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Abstract. In this paper, we consider the convergence rate with respect to Wasserstein
distance in the invariance principle for deterministic non-uniformly hyperbolic systems.
Our results apply to uniformly hyperbolic systems and large classes of non-uniformly
hyperbolic systems including intermittent maps, Viana maps, unimodal maps and others.
Furthermore, as a non-trivial application to the homogenization problem, we investigate
the Wasserstein convergence rate of a fast–slow discrete deterministic system to a
stochastic differential equation.
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1. Introduction
It is well known that deterministic dynamical systems can exhibit some statistical limit
properties if the system is chaotic enough and the observable satisfies some regularity
conditions. In recent years, we have seen growing research interests in statistical limit
properties for deterministic systems such as the law of large numbers (or Birkhoff’s
ergodic theorem), central limit theorem (CLT), weak invariance principle (WIP), almost
sure invariance principle (ASIP), large deviations and so on.

The WIP (also known as the functional CLT) states that a stochastic process constructed
by the sums of random variables with suitable scale converges weakly to Brownian
motion, which is a far-reaching generalization of the CLT. Donsker’s theorem [13] is the
prototypical invariance principle, which deals with independent and identically distributed
random variables. Later, different versions were extensively studied. In particular, many
authors studied the WIP and ASIP for dynamical systems with some hyperbolicity.
Denker and Philipp [11] proved the ASIP for uniformly hyperbolic diffeomorphisms and
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flows. The results are stronger, as the ASIP implies the WIP and CLT. Melbourne and
Nicol [24] investigated the ASIP for non-uniformly expanding maps and non-uniformly
hyperbolic diffeomorphisms that can be modelled by a Young tower [33, 34], and they
also obtained corresponding results for flows. After that, there are many works on the WIP
for non-uniformly hyperbolic systems, which we will not mention here.

To the best of our knowledge, there are only two works on rates of convergence in
the WIP for deterministic dynamical systems in spite of the fact that there are many
results on the convergence itself. In his PhD thesis [1], Antoniou obtained the rate of
convergence in the Lévy–Prokhorov distance for uniformly expanding maps using the
martingale approximation method and applying an estimate for martingale difference
arrays [22] by Kubilyus. Then, following the same method, together with Melbourne, he [2]
further generalized the convergence rates to non-uniformly expanding/hyperbolic systems.
Specifically, they apply a new version of the martingale-coboundary decomposition [21]
by Korepanov et al.

The Wasserstein distance has been used extensively in recent years to metrize weak
convergence. It is stronger and contains more information than the Lévy–Prokhorov
distance since it involves the metric of the underlying space. This distance finds important
applications in the fields of optimal transport, geometry, partial differential equations and
so on; see, e.g., Villani [32] for details. There are some results on Wasserstein convergence
rates for the CLT in the community of probability and statistics; see, e.g., [10, 26, 29].
However, to our knowledge, there are no related results on the invariance principle for
dynamical systems. Motivated by [1, 2], we aim to estimate the Wasserstein convergence
rate in the WIP for non-uniformly hyperbolic systems.

Following the procedure of [2], we first consider a martingale as an intermediary
process. In [2], the authors apply a result of Kubilyus [22] and the key is to estimate the
distance between Wn, defined in (3.1) below, and the intermediary process. In the present
paper, we use the ideas in [2] to estimate the distance between Wn and the intermediary
process. Hence, most of our efforts are to deal with the Wasserstain distance between
the intermediary process and Brownian motion, which is handled by a martingale version
of the Skorokhod embedding theorem. In this way, we obtain the rate of convergence
O(n−1/4+δ) in the Wasserstein distance, where δ depends on the degree of non-uniformity.
When the system that can be modelled by a Young tower has a superpolynomial tail, δ can
be arbitrarily small.

Our results are applicable to uniformly hyperbolic systems and large classes of
non-uniformly hyperbolic systems modelled by a Young tower with superpolynomial and
polynomial tails. In comparison with [2], when the dynamical system has a superpoly-
nominal tail, we can obtain the same convergence rate O(n−1/4+δ) for δ arbitrarily small.
However, in our case, the price to pay is that the dynamical system needs to have stronger
mixing properties. For example, we consider the Pomeau–Manneville intermittent map
(3.2), which has a polynomial tail. By [2], the convergence rate is O(n−1/4+γ /2+δ) in the
Lévy–Prokhorov distance for γ ∈ (0, 1

2 ), but we obtain the Wasserstein convergence rate
O(n−1/4+γ /(4(1−γ ))+δ) only for γ ∈ (0, 1

4 ). See Example 3.6 for details.
As a non-trivial application, we consider the deterministic homogenization in fast–slow

dynamical systems. In [15], Gottwald and Melbourne proved that the slow variable with
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suitable scales converges weakly to the solution of a stochastic differential equation. Then
Antoniou and Melbourne [2] studied the weak convergence rate of the above problem
based on the convergence rate in the WIP with respect to the Lévy–Prokhorov distance.
In this paper, we obtain the Wasserstein convergence rate for the homogenization problem
based on our results. In comparison with [2], for uniformly hyperbolic fast systems, we
obtain the same convergence rate O(ε1/3−δ), where δ can be arbitrarily small and ε is
identified with n−1/2. However, for non-uniformly hyperbolic fast systems, we need to
request stronger mixing properties than in [2]. See Remark 5.2 for details.

The remainder of this paper is organized as follows. In §2, we give the definition and
basic properties of Wasserstein distances. In §3, we review the definitions of non-uniformly
expanding maps and non-uniformly hyperbolic diffeomorphisms and we state the main
results in this paper. In §4, we first introduce the method of martingale approximation and
summarize some required properties and then we prove the main results. In the last section,
we give an application to fast–slow systems.

Throughout the paper, we use 1A to denote the indicator function of measurable set A.
As usual, an = o(bn) means that limn→∞ an/bn = 0, an = O(bn) means that there exists
a constant C > 0 such that |an| ≤ C|bn| for all n ≥ 1 and ‖ · ‖Lp means the Lp-norm. For
simplicity, we write C to denote constants independent of n and C may change from line
to line. We use →w to denote the weak convergence in the sense of probability measures
[5]. We denote by C[0, 1] the space of all continuous functions on [0, 1] equipped with the
supremum distance dC , that is,

dC(x, y) := sup
t∈[0,1]

|x(t)− y(t)|, x, y ∈ C[0, 1].

We use PX to denote the law/distribution of random variable X and use X =d Y to mean
X, Y sharing the same distribution.

2. Preliminaries
In this section, we review the definition of Wasserstein distances and some important
properties about the distance. See, e.g., [8, 28, 32] for details.

Let (X , d) be a Polish space, that is, a complete separable metric space, equipped with
the Borel σ -algebra B. Given two probability measures μ and ν on X , take two random
variables X and Y such that law(X) = μ, law(Y ) = ν. Then the pair (X, Y ) is called a
coupling of μ and ν; the joint distribution of (X, Y ) is also called a coupling of μ and ν.

Definition 2.1. Let q ∈ [1, ∞). Then, for any two probability measures μ and ν on X , the
Wasserstein distance of order q between them is defined by

Wq(μ, ν) :=
(

inf
π∈�(μ,ν)

∫
X
d(x, y)q dπ(x, y)

)1/q

= inf{[Ed(X, Y )q ]1/q ; law(X) = μ, law(Y ) = ν},
where �(μ, ν) is the set of all couplings of μ and ν.

