dz. Then,

Φ(sμugs∗β) = δ| μ|,| β|sμugs∗β for μ, β ∈ E∗ and g ∈ Gs( μ)
s( β).

Further, C∗(G, E)γ = span{sμugs∗β | s( μ) = g · s( β) and | μ| = | β|}.

PROOF. We have γz(sμugs∗β) = z| μ|−| β|sμugs∗β, so Φ(sμugs∗β) = δ| μ|,| β|sμugs∗β. Moreover,
Φ(C∗(G, E)) = span{sμugs∗β | s( μ) = g · s( β) and | μ| = | β|}. Proposition 3.2 of [6]
shows that Φ(C∗(G, E)) = C∗(G, E)γ. �

Let (G, E) be a self-similar groupoid and let {Se, Ug} be a Cuntz–Krieger
(G, E)-family. For k ∈ N, we define

Fk(S, U) := span{SμUgS∗β | μ, β ∈ Ek, g ∈ Gs( μ)
s( β), s( μ) = g · s( β)}.

We define a relation ∼ on E0 by v ∼ w if and only if Gv
w � ∅. Then ∼ is an equivalence

relation. For ξ ∈ E0/∼, define

Fk(S, U, ξ) := span{SμUgS∗β | μ, β ∈ Ek, g ∈ Gs( μ)
s( β), s( μ) = g · s( β) ∈ ξ}.

When {Se, Ug} is the universal family {se, ug} in C∗(G, E), we write Fk := Fk(s, u) and
Fk(ξ) := Fk(s, u, ξ).

NOTATION 4.2. For the next few results, fix a self-similar groupoid (G, E), an element
ξ ∈ E0/ ∼, a vertex v ∈ ξ and for each u ∈ ξ, an element gu ∈ Gu

v (take gv = v). We call
{gu | u ∈ ξ} a spanning tree for G|ξ. We denote Ekξ := { μ ∈ Ek | s( μ) ∈ ξ}.

PROPOSITION 4.3. With Notation 4.2, let {Se, Ug} be a Cuntz–Krieger (G, E)-family.
For h ∈ Gv

v and μ ∈ E∗, define Vh,μ := SμUgs( μ) Uh(SμUgs( μ) )
∗. For each k ∈ N, the

series
∑
μ∈Ekξ Vh,μ converges strictly to a partial unitary Vh in MC∗(S, U) and

VhFk(S, U, ξ) ⊆ Fk(S, U, ξ).

PROOF. Fix h ∈ Gv
v. For μ ∈ Ekξ,

Vh,μV∗h,μ = SμS∗μ = V∗h,μVh,μ. (4.1)

For μ � β ∈ Ekξ, SμS∗μSβS
∗
β = 0. So, S∗μSβ = 0. Therefore, for F ⊆ Ekξ finite,

(∑
μ∈F

Vh,μ

)(∑
β∈F

Vh,β

)∗
=
∑
μ∈F

Vh,μV∗h,μ =
∑
μ∈F

SμS∗μ.
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Now, fix a ∈ C∗(S, U). Then a = limK
∑

v∈K Pva, where K ranges over all finite
subsets of E0. Let PK =

∑
v∈K Pv. Fix ε > 0. There exists a finite set K′ ⊆ E0 such that

‖PKa − a‖ < ε/2 for all finite K ⊇ K′.
Let F ⊆ Ekξ be the finite set F = KEkξ. For F′, F′′ ⊇ F,∥∥∥∥∥

∑
μ∈F′

SμS∗μa −
∑
β∈F′′

SβS∗βa
∥∥∥∥∥ ≤
∥∥∥∥∥
∑
μ∈F′\F′′

SμS∗μa
∥∥∥∥∥ +
∥∥∥∥∥
∑
β∈F′′\F′

SβS∗βa
∥∥∥∥∥

≤ ‖(1 − PK)a‖ + ‖(1 − PK)a‖ < ε.

