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Abstract

Thermal integrity profiling (TIP) is a nondestructive testing technique that takes advantage of the concrete heat of
hydration (HoH) to detect inclusions during the casting process. This method is becoming more popular due to its ease
of application, as it can be used to predict defects in most concrete foundation structures requiring only the monitoring of
temperatures. Despite its advantages, challenges remain with regard to data interpretation and analysis, as temperature is
only known at discrete points within a given cross-section. This study introduces a novel method for the interpretation of
TIP readings using neural networks. Training data are obtained through numerical finite element simulation spanning an
extensive range of soil, concrete, and geometrical parameters. The developed algorithm first classifies concrete piles,
establishing the presence or absence of defects. This is followed by a regression algorithm that predicts the defect size and
its location within the cross-section. In addition, the regression model provides reliable estimates for the reinforcement
cage misalignment and concrete hydration parameters. To make these predictions, the proposed methodology only
requires temperature data in the form standard in TIP, so it can be seamlessly incorporatedwithin the TIPworkflows. This
work demonstrates the applicability and robustness of machine learning algorithms in enhancing nondestructive TIP
testing of concrete foundations, thereby improving the safety and efficiency of civil engineering projects.

Impact Statement

This study provides a new approach to interpreting thermal integrity profiling (TIP) using numericalmethods and
machine learning techniques. By enabling the early identification and characterization of soil and bentonite
defects that might otherwise go undetected, the proposed method improves the reliability of TIP as a non-
destructive technique to evaluate the integrity of concrete piles. The implications of this research include the
potential for more reliable and higher-quality pile construction, reducing the risk of defective pile failures,
contributing to the broader adoption of nondestructive testing technologies, and improving industry standards for
safety, efficiency, and environmental responsibility.

1. Introduction

Bored piles are one of the most common piling techniques used for structure foundations, sometimes
constructed using bentonite support fluids, as first described byVeder (1953). It improves the construction
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of bored piles through the stabilization of the walls and reduces the likelihood of soil collapse. One of the
most common construction defects resulting from this method consists of pockets of bentonite getting
trapped throughout the shaft, preventing complete placement of concrete from the intended pile volume. It
is important to evaluate the integrity of these foundations effectively, as they play a vital role in the safety
and durability of the structures they support. As an example, voids occupying ~15% of the cross-sectional
area in the central region of a pile can result in a reduction of its flexural resistance by 27–32% (Sarhan
et al., 2002).

Some common nondestructive techniques used to evaluate the integrity of concrete foundations are
based on the application of different physical principles, including the transmission of ultrasound waves,
low-frequency acoustic waves, or electromagnetic waves. Popular options include cross-hole sonic
logging (CSL), impulse response, and low-strain pile integrity testing (ASTM, 2016a; ASTM, 2016b;
French and Whittaker, 2023; Zhai et al., 2023). These methods can offer detailed subsurface information
for many types of foundations. CSL is particularly effective in detecting defects between access tubes,
while low-strain integrity testing and impulse response testing, typically performed by applying an
impulsive force at the pile head and analyzing the reflected waves, are better at evaluating major defects
near the surface.

Each method, however, has its limitations. CSL, in addition to requiring the preinstallation of access
tubes, is restricted to detecting defects that are located between access tubes, often missing smaller
anomalies and struggling with defects outside the direct test path. There are also some concerns regarding
its high false positive rate and poor integrity evaluation outside the rebar cage (Boeckmann and Loehr,
2019). Lozovsky et al. (2024) recommend combining CSL with other nondestructive methods and
conclude that the main way to overcome this method’s limitations is by adding more access tubes.
Low-strain testing and impulse response, while valuable for general assessments, struggle to predict any
defects in the lower portions of the pile and require careful interpretation of complex signals from varying
soil conditions (Finno et al., 2002). Furthermore, ASTM (2016a) states that thismethodmay not be able to
identify all imperfections, but rather major defects along the effective length. When aiming to detect
necking or weak concrete, any defects smaller than 0.5 m are very challenging to detect (Liu et al., 2019).
Conclusions fromBriaud et al. (2002) and Lim andCao (2013) indicate that none of the testing techniques
mentioned above are fully dependable at predicting defects or pile lengths, with further usage or a
combination of different methods being needed to improve their reliability.

Other techniques, like ground penetrating radar, can be used in conjunction with CSL for a more
precise evaluation of defects. This is most useful in other concrete foundation types, such as retaining
walls. The minimum defect size detectable with CSL is typically 5–10% of the pile’s cross-sectional area,
while it is expected that defects occupying between 9 and 20% of the pile’s cross-sectional area be
detected with certainty (Li et al., 2005).

In recent years, alternative methodologies have been developed to improve the accuracy and reliability
of integrity tests. Thermal integrity profiling (TIP) is a concrete pile testing technique that measures the
temperature distribution caused by concrete hydration along the shaft depth (Mullins and Kranc, 2004;
Mullins, 2010). Since cement hydration is an exothermic reaction, the heat generated dominates the
internal temperature distribution of the concrete during hydration. This is a crucial factor for its early-stage
performance, strength development, and long-term durability (Neville, 1986). This process affects curing,
mechanical properties, and can lead to potential cracking due to thermal gradients if not adequately
controlled. A reliable method to estimate the heat of hydration (HoH) is, therefore, essential, not only to
predict the curing behavior and mechanical outcomes but also to improve the interpretation of TIP results
by allowing for more precise identification of temperature anomalies that may indicate soil or bentonite
defects (Liu et al., 2022).

The core concept behind TIP is that defects in piles reduce the total HoH and can, therefore, be detected
from carefully analyzing temperature against depth data, measured at different times. In effect, having
deviations from the expected temperature profile, such as cooler areas, may indicate an absence of
concrete mass and thus suggest the presence of defects. By accurately identifying these anomalies,
remedial action can be planned to ensure that the pile satisfies the performance requirements. A careful
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analysis of the temperature field measured within a given section can also establish lateral cage
misalignments arising from the cage installation process (Johnson, 2016; Sun et al., 2021). The
effectiveness and accuracy of TIP have been extensively validated (Mullins et al., 2007; Winters,
2014; Boeckmann and Loehr, 2019).