PROPOSITION 2.2. (See [8, Lemma 5.2]) Given two probability measures μ and ν on X ,
the infimum in Definition 2.1 can be attained for some coupling (X, Y ) of μ and ν.
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Those couplings achieving the infimum in Proposition 2.2 are called optimal couplings
of μ and ν. Note also that the distance Wq(μ, ν) can be bounded above by the Lq distance
of any coupling (X, Y ) of μ and ν.

PROPOSITION 2.3. (See [8, Theorem 5.6] or [32, Definition 6.8]) Wq(μn, μ) → 0 if and
only if the following two conditions hold:
(1) μn →w μ; and
(2)

∫
X d(x, x0)

q dμn(x) → ∫
X d(x, x0)

q dμ(x) for some (thus any) x0 ∈ X .
In particular, if d is bounded, then the convergence with respect to Wq is equivalent to the
weak convergence.

PROPOSITION 2.4. Suppose that G : X → X is Lipschitz continuous with constant K.
Then, for any two probability measures μ and ν on X and q ∈ [1, ∞),

Wq(μ ◦ G−1, ν ◦ G−1) ≤ KWq(μ, ν).

Proof. By Proposition 2.2, we can choose an optimal coupling (X, Y ) of μ and ν such
that

[Ed(X, Y )q ]1/q = Wq(μ, ν).

Then

Wq(μ ◦ G−1, ν ◦ G−1) ≤ [Ed(G(X), G(Y ))q ]1/q

≤ K[Ed(X, Y )q ]1/q = KWq(μ, ν).

Remark 2.5. In the following, for simplicity, we use the notation Wp(X, Y ) to mean
Wp(PX, PY ). However, we should keep in mind that (X, Y ) need not be an optimal
coupling of (PX, PY ).

The following result is known; see, e.g., [8, Lemma 5.3] or [28, Corollary 8.3.1] for
details. However, the forms or proofs in these references are different from the following,
which is more appropriate for our purpose. For the convenience of the reader, we also give
a proof.

PROPOSITION 2.6. For any given probability measures μ and ν on X and p ∈ [1, ∞),

π(μ, ν) ≤ Wp(μ, ν)p/(p+1),

where π is the Lévy–Prokhorov distance defined by

π(μ, ν) := inf{ε > 0 : μ(A) ≤ ν(Aε)+ εfor all closed sets A ∈ B}.
Here Aε denotes the ε-neighbourhood of A.

Proof. Let A be a closed set. Then, for any coupling (X, Y ) of μ and ν,

P(X ∈ A) ≤ P(Y ∈ Aε)+ P(d(X, Y ) ≥ ε)

≤ P(Y ∈ Aε)+ Ed(X, Y )p

εp
.
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Note that P(X ∈ A) and P(Y ∈ Aε) depend on X and Y only through their distributions.
So by the arbitrariness of the coupling (X, Y ) of μ and ν,

P(X ∈ A) ≤ P(Y ∈ Aε)+ ε−pWp(μ, ν)p.

Choosing ε = Wp(μ, ν)p/(p+1), we deduce that P(X ∈ A) ≤ P(Y ∈ Aε)+ ε. Hence,

π(μ, ν) ≤ Wp(μ, ν)p/(p+1).

3. Non-uniformly expanding/hyperbolic maps
3.1. Non-uniformly expanding map. Let (M , d) be a bounded metric space with Borel
probability measure ρ. Let T : M → M be a non-singular (that is, ρ(T −1E) = 0 if
and only if ρ(E) = 0 for all Borel measurable sets E) ergodic transformation. Suppose
that Y is a subset of M with positive measure and that {Yj } is an at most countable
measurable partition of Y with ρ(Yj ) > 0. Let R : Y → Z

+ be an integrable function that
is constant on each Yj and let T R(y)(y) ∈ Y for all y ∈ Y . We call R the return time and
F = T R : Y → Y is the corresponding induced map. We do not require that R is the first
return time to Y.

Let ν = (dρ|Y )/(dρ|Y ◦ F) be the inverse Jacobian of F with respect to ρ. We assume
that there are constants λ > 1, K , C > 0 and η ∈ (0, 1] such that, for any x, y in a same
partition element Yj :
(1) F |Yj = T R(Yj ) : Yj → Y is a (measure-theoretic) bijection for each j;
(2) d(Fx, Fy) ≥ λd(x, y);
(3) d(T lx, T ly) ≤ Cd(Fx, Fy) for all 0 ≤ l < R(Yj ); and
(4) | log ν(x)− log ν(y)| ≤ Kd(Fx, Fy)η.
Then, such a dynamical system T : M → M is a non-uniformly expanding map. If
R ∈ Lp(Y ) for some p ≥ 1, then we call T : M → M a non-uniformly expanding map of
order p. It is standard that there is a unique absolutely continuous F-invariant probability
measure μY on Y with respect to the measure ρ.

We define the Young tower as in [33, 34]. Let � := {(x, l) : x ∈ Y , l = 0, 1, . . . ,
R(x)− 1}, and define an extension map f : � → � by

f (x, l) :=
{
(x, l + 1) if l + 1 < R(x),

(Fx, 0) if l + 1 = R(x).

We have a projection map π� : � → M given by π�(x, l) := T lx and it is a semicon-
jugacy satisfying T ◦ π� = π� ◦ f . Then we obtain an ergodic f -invariant probability
measure μ� on � given by μ� := μY ×m/

∫
Y
R dμY , where m denotes the counting

measure on N. Hence, there exists an extension space (�, M, μ�), where M is the
underlying σ -algebra on (�, μ�). Further, the push-forward measure μ = (π�)∗μ� is
an absolutely continuous T-invariant probability measure.

Given a Hölder observable v : M → R with exponent η ∈ (0, 1], define

|v|∞ := sup
x∈M

|v(x)|, |v|η := sup
x 
=y

|v(x)− v(y)|
d(x, y)η

.
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Let Cη(M) denote the Banach space of Hölder observables with norm ‖v‖η = |v|∞ +
|v|η < ∞. Consider the continuous processes Wn defined by

Wn(t) := 1√
n

[ [nt]−1∑
j=0

v ◦ T j + (nt − [nt])v ◦ T [nt]
]

for all t ∈ [0, 1], (3.1)

where v ∈ Cη(M) with
∫
M
v dμ = 0. Let vn := ∑n−1

i=0 v ◦ T i denote the Birkhoff sum.
The following lemma is a summary of known results; see [16, 21, 24, 25] for details.

LEMMA 3.1. Suppose that T : M → M is a non-uniformly expanding map of order p ≥ 2.
Let v : M → R be a Hölder observable with

∫
M
v dμ = 0. Then the following statements

hold.
(a) The limit σ 2 = limn→∞

∫
M
(n−1/2vn)

2 dμ exists.
(b) n−1/2vn →w G as n → ∞, where G is normal with mean zero and variance σ 2.
(c) Wn →w W in C[0, 1] as n → ∞, where W is a Brownian motion with mean zero

and variance σ 2.
(d) If μY (R > n) = O(n−(β+1)), β > 1, then

lim
n→∞

∫
M

|n−1/2vn|q dμ = E|G|q for all q ∈ [0, 2β).

(e) ‖maxk≤n |∑k−1
i=0 v ◦ T i |‖L2(p−1) ≤ C‖v‖ηn1/2 for all n ≥ 1.

Proof. Items (a)–(c) are well known; see, e.g., [16, 21, 24]. Item (d) can be found in [25,
Theorem 3.5]. For item (e), see [21, Corollary 2.10] for details.

