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We study liquid plugs in the pulmonary airways based on the two-phase axisymmetric
weighted residual integral boundary-layer model of Dietze et al. (J. Fluid Mech., vol.
894, 2020, A17), which was originally developed to study liquid films coating the
inner surface of a cylindrical tube in interaction with a core gas flow. The augmented
form of this model, which was never applied beyond a proof of concept, allows for
the representation of liquid pseudo-plugs. Here, we demonstrate its predictive power vs
experiments and direct numerical simulations, in terms of the dynamics of plug formation
and the characteristics of developed liquid plugs, such as their shape, flow field, speed and
length, as well as the associated wall stresses and their spatial derivatives. In particular,
we show that the augmented model allows us to establish a direct continuation path
from travelling-wave solutions (TWS) to travelling-plug solutions (TPS). We then apply
the model to predict mucus plugs in the conducting zone of the tracheobronchial tree,
based on the lung architecture model of Weibel. We proceed by numerical continuation
of travelling-state solutions in terms of the airway generation, whereby we impose the
wavelength of the linearly most-amplified convective instability (CI) mode or that of the
absolute instability (AI) mode. We identify the critical airway generation for liquid-plug
formation (TWS/TPS transition), maximum potential for wall-stress-induced epithelial
cell damage and CI/AI transition, and investigate how these phenomena are affected by the
main control parameters, i.e. airway orientation vs gravity, air flow rate, mucus properties
and airway size.

Key words: thin films, pulmonary fluid mechanics

1. Introduction

Liquid plugs forming as a result of the Plateau–Raleigh instability from a liquid film
coating the inner surface of a cylindrical tube (figure 1) occur in several applications,
e.g. in pulsating heat pipes as a result of phase transition (Nikolayev & Marengo 2018),
in concepts for cleaning contaminated surfaces (Zoueshtiagh, Baudoin & Guerrin 2014;
Khodaparast et al. 2017), in surfactant replacement therapy (SRT), where a surfactant-rich
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Figure 1. Liquid plugs (subscript 1) enclosing a gas bubble (subscript 2) formed by the occlusion of a
narrow cylindrical tube by a falling liquid film lining its inner surface. (a) Problem sketch and notations.
The tube radius R� is used as the length scale, the star superscript designating dimensional quantities;
(b) travelling-state solution obtained from our model (2.13) for a vertical configuration: Ka = 121.4 (silicone
oil II in table 1), R� = 1.5 mm, L = Λ = 5.4, V1/π/R3 = 2.85, M = 1, dplug = 0.01, Re1 = 14.6, Re2 = 30.8,
where L, Λ, V1, M, dplug and Re denote the domain length, wavelength, liquid volume, normalized gas pressure
drop (2.18), pseudo-plug core radius (2.13c) and Reynolds number, respectively. Streamlines in the moving
reference frame within the liquid (blue lines) and gas (red lines). Dot-dashed green lines correspond to
spherical-cap reconstruction (2.14) between patching points marked by asterisks.

liquid is injected into the lungs (Filoche, Tai & Grotberg 2015), and in airway occlusion
(Grotberg 1994, 2011), typically when the mucus film lining the pulmonary airways
exceeds the threshold volume for liquid unduloids (Everett & Haynes 1972).

In the current manuscript, we are mainly interested in airway occlusion, where
hydrodynamical studies have focused on two key issues: (i) predicting the threshold for
liquid-plug formation under increasingly realistic operating conditions, which is essential
for designing effective assisted ventilation protocols (Halpern, Jensen & Grotberg 1998);
and (ii) predicting the wall stresses associated with liquid plugs, which are known to
cause epithelial cell damage (Bilek, Dee & Gaver 2003). We aim to contribute to these
tasks by applying the two-phase axisymmetric weighted residual integral boundary-layer
(WRIBL) model of Dietze & Ruyer-Quil (2015), which was augmented in Dietze, Lavalle
& Ruyer-Quil (2020) for the representation of liquid plugs.