The standard procedure for TIP consists of attaching thermocouples to the reinforcement cage, with a
longitudinal spacing of ~300 mm. These are then connected to a temperature logging device, and the
temperature versus depth graphs are analyzed post-hydration. Aminimum of four testing locations within
the pile cross-section should be provided. Testing procedures and specifications are outlined in ASTM
D7949 (ASTM, 2014).

Recent technological advancements have significantly improved TIP, particularly regarding the
measurement equipment. One notable development is the use of fiber optics for temperature readings,
replacing thermocouples, through a technique called distributed temperature sensing (DTS). Using DTS
instead of traditional thermocouples provides measurements that are more precise, higher spatial and
temporal resolution, and thus more reliable detection of defects along the pile depth. Studies have
demonstrated that DTS can better detect anomalies, such as soil and bentonite inclusions or other
structural deficiencies, by providing a more detailed thermal profile (Xiao et al., 2017; Liu et al., 2020;
Zhong et al., 2018; Wang et al., 2023). Despite its advantages, it is worth mentioning that DTS still
requires adequate equipment calibration to ensure accurate readings, and that it does not provide
informative data about areas far from any sensor.

The detection of defects through the interpretation of TIP data is far from straightforward. Temperature
readings are affected by several factors, such as the soil type, concrete mix, pile diameter, and misalign-
ments of the reinforcement cage. The size and location of the defects are also very important, and small
defects located near the center of the pile might not cause significant temperature variations close to the
pile edge, where the sensors are installed, and so can be difficult to detect. In practice, the interpretation of
the readings often simply involves a comparison of temperatures at a given section with the average
temperature at that section or along the pile. Alternatively, the temperature measurements can be
compared with finite element (FE) predictions of the temperature evolution during hydration. While
FE models adopting well-calibrated HoH models (Schindler and Folliard, 2005; De Freitas et al., 2013;
Liu et al., 2022) have been shown to be accurate, this interpretation approach is still subjective and does
not yield estimates of the size and location of the defects.

This article addresses the shortcomings described above by proposing a new data-driven approach that
can determine whether a pile is defective and the extent of a potential defect from a standard set of TIP
measurements. By leveraging the ability of machine learning (ML) to identify complex patterns between
input and output data, the developedmethodology allowed the relationship between the temperature fields
and the various influencing factors outlined above to be established. Two artificial neural networks
(ANNs)were developed using FE analysis results of theHoHof concrete piles as training data. Given a set
of temperature measurements, the first ANN classifies piles as defective or not. This is followed by a
regressionANN that predicts the size and location of the pile defect, the thermal properties of the concrete,
and the misalignment of the reinforcement cage. The robustness and predictability of the developed
ML-based approach are assessed thoroughly, including the use of noisy data, hence ensuring its reliability
and generalization ability for real-world applications. This research amplifies significantly the impact and
scope of TIP, bridging the gap between data collection and quantitative prediction and providing
considerable insights into the state of newly constructed concrete foundations.

2. Proposed approach

As outlined above, the working principle behind TIP is to identify defects based on HoH temperature
discrepancies within concrete pile foundations. Existing research has not yet produced a comprehensive
model capable of predicting defect inclusions in concrete piles, accounting for a wide range of concrete and
soil properties, as well as reinforcement cagemisalignments. The proposedmethodology aims to overcome
these challenges by training an ML model with the results from two-dimensional (2D) simulations of the
HoH generated by concrete piles. The outputs of these simulations are processed and used to train two
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ANNs: a classifier and a regressor. Figure 1 shows a flowchart of the ANN prediction process. Once these
models are available, the proposed methodology is set to fulfill the following tasks:

1. Classify piles as defective or nondefective.

For samples classified as defective:
2. Determine the defect size and its location.
3. Predict reinforcement cage misalignments.
4. Back-calculate concrete HoH parameters used in the numerical simulation, thereby enabling

further predictions of other concrete structures built using the same concrete mix.

2.1. Numerical modeling of HoH

Several theoretical models have been proposed to calculate HoH by considering cement’s chemical
reaction kinetics, but they require a large number of parameters (Parrot and Killoh, 1984; Kishi and

Figure 1. Flowchart of the defect detection model.
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Maekawa, 1996; Swaddiwudhipong et al., 2002). Schindler and Folliard (2005) proposed a model with
fewer parameters, where the HoH of a specific mixture can be characterized from the activation energy,
the degree of hydration development at the reference temperature, and the total HoH. It makes use of the
“equivalent age” concept, described as a way to normalize the concrete curing progress over time, given
the varying temperature conditions (Schindler and Folliard, 2005). A similar model is proposed by Liu
et al. (2022), which has been calibrated and validated against fieldmeasurements of hydration temperature
in piles. Numerical modeling of HoH has become a valuable tool in predicting the thermal behavior of
concrete during the early stages of curing. Some researchers have computationally modeled the exother-
mic reaction using empirical equations (Xie and Qian, 2023; Tan and Tang, 2024).

Heat transfer in soils is predominantly governed by conduction, and thus it will be the only mode
considered in this study. The transient heat conduction equation is described in Equation (1) as follows:

ρcp
∂T

∂t
�k— 2T =Phoh (1)

where ρ kg �m�3½ �, cp J � kg�1 �K�1
� �

, and k W �m�1 �K�1
� �

are the density, volumetric heat capacity, and
thermal conductivity of the material, respectively, and Phoh W �m�3½ � is the HoH power per unit volume,
which serves as the only internal heat source. TheHoHof concrete curing is calculated herein based on the
formulation given in Liu et al. (2022). This model establishes a relation between the HoH power per unit
volume and the accumulated HoH since the start of hydration. Themodel accounts for key factors, such as
the composition of cement, temperature, and reaction kinetics, but with fewer parameters than other
models previously mentioned, simplifying its use in practical applications. The key aspects of the model
formulation are summarized in the following, with further details available in Liu et al. (2022).