Remark 3.2. In the case of (d), Melbourne and Török [25] gave examples to illustrate that
the qth moments diverge for q > 2β. Hence, the result on the order of convergent moments
is essentially optimal.

THEOREM 3.3. Let T : M → M be a non-uniformly expanding map of order p > 2. Sup-
pose that v : M → R is a Hölder observable with

∫
M
v dμ = 0. Then Wq(Wn, W) → 0

in C[0, 1] for all 1 ≤ q < 2(p − 1).

Proof. It follows from Lemma 3.1(e) thatWn has a finite moment of order 2(p − 1). This,
together with the fact that Wn →w W as n → ∞ in Lemma 3.1(c), implies that, for each
q < 2(p − 1),

lim
n→∞ E sup

t∈[0,1]
|Wn(t)|q = E sup

t∈[0,1]
|W(t)|q

by [9, Theorem 4.5.2]. On the other hand, by the fact that Wn : M → C[0, 1] and the
definition of push-forward measures,∫

C[0,1]
dC(x, 0)q dμ ◦W−1

n (x) =
∫
M

sup
t∈[0,1]

|Wn(t , ω)|q dμ(ω) = E sup
t∈[0,1]

|Wn(t)|q .
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Similarly,

∫
C[0,1]

dC(x, 0)q dμ ◦W−1(x) = E sup
t∈[0,1]

|W(t)|q .

Hence,

lim
n→∞

∫
C[0,1]

dC(x, 0)q dμ ◦W−1
n (x) =

∫
C[0,1]

dC(x, 0)q dμ ◦W−1(x).

By taking μn = μ ◦W−1
n , μ = μ ◦W−1 and x0 = 0 in Proposition 2.3 and the fact that

Wn →w W in Lemma 3.1(c), the result follows.

THEOREM 3.4. Let T : M → M be a non-uniformly expanding map of order p ≥ 4 and
suppose that v : M → R is a Hölder observable with

∫
M
v dμ = 0. Then there exists a

constant C > 0 such that Wp/2(Wn, W) ≤ Cn−1/4+1/(4(p−1)) for all n ≥ 1.

We postpone the proof of Theorem 3.4 to §4.

Remark 3.5.
(1) Since Wq ≤ Wp for q ≤ p, Theorem 3.4 provides an estimate for Wq(Wn, W) for

all 1 ≤ q ≤ p/2, p ≥ 4.
(2) Our result implies a convergence rate O(n−1/4+δ′) with respect to the Lévy–

Prokhorov distance, where δ′ depends only on p and δ′ can be arbitrarily small as
p → ∞. Indeed, for two given probability measures μ and ν, we have π(μ, ν) ≤
Wp(μ, ν)p/(p+1); see Proposition 2.6.

(3) The convergence rate in Theorem 3.4 may not be optimal. However, it is well
known that one cannot get a better result than O(n−1/4) by means of the Skorokhod
embedding theorem; see [6, 30] for details.

Example 3.6. (Pomeau–Manneville intermittent maps) A typical example of non-uniformly
expanding systems with polynomial tails is the Pomeau–Manneville intermittent map [23,
27]. Consider the map T : [0, 1] → [0, 1] given by

T (x) =
{
x(1 + 2γ xγ ) if x ∈ [

0, 1
2

)
,

2x − 1 if x ∈ [ 1
2 , 1

]
,

(3.2)

where γ ≥ 0 is a parameter. When γ = 0, this is T x = 2x mod 1, which is a uniformly
expanding system. It is well known that, for each 0 ≤ γ < 1, there is a unique absolutely
continuous invariant probability measure μ. By [34], for 0 < γ < 1, the map can be
modelled by a Young tower with tails O(n−1/γ ). Further for γ ∈ [0, 1

2 ), the CLT and
WIP hold for Hölder continuous observables. We restrict the parameter γ ∈ (0, 1

2 ); then
the map is a non-uniformly expanding system of order p for any p < 1/γ . By Theorem
3.4, we obtain Wp/2(Wn, W) ≤ Cn−1/4+γ /(4(1−γ ))+δ for all γ ∈ (0, 1

4 ).
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Example 3.7. (Viana maps) Consider the Viana maps [31] Tα : S1 × R → S1 × R

Tα(ω, x) = (lω mod 1, a0 + α sin 2πω − x2).

Here, a0 ∈ (1, 2) is chosen in such a way that x = 0 is a preperiodic point for the map
g(x) = a0 − x2, α is fixed to be sufficiently small and l ∈ N with l ≥ 16. The results in
[17] show that any T close to the map Tα in the C3 topology can be modelled by a Young
tower with stretched exponential tails, which is a non-uniformly expanding map of order p
for all p ≥ 1. Hence by Theorem 3.4, for all p ≥ 4, Wp/2(Wn, W) ≤ Cn−1/4+1/(4(p−1)).

3.2. Non-uniformly hyperbolic diffeomorphism. In this subsection, we introduce the
main results for non-uniformly hyperbolic systems in the sense of Young [33, 34]. In this
case, we follow the argument in [21, 24].

Let T : M → M be a diffeomorphism (possibly with singularities†) defined on a
Riemannian manifold (M , d). As in [24], consider a subset Y ⊂ M which has a hyperbolic
product structure: that is, there exist a continuous family of unstable disks {Wu} and a
continuous family of stable disks {Ws} such that:
(1) dimWs + dimWu = dimM;
(2) each Wu-disk is transversal to each Ws-disk in a single point; and
(3) Y = (∪Wu) ∩ (∪Ws).
For x ∈ Y , Ws(x) denotes the element in {Ws} containing x.

Furthermore, there is a measurable partition {Yj } of Y such that each Yj is a union
of elements in {Ws} and a Wu such that each element of {Ws} intersects Wu in one
point. Defining an integrable return time R : Y → Z

+ that is constant on each partition
Yj , we can get the corresponding induced map F = T R : Y → Y . The separation time
s(x, y) is the greatest integer n ≥ 0 such that Fnx, Fny lie in the same partition
element of Y.

We assume that there exist C > 0 and γ ∈ (0, 1) such that:
(1) F(Ws(x)) ⊂ Ws(Fx) for all x ∈ Y ;
(2) d(T n(x), T n(y)) ≤ Cγ n for all x ∈ Y , y ∈ Ws(x) and n ≥ 0; and
(3) d(T n(x), T n(y)) ≤ Cγ s(x,y) for x, y ∈ Wu and 0 ≤ n < R.

As for the non-uniformly expanding map, we can define a Young tower. Let
� := {(x, l) : x ∈ Y , l = 0, 1, . . . , R(x)− 1} and define an extension map f : � → �,

f (x, l) :=
{
(x, l + 1) if l + 1 < R(x),

(Fx, 0) if l + 1 = R(x).

We have a projection map π� : � → M given by π�(x, l) := T lx and it is a semiconju-
gacy satisfying T ◦ π� = π� ◦ f .