We start by describing the state of the art on the fluid mechanics of liquid plugs, with
particular attention to their occurrence in the human lung. The modelling of liquid plugs
was initiated by Bretherton (1961), who predicted the shape of a long Taylor bubble
(Taylor 1961) propagating in a liquid-filled narrow cylindrical capillary, in the absence
of gravity and for a passive gas, i.e. Πμ = Πρ = 0, where Πρ = ρ2/ρ1 and Πμ = μ2/μ1
denote the gas/liquid density and dynamic viscosity ratios. This solution was based on the
lubrication equations describing the thin liquid film enclosing the gas bubble, which are
obtained by truncating the governing equations at order ε0 in the long-wave parameter,
ε = h�/Λ� (stars will denote dimensional quantities throughout), which relates the liquid
film thickness, h�, to the wavelength, Λ�, of the bubble/plug arrangement (see figure 1).
This lubrication solution is matched to two spherical caps at the leading and trailing
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ends of the bubble. Subsequent works retained the assumption of inertialess flow, but
made technical improvements, such as accounting for the finite thickness of the residual
film (Aussillous & Quéré 2000; Klaseboer, Gupta & Manica 2014), or by accounting
for higher-order viscous effects, via asymptotic expansions in terms of the capillary
number, Ca = μ1 U2/σ , where μ1, U2 and σ denote the liquid dynamic viscosity, the gas
superficial velocity and the surface tension, and/or in terms of the long-wave parameter, ε

(Park & Homsy 1984; Jensen et al. 1987). Other works accounted for the effect of gravity
(Jensen et al. 1987; Lasseux 1995; Atasi et al. 2017), a contact line at the leading front of
the liquid plug (Kalliadasis & Chang 1994; Bico & Quéré 2001) or a flexible tube wall
(Howell, Water & Grotberg 2000).

Lubrication models following the above-described approach have been applied to
simulate liquid plugs in the pulmonary airways. For example, Suresh & Grotberg (2005)
investigated the effect of gravity on the liquid distribution within a liquid plug upstream of
an inclined airway bifurcation, in order to quantify the maldistribution into the daughter
airways. More recently, Fujioka et al. (2016) introduced a three-zone model for long
liquid plugs, where the non-interacting leading and trailing menisci were represented
via lubrication solutions from the literature (Kalliadasis & Chang 1994; Klaseboer et al.
2014). The authors applied their model, which compares favourably with direct numerical
simulations (DNS) in regimes with negligible inertia, to study the transient evolution of
pressure-driven liquid plugs, leading up to plug rupture. Throughout the manuscript, we
will designate numerical simulations based on the full Navier–Stokes equations as DNS,
even though these simulations do not concern turbulent flows. The authors also determined
correlations for the maximum wall stresses and their spatial derivatives, in order to predict
the potential for epithelial cell damage.

When inertia is not negligible, the low-dimensional representation of liquid plugs in
cylindrical tubes needs to be extended beyond the lubrication approximation (Heil 2001).
For example, Aussillous & Quéré (2000) extended the lubrication solution of Bretherton
(1961) based on an empirical approach by incorporating the Weber number, which relates
inertia to capillarity. A different approach was followed in Dietze et al. (2020), where we
introduced an augmented simplified order-ε2 WRIBL model that represents the dynamics
of a liquid film coating the inner surface of a cylindrical tube of radius, R�, in contact with a
core gas flow. A repulsive source term, Πϕ , which enters the integral momentum equation
(2.13a) and which will be defined in § 2 (see (2.13c) there), allows us to stabilize the
liquid–gas interface when the core radius, d�, becomes very small, i.e. d� = d�

plug � R�.
The source term becomes noticeable only when the liquid–gas interface evolves toward
occluding the tube under the driving effect of the Plateau–Rayleigh instability, and it
eventually stabilizes the solution in the form of a pseudo-plug, consisting of a liquid
annulus filling almost the entire cross-section of the tube and an arbitrarily thin gas
filament at the tube axis. This approach is similar to using a precursor film for simulating
contact line problems with thin-film models (Thiele et al. 2001). The augmented WRIBL
model was introduced in the appendix of Dietze et al. (2020), but never applied beyond a
proof of concept. In the current manuscript, we validate it vs experiments and DNS and
apply it to predict liquid plugs in the pulmonary airways.