An S-shaped curve describes the evolution of the reference-accumulated heat per unit mass of cement
(Qref J � kg�1

cement

� �
) with time (van Breugel, 1997):

Qref tð Þ=Qmaxe
� τ

tð Þβ (2)

whereQmax J � kg�1
cement

� �
is the maximum accumulated heat per unit mass of cement, and β �½ � and τ s½ � are

model parameters to fit observed hydration data.
The heat accumulation law (Equation (2)) is subsequently differentiated with respect to time to

establish a power per unit volume, with a further correction being added to introduce the effect of
temperature via the activation energy Ea J �mol�1

� �
, resulting in:

P T , tð Þ= χρconc
dQref

dt
e
�Ea

RT
1
T� 1

Tref

h i
Qmax�Qacc tð Þ
Qmax�Qref tð Þ

 !n∗ tð Þ
(3)

where P T , tð Þ W �m�3½ � is the HoH power as a function of time and temperature, R J �mol�1 �K�1
� �

is the
universal gas constant, and n∗ tð Þ is a factor that encapsulates the effect of reaction kinetics. The
accumulated HoH, Qacc tð Þ, is given by:

Qacc tð Þ= 1
χρconc

Z t

0
P T , tð Þdt (4)

where χ kgcement � kg�1½ � is the mass of cement per unit mass of concrete and ρconc kg �m�3½ � is the concrete
density. Solving these equations gives an accurate way to predict the HoH of concrete piles.

Given its relatively simple calibration and reliance on a limited number of parameters, themodel is well
suited for field applications requiring rapid predictions, such as temperature control during curing and,
most importantly, TIP of deep foundations (Liu et al., 2022).

Themodel was implementedwith the heat transfermodule in COMSOLMultiphysics, whichwas used
to conduct transient 2D-plan thermal analyses of the HoH process. The 2D approximation assumes that
heat fluxes in the out-of-plane direction are negligible due to the large pile depth compared to its other
dimensions. This assumption holds because the applied heat and material properties remain constant
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along the pile depth (for specific soil layers), with heat transfer occurring solely within the plane containing
the cross-section. The only exception for this is the end effect, estimated to be of 1-diameter depth (Sun et al.,
2021). A parametric, time-dependent study is run across different geometric configurations.

The geometry consisted of a concrete pile centered within a circular soil domain of 15 m radius. The
boundary condition on the outer edge of the soil domain was set to a constant temperature throughout the
simulation. The size of the domain was chosen to be sufficiently large to prevent any boundary effects
from affecting the heat distribution on the pile while limiting the computational effort required. The initial
temperature across the entire domain was assumed to match that of the poured concrete and was included
in the model as an additional variable.

The HoH was modeled only within the concrete pile domain, with heat transfer occurring through
conduction in both the concrete and the surrounding soil. In samples where a defect is included, no HoH
occurs in this domain. The mesh was generated using second-order triangular elements for solving the
heat transfer problem, with a higher resolution applied to the concrete pile and its vicinity. The meshing
process was conducted using the COMSOL in-built mesher, and a sample mesh is shown in Figure 2.
Given that the model is generated parametrically, several cases considered in this study were inspected to
ensure that adequate spatial discretizations were always obtained, particularly when the edge of the defect
was located close to that of the pile. Each samplewasmodeledwith ~1,000–1,600 elements, depending on
the radius adopted for the pile.

2.2. Numerical data

A dataset comprising 100,000 simulations was produced by adopting the numerical model described
above. It included variations in awide range of geometric andmaterial parameters, listed in Table 1. These

Figure 2. Sample mesh geometry.
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include the defect geometric properties, thermal conductivities, and volumetric heat capacities of the
materials, pile, and cage displacement properties, and hydration model parameters. In this study, material
properties are assumed to be homogeneous across the domain. The input values for each of the simulations
were established using the near-random Latin hypercube sampling approach. This statistical method, first
introduced byMcKay et al. (1979), is used to sample points from amultidimensional space, ensuring that
each parameter’s range is well represented across the entire dataset. It divides each parameter’s distribu-
tion into equal intervals and selects sample points such that all intervals are covered without repetition,
improving sampling efficiency in large models. This ensured that all geometric and material parameter
combinations were representative of the real-world variability of data in a computationally efficient way,
thereby enabling the model to predict defects among a wide range of soil, concrete, and defect types. The
lower and upper bounds for each of the parameters being varied are provided in Table 1. The parameter
range defined by these bounds was deliberately made very large, hence ensuring that they covered any
potential parameter combination to be encountered in practice. Even though some combinations are
unlikely to occur in real-life conditions, this broader range is beneficial for the generalization of themodel,
thus preventing overfitting to a narrow subset of conditions.