Let Ȳ = Y/ ∼, where y ∼ y′ if y′ ∈ Ws(y); denote by π̄ : Y → Ȳ the natural projec-
tion. We can also obtain a partition {Ȳj } of Ȳ , a well-defined return time R̄ : Ȳ → Z

+

†The meaning of singularity here is in the sense of Young [33], which is different from that of non-uniformly
expanding maps at the beginning of §3.1.
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and a corresponding induced map F̄ : Ȳ → Ȳ , as in the case of Y. In addition, we assume
that:
(1) F̄ |Ȳj = T̄ R̄(Ȳj ) : Ȳj → Ȳ is a bijection for each j; and

(2) ν0 = dρ̄/(dρ̄ ◦ F̄ ) satisfies | log ν0(y)− log ν0(y
′)| ≤ Kγ s(y,y′), for all y, y′ ∈ Ȳj ,

where ρ̄ = π̄∗ρ with ρ being the Riemannian measure.
Let f̄ : �̄ → �̄ denote the corresponding extension map. The projection π̄ : Y → Ȳ

extends to the projection π̄ : � → �̄; here we use the same notation π̄ , which should
not cause confusion. There exist an f̄ -invariant probability measure μ̄ on �̄ and an
f -invariant probability measure μ� on �, such that π̄ : � → �̄ and π� : � → M are
measure preserving.

THEOREM 3.8. Let T : M → M be a non-uniformly hyperbolic transformation of
order p > 2. Suppose that v : M → R is a Hölder observable with

∫
M
v dμ = 0. Then

Wq(Wn, W) → 0 in C[0, 1] for all 1 ≤ q < 2(p − 1).

Proof. By [21, Corollary 5.5], Wn has a finite moment of order 2(p − 1). The remaining
proof is similar to that of Theorem 3.3.

THEOREM 3.9. Let T : M → M be a non-uniformly hyperbolic transformation of order
p ≥ 4 and suppose that v : M → R is a Hölder observable with

∫
M
v dμ = 0. Then there

exists a constant C > 0 such that Wp/2(Wn, W) ≤ Cn−1/4+1/(4(p−1)) for all n ≥ 1.

We postpone the proof of Theorem 3.9 to the next section.

Example 3.10. (Non-uniformly expanding/hyperbolic systems with exponential tails) In
this case, the return time R ∈ Lp for all p. Hence, for all p ≥ 4, Wp/2(Wn, W) ≤
Cn−1/4+1/(4(p−1)). Specific examples are:
• some partially hyperbolic systems with a mostly contracting direction [7, 12];
• unimodal maps and multimodal maps as in [20] for a fixed system; and
• Hénon-type attractors [19]. Let Ta,b : R2 → R

2 be defined by Ta,b(x, y) =
(1 − ax2 + y, bx) for a < 2, b > 0, where b is small enough depending on a. It
follows from [3, 4] that T admits an Sinai–Ruelle–Bowen (SRB) measure and T can
be modelled by a Young tower with exponential tails.

4. Proof of Theorems 3.4 and 3.9
4.1. Martingale approximation. The martingale approximation method [14] is one of
the main methods for studying statistical limit properties. In [21], Korepanov et al
obtained a new version of martingale-coboundary decomposition, which is applicable to
non-uniformly hyperbolic systems. In this subsection, we recall some required properties
in [21].

PROPOSITION 4.1. Let T : M → M be a non-uniformly expanding map of order p ≥ 1
and suppose that v : M → R is a Hölder observable with

∫
M
v dμ = 0. Then there is

an extension f : � → � of T such that, for any v ∈ Cη(M), there exist m ∈ Lp(�) and
χ ∈ Lp−1(�) with

https://doi.org/10.1017/etds.2023.40 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2023.40


Wasserstein convergence rates in the invariance principle 1181

v ◦ π� = m+ χ ◦ f − χ , E(m|f−1M) = 0.

Moreover, there is a constant C > 0 such that, for all v ∈ Cη(M),
‖m‖Lp ≤ C‖v‖η, ‖χ‖Lp−1 ≤ C‖v‖η

and, for n ≥ 1, ∥∥∥ max
0≤j≤n

|χ ◦ f j − χ |
∥∥∥
Lp

≤ C‖v‖ηn1/p.

Proof. The proposition is a summary of Propositions 2.4, 2.5 and 2.7 in [21].

PROPOSITION 4.2. Fix n ≥ 1. Then {m ◦ f n−i , f−(n−i)M; 1 ≤ i ≤ n} is a martingale
difference sequence.

Proof. See, for example [21, Proposition 2.9].

PROPOSITION 4.3. If p ≥ 2, then ‖maxk≤n |∑k
i=1 m ◦ f n−i |‖Lp ≤ C‖m‖Lpn1/2 for all

n ≥ 1.

Proof. See the proof in [21, Corollary 2.10].

4.2. Proof of Theorem 3.4. Define

ζn,j := 1√
nσ
m ◦ f n−j , Fn,j := f−(n−j)M for 1 ≤ j ≤ n.

For 1 ≤ l ≤ n, define the conditional variance

Vn,l :=
l∑

j=1

E(ζ 2
n,j |Fn,j−1).

We set Vn,0 = 0.
Define the stochastic process Xn with sample paths in C[0, 1] by

Xn(t) :=
k∑
j=1

ζn,j + tVn,n − Vn,k

Vn,k+1 − Vn,k
ζn,k+1 if Vn,k ≤ tVn,n < Vn,k+1. (4.1)

Step 1. Estimate of the Wasserstein distance between Xn and B. Let B be a standard
Brownian motion, that is, B =d 1/σW .

LEMMA 4.4. Let p ≥ 4. Then, for any δ > 0, there exists a constant C > 0 such that
Wp/2(Xn, B) ≤ Cn−(1/4−δ) for all n ≥ 1.

Proof. (1) Fix n > 0. It suffices to deal with a single row of the array {ζn,j , Fn,j ,
1 ≤ j ≤ n}. By the Skorokhod embedding theorem (see Theorem A.1), there exists a
probability space (depending on n) supporting a standard Brownian motion, still denoted
by B, which should not cause confusion, and a sequence of non-negative random variables
τ1, . . . , τn such that, for Ti = ∑i

j=1 τj , we have
∑i
j=1 ζn,j = B(Ti) with 1 ≤ i ≤ n.
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In particular, we set T0 = 0. Then, on this probability space and for this Brownian motion,
we aim to show that, for any δ > 0, there exists a constant C > 0 such that∥∥∥ sup

t∈[0,1]
|Xn(t)− B(t)|

∥∥∥
Lp/2

≤ Cn−(1/4−δ) for all n ≥ 1.

Thus, the result follows from Definition 2.1.
For ease of exposition when there is no ambiguity, we will write ζj and Vk instead of

ζn,j and Vn,k , respectively. Then, by (4.1),

Xn(t) = B(Tk)+
(
tVn − Vk

Vk+1 − Vk

)
(B(Tk+1)− B(Tk)) if Vk ≤ tVn < Vk+1. (4.2)

(2) Note that Theorem A.1(3) implies that

Tk − Vk =
k∑
i=1

(τi − E(τi |Bi−1)) if 1 ≤ k ≤ n,

where Bi is the σ -field generated by all events up to Ti for 1 ≤ i ≤ n. Therefore,
{Tk − Vk , Bk , 1 ≤ k ≤ n} is a martingale. By the Burkholder inequality and the condi-
tional Jensen inequality, for all p ≥ 4,∥∥∥ max

1≤k≤n
|Tk − Vk|

∥∥∥
Lp/2

≤ Cn1/2 max
1≤k≤n

‖τk − E(τk|Bk−1)‖Lp/2
≤ Cn1/2 max

1≤k≤n
‖τk‖Lp/2 .