Low-dimensional models for liquid plugs have often been used as building blocks in
fluid mechanical multi-scale models representing the entire tracheobronchial tree. For
example, Halpern et al. (1998) modelled the respiratory network by considering that the
airway diameter, airway cross-section and ventilation flow rate all vary as continuous
functions of the airway generation, n, according to the lung architecture model of Weibel &
Gomez (1962). Using this approach, the authors mimicked SRT by simulating the delivery
of surfactant-rich liquid from a liquid plug propagating through the model lung, based
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on an inertialess low-dimensional solution for the deposited film thickness. Later, Filoche
et al. (2015) extended this work by accounting for the gravity-induced maldistribution
of liquid at airway bifurcations, and investigated the effect of patient orientation on the
effectiveness of SRT protocols. Ryans et al. (2016) constructed a multi-scale model of the
conducting zone of the tracheobronchial tree (n ≤ 16) based on the lubrication model of
Fujioka et al. (2016) for representing liquid plugs. This multi-scale model was used to
simulate the dynamics of airway occlusion and reopening during assisted ventilation. It
accounts for interactions between different airways, but not for the effect of gravity. In the
current manuscript, we follow the approach of Halpern et al. (1998) for representing the
tracheobronchial tree, but we use our augmented WRIBL model from Dietze et al. (2020),
which accounts for inertia, gravity, axial viscous diffusion and full dynamic coupling
between liquid and gas, to represent the liquid plugs.

In addition to work on low-dimensional modelling, many studies have been dedicated
to the DNS of liquid plugs, i.e. based on the full Navier–Stokes equations. We provide a
brief summary of such works next, whereby we focus on studies that have demonstrated
the relevance of the additional effects included in our WRIBL model, and on liquid-plug
features that have been identified as critical in airway occlusion, and thus need to be
accurately predicted by any low-dimensional model. Fujioka & Grotberg (2004) simulated
pressure-driven travelling-plug solutions (TPS), i.e. solutions that do not change in the
reference frame of the plug, in a plane channel for liquids used in different medical settings,
i.e. Survanta (for SRT) and Perflubron (for partial liquid ventilation). The authors observed
the loss of TPS, constituting the occlusion/reopening limit, at large values of the capillary
number, Ca, and they discovered the existence of a large vortex in the reference frame of
the liquid plug. Further, it was shown that the tangential wall shear stress varies greatly
along the axial dimension of the liquid film and that its maximum magnitude is attained
at the precursory capillary ripple preceding the front of the liquid plug, which is visible
in figure 1. Zheng, Fujioka & Grotberg (2007) later demonstrated for this configuration
that inertia reduces the thickness of the trailing liquid film deposited by the liquid plug.
Further, inertia was shown to increase the amplitude of the precursory capillary ripple,
and, consequently, the maximum wall stresses. Ubal et al. (2008) constructed a stability
diagram for pressure-driven TPS in a cylindrical tube for Πμ = Πρ = 0. In a transient
setting, unstable TPS can be associated with plug rupture, i.e. airway reopening. The
authors also confirmed the existence of a moving-frame vortex in the liquid plug for their
cylindrical configuration.