Soil or bentonite defects were modeled as circles in the cross-sectional plane. Complex defect shapes
were not evaluated throughout this study, as the impact of a defect on the HoH generation is more
dependent on its area (or volume when considering three-dimensional [3D] problems) rather than its
shape. Only defects with an equivalent area >2% of the pile cross-sectional area were considered, as the
temperature variations generated by smaller defects would be too small to allow identification, particu-
larly when these are located away from the probes, that is, toward the center of the pile. Furthermore, it
could be argued that these are not defects at all. In turn, the largest modeled radius of the defect is 80% of
that of the pile (i.e., equivalent to 64% of the total pile area). Due to the randomized nature of the defect
parameter generation, the defect-to-pile radius ratios follow a uniform distribution. When these ratios are

Table 1. Numerical model parameters

Parameter
Lower
bound

Upper
bound Unit Description

θdefect 0.0 2π [rad] Angular position of the defect
rd,def 0.0 1.0 [–] Ratio of radial distance of the defect centroid to the pile

center
rdef 0.1414 0.8 [–] Ratio of defect radius to pile radius
λsoil 0.5 5.0 [W/(m K)] Thermal conductivity of soil (Grirate et al., 2016; Zhang

et al., 2017; Wu et al., 2025)
λconc 0.5 4.0 [W/(m K)] Thermal conductivity of the concrete (Asadi et al., 2018;

Lu et al., 2021; Di Girolamo et al., 2022)
λdef 0.5 5.0 [W/(m K)] Thermal conductivity of the defect
Cp,soil 1,000 3,000 [kJ/(m3 K)] Volumetric heat capacity of soil (Kodesová et al., 2013)
Cp,conc 1,500 2,500 [kJ/(m3 K)] Volumetric heat capacity of concrete (Tatro, 2006)
Cp,def 1,000 3,000 [kJ/(m3 K)] Volumetric heat capacity of the defect
rpile 0.3 1.2 [m] Pile radius
θcage 0.0 2π [rad] Angular position of the cage shift
rcage 0.0 0.065 [m] Radial distance of the cage shift
β 0.35 1.05 [-] HoH model parameter
τ 35,000 105,000 [s] HoH model parameter
Qmax 150 450 [kJ/kg] Maximum heat generation capacity of the concrete mix
χρ 300 500 [kg/m3] Mass of cement in concrete
Tpour 10 25 [°C] Initial (concrete pour) model temperature
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converted to defect radii and the associated defect areas are calculated, 53% of defects have an equivalent
area of <20%of the pile’s cross-sectional area, thus aligningwith themost commonly observed defect size
in practice (Sarhan et al., 2002; Sun et al., 2024). The material properties of the defect are generated
independently from the surrounding soil or concrete, accounting for other alternatives, such as loose soil
or bentonite.

In order for the dataset to be most relevant to real-world scenarios, where the presence of a defect
within the pile would not be known a priori, samples with and without defects were included. This
approach enables the ANNmodels to generalize beyond defect-only cases, producing predictions that are
more robust.

Temperature values were measured across eight probe locations spaced radially at equal angles, as
shown in Figure 3. The temperature probes are located near the edge of the concrete pile, leaving a 75mm
cover. As the outer part of the shaft is themost relevant for its bending capacity, identifying defects in these
regions is particularly important (Mullins, 2010). Temperature values from each of these probe locations
were stored every 0.05 days for the first 5 days after pouring, leading to 101 temperature values per probe,
per sample. A node was placed at each of the probe locations such that the temperature values were
established directly from the FE calculation, rather than relying on interpolation.

A total of 586 parameter combinations, including a defect, could not be computed because of meshing
complications; they all corresponded to cases where the edge of the defect was very close to one of the
probes. The affected samples represent ~0.6% of the total. Latin hypercube sampling ensures that samples
are distributed across the entire range of the input variables, making it robust to small changes (Forrester
et al., 2008). This suggests that even if a few samples are removed, the remaining dataset can still be
representative of the design space due to the stratified nature of the sampling technique, and therefore, the
parameters can still be assumed to be randomly distributed.

When pile rebar cages are inserted into bored piles, they can displace from the design position. To
account for this effect, two parameters, θcage and rcage are generated to simulate the potential cage shift as a
function of the angular direction and radial distance from the origin. These define the angle of cage shift
and its magnitude, ranging between 0–2π and 0–6.5 cm, respectively.

The defect area and the centroid’s Cartesian coordinates were calculated analytically. Defects could
overlap the soil domain, potentially leading to noncircular shapes. In cases when these defects partly
extend beyond the edge of the concrete pile, they were trimmed such that only the portion originally
within the concrete section was considered as defect, with the material properties being assigned

Figure 3. Pile and defect geometry.
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accordingly, whereas the remaining portion of the circle (i.e., outside the concrete section) was assumed to
be soil. The area and centroid coordinates were then calculated usingMonte Carlo integration, a statistical
method commonly used to estimate the area of complex shapes, although analytical solutions exist for this
specific geometric problem. This involves the random sampling of points (Ntot) within the region
bounded by the concrete pile and defect, and counting how many falls within the intersecting section.
The proportion of points (Nin) that fall within the intersection of the two circles (pile and defect) was used
to estimate the area of the defect (Equation (5)), while the average coordinate of the points inside the
intersection provided an estimate of the section centroid, as shown in Equations (6) and (7). To produce
accurate area and centroid estimations, four million points were randomly generated for each sample.

A≈
Nin

Ntot
�Abound (5)

xc =
1
A

Z
A
xdA≈

1
N

XN

i = 1
xi (6)

yc =
1
A

Z
A
ydA≈

1
N

XN

i = 1
yi (7)

2.3. ML model

In order to develop the proposed methodology for defect detection in bored piles using TIP, two ANN
models were created: the first to establish whether a defect is present, and the second to estimate the defect
size and location, cage shift, and concrete properties of the sample pile when a defect is identified. Figure 4

Figure 4. Flowchart showing the ANN creation process.
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summarizes the process to generate data and train the ANN. The ANN models were built using the deep
learning package Keras (Chollet, 2021) and the procedures employed to do so are detailed in the
following.

2.3.1. Data processing and ML inputs
The FE output for all samples and probes was preprocessed before being passed to the ML training
process. To decide on themodel inputs, a statistical analysis of temperature values was conducted for each
probe, including the maximum temperature recorded at any time, the average temperature over the 5-day
simulation period, the maximum temperature differences between all probes, and the time instants at
which these maximum temperatures occurred. The concrete ratio of the mix, initial temperature, and pile
radius were also used for model training. These were included as inputs for both the classification and
regression modes. In addition to those inputs, the regression ANN model also incorporated temperature
data recorded at intervals of every 0.25 days between t = 0.25 and t = 2 days, as well as at t = 3, 4, and
5 days for each probe. It is worth noting that by using exclusively temperature values as inputs to the ANN
models, the proposed approach does not require any field or laboratory testing to assess hydration
parameters, which are, in fact, returned by the regression ANN. The dataset used throughout this
publication is available on Sánchez Fernández (2025).