It follows from Theorem A.1(4) that E(τp/2k ) ≤ 2�(p/2 + 1)E(ζpk ) for each k. So∥∥∥ max
1≤k≤n

|Tk − Vk|
∥∥∥
Lp/2

≤ Cn1/2 max
1≤k≤n

‖ζk‖2
Lp = Cn−1/2‖m‖2

Lp . (4.3)

On the other hand, it follows from [2, Proposition 4.1] that

‖Vn − 1‖Lp/2 ≤ Cn−1/2‖v‖2
η. (4.4)

(3) Based on the above estimates, by Chebyshev’s inequality,

μ(|Tn − 1| > 1) ≤ E|Tn − 1|p/2 ≤ 2p/2−1{E|Tn − Vn|p/2 + E|Vn − 1|p/2}
≤ Cn−p/4(‖m‖pLp + ‖v‖pη ).

(4.5)

According to the Hölder inequality, (4.5) and Proposition 4.3, we deduce that

I : =
∥∥∥1{|Tn−1|>1} sup

t∈[0,1]
|Xn(t)− B(t)|

∥∥∥
Lp/2

≤ (μ(|Tn − 1| > 1))1/p
∥∥∥ sup
t∈[0,1]

|Xn(t)− B(t)|
∥∥∥
Lp

≤ (μ(|Tn − 1| > 1))1/p
(∥∥∥ sup

t∈[0,1]
|Xn(t)|

∥∥∥
Lp

+
∥∥∥ sup
t∈[0,1]

|B(t)|
∥∥∥
Lp

)
≤ Cn−1/4.
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(4) We now estimate |Xn − B| on the set {|Tn − 1| ≤ 1}: that is,∥∥∥1{|Tn−1|≤1} sup
t∈[0,1]

|Xn(t)− B(t)|
∥∥∥
Lp/2

≤
∥∥∥1{|Tn−1|≤1} sup

t∈[0,1]
|Xn(t)− B(Tk)|

∥∥∥
Lp/2

+
∥∥∥1{|Tn−1|≤1} sup

t∈[0,1]
|B(Tk)− B(t)|

∥∥∥
Lp/2

=: I1 + I2.

For I1, it follows from (4.2) that

sup
t∈[0,1]

|Xn(t)− B(Tk)| ≤ max
0≤k≤n−1

|B(Tk+1)− B(Tk)| = max
0≤k≤n−1

|ζk+1|.

By Proposition A.2,

I1 =
∥∥∥1{|Tn−1|≤1} sup

t∈[0,1]
|Xn(t)− B(Tk)|

∥∥∥
Lp

≤
∥∥∥1{|Tn−1|≤1} max

0≤k≤n−1
|ζk+1|

∥∥∥
Lp

≤
∥∥∥ max

0≤k≤n−1
|ζk+1|

∥∥∥
Lp

≤ Cn−(1/2−1/p).

(5) We now consider I2 on the set {|Tn − 1| ≤ 1}. Take p1 > p. Then it is well known
that

E|B(t)− B(s)|p1 ≤ c|t − s|p1/2 for all s, t ∈ [0, 2]. (4.6)

So, it follows from Kolmogorov’s continuity theorem that, for each 0 < γ < 1/2 −
1/(p1), the process B(·) admits a version, still denoted by B, such that, for almost all
ω, the sample path t �→ B(t , ω) is Hölder continuous with exponent γ and∥∥∥ sup

s,t∈[0,2]
s 
=t

|B(s)− B(t)|
|s − t |γ

∥∥∥
Lp1

< ∞.

In particular, ∥∥∥ sup
s,t∈[0,2]
s 
=t

|B(s)− B(t)|
|s − t |γ

∥∥∥
Lp
< ∞. (4.7)

As for |Tk − t |,
sup
t∈[0,1]

|Tk − t | ≤ max
0≤k≤n−1

sup
t∈[Vk/Vn,Vk+1/Vn)

|Tk − t |

≤ max
0≤k≤n−1

∣∣∣∣Tk − Vk

Vn

∣∣∣∣ + max
0≤k≤n−1

sup
t∈[Vk/Vn,Vk+1/Vn)

∣∣∣∣VkVn − t

∣∣∣∣
≤ max

0≤k≤n

∣∣∣∣Tk − Vk

Vn

∣∣∣∣ + max
0≤k≤n−1

∣∣∣∣Vk+1

Vn
− Vk

Vn

∣∣∣∣
≤ max

0≤k≤n
|Tk − Vk| + max

0≤k≤n

∣∣∣∣Vk − Vk

Vn

∣∣∣∣ + max
0≤k≤n−1

∣∣∣∣Vk+1

Vn
− Vk+1

∣∣∣∣

https://doi.org/10.1017/etds.2023.40 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2023.40


1184 Z. Liu and Z. Wang

+ max
0≤k≤n−1

|Vk+1 − Vk| + max
0≤k≤n−1

∣∣∣∣Vk − Vk

Vn

∣∣∣∣
≤ max

0≤k≤n
|Tk − Vk| + 3 max

0≤k≤n

∣∣∣∣Vk − Vk

Vn

∣∣∣∣ + max
0≤k≤n−1

|Vk+1 − Vk|.

Note that T0 = V0 = 0 and γ ≤ 1, so

sup
t∈[0,1]

|Tk − t |γ ≤ max
1≤k≤n

|Tk − Vk|γ + 3γ max
1≤k≤n

∣∣∣∣Vk − Vk

Vn

∣∣∣∣
γ

+ max
0≤k≤n−1

|Vk+1 − Vk|γ .

Hence,∥∥∥ sup
t∈[0,1]

|Tk − t |γ
∥∥∥
Lp

≤
∥∥∥ max

1≤k≤n
|Tk − Vk|

∥∥∥γ
Lγp

+ 3γ
∥∥∥∥ max

1≤k≤n

∣∣∣∣Vk − Vk

Vn

∣∣∣∣
∥∥∥∥
γ

Lγp
+

∥∥∥ max
0≤k≤n−1

|Vk+1 − Vk|
∥∥∥γ
Lγp

.

(4.8)

For the first term, since γ < 1
2 , it follows from (4.3) that∥∥∥ max
1≤k≤n

|Tk − Vk|
∥∥∥γ
Lγp

≤ Cn−γ /2. (4.9)

For the second term, since |Vk − Vk/Vn| = Vk|1 − 1/Vn|,

max
1≤k≤n

∣∣∣∣Vk − Vk

Vn

∣∣∣∣ = Vn

∣∣∣∣1 − 1
Vn

∣∣∣∣ = |Vn − 1|.

