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We study the existence of large solutions for nonlocal Dirichlet problems posed on a
bounded, smooth domain, associated with fully nonlinear elliptic equations of order
2 s, with s ∈ (1/2, 1), and a coercive gradient term with subcritical power
0 < p < 2 s. Due to the nonlocal nature of the diffusion, new blow-up phenomena
arise within the range 0 < p < 2 s, involving a continuum family of solutions and/or
solutions blowing-up to −∞ on the boundary. This is in striking difference with the
local case studied by Lasry–Lions for the subquadratic case 1 < p < 2.
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1. Introduction

In this paper, we study the boundary blow-up phenomena for solutions of fractional
problems with coercive gradient with the form

(−Δ)su+ |Du|p + λu = f in Ω, (1.1)

where s ∈ (1/2, 1), 0 < p < 2 s, Ω ⊂ R
N is a bounded, open set with smooth bound-

ary, f ∈ C(Ω) and λ ∈ R. Here (−Δ)s denotes the fractional Laplacian of order 2 s,
defined for smooth functions u : R

N → R as

(−Δ)su(x) = CN,sP.V.
∫

RN

u(x) − u(z)
|x− z|N+2s

dz, (1.2)

whenever the integral converges. Here, the principal value is understood in the
Cauchy principal value sense. The constant CN,s > 0 is a normalizing constant so
that (−Δ)su→ −Δu as s→ 1 (in an adequate functional framework, see e.g. [12]).
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The question we address concerns the existence of solutions to (1.1) that become
unbounded near the boundary. We prove the existence of multiple solutions to this
problem under certain assumptions on the data.

Our method relies on the construction of solutions by Perron’s method, as it is
presented by Lasry and Lions in [13], that is

− Δu+ |Du|p + λu = f in Ω, (1.3)

where Δ denotes the usual Laplacian, 1 < p � 2, λ > 0. In this local setting,
the Dirichlet problem with blow-up boundary condition associated with (1.3) is
complemented by the expression

lim
x∈Ω, x→∂Ω

u(x) = +∞. (1.4)

It is proven in [13] the existence of a unique large solution for the Dirichlet
problem (1.3)–(1.4) for f ∈ L∞

loc(Ω) with an appropriate growth on the boundary.
Condition p � 2 is typically referred as the subcritical case.

Due to the nonlocal nature of the fractional diffusion (1.2), the Dirichlet problem
associated with (1.1) requires that we impose a condition on Ωc. We consider here
the Dirichlet condition u = ϕ in Ωc, where ϕ : Ωc → R is a given function that
satisfies the integrability condition ϕ ∈ L1

w(Ωc), where for measurable set E ⊂ R
N

we denote

L1
ω(E) :=

{
u ∈ L1

loc(R
N ) :

∫
E

|u|ω < +∞
}
, ω(y) :=

1
(1 + |y|)N+2s

.

Summarizing, the first model for Dirichlet problem we consider here takes the form⎧⎪⎪⎨
⎪⎪⎩

(−Δ)su+ |Du|p + λu = f in Ω,

u = ϕ in Ωc,

lim
x∈Ω, x→∂Ω

u = +∞.

(1.5)

The study of large solutions has a long history starting with the work of Keller
and Osserman (see [14] and [15]), where they studied conditions on nonlinearities
f in order to find unbounded solutions to

Δu = f(u) in Ω.

For recent developments and extensions see [2], where a thorough list of references
can be found. Existence of blow-up solutions for nonlocal Dirichlet problems has
been studied in [1, 7–10]. Of particular interest is the work of Abatangelo [1],
where the existence of an intriguing variety of blow-up solutions, for an ample class
of reaction–diffusion problems with nonhomogeneous exterior data, is addressed.
Roughly speaking, he constructs a fractional harmonic function that blows up near
the boundary with a rate given by ds−1 (here d = d(x) denotes the distance function
dist(x, ∂Ω) for x ∈ Ω). These results rely on Green functions and integral formulas
for the fractional Laplacian. Using similar tools, existence of weak solutions for
quasilinear equations with measure ingredients was already treated by Chen and
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Veron in [10]. We mention here that all the mentioned results deal with linear
diffusion.

Here we understand the condition p < 2 s as strictly subcritical in the sense that
the growth of the gradient is strictly less than the order of the diffusion. Our result
shows a multiplicity phenomenon which is in high contrast with the second-order
setting, and it is a consequence of the nonlocal nature of the problem. For instance,
if we look on the existence result in [13], the authors construct a Perron’s solution
through blow-up barriers. These are suitable powers of the distance function dβ . By
a natural scaling property of the equation, the exponent β = p−2

p−1 ensures a good
approximation for the problem. A logarithmic profile is found in the critical case
p = 2.

We follow the same program here to construct solutions. For introductory pur-
poses, we concentrate on the case u satisfies the homogeneous exterior condition
u = 0 in Ωc. Extending d as zero outside Ω and for p ∈ (1, 2 s), we have the
corresponding exponent

β =
2 s− p

1 − p
, (1.6)

as the one making dγ a good ansatz for the problem (1.5). Since we require dγ

to be integrable, this introduces new critical exponents of p, depending on the
diffusive parameter s. By the method used to find it, we refer to this solution as a
scale solution. Nevertheless, the existence of blow-up fractional harmonic functions
involves the existence of a continuum of solutions which are not present in the
local framework. Moreover, the nonlocal phenomenon also permits the existence of
blow-up solutions to −∞ in certain regimes of p < 2 s. We will come back to more
specific aspects of the problem later.

Next, we describe the general class of operators we will consider. For s ∈ (1/2, 1)
and constants 0 < γ � Γ < +∞, we consider the class K of measurable kernels
K : R

N \ {0} → R such that K(y) = K(−y) for all y and satisfying the ellipticity
condition

γ|y|−(N+2s) � K(y) � Γ|y|−(N+2s), y �= 0. (1.7)

For each K ∈ K, we consider the linear operator

LKu(x) := PV
∫

Rn

[u(x+ y) − u(x)]K(y)dy, (1.8)

which is well defined for measurable u : R
N → R satisfying adequate regularity

assumptions on x and weighted integrability condition at infinity; typically, u ∈ C1,1

in a neighbourhood of x and u ∈ L1
ω(RN ). Thus, for a two-parameter family of

kernels {Kij}i∈I,j∈J ⊂ K, and denoting Lij := LKij
, we write

Iu(x) := inf
i∈I

sup
j∈J

Liju(x). (1.9)

Associated with I of this type, we consider

λ0(I) = inf
x∈Ω,i∈I,j∈J

∫
Ωc

Kij(x− y)dy. (1.10)

Notice that 0 < λ0(I) < +∞.

https://doi.org/10.1017/prm.2023.59 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.59


1316 G. Dávila, A. Quaas and E. Topp

We focus on the fully homogeneous class of kernels with the form

K(z) =
a(z/|z|)
|z|N+2s

, (1.11)

for some nonnegative, measurable function a : SN−1 → R. In this setting, condition
(1.7) turns out to be γ � a � Γ.