To maximize the performance of the models, it is important to consider the different input parameters
that have the greatest impact on the resulting output. Spearman’s correlation coefficient (rs, see
Equation (8)) was used to study these relationships. This coefficient measures the relationship between
two continuous variables, ranging from �1 to +1. Unlike Pearson’s correlation coefficient, which
assumes a linear relationship and normally distributed data, Spearman’s correlation coefficient measures
the monotonic relationship between two variables, regardless of whether they are linear or not, by
comparing their rank orders instead of their actual values. Spearman’s correlation is more robust to
outliers than Pearson’s, as it evaluates the relative ranking of the data points rather than their magnitude
(Moscarelli, 2023).

rs = 1� 6
P

d2i
n n2�1ð Þ (8)

In Equation (8), di is the difference in the ranks of corresponding data points, andn is the number of
data points. Figure 5 shows the Spearman’s correlation coefficients for the regression model inputs and
outputs, while Figure 6 presents the Spearman’s correlation coefficient for the input variables of the
classifier algorithm. Each individual cell in the heatmap corresponds to a probe value within the overall
cluster. The results indicate that most variables exhibit weak correlations, except for the average and
maximum temperatures, which are naturally highly correlated as they arise from the same time series.
Despite their correlation, these inputs are essential for capturing the characteristics of the temperature field
within the hydrating pile problem, which is fundamental to the model’s performance at predicting the
presence, size, and location of defects.

In addition to the possibility of reinforcement cage misalignment, which affects the position at which
temperatures are measured, the accuracy of temperature readings for TIP is a critical consideration.
Measurement inaccuracies can significantly affect the thermal profiles and their subsequent assessment
and interpretation. Introducing noise serves as a powerful generalization mechanism that improves the
reliability of ML outputs by simulating the variability typically observed in real-world data (Vogt et al.,
2010). By adding controlled perturbations to the raw deterministic data, the model learns patterns more
robustly, leading to reduced overfitting. In TIP measurements, most of the noise comes from the sensor
accuracy during testing.

Raman-based distributed fiber optic sensors (DFOS) are the preferred choice when using nondestruc-
tive integrity evaluation techniques such as DTS (Hartog, 2017). Some distributed temperature-sensing
models, such as the Sentinel DTS, can achieve temperature measurement accuracies as fine as 0.01°C,
with resolutions of 1 m for up to 45 km (Sensornet, 2021). Other sensors, summarized in Table 2, also
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Figure 5. Spearman’s correlation coefficient between the model inputs and outputs.

Figure 6. Spearman’s correlation coefficient for the model inputs.
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provide very high accuracies and resolutions. In addition to sensor accuracy, in practice, spatial resolution
(SR) plays a large role in DFOS temperature readings (Bao and Chen, 2012). Since Raman-based DFOS
returns a weighted average temperature across its SR, discrepancies between actual and measured
temperatures can arise (Pradhan and Sahu, 2015). However, as the model in this study relies on 2D
numerical data, SR effects cannot be explicitly incorporated. Therefore, to account for these effects, a
normally distributed noise with a standard deviation of 0.1°C will be added to all temperature readings,
resulting in 99.7% of the noise values being within ±0.3°C. This level of accuracy, in line with that of the
sensors listed in Table 2, aids in ensuring the generalization of the ML model while maintaining realistic
conditions for TIP. Introducing greater variation would potentially result in predictions that would be
unreasonably inaccurate when compared to those in the field, as high-accuracy equipment is an inherent
requirement for the method, both with respect to SR and sensor accuracy.

2.3.2. Classification algorithm
An ANN was developed to perform the binary classification of piles into defective and nondefective,
using the “KerasClassifier” algorithm. The dataset was split into training, validation, and testing sets,
using an 80-10-10 split to ensure sufficient data is provided for both model training and validation. In
terms of the number of samples, this corresponds to 79531-9941-9942. Before training, all input features
were standardised using z-score normalization. The architecture of the ANN was established following a
grid search approach (Raschka, 2017). The best architecture was identified based on its performance from
a 10-fold cross-validation. It consisted of three densely connected hidden layers with neuron counts of
3,000, 1,500, and 300, respectively. Rectified linear unit (ReLU) activation functions were used in all
hidden layers, allowing the model to learn nonlinear patterns in the data. A sigmoid activation function
was applied to the output layer to perform binary classification (defect or no defect). The loss functionwas
set to binary cross-entropy. The model was trained using the Adam optimizer with an initial learning rate
of 0.001. A learning rate reduction strategy was also implemented, where the learning rate was reduced by

Table 2. Summary of different temperature sensor accuracies as reported in the literature

Publication Sensor type Model
Temperature
accuracy (°C)

Spatial
resolution
(m)

Sensing
range (km)

Chen et al. (2015) DFOS (Raman) – ±0.2 0.93 2.5
Soga and

Luo (2018)
DFOS (Raman) Halo-DTS ±0.45 (2σ) 2 4

LIOS-EN- SURE-
OTS700

±1.0 (2σ) 1–5 30–70

Sentinel DTS-XR-
SM

±0.05 (2σ) 1 20

Foresight-BDTS ±0.3 (2σ) 1 10
Moser et al. (2024) Vibrating wire Geokon–4700 ±0.5 N/A N/A

DFOS (Raman) MMF SEN 2
XRM

±0.02–0.12 1–2 15–45

Fairbairn and
Azenha (2019)

Thermocouple Type K ±1.5–2 – –

Thermocouple Type T ±0.5–1 – –

Resistance
temperature
detector

PT100 ±0.2 – –

Du et al. (2019) DFOS – ±0.08 – –

Van de Giesen
et al. (2012)

DFOS (Raman) – ±0.1 1–2 5
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a factor of 0.1 if no improvement was observed in validation loss for five consecutive epochs. The model
was trained using a batch size of 800 samples and a maximum of 150 epochs. To mitigate overfitting, a
dropout rate of 0.4 was applied to each hidden layer. In addition, early stopping was implemented,
stopping the training process if no improvement in validation loss was detected after 10 epochs. This
prevented overfitting by ensuring themodel did not continue training once it had sufficiently learned from
the data.