Hence, by (4.4), ∥∥∥∥ max
1≤k≤n

∣∣∣∣Vk − Vk

Vn

∣∣∣∣
∥∥∥∥
γ

Lγp
= ‖Vn − 1‖γLγp ≤ Cn−γ /2. (4.10)

As for the last term, note that |Vk − Vk−1| = E(ζ 2
k |Fk−1) = E((1/nσ 2)m2|f−1M) ◦

f n−k for all 1 ≤ k ≤ n. So,

∥∥∥ max
0≤k≤n−1

|Vk+1 − Vk|
∥∥∥γ
Lγp

=
∥∥∥∥ max

1≤k≤n

∣∣∣∣E
(
m2

nσ 2 |f−1M
)

◦ f n−k
∣∣∣∣
∥∥∥∥
γ

Lγp
≤ Cn−(γ−2γ /p),

(4.11)

where the inequality follows from Proposition A.2.
Based on the above estimates (4.9)–(4.11),∥∥∥ sup

t∈[0,1]
|Tk − t |γ

∥∥∥
Lp

≤ C(n−γ /2 + n−(γ−2γ /p)) ≤ Cn−γ /2, (4.12)

where the last inequality holds since γ < 1
2 , 1 − 2/p ≥ 1

2 .
On the set {|Tn − 1| ≤ 1}, note that

sup
t∈[0,1]

|B(Tk)− B(t)| ≤
[

sup
s,t∈[0,2]
s 
=t

|B(s)− B(t)|
|s − t |γ

][
sup
t∈[0,1]

|Tk − t |γ
]
.
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Since 0 < γ < 1
2 − 1/(p1), by the Hölder inequality, (4.7) and (4.12),

I2 =
∥∥∥1{|Tn−1|≤1} sup

t∈[0,1]
|B(Tk)− B(t)|

∥∥∥
Lp/2

≤
∥∥∥∥
[

sup
s,t∈[0,2]
s 
=t

|B(s)− B(t)|
|s − t |γ

][
sup
t∈[0,1]

|Tk − t |γ
]∥∥∥∥
Lp/2

≤
∥∥∥∥ sup
s,t∈[0,2]
s 
=t

|B(s)− B(t)|
|s − t |γ

∥∥∥∥
Lp

∥∥∥ sup
t∈[0,1]

|Tk − t |γ
∥∥∥
Lp

≤ Cn−γ /2.

Note that p1 can be taken arbitrarily large in (4.6), which implies that γ can be chosen
sufficiently close to 1

2 . So, for any δ > 0, we can choose p1 large enough such that I2 ≤
Cn−1/4+δ . The result now follows from the above estimates for I , I1 and I2.

Step 2. Estimate of the convergence rate between Wn and Xn. The proof is almost
identical to that in [2, §4.1], so we only sketch it here.

PROPOSITION 4.5. [2, Proposition 4.6] For n ≥ 1, define

Zn := max
0≤i,l≤√

n

∣∣∣∣
i
√
n+l−1∑
j=i√n

v ◦ T j
∣∣∣∣.

Then:
(a) |∑b−1

j=a v ◦ T j | ≤ Zn((b − a)(n1/2 − 1)−1 + 3) for all 0 ≤ a < b ≤ n; and
(b) ‖Zn‖L2(p−1) ≤ C‖v‖ηn1/4+1/(4(p−1)) for all n ≥ 1.

Define a continuous transformation g : C[0, 1] → C[0, 1] by g(u)(t) := u(1)−
u(1 − t).

LEMMA 4.6. Let p > 2. Then there exists a constant C > 0 such that Wp−1(g ◦Wn ◦
π�, σXn) ≤ Cn−1/4+1/(4(p−1)) for all n ≥ 1, recalling that π� : � → M is the projection
map.

Proof. Since Wp−1(g ◦Wn ◦ π�, σXn) ≤ ‖supt∈[0,1] |g ◦Wn(t) ◦ π� − σXn(t)|‖Lp−1 ,
following the proof of [2, Lemma 4.7], we can obtain the conclusion.

Proof of Theorem 3.4. Note that g ◦ g = Id and g is Lipschitz with Lipg ≤ 2. It follows
from Proposition 2.4 that

Wp/2(Wn, W) = Wp/2(g(g ◦Wn), g(g ◦W)) ≤ 2Wp/2(g ◦Wn, g ◦W).

Since π� is a semiconjugacy, Wn ◦ π� =d Wn. Also, g(W) =d W =d σB. By Lemmas
4.4 and 4.6, for p ≥ 4,
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Wp/2(g ◦Wn, g ◦W) = Wp/2(g ◦Wn ◦ π�, W)

≤ Wp/2(g ◦Wn ◦ π�, σXn)+ Wp/2(σXn, σB)

≤ Cn−1/4+1/(4(p−1)) + Cn−1/4+δ ≤ Cn−1/4+1/(4(p−1)),

where the last inequality holds because δ > 0 can be taken arbitrarily small.

4.3. Proof of Theorem 3.9. The proof is based on the following Lemma 4.7 which is
presented in detail in [21, §5].

LEMMA 4.7. Let p ≥ 1, η ∈ (0, 1]. Suppose that T : M → M is a non-uniformly hyper-
bolic transformation with the return time R ∈ Lp and that v : M → R is a Hölder
observable. Then:
(1) f̄ : �̄ → �̄ is a non-uniformly expanding map of order p; and
(2) there exists θ ∈ (0, 1) such that, for all v ∈ Cη(M), there exist φ ∈ Cθ(�̄) and

ψ ∈ L∞(�) such that v ◦ π� = φ ◦ π̄ + ψ − ψ ◦ f . Moreover, |ψ |∞ ≤ C‖v‖η,
‖φ‖θ ≤ C‖v‖η.

Proof of Theorem 3.9. As the definition ofWn in (3.1), defineWn(t) := (1/√n)∑nt−1
j=0 φ ◦

f̄ j for t = j/n, 1 ≤ j ≤ n, and linearly interpolate to obtain the process Wn ∈ C[0, 1],
where φ is from Lemma 4.7. By Lemma 4.7, we have |Wn(t) ◦ π̄ −Wn ◦ π�|∞ ≤
Cn−1/2|ψ |∞ by simple computations. Since π̄ , π� are semiconjugacies, Wp/2(Wn,Wn)=
Wp/2(Wn ◦ π̄ , Wn ◦ π�) ≤ Cn−1/2. It follows from Lemma 4.7 that f̄ is a non-uniformly
expanding map of order p and that φ is a Hölder continuous observable with∫
�̄
φ dμ̄ = 0. By Theorem 3.4, for p ≥ 4, Wp/2(Wn, W) ≤ Cn−1/4+1/(4(p−1)). Hence,

Wp/2(Wn, W) ≤ Wp/2(Wn, Wn)+ Wp/2(Wn, W) ≤ Cn−1/4+1/(4(p−1)).

5. Application to homogenization problem
We consider fast–slow systems of the discrete form

xε(n+ 1) = xε(n)+ ε2g(xε(n), y(n), ε)+ εh(xε(n))v(y(n)), xε(0) = ξ , (5.1)

where g : R ×M × R
+ → R, h : R → R satisfy some regularity conditions and

v ∈ Cη(M) with
∫
M
v dμ = 0. The fast variables y(n) ∈ M are generated by iterating a

non-uniformly expanding map: that is y(n+ 1) = Ty(n), y(0) = y0. Here, T : M → M

satisfies the setting in §3.1 The initial condition ξ ∈ R is fixed and y0 ∈ M is chosen
randomly, which is the reason for the emergence of randomness from deterministic
dynamical systems.

We have the following regularity conditions.
(1) g : R ×M × R

+ → R is bounded.
(2) g(x, y, 0) is Lipschitz in x uniformly in y with Lipchitz constant L; that is,

|g(x1, y, 0)− g(x2, y, 0)| ≤ L|x1 − x2| for all x1, x2 ∈ R, y ∈ M .
(3) supx∈R supy∈M |g(x, y, ε)− g(x, y, 0)| ≤ Cε1/3.
(4) g(x, y, 0) is Hölder continuous in y uniformly in x: that is, supx∈R |g(x, ·, 0)|η < ∞.
(5) h is exact; that is, h = 1/ψ ′, where ψ is a monotone differentiable function and ψ ′

denotes the derived function. Moreover, h, h′, h′′, 1/h are bounded.
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Let x̂ε(t) = xε(tε
−2) for t = 0, ε2, 2ε2, . . . , and linearly interpolate to obtain x̂ε ∈

C[0, 1]. Then it follows from [15, Theorem 1.3] that x̂ε →w X in C[0, 1], where X is
the solution to the Stratonovich stochastic differential equation (SDE)

dX =
{
ḡ(X)− 1

2
h(X)h′(X)

∫
M

v2 dμ
}

dt + h(X) ◦ dW , X(0) = ξ . (5.2)

Here, W is a Brownian motion with mean zero and variance σ 2 and ḡ(x) =∫
M
g(x, y, 0) dμ(y).