In order to describe our existence results, we require to introduce two exponents
related to the gradient nonlinearity, depending on the order s. We write pi = pi(s)
for i = 1, 2 as

p1 = s+
1
2

and p2 =
s+ 1
2 − s

, (1.12)

A third exponent p0 = 2s
2−s also emerges in our analysis, but this plays a less

important role. We notice that for s ∈ (1/2, 1), we have p1 > 1 and

p1(s) < p2(s) < 2 s, p2(1−) = 2, p1(1/2+) = p2(1/2+) = 1,

Thus, our main result is the existence of boundary blow-up solutions for the
Dirichlet problem {−I(u) + |Du|p + λu = f in Ω,

u = 0 in Ωc, (P)

as it is described by the following.

Theorem 1.1. Let s ∈ (1/2, 1), 0 < p < 2 s, Ω ⊂ R
N be a bounded domain with C2

boundary, f ∈ L∞(Ω) ∩ C(Ω). When 1 < p < 2 s, let β as in (1.6).
Let K be a family of symmetric kernels satisfying (1.7) and (1.11), I a nonlinear

operator with form (1.9), and λ > −λ0(I). Let pi be defined as in (1.12), i = 0, 1, 2.
Then, we have the following existence results:
1. One parameter family of solutions (close to s-harmonic): If 0 < p < p2, there

exist σ > 0 and a family of solutions {ut}t∈R,t�=0 ⊂ Cσloc(Ω) to (P), such that for
each t we have

d1−s(x)ut(x) − t = O(dθ(x)),

for some θ > 0 depending on p. In particular, if t1 < t2, then

ut1 < ut2 in Ω.

Moreover, if p additionally satisfies p < p0, then we can take θ > 1 − s .
2. Positive scale solution: If p1 < p < p2, then there exist σ > 0 and a constant

T > 0 and a function u ∈ Cσ(Ω) solving (P) such that

d(x)−βu(x) − T = O(d(x)θ),

for some θ > 0.
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3. Negative scale solution: For p2 < p < 2 s, then there exist σ > 0, T > 0 and a
solution u ∈ Cσ(Ω) of (P) such that

d−β(x)u(x) + T = O(d(x)θ),

for some θ > 0.

For the reader who is familiarized with nonlocal problems, condition λ > −λ0(I)
is a condition ensuring comparison principle, see for instance [19]. Since we
employ an approximation procedure to construct the solutions (c.f. proposition
2.2), comparison principle plays an important role.

As we previously mentioned, we construct barriers that blow-up (to +∞) as
powers of the distance function. This allows us to construct scale solutions behaving
like dβ with β as in (1.6). This imposes the condition p < p2 in order for the power
function to be integrable. In the regime p > p2, the same argument allows us to get
a negative blow-up solution.

Other types of large solutions, not present in the local case, emerge here. For
instance in case 1, the family {ut} is constructed ‘around’ a blow-up, fractional
harmonic function. Our key technical result (c.f. proposition 3.1) indicates that the
function ds−1 is close to being harmonic for I. In case 3, we construct barriers
perturbing ds−1 with other power-type functions of lower order, leading to the
existence of solutions that diverge to −∞.

There are plenty of open questions after this work that we believe deserve to
be investigated. For instance, we could not cover the natural critical exponents
as p = p2 and p = 2 s. None of the solutions found in theorem 1.1 converge to a
blow-up (or blow-down) solution of (P) when p→ p2. In fact, they surprisingly
converge to the unique bounded viscosity solution to (P), see remark 4.1. On the
other hand, the critical case p = 2 s resembles the case p = 2 in (1.3), for which a
logarithmic blow-up profile for the solution is obtained, see [13]. In our context,
the construction of barriers with a log profile is hard to handle at a technical level,
and therefore we did not pursue it in this work.

A question about applications that emerges here has to do with the connection of
problem (P) with stochastic optimal control problems. In the local setting presented
in [13], the solution to (1.3) turns out to be the value function of an infinite horizon
stochastic optimal control problem with a cost involving f and a ‘feedback’ term
depending on p. The admissible drifts are those preventing the trajectories of the
stochastic process to exit the domain, leading to the blow-up of the associated
value function. Here, for each K like in (1.11), its associated linear operator LK is
the infinitesimal generator of a s-stable pure jump Lévy process, see for instance
[5, 17, 18]. The connection of fractional Hamilton–Jacobi equations and stochastic
optimal control problems with jumps has been shown to hold in some cases, for
instance in the unrestricted state case (Ω = R

N ). The fully nonlinear structure of
(P) involves stochastic differential equations with controlled random parts, see for
instance [16, 18]. The paper is organized as follows: In § 2, we provide the notion
of solution we use here and a general Perron’s method. In § 3, we provide precise
estimates of the nonlocal operator applied to powers of the distance function. In
§ 4, we provide the proof of theorem 1.1, which is accomplished by constructing
sub and supersolutions based on the results of § 3. Finally, in § 5, we provide some
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extensions that include unbounded right-hand side and nonhomogeneous exterior
Dirichlet data.

2. Perron’s solutions

Given ϕ ∈ L1
ω(Ωc), λ > −λ0(I) and f ∈ C(Ω), we are interested in viscosity

solutions to the problem⎧⎪⎪⎨
⎪⎪⎩

−Iu+ |Du|p + λu = f in Ω,

u = ϕ in Ωc,

lim
x∈Ω, x→∂Ω

u = +∞,

(2.1)

and its blow-up version to minus infinity, that is, lim
x∈Ω, x→∂Ω

u = −∞.

We start with the notion of viscosity solution, see [3].

Definition 2.1. A function u ∈ L1
ω(RN ), upper semicontinuous in Ω, is a viscosity

subsolution to the Dirichlet problem{−Iu+ |Du|p + λu = f in Ω,

u = ϕ in Ωc,
(2.2)

if u � ϕ in Ωc, and, for every x0 ∈ Ω and every function φ ∈ L1
ω(RN ) ∩ C2(Ω) such

that u(x0) = φ(x0), u � φ in Bδ(x0) for some δ > 0, we have the inequality

−Iuφδ,x0
(x0) + |Dφ(x0)|p + λu(x0) � f(x0),

where uφδ,x0
: R

N → R is the function defined as uφδ,x0
(x) = φ(x) in Bδ(x0),

uφδ,x0
(x) = u(x) in Bcδ(x0).