So, (
∑
μ∈F SμS∗μa)F⊆Ekξ is Cauchy and hence converges. Thus,

∑
μ∈Ekξ SμS∗μ converges

strictly to a projection Pξ ∈ MC∗(S, U). Equation (4.1) shows that
∑
μ∈F V∗h,μVh,μ

also converges strictly to Pξ. Therefore,
∑
μ∈Ekξ Vh,μ converges strictly to a unitary

Vh ∈ PξMC∗(S, U)Pξ.
Now fix a spanning element SαUlS∗β of Fk(S, U, ξ). For each μ ∈ Ekξ, we obtain

Vh,μSαUlS∗β = δμ,αSμUg′lS∗β for some g′ ∈ Gs( μ)
s( μ),

which implies that

VhSαUlS∗β =
∑
μ∈Ekξ

δμ,αSμUg′lS∗β = SαUg′lS∗β for some g′ ∈ Gs(α)
s(α),

∈ Fk(S, U, ξ).

Hence, VhFk(S, U, ξ) ⊆ Fk(S, U, ξ). �

PROPOSITION 4.4. Fix ξ ∈ E0/∼ and v ∈ ξ. Let {Se, Ug} be a Cuntz–Krieger
(G, E)-family. For h ∈ Gv

v, let Vh be as in Proposition 4.3. Then there is a
homomorphism πV : C∗(Gv

v)→MC∗(S, U) that maps δh to Vh.

PROOF. Let h, k ∈ Gv
v. Routine calculations show that for k ≥ 1 and μ ∈ Ekξ, we have

Vh,μVk,μ = Vhk,μ and V∗h,μ = SμUgs( μ) Uh−1 (SμUgs( μ) )
∗ = Vh−1,μ. This implies that for any

finite F ⊆ Ekξ, ∑
μ∈F

Vh,μ

∑
μ∈F

Vk,μ =
∑
μ∈F

Vhk,μ.

Thus, VhVk =
∑
μ∈Ekξ Vh,μ

∑
μ∈Ekξ Vk,μ = Vhk and

V
∗
h =
∑
μ∈Ekξ

V∗h,μ =
∑
μ∈Ekξ

Vh−1,μ = Vh−1 .

So, the universal property of C∗(Gv
v) gives a homomorphism

πV : C∗(Gv
v)→M(C∗(S, U) such that πV (δh) = Vh. �

PROPOSITION 4.5. Fix ξ ∈ E0/∼. Let {Se, Ug} be a Cuntz–Krieger (G, E)-family. For
μ, β ∈ Ekξ, let eμ ⊗ e∗β denote the rank-one operator on the Hilbert space l2({Ekξ}), and
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let Θμ,β := SμUgs( μ) U
∗
gs( β)

S∗β ∈ C∗(S, U). Then there is an injective homomorphism

θ : K(l2({Ekξ}))→ span{Θμ,β | μ, β ∈ Ekξ}

such that θ(eμ ⊗ e∗β) = Θμ,β.

PROOF. We claim that the elements Θμ,β are matrix units. Let μ, β,α, ρ ∈ Ekξ. Then,

Θμ,βΘα,ρ = (SμUgs( μ) U
∗
gs( β)

S∗β)(SαUgs(α) U
∗
gs(ρ)

S∗ρ)

=

⎧⎪⎪⎨⎪⎪⎩
SμUgs( μ) U

∗
gs(ρ)

S∗ρ if β = α,
0 otherwise,

and (Θμ,β)∗ = SβUgs( β) U
∗
gs( μ)

S∗μ = Θβ,μ. Hence, {Θμ,β | μ, β ∈ Ekξ} is a family of matrix
units. Since

‖SμUgs( μ) U
∗
gs( β)

S∗β‖2 = ‖SβUgs( β) U
∗
gs( μ)

S∗μSμUgs( μ) U
∗
gs( β)

S∗β‖ = ‖Pv‖ = 1,

by Lemma 3.3, these are nonzero matrix units. Hence, by Corollary A.9 of [6], we get
the injective homomorphism θ as claimed. �

PROPOSITION 4.6. Fix ξ ∈ E0/∼ and v ∈ ξ. Let {Se, Ug} be a Cuntz–Krieger
(G, E)-family. Let πV and θ be as in Propositions 4.4 and 4.5, respectively. Then,
there exists a homomorphism

θ ⊗ πV : K(l2({Ekξ})) ⊗ C∗(Gv
v)→ Fk(S, U, ξ)

such that

θ ⊗ πV ((eμ ⊗ e∗β) ⊗ δh) = θ(eμ ⊗ e∗β)πV (δh) = πV (δh)θ(eμ ⊗ e∗β)

for all eμ ⊗ e∗β ∈ K(l2({Ekξ})) and for all δh ∈ C∗(Gv
v).