Define Wε(t) = ε
∑tε−2−1
j=0 v(y(j)) for t = 0, ε2, 2ε2, . . . , and linearly interpolate to

obtain Wε ∈ C[0, 1]. Comparing Wε with Wn, we can see that ε is identified with n−1/2.
Hence, it follows from Theorem 3.4 that Wp/2(Wε , W) = O(ε(p−2)/2(p−1)).

THEOREM 5.1. Let T : M → M be a non-uniformly expanding map of order p ≥ 4.
Suppose that the regularity conditions hold. Then there exists a constant C > 0 such that

Wp/2(x̂ε , X) ≤
{
Cε(p−2)/2p if 4 ≤ p ≤ 6,

Cε1/3(− log ε)1/4 if p > 6.

Proof. The proof follows from the argument in [2]. First, suppose that h(x) ≡ 1 and let
N = [ε−4/3]. By [2, Proposition 5.4], we can write

x̂ε(t) = ξ +Wε(t)+Dε(t)+ Eε(t)+
∫ t

0
ḡ(x̂ε(s)) ds,

where

Dε(t) = ε2/3
[tε−2/3]−1∑

n=0

Jε(n), Jε(n) = ε4/3
(n+1)N−1∑
j=nN

g̃(xε(nN), y(j)),

g̃(x, y) = g(x, y, 0)− ḡ(x)

and ∥∥∥ sup
t∈[0,1]

|Eε(t)|
∥∥∥
L2(p−1)

≤ Cε1/3. (5.3)

Let Bε(Rε) = {supt∈[0,1] |x̂ε(t)| ≤ Rε}, where Rε = (−32σ 2 log ε)1/2. By [2, Lemma
5.5],

μ
(

sup
t∈[0,1]

|x̂ε(t)| ≥ Rε

)
≤ Cε(p−2)/2p.

Since

μ
(

sup
t∈[0,1]

|Dε1Bcε (Rε)(t)| > 0
)

≤ μ
(

sup
t∈[0,1]

|x̂ε(t)| ≥ Rε

)
≤ Cε(p−2)/2p

and Dε is bounded, we get∥∥∥ sup
t∈[0,1]

|Dε1Bcε (Rε)(t)|
∥∥∥
L∞ ≤ Cε(p−2)/2p.
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Moreover, it follows from [2, Lemma 5.6] that ‖supt∈[0,1] |Dε1Bε(Rε)(t)|‖L2(p−1) ≤
Cε1/3(− log ε)1/4. Hence,∥∥∥ sup

t∈[0,1]
|Dε(t)|

∥∥∥
L2(p−1)

= O(ε(p−2)/2p + ε1/3(− log ε)1/4). (5.4)

Next, define a continuous map G : C[0, 1] → C[0, 1] as G(u) = v, where v is the
unique solution to v(t) = ξ + u(t)+ ∫ t

0 ḡ(v(s)) ds. Since ḡ is Lipschitz, according to the
existence and uniqueness of solutions to ordinary differential equations, G is well defined.
By Gronwall’s inequality, G is Lipschitz with LipG ≤ eLipḡ .

Since X = G(W) and x̂ε = G(Wε +Dε + Eε),

Wp/2(x̂ε , X) = Wp/2(G(Wε +Dε + Eε), G(W)) ≤ eLipḡWp/2(Wε +Dε + Eε , W).

Following Wp/2(Wε , W) = O(ε(p−2)/(2(p−1))) and the above estimates (5.3)–(5.4), we
obtain that Wp/2(x̂ε , X) ≤ C(ε(p−2)/2p + ε1/3(− log ε)1/4).

When h 
≡ 1, by a change of variables, zε(n) = ψ(xε(n)), ẑε(t) = ψ(x̂ε(t)), we can
reduce the case of multiplicative noise to the case of additive noise: that is,

zε(n+ 1)− zε(n) = εv(y(n))+ ε2G(zε(n), y(n), ε), zε(0) = ψ(ξ),

where G(z, y, ε) := ψ ′(ψ−1z)g(ψ−1z, y, ε)+ 1
2ψ

′′(ψ−1z)(ψ ′(ψ−1z))−2v2(y)+O(ε);
see [15, 21] for the calculations. Moreover, we can verify that G(z, y, ε) satisfies the
regularity conditions (1)–(4).

Let

Ḡ(z) := ψ ′(ψ−1z)ḡ(ψ−1(z))+ 1
2
ψ ′′(ψ−1(z))(ψ ′(ψ−1(z)))−2

∫
M

v2 dμ.

Consider the SDE

dZ = dW + Ḡ(Z)dt , Z(0) = ψ(ξ). (5.5)

Then ẑε →w Z, where Z is the solution to (5.5) and Wp/2(ẑε , Z) = O(ε(p−2)/2p +
ε1/3(− log ε)1/4). Because the Stratonovich integral satisfies the usual chain rule, we can
see that Z = ψ(X) satisfies the SDE (5.5) as in [15]. Hence,

Wp/2(x̂ε , X) = Wp/2(ψ
−1(ẑε), ψ−1(Z)) ≤ Lip(ψ−1)Wp/2(ẑε , Z)

= O(ε(p−2)/2p + ε1/3(− log ε)1/4).

The proof is complete.

Remark 5.2.
(1) Our result is also applicable to the case where the fast variables are generated by

iterating a non-uniformly hyperbolic transformation.
(2) In [2], the authors obtained the convergence rate O(ε1/3−δ) with respect to the

Lévy–Prokhorov distance, where δ depends only on p and δ can be arbitrarily small
as p → ∞. Compared with [2], our result implies the convergence rate in [2] by
Proposition 2.6. However, the price to pay is that the non-uniformly hyperbolic fast
systems need to have stronger mixing properties than in [2]. To be more specific, in
[2], the fast systems are non-uniformly hyperbolic with return time R ∈ Lp(p > 2),
while, in our case, the return time R ∈ Lp(p ≥ 4).
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A. Appendix
THEOREM A.1. (Skorokhod embedding theorem [18]) Let {Sn = ∑n

i=1 Xi , Fn, n ≥ 1}
be a zero-mean, square-integrable martingale. Then there exist a probability space
supporting a (standard) Brownian motion W and a sequence of non-negative variables
τ1, τ2, . . . with the following properties. If Tn = ∑n

i=1 τi , S
′
n = W(Tn), X′

1 = S′
1, X′

n =
S′
n − S′

n−1 for n ≥ 2, and if Bn is the σ -field generated by S′
1, . . . , S′

n and W(t) for
0 ≤ t ≤ Tn, then:
(1) {Sn, n ≥ 1} =d {S′

n, n ≥ 1};
(2) Tn is a stopping time with respect to Bn;
(3) E(τn|Bn−1) = E(|X′

n|2|Bn−1) almost surely (a.s.); and
(4) for any p > 1, there exists a constant Cp < ∞ depending only on p such that

E(τ
p
n |Bn−1) ≤ CpE(|X′

n|2p|Bn−1) = CpE(|X′
n|2p|X′

1, . . . , X′
n−1) a.s.,

where Cp = 2(8/π2)p−1�(p + 1), with � being the usual Gamma function.