Another group of works has focused on transient DNS of the liquid-plug dynamics.
Fujioka, Takayama & Grotberg (2008) simulated pressure-driven liquid plugs in a
cylindrical tube for Πμ = Πρ = 0, where the leading film thickness was imposed as
a control parameter, which is representative of SRT conditions. Based on this, the
authors determined how different control parameters affect the long-term fate of a liquid
plug, i.e. whether the plug ruptures, attains a TPS or grows indefinitely. Further, the
authors demonstrated via a dimensional analysis that inertial effects cannot necessarily
be neglected in the case of airway closure, where the liquid viscosity is lower than for
SRT. Finally, the authors confirmed that the precursory capillary ripple in front of the
liquid plug develops the largest wall stresses and showed that the axial wall pressure
derivative attains very large values there. Further, these different stress measures were
shown to attain values sufficiently large to cause epithelial cell damage in the case of SRT,
and to increase with increasing surface tension. Hassan et al. (2011) extended the work of
Fujioka et al. (2008) by accounting for an active-gas phase and showed that this effect,
as well as the effect of inertia, modifies the critical conditions for plug rupture. Olgac &
Muradoglu (2013) performed similar simulations in order to mimic SRT in a subregion
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of the tracheobronchial tree, i.e. 7 ≤ n ≤ 19, and evaluated the associated maximum
wall stresses. The authors concluded that the most dangerous conditions with respect to
epithelial cell damage occur in the most distal airways (farthest from the trachea).

In the context of airway occlusion, Muradoglu et al. (2019) performed DNS of
pressure-driven liquid plugs and studied the effect of a soluble surfactant. The authors
showed that the surfactant reduces the maximum stress magnitudes associated with plug
rupture, i.e. airway reopening, by approximately 20 %, whereas it delays plug rupture by
approximately 10 %. Other authors performed DNS that account for the non-Newtonian
rheology of mucus. For example, Hu, Romano & Grotberg (2020) showed that the presence
of a yield stress delays plug rupture and Romano et al. (2021) showed that the visco-elastic
rheology of mucus, which in the case of cystic fibrosis becomes dominated by the elastic
response, can cause a second very significant wall stress peak after initial airway occlusion,
thus increasing the danger of epithelial cell damage.

We turn now to experimental investigations of liquid plugs in narrow geometries,
focussing again on works related to airway occlusion. Baudoin et al. (2013) modelled
pulmonary airways via horizontal single-channel and branched microfluidic networks and
studied airway reopening scenarios in trains of liquid plugs under an imposed pressure
drop. The authors showed that the first plug rupture entrains and accelerates the next
rupture events in the form of a cascade. Later, Hu et al. (2015) performed similar
experiments with a viscoelastic test liquid, mimicking conditions in an n = 12 airway.
Camassa, Ogrosky & Olander (2014) and Camassa, Ogrosky & Olander (2017) performed
seminal occlusion experiments that identified the threshold for liquid-plug formation in
vertical cylindrical tubes. These experiments are particularly challenging to reproduce
via low-dimensional models, as high-viscosity liquids were used, where axial viscous
diffusion becomes relevant. In Dietze et al. (2020), we showed that accounting for this
effect in our WRIBL model was necessary to capture the experimental occlusion threshold,
which we predicted based on the loss of travelling-wave solutions (TWS). In the current
manuscript, we will show that our augmented WRIBL model accurately captures the liquid
plugs observed in these experiments.

Magniez et al. (2016) studied pressure-driven liquid plugs in an individual horizontal
narrow cylindrical tube, mimicking airways with n ≥ 9, at moderate values of Ca. The
authors introduced a lubrication model similar to Fujioka et al. (2016) with which they
identified TPS. Then, they showed experimentally that liquid plugs evolve towards plug
rupture when their initial length is shorter than the TPS, whereas they keep accumulating
liquid when their initial length is longer than the TPS. Mamba et al. (2018) used the same
experimental set-up, this time focussing on plug rupture under cyclic forcing in the case of
an initially dry tube wall. The authors found that cyclic gas flow rate variations lead to a
periodic plug motion, whereas cyclic gas pressure variations lead to a cascading reduction
of the plug volume and, eventually, plug rupture. The authors caution that their study is
not fully representative of mucus plug dynamics under breathing conditions. Although
their forcing frequency, f � = 0.25 Hz, was close to the typical breathing frequency, f � =
0.33 Hz, the viscosity of the employed liquid, μ1 = 5.1 × 10−3 Pa s, was much smaller
than the representative viscosity of mucus, i.e. μ1 = 13 × 10−3 Pa s (Muradoglu et al.
2019). Later, similar experiments were performed in channels with square cross-section
(Mamba, Zoueshtiagh & Baudoin 2019; Srinivasan, Rahatgaonkar & Khandekar 2021) or
by using a visco-elasto-plastic liquid (Bahrani et al. 2022).