The resulting defect-labeled samples, both true and false positives, are then passed on to the regressor
to evaluate each sample further.

2.3.3. Regression algorithm
The regression algorithm presents a similar structure in complexity compared to the classifier. The
algorithm chosen for this task was “KerasRegressor.” This regressor was trained to predict the size and
location (x and y coordinates) of defects within the pile cross-section, potential cage shifts, and back-
analyze three concrete HoH parameters: β, τ, and Qmax.

The configuration of the model included three densely connected hidden layers with 1,500, 750, and
250 neurons, respectively, each using ReLU activations. Batch normalization was applied after each
hidden layer to improve training stability, alongwith a dropout rate of 0.4. The regressor was trained using
the Adam optimizer with a learning rate of 0.001 and a batch size of 400 samples over 150 epochs.
Reduced learning rate and early stopping were also included. The model’s loss function was the mean
squared error (MSE) function, as shown in Equation (9). Themodel was trained on the same dataset as the
classifier and subsequently validated and tested on the true and false positive samples labeled by the
classifier. This produced an environment that not only determines the presence of inclusions, but also
characterizes their size and location.

MSE =
1
n

Xn

i= 1f g xi�bxið Þ2 (9)

3. Results and discussion

3.1. Classification ANN

A total of 9,942 samples were used to evaluate the performance of the classification ANN model. The
confusion matrix for the test set, shown in Figure 7, demonstrates the excellent classification ability of the
model: about 94% of the samples were classified correctly. The model only misidentified a limited
number of pile samples with defects, mislabeling 571 of these as false negatives (i.e., the classifier
indicates the absence of a defect when there was indeed one). The number of false positives is lower in
comparison, mislabeling 77 samples (i.e., the classifier returns the existence of a defect when one was not
present). The receiver operating characteristic (ROC) curve, shown in Figure 8, further illustrates the
model’s effectiveness by depicting its true positive rate against the false positive rate at various threshold
levels. The area under the curve (AUC) is 0.97, indicating a high level of classification accuracy (a value
of 0.5 would indicate that the classification was as good as a random guess and 1.0 would suggest perfect
classification).

Figure 7. Confusion matrix for the test set.
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Figure 9 presents the accuracy curve for the training and validation datasets. These curves serve as
useful indicators of potential overfitting. Consistent with the above, themodel shows very good predictive
performance. The obtained training and validation accuracies are 0.938 and 0.935, respectively, suggest-
ing that themodel is effectively capturing patterns in the data without overfitting. This allows themodel to
generalize well to new, unseen data.

Figure 8. ROC curve for the test set.

Figure 9. Train and validation accuracy for each epoch.
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An attempt was made to lower the classifier’s decision threshold to reduce the number of false
negatives. However, the model exhibited a high degree of confidence in its false negative predictions.
Adjusting the decision threshold, therefore, provides no meaningful improvement in model performance,
as the false positive rate increases by similar amounts as the false negative decreases.

Figure 10 shows the model’s accuracy at predicting defect samples based on their radial distance from
the center of the pile; for reference, samples have been grouped in bins of equal width, and the 90%
accuracy mark is indicated by the solid red line. As expected, given the location of the probes, the model
struggles to identify some of the defects located within the central 20% of the pile’s radius. In contrast, for
defects situated in the outer 80% of the pile’s radius (or 96% of the equivalent pile area), the model’s
accuracy is nearly perfect. This trend aligns with the findings of Boeckmann and Loehr (2019), who
observed that TIP techniques tend to underperform when attempting to detect inclusions within the
interior of the reinforcement cage, that is, at locations distant from measurement optic cables.

When evaluating the model’s performance across defects categorized by relative and nominal area, as
shown in Figures 11 and 12, defect size is shown to play an important role. In effect, themodel demonstrates
higher accuracy for larger defects, consistent with the expectation that larger anomalies generate more
distinguishable disturbances in the temperature field, making it easier for the model to classify correctly.

Smaller defects are likely to produce only subtler disturbances in the temperature distribution, which,
added to the additional noise included artificially, lead to a higher rate of misclassification. For a target
accuracy of 0.9, the existence of defects with areas >0.17 m2 (0.23 m radius) will be correctly predicted.
Even the smallest defects, with an area of ~0.05 m2 (0.12 m radius), are detected with over 70% accuracy.

Ashlock and Fotouhi (2014) conclude that a lower bound of at least 8% in relative area is required for
TIP to predict inclusions accurately, as these produce barely detectable temperature differences. In this
respect, TIP performance is proven to be similar to that of other common pile integrity testing methods
such as CSL. Li et al. (2005) report that the minimum detectable defect size ranges between 2 and 7% of
the pile cross-sectional area, with defects with radii smaller than 0.1 m being undetectable. According to
that study, achieving a target accuracy of 0.9 requires defect sizes ranging from 7.5 to 15% of the pile area,
which is similar to the results of the MLmodel presented herein. Amir and Amir (2009) performed a CSL

Figure 10. Accuracy versus defect radial position for defect-labeled samples.
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test on a pile with three artificial defects and concluded that flaws are only detectable between access tubes
if they are >10% of the pile cross-sectional area.