A function u ∈ L1
ω(RN ), lower semicontinuous in Ω, is a viscosity supersolution

to the Dirichlet problem (2.2) if u � ϕ in Ωc and for every x0 ∈ Ω and every function
φ ∈ L1

ω(RN ) ∩ C2(Ω) such that u(x0) = φ(x0), u � φ in Bδ(x0) for some δ > 0, we
have the inequality

−Iuφδ,x0
(x0) + |Dφ(x0)|p + λv(x0) � f(x0),

where uφδ,x0
is defined as before.

A function u ∈ L1
ω(RN ) ∩ C(Ω) is a solution to (2.2) if u = ϕ in Ωc and is

simultaneously a viscosity sub and supersolution to the problem.
Finally, we say that u is a strict subsolution (resp. supersolution) to (2.2) if

there exists ε > 0 such that u satisfies the viscosity inequality with f(x0) − ε (resp.
f(x0) + ε) instead of f(x0), for all x0 ∈ Ω.

Existence and uniqueness for solutions u ∈ C(RN ) can be found in [3], in partic-
ular it attains the boundary data imposed by ϕ. However, definition 2.1 allows the
possibility to have solutions which are unbounded in Ω. We use an approximation
procedure based on Perron’s method.
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Proposition 2.2. Let Ω be a bounded, smooth domain, f ∈ C(Ω), 0 < p � 2 s and
λ > −λ0(I). Suppose there exist a supersolution Ū and a subsolution U of (2.1)
with Ū, U ∈ C(Ω) ∩ L1

ω(RN ), and U = Ū = ϕ in Ωc, and such that one of them is
strict. Furthermore, assume that

Ū � U in R
N , lim

x∈Ω, x→∂Ω
U = +∞. (2.3)

Then there exists a solution u ∈ Cα(Ω) ∩ L1
w(RN ) of (2.1) satisfying U � u � Ū .

An analogous result can be stated for sub and supersolutions U � Ū with Ū(x) →
−∞ as x→ ∂Ω.

Proof. We assume U is a strict subsolution, the other case follows the same lines. Let
Ωn = {x ∈ Ω : dist(x, ∂Ω) > 1/n}. For k, n ∈ N, let wn,k be a continuous function
in Ω̄ \ Ωn+k+1 such that wn,k = ϕ on ∂Ω, wn,k = U on ∂Ωn+k+1 (say, the harmonic
function in Ω \ Ω̄n+k+1 satisfying the mentioned boundary conditions).

Now, let Un,k : Ωcn → R given by

Un,k(x) =

⎧⎨
⎩
U(x) if x ∈ Ωn+k+1 \ Ωn,
min{wn,k(x), U(x)} if x ∈ Ω \ Ωn+k+1,
ϕ(x) if x ∈ Ωc.

Notice that Un,k is continuous, and min∂Ω{ϕ} � Un,k � U in Ω \ Ωn+k+1, from
which, by dominated convergence theorem, we have that∫

Ω\Ωn+k+1

|Un,k(y) − U(y)|K(x− y)dy → 0,

as k → ∞, uniformly in x ∈ Ωn, K ∈ K, for n fixed. Then, since U is a strict sub-
solution, the above estimate implies that for each n, there exists k(n) such that, for
each k � k(n), the function Un,k is a viscosity subsolution to the Dirichlet problem⎧⎨

⎩−Iu+ |Du|p + λu = f − 1
n

in Ωn,

u = Un,k in Ωcn.
(2.4)

By a similar argument, using that Ū is a viscosity supersolution for the problem
in Ω, we can construct Ūn,k ∈ C(RN ) a supersolution to (2.4) with Ūn,k = Ū in
Ωn+k+1, Un,k � Ūn,k in Ω, and such that Ūn,k = ϕ in Ωc, for all k � k(n) (relabelling
k(n) if necessary). Thus, by Theorem 1 in [3], there exists a unique viscosity solution
un,k ∈ C(RN ) for (2.4). Moreover, it satisfies U � un,k � Ū in Ωn+k+1, for all n and
k � k(n), and by construction we have un,k ∈ L1

ω(RN ) uniformly in n and k � k(n).
Comparison principles are available by the assumption λ > −λ0(I) for all n, k large.

Thus, the family {un,k(n)}n∈N has uniform interior Cα estimates by the results
of [4]. Using this and that the family is uniformly bounded in compact sets of
Ω, we can use stability results of viscosity solutions to conclude the result, taking
n→ +∞. �

Remark 2.3. We notice that the above result holds if we assume that Ū (resp. Ū)
is a viscosity subsolution (resp. supersolution) to (2.1) which is strict in each
compact subset of Ω.
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3. Technical lemmas

We use the notation d : R
N → R such that d(x) = dist(x, ∂Ω) for x ∈ Ω, and

d(x) = 0 for x ∈ Ωc. Since the domain is smooth, we have the existence δ0 > 0 such
that d is a C2 function on the set Ωδ = {x ∈ Ω : d(x) < δ} for all δ < δ0. Given
τ ∈ (−1, 2 s), we denote dτ : R

N → R such that dτ (x) = (d(x))τ for x ∈ Ω and zero
in Ωc, with the convention and d0 = χΩ.

For a function u : R
N → R measurable, A ⊂ R

N measurable set and x ∈ R
N , we

denote

LK [A]u(x) = P.V.
∫
A

[u(x+ z) − u(x)]K(z)dz.

Here, we only assume (1.7). For K in this class and ρ > 0, we introduce the
notation

Kρ(z) = ρN+2sK(ρz), z �= 0. (3.1)

Notice that Kρ satisfies (1.7) with the same ellipticity constants as K, and that
if K satisfies (1.11), then Kρ = K.

Finally, we consider the extremal Pucci operators associated with the family of
kernels K as

M+u(x) = sup
K∈K

LKu(x), M−u(x) = inf
K∈K

LKu(x).

The main result of this section is the following

Proposition 3.1. Let Ω ⊂ R
N be a bounded domain with C2 boundary, s ∈ (0, 1),

and let K be a family of kernels satisfying (1.7).
Then, for each τ ∈ (−1, 2s), there exists δ > 0 such that

Idτ (x) = dτ−2s(x)(c(d(x), τ) +O(d(x)s)), x ∈ Ωδ,

where

c(d(x), τ) = inf
i∈I

sup
j∈J

P.V.
∫

RN

[(1 + zN )τ+ − 1]Kd(x)
ij (z)dz.