PROOF. We have θ(eμ ⊗ e∗β) = Θμ,β and πV (δh) = Vh in Fk(ξ) for all eμ ⊗ e∗β ∈
K(l2({Ekξ})) and for all δh ∈ C∗(Gv

v). Then,

Θμ,βVh = SμUgs( μ) U
∗
gs( β)

S∗βVh

= SμUgs( μ) U
∗
gs( β)

S∗β
∑
γ∈Ekξ

SγUgs(γ) UhU∗gs(γ)
S∗γ

=
∑
γ∈Ekξ

SμUgs( μ) U
∗
gs( β)

S∗βSγUgs(γ) UhU∗gs(γ)
S∗γ

= SμUgs( μ) UhU∗gs( β)
S∗β.

A similar calculation gives VhΘμ,β = SμUgs( μ) UhU∗gs( β)
S∗β. Hence, Θμ,βVh = VhΘμ,β.

We claim that

span{Θμ,βVh | μ, β ∈ Ekξ, h ∈ Gv
v} = Fk(S, U, ξ).
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Let μ, β,α, ρ ∈ Ekξ and h1, h2 ∈ Gv
v. Then,

Θμ,βVh1Θα,ρVh2 = Θμ,βΘα,ρVh1 Vh2 = δβ,αΘμ,ρVh1h2

and (Θμ,βVh)∗ = Vh−1Θβ,μ = Θβ,μVh−1 . So, span{Θμ,βVh | μ, β ∈ Ekξ, h ∈ Gv
v} is a

C∗-subalgebra of Fk(S, U, ξ). Moreover, it contains the generators of Fk(S, U, ξ),
so it is all of Fk(S, U, ξ).

Now the universal property of the (maximal) tensor product gives the desired
homomorphism θ ⊗ πV . �

We show next the homomorphism θ ⊗ πV is faithful. To show this, we need to verify
that both θ and πV are injective. From Proposition 4.5, we already know that θ is
injective, so it suffices to show that πV is injective as well.

LEMMA 4.7. Fix ξ ∈ E0/∼ and v ∈ ξ. Let {Se, Ug} be a Cuntz–Krieger (G, E)-family.
Suppose that the homomorphism πU : C∗(Gv

v)→ C∗(S, U) that maps δh to Uh is injec-
tive. Fix k ∈ N and v ∈ E0. Let Vh be as in Proposition 4.3. Then, the homomorphism
π(v,k)

V
: C∗(Gv

v)→ Fk(S, U, ξ) that maps δh to Vh is injective.

PROOF. Fix λ ∈ Ekξ and let Yλ = SλUgs(λ) . Then,

Y∗λVhYλ =
∑
μ∈Ekξ

U∗gs(λ)
S∗λSμUgs( μ) UhU∗gs( μ)

S∗μSλUgs(λ) = Uh.

Define AdYλ : Fk(S, U, ξ)→ C∗(S, U) by AdYλ(a) = Y∗λaYλ. By linearity and conti-
nuity, AdYλ ◦ π

(v,k)
V
= πU . Hence, AdYλ ◦ π

(v,k)
V

is injective, so π(v,k)
V

is also injective. �

Since K(l2({Ekξ})) is simple and nuclear, Proposition 4.5 and Lemma 4.7 show
that if πU is injective on C∗(Gv

v), then the homomorphism of Proposition 4.6 is an
isomorphism. So,

Fk(ξ) � K(l2({Ekξ})) ⊗ C∗(Gv
v). (4.2)

Moreover, we obtain the following corollary. Recall that

Fk = span{sμugs∗β | s( μ) = g · s( β), and | μ| = | β| = k}.

COROLLARY 4.8. Let (G, E) be a self-similar groupoid. Fix ξ ∈ E0/∼ and v ∈ ξ.
Suppose that for each k ∈ N, there exists λ ∈ vEk such that the map g �→ (g · λ)ϕ(g, λ)
is injective. Then,

Fk �
⊕
ξ∈E0/∼

Fk(ξ) �
⊕
ξ∈E0/∼

K(l2({Ekξ})) ⊗ C∗(Gv
v).