Clearly, despite the results suggesting that the classification model has a lower prediction accuracy for
defects located toward the pile center and of reduced size, a very high accuracy can be achieved for all
types of soil, concrete, and defect characteristics.

The previous results show that most cases where the model misclassifies a defective pile share one
condition: the defects are located at, or close to, the pile center. By excluding all samples locatedwithin the

Figure 11. Accuracy versus defect area–pile ratio for defect-labeled samples.

Figure 12. Accuracy versus defect area for defect-labeled samples.
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central section defined by 20% of the pile radius, near-perfect accuracy is achieved, as depicted in
Figure 13. This further confirms that the primary limitation of TIP in defect classification is the proximity
to the nearest probe rather than defect size. TIP’s overall accuracy would significantly increase should a
central optic cable be installed in the pile being monitored. To further corroborate this statement, an
additional study was carried out where a ninth fiber optic cable is included at the pile center, whose results
are shown in Section 3.3.

3.2. Regression ANN

The regression model was tested on 4,422 positive-labeled samples, 77 of which were false positives
returned by the classifier. The performance metrics used to evaluate the results are the root MSE (RMSE),
the mean absolute error (MAE), and the coefficient of determination (R2), defined in Equations (10)–(12),
respectively. In these expressions, xi represents the true value, bxi is the predicted value, SSresidual is the sum
of squared residuals, and SStotal is the total sum of squares. Clearly, given their definitions, better
predictions are characterized by values of RMSE and MAE closer to 0 and R2 values closer to 1. The
errors and performance results for all predicted output variables are provided in Table 3.

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN

i�1
xi� bxið Þ2

r
(10)

MAE =
1
N

XN

i�1
xi� bxij j (11)

R2 = 1�SSresidual
SStotal

(12)

Figure 14 shows the real versus predicted values for the output variables. Predictions are particularly
accurate for the defect position and area, arguably the most important parameters to identify. The cage

Figure 13. Accuracy versus defect area–pile ratio for samples in the outer 80% of the radial distance.
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Table 3. Regressor performance metrics for the test dataset

Variable RMSE MAE R2

β —½ � 0.043 0.033 0.955
τ s½ � 10,099 7,336 0.747
Qmax kJ �kg�1½ � 46.07 35.98 0.719
Cage misalignment (x) m½ � 0.010 0.007 0.858
Cage misalignment (y) m½ � 0.010 0.007 0.858
Defect position (x) m½ � 0.057 0.036 0.963
Defect position (y) m½ � 0.057 0.037 0.964
Defect area m2½ � 0.128 0.079 0.923

Figure 14. Correlation between real and predicted variables for 4,422 samples.
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Figure 15. Graphical representation of predicted and real defects and cage displacements for five
representative samples.
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misalignment was identified within 7-mm precision, and the defect position within 4 mm, as given by
the MAE. The back-calculation of the concrete HoH parameters presents lower accuracies, particu-
larly the parameter controlling the heat evolution over time, τ, and the maximum heat generated per
unit of mass, Qmax. However, while this information can be useful to predict the hydration response of
other structures using the same concrete mix, these values are naturally less important as an outcome of
a TIP analysis, where the focus is necessarily on the prediction of the characteristics of any existing
defect.

Overall, the model captures general trends with very high accuracy, despite the artificial noise added to
the data and the broad range considered for all parameters. Figure 15 shows the graphical comparison of
the real and predicted defects, along with the rebar cage shift, for five samples representing the 10th, 25th,
50th, 75th, and 90th percentiles in percentage error performance. Samples in the lower percentiles predict
defects smaller than the real value. The opposite is true for higher percentiles, with the 50th percentile
representing an accurately predicted sample. To assess the impact of these prediction inaccuracies on the
thermal profile of the samples, the temperature evolution was recalculated in the FE model using the new
predicted values for predicted defect size, location, and reinforcement cage shift. These are shown in
Table 4. Despite slight inaccuracies in defect characterization, temperature discrepancies are negligible,
staying below 1°C for all samples and temperature statistical variables.

Figure 16 illustrates the real and predicted defect to pile area ratios, with each sample represented by a
dot color-coded according to its distance from the pile center. Consistent with the findings in
Section 3.1, the size of a significant number of central defects is substantially underestimated in size.
This is because the temperature at the sensors does not clearly reflect the presence of the defects, and
therefore, the ANN could not learn the patterns as well as for defects closer to the sensors. In some cases,
these central defects are difficult to predict by the regressor, as the model likely interprets the overall
lack of heat as resulting from factors like a reduced Qmax or elevated thermal conductivity, rather than
from a significant absence of concrete mass. Consequently, themodel predicts near-zero defect sizes for
these samples, even though some of them are large. Conversely, a few smaller defects closer to the pile
edge are slightly overestimated in size.

Figure 17 shows themodel loss function (MSE), over the training process of 150 epochs. The similarity
between the error obtained for the training and validation sets is indicative of the good generalization
ability of the model to unseen data.

3.3. Additional central probe

To address the challenge of mislabeled samples concentrated near the center of the concrete pile, training
both the classifier and regressor models by incorporating data from a central fiber optic probe was explored.
Integrating a central probe within standard rebar cages can be challenging due to installation complexity,

Table 4. Comparison of hydration temperature values caused by real and predicted defects and cage
displacements for five samples selected based on the associated error

Sample
Avg temp
real (°C)

Avg temp
pred. (°C)

Max temp
real (°C)

Max temp
pred. (°C)

Time at
max temp
real (d)

Time at
max temp
pred. (d)

10th percentile 19.18 18.21 (�5.1%) 29.16 28.73 (�1.5%) 1.12 1.16 (3.6%)
25th percentile 14.04 13.62 (�3.0%) 27.31 26.72 (�2.2%) 1.26 1.27 (0.8%)
50th percentile

(near-zero error)
7.47 7.46 (�0.1%) 11.5 11.58 (0.7%) 2.28 2.22 (�2.6%)

75th percentile 6.53 6.77 (3.7%) 9.86 10.31 (4.6%) 2.26 2.4 (6.2%)
90th percentile 3.69 4.01 (8.7%) 5.69 6.32 (11.1%) 0.93 0.92 (�1.1%)
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making its feasibility dependent on project-specific considerations and contractor discretion. This
section highlights the improvements in terms of predictive performance that can be expected by adding a
central probe in TIP experiments, thus informing potential future adaptations to this methodology.