Finally, if we additionally assume (1.11), then c(I, d(x), τ) = c(τ) and this constant
satisfies c(−1+) = +∞, c(2s−) = +∞, c(s− 1) = c(s) = 0, c(τ) > 0 if τ ∈ (−1,
s− 1) ∪ (s, 2 s) and c(τ) < 0 for τ ∈ (s− 1, s).

Before we continue with the proof of the proposition, we will introduce some
notation. When (1.11) holds, then we denote

c(I, τ) = c(I, d(x), τ)
and we will omit the dependence on I whenever the context is clear. In partic-
ular, if we define Ĩ as the operator −I(−·) then it satisfies (1.11) so we will
denote c̃(τ) = c(Ĩ, d(x), τ). Moreover, since M± also satisfies (1.11) we will denote
c±(τ) = c(M±, d(x), τ).

We recall that for each x ∈ ∂Ω, there exists an open set U ⊂ R
N−1 containing the

origin, r > 0 and a C2 function ψx : U → R such that ∂Ω ∩BRN (x, r) ⊂ Rx{x+
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(z′, ψz(z′)) : z′ ∈ U}, for some rotation matrix Rx. By compactness and regularity
of ∂Ω, we have a finite number of charts covering ∂Ω with uniform C2 bounds.

Now, let x ∈ Ω, and denote ρ = d(x). After rotation, we assume x = ρeN , the
projection of x to ∂Ω is the origin, and therefore, that the local chart ψ corre-
sponding to this point satisfies ψ(0) = 0, Dψ(0) = 0. Thus, we have the existence
of CΩ > 0 such that

|ψ(z′)| � CΩ|z′|2. (3.2)

The key technical step to prove proposition 3.1 is the following

Lemma 3.2. Let K ∈ K satisfying (1.7), and τ ∈ (−1, 2 s). Let η ∈ (0, 1), Qη =
B′
η × (−η, η) ⊂ R

N . Let x = (0′, ρ) ∈ Ω such that the projection of x to ∂Ω is the
origin, and that x ∈ Qη. Denote

I := lim
ε→0

∫
Qη\Bε

[(ρ+ yN − ψ(y′))τ+ − ρτ ]K(y)dy.

Then, the limit exists. For each η > 0 small enough, and all ρ > 0 small enough in
terms of η, we have the expansion

I = ρτ−2s(cK(ρ, τ) +O(ρs) +O(ρτ+1)), (3.3)

where

cK(ρ, τ) = P.V.
∫

RN

[(1 + zN )τ+ − 1]Kρ(z)dz,

and the O terms depend only on N, s, Ω, 1 + τ, η and the ellipticity constants.

We use this estimate to prove our main result of this section.

Proof of proposition 3.1. For an arbitrary linear operator L = LK in the family,
and for η as in lemma 3.2, we write

Ldτ (x) = L[Qη]dτ (x) + L[Qcη]d
τ (x). (3.4)

It is easy to see that if ρ < η/4, we have

|L[Qcη]d
τ (x)| �

∫
Qc

η

|dτ (x+ y) − ρτ |K(y)dy � CΛ(cτη−(N+2s) + ρτη−2s),

for some C > 0 just depending on N, s, Ω.
From now on, we concentrate on L[Qη]dτ (x) in (3.4). For each z = (z′, zN ) ∈

Ω ∩Qη, we have

d(z) � zN − ψ(z′),

from which we directly have

Ldτ (x) � I, (3.5)

with I as in lemma 3.2.
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On the other hand, by the smoothness of the domain, we use Lemma 3.1 in [9],
from which we get the existence of a constant CΩ > 0 just depending on Ω and N
such that

d(y) � (yN − ψ(y′))(1 − CΩ|y′|2),

for y close to the boundary, near x0. Thus, taking η small enough in terms of CΩ,
we also have

Ldτ (x) � lim
ε→0+

∫
Qη\Bε

[(ρ+ yN − ψ(y′))τ+(1 + CΩ|y′|2) − ρτ ]K(y)dy,

and from here, it is easy to see that

Ldτ (x) � I + CΩ

∫
Qη

(ρ+ yN − ψ(y′))τ+|y′|2K(y)dy. (3.6)

Now, for the second term in the last expression, we can write

∫
Qη

(ρ+ yN − ψ(y′))τ+|y′|2K(y)dy

� Λ
∫
B′

η

|y′|2−N−2s

∫ η

ψ(y′)−ρ
(ρ+ yN − ψ(y′))τdyNdy′

� Λ
1

1 + τ
(ρ+ η/4)1+τ

∫
B′

η

|y′|2−N−2sdy′

� C
η1+τ

1 + τ
,

where we have used the fact that ψ(z′) � η/4 for |z′| � η. Hence, replacing in (3.6)
and using (3.5), we conclude that

I � Ldτ (x) � I + CCΩ
1

1 + τ
, (3.7)

where the constant C > 0 depends on N, s, Λ
Then, by lemma 3.2, we get

Ldτ (x) = ρτ−2s(cK(ρ, τ) +O(ρs) +O(ρ1+τ ) +O(ρ2 s−τ )).

We get from here that

Idτ (x) = ρτ−2s

(
inf
i∈I

sup
j∈J

cKij
(ρ, τ) +O(ρs) +O(ρ1+τ )

)
,

from which the first result follows.
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For the last part of the proposition, since the operator is of form (1.11) we have
Kρ
ij = Kij , then by Lemma 2.1 in [17] we arrive at

c(τ) := inf
i∈I

sup
j∈J

cKij
(τ) = inf

i
sup
j
{−ãij (−Δ)s

R
wτ (1)} (3.8)

where (ΔR)s denotes the fractional Laplacian in dimension one, wγ(t) = tτ+ for
t ∈ R, and

ãij :=
∫
SN−1

|θN |2saij(θ)dσ(θ),

where σ denotes the N − 1 dimensional Hausdorff measure in the unit sphere.
Now if we define c1(τ) = (−ΔR)swτ (1), the qualitative properties follow since the
function c1 is strictly concave in (-1,2 s) by proposition 3.1 of [9] and c1(−1+) =
+∞, c1(2s−) = +∞. Moreover, c1(s) = c1(s− 1) = 0 by Lemma 6.2 of [17]. �

The rest of the section is devoted to the

Proof of lemma 3.2. We concentrate on the case τ < 0 since it is the most difficult
due to the unboundedness of dτ .

We write

I = I0 + Ĩ ,

with

I0 = P.V.
∫
Qη

[(ρ+ yN )τ+ − ρτ ]K(y)dy,

Ĩ =
∫
Qη

[(ρ+ yN − ψ(y′))τ+ − (ρ+ yN )τ+]K(y)dy,

where the last integral is well defined since, using (3.2), we have

|(ρ+ yN − ψ(y′))τ+ − (ρ+ yN )τ | � Cρτ−2|y|2,

for all |y| small enough in terms of ρ. This is enough to compensate the singularity of
the kernel K and pass to the limit as ε→ 0 using dominated convergence theorem.