PROPOSITION A.2.† Let {Xk}k≥1 be a sequence of identically distributed random vari-
ables defined on a common probability space with ‖Xk‖Lp < ∞ for each k ≥ 1. Then
‖max1≤k≤n |Xk|‖Lp = o(n1/p) as n → ∞.

Proof. For ε > 0,

|Xk|p ≤ nε + |Xk|p1{|Xk |p>nε}.

So,

max
1≤k≤n

|Xk|p ≤ nε +
n∑
k=1

|Xk|p1{|Xk |p>nε}.

Since {Xk} is identically distributed,

E max
1≤k≤n

|Xk|p ≤ nε + nE[|Xk|p1{|Xk |p>nε}].

It follows that
1
n

E max
1≤k≤n

|Xk|p ≤ ε + E[|Xk|p1{|Xk |p>nε}] → ε

as n → ∞. Hence the result follows because ε can be taken arbitrarily small.

†This estimate was suggested to us by Prof. Ian Melbourne.

https://doi.org/10.1017/etds.2023.40 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2023.40


1190 Z. Liu and Z. Wang

REFERENCES

[1] M. Antoniou. Rates of convergence for statistical limit laws in deterministic dynamical systems. PhD Thesis,
University of Warwick, 2018.

[2] M. Antoniou and I. Melbourne. Rate of convergence in the weak invariance principle for deterministic
systems. Comm. Math. Phys. 369 (2019), 1147–1165.

[3] M. Benedicks and L.-S. Young. Sinaı̆–Bowen–Ruelle measures for certain Hénon maps. Invent. Math. 112
(1993), 541–576.

[4] M. Benedicks and L.-S. Young. Markov extensions and decay of correlations for certain Hénon maps.
Astérisque 261 (2000), 13–56.

[5] P. Billingsley. Convergence of Probability Measures (Wiley Series in Probability and Statistics: Probability
and Statistics), 2nd edn. Wiley-Interscience, New York, 1999.

[6] A. A. Borovkov. The rate of convergence in the invariance principle. Teor. Verojatnost. i Primenen. 18
(1973), 217–234.

[7] A. Castro. Backward inducing and exponential decay of correlations for partially hyperbolic attractors.
Israel J. Math. 130 (2002), 29–75.

[8] M.-F. Chen, From Markov Chains to Non-equilibrium Particle Systems, 2nd edn. World Scientific
Publishing Co., Inc., River Edge, NJ, 2004.

[9] K. L. Chung, A Course in Probability Theory, 3rd edn. Academic Press, Inc., San Diego, CA, 2001.
[10] J. Dedecker and E. Rio. On mean central limit theorems for stationary sequences. Ann. Inst. Henri Poincaré

Probab. Stat. 44 (2008), 693–726.
[11] M. Denker and W. Philipp. Approximation by Brownian motion for Gibbs measures and flows under a

function. Ergod. Th. & Dynam. Sys. 4 (1984), 541–552.
[12] D. Dolgopyat. On dynamics of mostly contracting diffeomorphisms. Comm. Math. Phys. 213 (2000),

181–201.
[13] M. D. Donsker. An invariance principle for certain probability limit theorems. Mem. Amer. Math. Soc. 6

(1951), 12pp.
[14] M. I. Gordin. The central limit theorem for stationary processes. Dokl. Akad. Nauk SSSR 188 (1969),

739–741.
[15] G. A. Gottwald and I. Melbourne. Homogenization for deterministic maps and multiplicative noise. Proc.

R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 469 (2013), 20130201, 16pp.
[16] S. Gouëzel. Central limit theorem and stable laws for intermittent maps. Probab. Theory Related Fields 128

(2004), 82–122.
[17] S. Gouëzel. Decay of correlations for nonuniformly expanding systems. Bull. Soc. Math. France 134 (2006),

1–31.
[18] P. Hall and C. C. Heyde, Martingale Limit Theory and Its Application (Probability and Mathematical

Statistics). Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York–London, 1980.
[19] M. Hénon. A two-dimensional mapping with a strange attractor. Comm. Math. Phys. 50 (1976), 69–77.
[20] A. Korepanov, Z. Kosloff and I. Melbourne. Averaging and rates of averaging for uniform families of

deterministic fast-slow skew product systems. Studia Math. 238 (2017), 59–89.
[21] A. Korepanov, Z. Kosloff and I. Melbourne. Martingale-coboundary decomposition for families of

dynamical systems. Ann. Inst. H. Poincaré Anal. Non Linéaire 35 (2018), 859–885.
[22] K. Kubilyus. The rate of convergence in the invariance principle for martingale differences. Liet. Mat. Rink.

34 (1994), 482–494.
[23] C. Liverani, B. Saussol and S. Vaienti. A probabilistic approach to intermittency. Ergod. Th. & Dynam. Sys.

19 (1999), 671–685.
[24] I. Melbourne and M. Nicol. Almost sure invariance principle for nonuniformly hyperbolic systems. Comm.

Math. Phys. 260 (2005), 131–146.
[25] I. Melbourne and A. Török. Convergence of moments for Axiom A and non-uniformly hyperbolic flows.

Ergod. Th. & Dynam. Sys. 32 (2012), 1091–1100.
[26] F. Merlevède, J. Dedecker and E. Rio. Rates of convergence for minimal distances in the central limit

theorem under projective criteria. Electron. J. Probab. 14 (2009), 978–1011.
[27] Y. Pomeau and P. Manneville. Intermittent transition to turbulence in dissipative dynamical systems. Comm.

Math. Phys. 74 (1980), 189–197.
[28] S. T. Rachev, L. B. Klebanov, S. V. Stoyanov and F. J. Fabozzi. The Methods of Distances in the Theory of

Probability and Statistics. Springer, New York, 2013.
[29] E. Rio. Upper bounds for minimal distances in the central limit theorem. Ann. Inst. Henri Poincaré Probab.

Stat. 45 (2009), 802–817.
[30] S. Sawyer. Rates of convergence for some functionals in probability. Ann. Math. Stat. 43 (1972), 273–284.

https://doi.org/10.1017/etds.2023.40 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2023.40


Wasserstein convergence rates in the invariance principle 1191

[31] M. Viana. Multidimensional nonhyperbolic attractors. Publ. Math. Inst. Hautes Etudes Sci. 85 (1997),
63–96.

[32] C. Villani. Optimal Transport: Old and New (Grundlehren der mathematischen Wissenschaften [Funda-
mental Principles of Mathematical Sciences], 338). Springer-Verlag, Berlin, 2009.

[33] L.-S. Young. Statistical properties of dynamical systems with some hyperbolicity. Ann. of Math. (2) 147
(1998), 585–650.

[34] L.-S. Young. Recurrence times and rates of mixing. Israel J. Math. 110 (1999), 153–188.

https://doi.org/10.1017/etds.2023.40 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2023.40

	1 Introduction
	2 Preliminaries
	3 Non-uniformly expanding/hyperbolic maps
	3.1 Non-uniformly expanding map
	3.2 Non-uniformly hyperbolic diffeomorphism

	4 Proof of Theorems 3.4 and 3.9
	4.1 Martingale approximation
	4.2 Proof of Theorem 3.4
	4.3 Proof of Theorem 3.9

	5 Application to homogenization problem
	Acknowledgements
	A Appendix
	References