Figure 16. Correlation between real and predicted defect-to-pile area ratio, with samples colored based
on radial distance to pile center.

Figure 17. Evolution of training and validation loss with epochs.
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The classifier and regressor models were configured as described in Sections 2.3.2 and 2.3.3. With
the inclusion of central fiber optic data, the test accuracy of the classification model increased, yielding
an R2 value of 0.974 (up from 0.935). Figures 18 and 19 show the confusion matrix and the training and
validation loss curves during the training process, respectively. The false positive rate decreased by
38% compared to the original model, where only radial probes were used, while the false negative rate
saw a reduction of 63%. The training and validation R² scores reached 0.980 and 0.978, respectively,
indicating that overfitting is not expected to have taken place. Furthermore, the area under the ROC
curve (AUC) increased from 0.97 to 0.99 by adding the central probe. This shows how adding the
additional central probe can improve the model’s ability to detect accurately the presence or absence of
defects.

The results in terms of accuracy versus defect area are presented in Figure 20. The target accuracy is
now reached for sampleswith defect areas larger than 0.07m2, which is considerably smaller than the 0.17
m2 required by the original model. Indeed, defects with an area exceeding 0.14 m² were detected with

Figure 18. Confusion matrix for the nine-probe test.

Figure 19. Train and validation accuracy for each epoch, for the nine-probe test.
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near-perfect accuracy. When considering defect to pile area ratios, the minimum defect sizes are found to
be 3 and 6% for target accuracies of 0.8 and 0.9, respectively. The results agree with the conclusions
presented by Sun et al. (2024), who identified the minimum detectable defect area to be 4–5% of the pile
cross-sectional area when using eight radial and one central fiber optic cables.

The regression results are tested on 4,754 samples. Table 5 shows the performance metrics (MAE,
RMSE, and R2) for the updated regressor, together with percentage improvements with respect to the
results discussed in Section 3.2. It can be seen that all performance metrics improve when an
additional central probe is included. Among all the output variables, the defect area and position
show the greatest improvement in predictive accuracy, with 34 and 29% improvement is the MAE,
respectively. Figure 21 shows the real versus predicted variable plots for all output variables. The
improvement is obvious with respect to Figure 14, as all variables plot in a narrower band around the
1:1 dashed red line.

Figure 20. Accuracy versus defect area for the nine-probe results.

Table 5. Performance metrics and improvement (%) for regression model with nine probes

Variable RMSE MAE R2

β [—] 0.037 (�14.1%) 0.028 (–15.7%) 0.967 (+1.24%)
τ [s] 9,223 (�8.67%) 6,359 (�13.3%) 0.789 (+5.63%)
Qmax [kJ/kg] 40.95 (�11.1%) 31.73 (�11.8%) 0.779 (+8.16%)
Cage misalignment (x) [m] 0.008 (�23.0%) 0.005 (�29.0%) 0.916 (+6.76%)
Cage misalignment (y) [m] 0.008 (�24.2%) 0.005 (�28.0%) 0.919 (+7.1%)
Defect position (x) [m] 0.044 (�23.2%) 0.026 (�29.1%) 0.977 (+1.41%)
Defect position (y) [m] 0.042 (�26.1%) 0.026 (�30.0%) 0.979 (+1.53%)
Defect area [m2] 0.085 (�34.1%) 0.052 (�34.4%) 0.965 (+4.63%)
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4. Conclusions

This study presents a comprehensive ML classification and regression model developed as a proof of
concept to detect soil or bentonite inclusions in drilled foundations based onTIP data. Themodel is trained
based on a conservative scenario, where a large range of variation inmaterial properties is considered. The
model’s robustness was improved by adding random noise to all temperature readings, therebymitigating
the inherent determinism of numerical FE data. The following conclusions can be drawn:

- The classifier can label correctly 94% of the processed samples. Thermal variations in the central
section of the pile are challenging to capture due to the probes’ positioning near the edge of the pile,
limiting detection capability in these regions. The overall accuracy of the model is very good
(R2 = 0:935).

- The false positive rate is significantly lower than the false negative rate. False negatives are primarily
associatedwith defects of varied sizes locatedwithin the central 25%of the pile radius. These defects
remain undetected due to the considerable distance to the nearest optical fiber probes.

- Through regression, very high accuracies can be achieved when predicting defect size, location, and
cage misalignment. Hydration parameters can also be back-calculated with reasonable precision.

Figure 21. Correlation between real and predicted variables for the nine-probe model.
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- Including a central probe can significantly improve the ability to predict defects located close to the
pile center, particularly through the reduction of false negatives in the classification stage. The
inclusion of an additional probe leads to improvements across all labels, with reductions inMAE for
defect location, size, and cage misalignment ranging between 28 and 35%. Therefore, it is
recommended to include an additional probe if conditions allow.

This study focused on demonstrating the potential of ML techniques in TIP using data generated through
2D modeling. For greater applicability to complex structures, the model can be expanded to simulate the
pile behavior in 3D, potentially covering additional defect types, such as necking, uneven radii, or internal
steps. Currently, each sample with defects includes only a single circular defect. Incorporating multiple
defects and/or varying their shape in future simulations may provide a more accurate representation of
real-world construction scenarios.

List of abbreviations
ANN artificial neural network
AUC area under the curve
FE finite element
HoH heat of hydration
MAE mean absolute error
ML machine learning
RMSE root mean square error
TIP thermal integrity profiling
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