1. Estimate for Ĩ. Rescaling, we have

Ĩ = ρτ−2s

∫
Qη/ρ

[(1 + zN − ψ̃(z′))τ+ − (1 + zN )τ+]Kρ(z)dz,

where ψ̃(z′) := ρ−1ψ(ρz′) and Kρ(z) = ρN+2sK(ρz). Notice that by the ellipticity
condition, we have

γ|z|−(N+2s) � Kρ(z) � Λ|z|−(N+2s), z ∈ R
N \ {0}, ρ > 0.

For this, we divide the integral in several parts. Namely, we consider the splitting

d2 s−τ Ĩ = I1 + I2 + I3, (3.9)
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where for i = 1, 2, 3, we denote

Ii =
∫
Ai

[(1 + zN − ψ̃(z′))τ+ − (1 + zN )τ+]Kρ(z)dz, with

A1 = B′
1 ×

(
−η
ρ
,
η

ρ

)
, A2 = B′

η√
ρ
\B′

1 ×
(
−η
ρ
,
η

ρ

)
, A3 = Q η

ρ
\ (A1 ∪A2).

For I1, we notice that by the assumptions on the chart ψ (c.f. (3.2)), we have
|ψ̃(z′)| � ρ|z′|2 if |z′| � 1. Then, we perform the subdivision

I1 = I11 + I12 + I13,

A11 = B′
1 ×

(
−η
ρ
,−1

2

)
, A12 = B′

1 ×
(
−1

2
,
1
2

)
, A13 = B′

1 ×
(

1
2
,
η

ρ

)
,

where we have adopted a similar notation as in (3.9).
For I11, we make a subdivision with the form

I11 �
∫
B′

1

∫ −1

ψ̃−(z′)−1

(1 + zN − ψ̃(z′))τKρ(z)dz

+
∫
B′

1

∫ −1

ψ̃+(z′)−1

[(1 + zN − ψ̃+(z′))τ − (1 + zN )τ ]Kρ(z)dz

=: I111 + I112,

where, for a ∈ R, we have written a = a+ + a−.
Using the ellipticity condition and integrating by parts, we can write

I112 � Γ
∫
B′

1

∫ −1/2

ψ̃+(z′)−1

(1 + zN − ψ̃+(z′))τ − (1 + zN )τ

|z|N+2s
dzNdz′

=
Γ

1 + τ

∫
B′

1

⎧⎨
⎩ (1 + zN − ψ̃+(z′))

τ+1 − (1 + zN )τ+1

|z|N+2s

∣∣∣∣∣
zN=−1/2

zN=ψ̃+(z′)−1

+ (N + 2s)
∫ −1/2

ψ̃+−1

(1 + zN − ψ̃+(z′))
τ+1 − (1 + zN )τ+1

|z|N+2s+1
zNdzN

}
dz′

� CΓ
1 + τ

∫
B′

1

{
(τ + 1)ρ|z′|2 + ρτ+1|z′|2(τ+1)

(1 + |z′|2)(N+2s)/2

+
∫ −1/2

ψ̃+(z′)−1

(1 + zN − ψ̃+(z′))
τ+1 − (1 + zN )τ+1

|z|N+2s+1
zNdzN

}
dz′

� CΓ
1 + τ

{
ρτ+1 +

∫
B′

1

∫ −1/2

ψ̃+(z′)−1

× (1 + zN − ψ̃+(z′))τ+1 − (1 + zN )τ+1

|z|N+2s+1
zNdzNdz′

}
,
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for some universal constant C > 0. Here, we have used that |ψ̃(z′)| � Cρ|z′|2 for
|z′| � 1. Since 1 + τ > 0, we see that

I112 � CΓ
1 + τ

{
ρτ+1 +

∫
B′

1

ρ|z′|2
(1 + |z′|2)N+2s+1

2

∫ −1/2

ψ̃+−1

(1 + zN )τdzNdz′
}
,

and from this, we conclude that

I112 � CΓ
1 + τ

ρτ+1.

For I111, by direct integration and the estimates for ψ̃, we see that

I111 � CΓ
∫
B′

1

|ψ̃(z′)|1+τdz � CΓρ1+τ .

For the lower bound, we proceed similarly, noticing that this time we can write

I11 � −
∫
B′

1

∫ −1+ψ̃+(z′)

−1

(1 + zN )τKρ(z)dz

+
∫
B′

1

∫ −1/2

−1+ψ̃+(z′)
[(1 + zN − ψ̃+(z′))τ − (1 + zN )τ ]Kρ(z)dz.

(3.10)

From here, by direct integration in the first term in the last inequality, and a similar
procedure leading to the estimate concerning I112 above for the second term, we
conclude that

− CΓ
1 + τ

ρτ+1 � I11 � CΓ
1 + τ

ρτ+1, (3.11)

For I12, we use that |ψ̃(z′)| � Cρ|z′|2 to perform a first-order Taylor expansion
to get

− CΓρ � I12 � CΓ
∫
B′

1

∫ 1/2

−1/2

ρ|z′|2
|z|N+2s

dzNdz′ � CΓρ. (3.12)

For I13, we perform a Taylor expansion again, from which we can write

I13 � CΓρ
∫
B′

1

|z′|2
∫ η/ρ

1/2

dzN
(|zN |2 + |z′|2)N+2s

2

dz′

� CΓρ
∫
B′

1

|z′|2|z′|−(N+2 s)+1

∫ +∞

0

dt

(t2 + 1)
N+2s

2

dz′.

A similar lower bound can be easily obtained, from which we conclude that −CΓρ �
I13 � CΓρ. Gathering this estimate together with (3.12) and (3.11) lead us to

I1 = O(ρτ+1). (3.13)
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Now we proceed with I2 in (3.9). We write

I2 = I21 + I22, with

A21 = B′
η/

√
ρ \B′

1 ×
(
−η
ρ
,−1

2

)
, A22 = B′

η/
√
ρ \B′

1 ×
(
−1

2
,
η

ρ

)
,

where we have adopted a similar notation as in (3.9).
We start by noticing that |ψ̃(z′)| � Cη2 when |z′| � η/

√
ρ, and from here, fixing

η > 0 universally small, we can write

I21 �
∫
B′

η/
√

ρ
\B′

1

∫ −1

ψ̃−(z′)−1

(1 + zN − ψ̃(z′))τKρ(z)dz

+
∫
B′

η/
√

ρ
\B′

1

∫ −1/2

ψ̃+(z′)−1

[(1 + zN − ψ̃+(z′))τ − (1 + zN )τ ]Kρ(z)dz

=: I211 + I212.