PROOF. For μ, β,α, ρ ∈ Ek with s( μ) = g · s( β) ∈ ξ1 and s(α) = h · s(ρ) ∈ ξ2, the
equation of Lemma 3.3 gives

(sμugs∗β)(sαuhs∗ρ) =

⎧⎪⎪⎨⎪⎪⎩
sμuguhs∗ρ if β = α,
0 otherwise.

https://doi.org/10.1017/S0004972722001204 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972722001204


160 I. Yusnitha [11]

Hence, Fk(ξ1)Fk(ξ2) = 0, when ξ1 � ξ2, so Corollary A.11 of [6] combined with
(4.2) gives an isomorphism of

⊕
ξ∈E0/∼ Fk(ξ) onto Fk. Equation (4.2) gives the second

isomorphism. �

COROLLARY 4.9. Let (G, E) be a self-similar groupoid. Then,

C∗(G, E)γ =
⋃

k

Fk =
⋃

k

( ⊕
ξ∈E0/∼

Fk(ξ)
)
.

PROOF. For any k, we claim that Fk ⊂ Fk+1. Fix μ, β ∈ Ek, g ∈ G with s( μ) = g · s( β).
We have

sμugs∗β = sμugus(g)s∗β =
∑

e∈s(g)E1

sμugses∗es∗β =
∑

e∈s(g)E1

sμ(g·e)uϕ(g,e)s∗βe ∈ Fk+1.

Hence, Fk ⊂ Fk+1 for all k. By Corollary 4.1, the claim follows. �

LEMMA 4.10. Let (G, E) be a self-similar groupoid. Suppose that {Te, Wg} is a
(G, E)-family in a C∗-algebra B. Let

πT ,W : C∗(G, E)→ C∗(T , W)

be the homomorphism induced by the universal property. Suppose that for each
v ∈ E0, the homomorphism πv,W : C∗(Gv

v)→ C∗(T , W) such that πv,W(δg) = Wg for all
g is injective. Then, πT ,W is isometric on C∗(G, E)γ.

PROOF. Fix ξ ∈ E0/∼ and v ∈ ξ. Choose elements gw ∈ Gw
v for w ∈ ξ with gv = v.

For h ∈ Gv
v and k ∈ N, let Wh =

∑
μ∈Ekξ TμWgs( μ) WhW∗gs( μ)

T∗μ as in Proposition 4.3.
Lemma 4.7 shows that the homomorphism πW : C∗(Gv

v)→MC∗(T , W) is injective.
Let θ ⊗ πW be as in Proposition 4.6. Since K(l2(Ekξ)) is simple and nuclear,

and since each TμT∗β � 0, the map πT ,W ◦ (θ ⊗ πu) = θ ⊗ πW is injective on each
Fk(ξ). Therefore, it is also injective on Fk =

⊕
ξ∈E0/∼ Fk(ξ). Because every injective

C∗-algebra homomorphism is isometric, πT ,W is isometric on Fk. Hence, πT ,W is
isometric on

⋃
k Fk and hence on UkFk = C∗(G, E)γ. �

5. The gauge-invariant uniqueness theorem

THEOREM 5.1. Let (G, E) be a self-similar groupoid. Suppose that (T , W) is a
(G, E)-family in a C∗-algebra B. The universal property of C∗(G, E) gives a homo-
morphism

πT ,W : C∗(G, E)→ C∗(T , W).

If there is a continuous action η : T→ AutB such that ηz(Te) = zTe and ηz(Wg) = Wg
for all e ∈ E1 and g ∈ G, and if the homomorphism πv,W is injective for each v ∈ E0,
then πT ,W is an isomorphism of C∗(G, E) onto C∗(T , W).

PROOF. Let Φ : C∗(G, E)→ C∗(G, E)γ be the faithful conditional expectation of
Corollary 4.1. Let Ψ : C∗(T , W)→ C∗(T , W)η be the corresponding expectation
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obtained from η. Since ηz ◦ πT ,W and πT ,W ◦ γz agree on generators, they are equal.
Hence, Ψ ◦ πT ,W = πT ,W ◦ Φ. By [8, Lemma 3.14], πT ,W is injective if it is injective on
C∗(G, E)γ, which it is by Lemma 4.10. �
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