For I211, we have

I211 �CΓ
∫
B′

η/
√

ρ
\B′

1

|z′|−(N+2s)

∫ −1

ψ̃−(z′)−1

(1 + zN − ψ̃(z′))τdzNdz′

�CΓρτ+1

∫
B′

η/
√

ρ
\B′

1

|z′|−(N+2 s)+2(τ+1)dz′

� C

1 − 2s
Γρ1+τ .

For I212, by taking η small enough but independent of ρ, we have

I21 � CΛ
∫
B′

η/
√

ρ
\B′

1

1
(1 + |z′|)N+2s

∫ −1/2

ψ̃+(z′)−1

[(1 + zN − ψ̃+(z′))τ

− (1 + zN )τ ]dzNdz′

� C
Λ

1 + τ

∫
B′

η/
√

ρ
\B′

1

1
(1 + |z′|)N+2s

((
1
2
− ψ̃+(z′)

)τ+1

−
(

1
2

)τ+1

+ ψ̃+(z′)τ+1

)
dz′

� C
Λ

1 + τ

(
ρ

∫
B′

η/
√

ρ
\B′

1

|z′|2
(1 + |z′|)N+2s

dz′

+ ρτ+1

∫
B′

η/
√

ρ
\B′

1

|z′|2(τ+1)

(1 + |z′|)N+2s
dz′
)

� Cρ1+τ ,

https://doi.org/10.1017/prm.2023.59 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.59


On large solutions for fractional Hamilton–Jacobi equations 1327

and from here, collecting the above estimates, we conclude that I21 � CΓρ1+τ . In
a similar fashion as in (3.10) but applied to I21, we arrive at the estimate

I21 = O(ρ1+τ ). (3.14)

For I22, taking η universally small, there exist 0 < c, C < +∞ such that

c(1 + zN )τ−1|ψ̃+(z′)| � (1 + zN − ψ̃+(z′))τ − (1 + zN )τ = C(1 + zN )τ−1|ψ̃+(z′)|,
from which we can write

I22 = O(1)
∫
B′

η/
√

ρ
\B′

1

ρ|z′|2
(1 + |z′|)N+2s

∫ +∞

−1/2

(1 + zN )τ−1dzNdz′,

and from here we conclude that I22 = O(ρ). This together with (3.14) lead us to

I2 = O(ρ1+τ ). (3.15)

Now we deal with I3. This time we consider the splitting

I3 = I31 + I32, with

A31 = {(z′, zN ) : z′ ∈ B′
η/ρ \B′

η/
√
ρ, zN ∈ (−η/ρ, ψ̃+(z′) + 1)},

A32 = {(z′, zN ) : z′ ∈ B′
η/ρ \B′

η/
√
ρ, zN ∈ (ψ̃+(z′) + 1, η/ρ)},

where we have adopted the notation in (3.9).
For I31, we see that

I31 � Λ
∫
B′

η/ρ
\B′

η/
√

ρ

∫ ψ̃+(z′)+1

ψ̃+(z′)−1

(1 + zN − ψ̃+(z′))τ

|z′|N+2s
dzNdz′

� CΛ
∫
B′

η/ρ
\B′

η/
√

ρ

1
|z′|N+2s

∫ 2

0

(1 + t)τdtdz′

� CΛ
∫ η/ρ

η/
√
ρ

r−(2+2s)dr,

from which we conclude that I31 � CΛρs+1/2.
On the other hand, since τ < 0, for I32, we can write

I32 � Λ
∫
B′

η/ρ
\B′

η/
√

ρ

∫ +∞

ψ̃+(z′)+1

(1 + zN − ψ̃+(z′))τ

(z2
N + |z′|2)(N+2s)/2

dzNdz′

� Λ
∫
B′

η/ρ
\B′

η/
√

ρ

∫ +∞

1

1
(z2
N + |z′|2)(N+2s)/2

dzNdz′

� Λ
∫
B′

η/ρ
\B′

η/
√

ρ

1
|z′|N+2 s−1

∫ +∞

0

1
(t2 + 1)(N+2s)/2

dtdz′,
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and from here, we conclude that

I32 � CΛ
∫ +∞

η/
√
ρ

r−(1+2s)dr � CΛρs.

Then, collecting the previous estimates, we conclude that

I3 � Cρs.

For the lower bound, we see that

I3 � −
∫
B′

η/ρ
\B′

η/
√

ρ

∫ −1

− η
ρ

(1 + zN )τKρ(z)dz,

and arguing similarly as before, we arrive at I3 � −Cρs. Hence, we conclude that
I3 = O(ρs). Using this estimate, together with (3.13) and (3.15) and replacing them
into (3.9), we conclude that

Ĩ = ρτ−2s(O(ρ1+τ ) +O(ρs)), (3.16)

where the O-term depends on N, s, Ω, η, 1
1+τ .

2. Estimate for I0. Rescaling, we have

I0 = ρτ−2sP.V.
∫
Qη/ρ

[(1 + zN )τ+ − 1]Kρ(z)dz

= ρτ−2sP.V.
∫

RN

[(1 + zN )τ+ − 1]Kρ(z)dz + ρτ−2s

∫
Qc

η/ρ

[(1 + zN )τ+ − 1]Kρ(z)dz

=: ρτ−2scK(ρ, τ) + I01.

Notice that

−CΓρτ−2sρ2s � I01.

On the other hand

I01 � Γρτ−2s

∫
Qc

η/ρ
∩{zN>−1}

(1 + zN )τ |z|−(N+2s)dz

� CΓρ−2s

∫
B′

η/ρ

∫ +∞

η/ρ

|z|−(N+2s)dz + CΓρτ−2s 1
1 + τ

∫
B′c

η/ρ

|z′|−(N+2s)dz′

� CΓ(1 + ρ1+τ ).

Summarizing, we have

I01 = O(ρτ ).

Joining this together with (3.16), we conclude the result. �
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4. Proof of theorem 1.1

This section is entirely devoted to the proof of theorem 1.1. We recall that for
a given family of kernels K satisfying (1.7), we consider the extremal operators
associated with this family as

M+u(x) = sup
K∈K

LKu(x), M−u(x) = inf
K∈K

LKu(x).

For every operator with form (1.9), each admissible function u and x ∈ R
N , we

have

M−u(x) � I(v + u)(x) − Iv(x) � M+u(x), (4.1)

see [6].

Proof of theorem 1.1. We prove each case separately. We give the general remark
that both sub and supersolutions we construct here are strict.

Case 1: For t > 0 and s− 1 < γ < 2 s− 1 < s to be fixed, we consider

U−
t = tds−1 − C1d

γ ,

for some C1 > 0 to be chosen.
Then, using proposition 3.1 together with assumption (1.11) , we have c(s−1) = 0

and c+(γ) < 0. Then using (4.1), we find

−IU−
t + |DU−

t |p � −I(tds−1) + C1M+(dγ) + |DU−
t |p

� tO(d−1) + C1c
+(γ)dγ−2s + |(t(s− 1)ds−2 − C1γd

γ−1)Dd|p

= tO(d−1) + C1c
+(γ)dγ−2s

+ |t(s− 1)|pd(s−2)p|1 − C1t
−1(s− 1)−1γdγ+1−s|p.

Since p < p2, we can take γ > s− 1 such that (s− 2)p > γ − 2 s (notice that if
p < p0, then γ can be taken positive).

For such a γ, we take

C̄1 = |t(s− 1)|p/|c+(γ)|,
to conclude that there exists c̄1 > 0 such that, for every ε > 0, we take C1 = C̄1 − ε
in the expression above to obtain that

−IU−
t + |DU−

t |p � tO(d−1) − c̄1εd
γ−2s,

for each d � dε for some d small enough in terms of ε, t, C1, γ. Since s > 1/2, and
γ < 2s− 1, we can take dε smaller to conclude that

−IU−
t + |DU−

t |p + �− c̄1ε
2
dγ−2s � −‖f‖∞, for d(x) � dε,

and therefore we have constructed a subsolution near the boundary. A straightfor-
ward computation tells us that the function

U−
t −CχΩ
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is a viscosity subsolution to the problem in Ω, when C = Cε is taken large . Thus,
we have constructed the subsolution.

In a similar way, we can construct a supersolution in Ω with the form

U+
t = tds−1 + (C̄1 + ε)dγ + CεχΩ.

We can apply the Perron method from § 2 to conclude the existence of a solution
to problem (P) satisfying the desired rate near the boundary, where θ = γ + 1 − s.
If p < p0, then we can take γ > 0 in the above analysis.

Similar arguments hold for t < 0.

Case 2: Let β as in the statement of the theorem. Hence, −1 < β < s− 1 and for
some s− 1 < γ < 0 and T, C1 > 0 to be fixed, denote

U−=Tdβ − dγ .

We invoke proposition 3.1 again, noticing that if (1.11) holds, and by choice of β
and range of γ, we have c(β) < 0 and c+(γ) < 0. Then using again (4.1), we find

−IU−+|DU−|p � −c(β)Tdβ−2s +O(dβ−s) + c+(γ)dγ−2s

+ (T |β|)pd(β−1)p|1 − T−1β−1γdγ−β |p

� (−c(β)T + (T |β|)p)dβ−2s +O(dβ−s) + c+(γ)dγ−2s.

Then, taking T = T̄ such that

c(β)T̄ = T̄ p|β|p

concludes that

−IU−+|DU−|p � O(dβ−s) + c+(γ)dγ−2s,

in a neighbourhood of ∂Ω. Note that it is possible to fix γ close enough to s− 1 in
order to have γ − 2 s < β − s, and then, for each point close to the boundary, we
have

−IU−+|DU−|p � c+(γ)
2

dγ−2s.

We conclude the existence of a subsolution in Ω in the same way as before.
For the supersolution, we consider

U+=T̄ dβ + dγ ,

and proceed as before.

Case 3: The proof is similar to the previous case, but we provide the details for com-
pleteness. Since p > p2, we have s− 1 < β < 0. For T, C > 0 and γ ∈ (0, 2s− 1)
to be fixed, we define

U = −Tdβ − Cdγ .

Notice that in this case c(γ) < 0.
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As before, writing Ĩ as the operator −I(−·), using proposition 3.1 and (1.11),
together with (4.1), we have that

−IU + |DU |p � T Ĩ(dβ) + CM+(dγ) + |Tβdβ−1 + Cγdγ−1|p

� dβ−2s(T c̃(β) +O(ds)) + Cc+(γ)dγ−2s + |Tβdβ−1 + Cγdγ−1|p,

where c̃(β) < 0 since s− 1 < β < 0. At this point, we notice that since β < 0 and
C, γ > 0, we have

|Tβdβ−1 + Cγdγ−1| � T |β|dβ−1,

for all d = d(x) small enough. Using this, we get that

− IU + |DU |p � dβ−2s(T c̃(β) +O(ds)) + Cc+(γ)dγ−2s + T p|β|pd(β−1)p, (4.2)

and fixing T = T ∗ := (−c̃(β)|β|p) 1
p−1 > 0, since β − 2 s = (β − 1)p, we conclude

that

−IU + |DU |p � O(dβ−s) + Cc+(γ)dγ−2s.

Since we also have β − s > −1 > γ − 2 s, by similar arguments used before, we
can fix C > 0 large enough to find that U is a subsolution.

Now, for C > 0 and γ > 0, consider the function V = −T ∗dβ + Cdγ . Notice that
U � V . By a similar computation as above, we get that V is a supersolution for
the problem. �

Remark 4.1. Some remarks concerning the asymptotics as s→ 1 for p ∈ (1, 2)
fixed. By the construction of the barriers in theorem 1.1, we see that the one-
parameter solutions, and the negative scale solutions (cases 1 and 3) shall always
converge to the unique, bounded solution to problem (1.3) with u = 0 on ∂Ω. On the
other hand, positive scale solutions (case 2) converge to the unique large solution
to (1.3). This is a consequence of well-known stability results of viscosity solutions,
the estimates for each of the solutions in cases 1, 2 and 3 and the uniqueness of the
limit equation.

Concerning ‘critical’ cases, we do not know if there exist blow-up solutions for the
case p = p2 (and s fixed). In fact, the barriers constructed provide estimates that
imply that the solutions found for p < p2 and p > p2 tend to the bounded solution
of the limit problem as p→ p±2 . For the case p = 2 s, it was neither possible to
construct large solutions by approximation as p→ 2s− (s fixed). The local setting
suggests to search for large solutions with logarithmic profile, but we leave that
analysis for a future work.

5. Extensions

In this section, we provide a discussion about possible extensions of theorem 1.1
for more general operators and data.

First recall that the estimates found in theorem 1.1 are crucial in order to prove
theorem 1.1. In order to obtain a similar result than theorem 1.1 for general kernels,
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it suffices that the family of kernels K satisfies the requirement

c(d(x), τ) = c(τ) +O(d(x)α), (5.1)

for some α > 0 and some c : (−1, 2 s) → R that is independent of x.
For example, this condition holds when K = Ka has the form

Ka(z) =
a(z)

|z|N+2s
, z �= 0, (5.2)

where a : R
N → R is a nonnegative, measurable function with a uniform modulus

of continuity at z = 0. More specifically, if we consider the class a ∈ A such that
there exists C, r > 0 and α′ > 0 such that

sup
a∈A

{|a(z) − a(0)|} � C|z|α′
, for all z ∈ Br, (5.3)

and use the class of kernels {Ka}a∈A, then expansion (5.1) holds for some 0 <
α < α′.

In fact, the key step to arrive at (5.1) comes by the expansion, for K = Ka, given
by

K(d(x), τ) = −C−1
N,sa(0)(−Δ)s(xN )τ+(eN )

+ P.V.
∫

RN

[(1 + zN )τ+ − 1]
(a(d(x)z) − a(0))dz

|z|N+2s
.

The first term in the right-hand side is independent of ρ. The regularity assump-
tion on a allows us to control the second term in the righ-hand side as an
error term of order O(ρα) for some α < α′. For this, we divide the integrand as
R
N = BRρ

∪BcRρ
for some Rρ large depending on ρ. The exterior part is controlled

by the tails of the kernel and the boundedness of a. The inner part requires the
modulus of continuity a, for which we have the restriction that Rρ << ρ−1. See
Lemma 3.1 in [11] for details.

Using this, for the class of kernels satisfying (5.1)–(5.3), we have

Idτ (x) = dτ−2s(x) inf
i∈I

sup
j∈J

(
cij(τ,N, s) +O(d(x)α) +O(d(x)s)

)
,

where

cij(τ,N, s) = −C̃N,saij(0)(−Δ)s
R
(x)τ+(1).

This time, the Isaacs form of I is indexed by {aij}i∈I,j∈J through the kernels
Kaij

defined in (5.2). As in (3.8), we have denoted as (−Δ)s
R

the one-dimensional
fractional Laplacian of order 2 s and since aij(0) � a0 > 0, we can use the estimate
regarding I as in the proof of theorem 1.1.
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Concerning the exterior data, we reduce the problem to the homogeneous case
by inserting it in the source term. Namely, for ϕ ∈ L1

ω(Ωc), denote

ϕ̃(x) =
{

0 for x ∈ Ω,
ϕ(x) for x ∈ Ωc.

Now, if u is a solution of{−Iu+ |Du|p + λu = f in Ω,
u = ϕ in Ωc, (5.4)

then ũ = u− ϕ̃ is a solution of{−Iϕũ+ |Dũ|p + λũ = f, in Ω,
ũ = 0, in Ωc (5.5)

where Iϕv = I(v + ϕ̃) and satisfies the extremal inequalities

Iv + M−ϕ̃ � Iϕv � Iv + M+ϕ̃.

Observe that M±ϕ(x) is well defined for x ∈ Ω. Moreover, when ϕ is bounded in
a neighbourhood of ∂Ω, then x �→ M±ϕ̃(x) would be of order d−2s(x).

Problem (5.5) allows us to consider zero exterior condition at the expense of
imposing the extra assumptions on the ‘new’ right-hand side involving f and the
extremal operators evaluated at ϕ̃. More specifically, we will have to deal with a
function ũ satisfying

f −M+ϕ̃ � −Iũ+ |Dũ|p + λũ � f −M−ϕ̃ in Ω, (5.6)

in the viscosity sense, and vanishing in Ωc.
By the method used here, we can consider an unbounded right-hand side f sat-

isfying the following blow-up conditions at the boundary. (H1) There exist η > 0
and Cf � 0 such that

−Cf � lim inf
x→∂Ω

d(x)s+1−ηf(x) � lim sup
x→∂Ω

d(x)s+1−ηf(x) � Cf .

(H2) There exist Cf > 0 such that

−Cf � lim inf
x→∂Ω

d(x)2sf(x) � lim sup
x→∂Ω

d(x)2sf(x) � Cf .

Next, we present our version of theorem 1.1 in the current generality.

Theorem 5.1. Let s ∈ (1/2, 1), 0 < p < 2 s, Ω ⊂ R
N be a bounded domain with C2

boundary, f ∈ C(Ω) and ϕ ∈ C(Ωc) ∩ L1
ω(Ωc).

Assume K as in theorem 1.1, or with form (5.2)–(5.3). Let I be a nonlinear
operator with form (1.9), and let pi be defined as in (1.12), i = 0, 1, 2. Assume that
λ > −λ0(I).
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Then, we have the following existence results:
1. One parameter family of solutions (close to s-harmonic): If 0 < p < p2 and f

satisfies (H1) , there exists σ > 0 and a family of solutions {ut}t∈R,t�=0 ⊂ Cσ(Ω) to
(5.4), such that for each t we have

d1−s(x)ut(x) − t = O(dθ(x)),

for some θ > 0 depending on p. In particular, if t1 < t2, then

ut1 < ut2 in Ω.

2. Positive scale solution: If p1 < p < p2 and f satisfies (H1), then there exist
σ > 0 and a constant T > 0 and a function u ∈ Cσ(Ω) solving (5.4) such that

d(x)−βu(x) − T = O(d(x)θ),

for some θ > 0.
3. Negative scale solution: For p2 < p < 2 s and f satisfies (H2), then there exist

σ > 0, T > 0 and a solution u ∈ Cσ(Ω) of (5.4) such that

d−β(x)u(x) + T = O(d(x)θ),

for some θ > 0.

The proof of theorem 5.1 follows the same lines as theorem 1.1. We first observe
that there exists Cϕ > 0 such that, for all x ∈ Ω close to the boundary, we have

|M+ϕ̃(x)|, |M−ϕ̃(x)| � Cϕd(x)−2s.

In case 1, we consider a lower barrier with the form

Ut(x) = tds−1(x) − C1d
γ(x) − C2χΩ(x),

where in view of inequalities (5.6), we properly choose γ ∈ (s− 1, 0) close to s− 1
in terms of η, C1 > 0 large enough in terms of Cf , and C2 > 0 large in terms of Cϕ.

For case 2, we consider a lower barrier with the form

U(x) = Tdβ(x) − C1d
γ(x) − C2χΩ(x),

with T > 0 as in the proof of theorem 1.1, and a choice for γ ∈ (s− 1, 0), C1 > 0
and C2 > 0 similar to the mentioned in the paragraph above.

Finally, for case 3., we consider

U(x) = −Tdβ(x) − C1d
γ(x) − C2χΩ(x),

with T > 0 as in the proof of theorem 1.1, γ ∈ (0, 2 s− 1), and C1, C2 > 0 similarly
as above.

Upper bounds for all the cases can be constructed in a similar fashion.
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