We conclude our review of experimental works by discussing a series of highly
sophisticated experiments that have clearly established a link between liquid plugs and
epithelial cell damage (Bilek et al. 2003; Kay et al. 2004; Huh et al. 2007; Tavana
et al. 2010, 2011). In these experiments, which were initiated by Bilek et al. (2003), real
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epithelial cell tissue was subjected to pressure-driven liquid plugs within micro-channels,
and both the degree of cell damage, via two dies that allow distinguishing between live
and dead cells, and the associated maximum magnitudes of wall stresses and their spatial
derivatives, were measured. It was concluded in Kay et al. (2004) that the maximum
of the axial pressure derivative, ∂x�p�

w, which occurs near the plug front, is responsible
for the main cell damage, i.e. high cell damage was observed for ∂x�p�

w ∼ 0.6 Pa μm−1,
and that the exposure time to critical stress conditions is not relevant. Interestingly, the
maximum magnitude of the axial derivative of the tangential wall shear stress, ∂x�τ �

w, was
an order of magnitude lower in these experiments. By contrast, both stress derivatives were
of comparable magnitude in the lubrication model computations of Fujioka et al. (2016).
In our current manuscript, we come to the same conclusion based on our WRIBL model
computations, which we have validated with DNS. These results are supported by the
work of Tavana et al. (2011), who performed DNS for conditions corresponding to their
own cell damage experiments in a micro-channel, showing that ∂x�p�

w ∼ 0.6 Pa μm−1 and
∂x�τ �

w ∼ 0.6 Pa μm−1 attain similar levels. The authors concluded that both quantities are
linked to cell damage and showed that the level of cell damage can be greatly reduced
by adding a surfactant. In Huh et al. (2007), the experiments of Kay et al. (2004) were
extended by generating dynamic plug rupture events and it was shown that these events
are linked to substantial epithelial cell damage.

In the current manuscript, we introduce a low-dimensional approach for predicting
liquid plugs in the pulmonary airways, as well as the associated maximum wall stresses and
their spatial derivatives. Our approach relies on the augmented WRIBL model of Dietze
et al. (2020) for the representation of liquid plugs, which we apply to track solutions via
numerical continuation across the entire conducting zone of the tracheobronchial tree. In
particular, we will show that this model allows us to establish a direct continuation path
from TWS to TPS. Earlier studies based on thin-film models could only capture TWS.
Although this allows us to predict a conservative threshold for plug formation, i.e. based
on the limit point (LP) of TWS (Camassa et al. 2014, 2016, 2017; Ding et al. 2019), the
properties of TPS, in particular the wall stresses they generate, and their range of existence
could not be captured. We refer to Dietze et al. (2020) for a thorough review of such works
and mention here only works that have been published since, i.e. Camassa et al. (2021),
who studied the stability of TWS, Ogrosky (2021a), who accounted for an additional liquid
layer representing the PCL (periciliary liquid), which bathes the beating cilia responsible
for mucus clearance in the conducting zone, and Ogrosky (2021b), who studied the effect
of a surfactant.

Further, our augmented WRIBL model was developed up to order ε2 in the long-wave
parameter, which allows accounting for axial viscous diffusion. In Dietze et al. (2020), we
showed that this is important for representing the dynamics of high-viscosity annular liquid
films, and this was confirmed by Ogrosky (2021a). In the current manuscript, we will
show that accounting for both inertia and axial viscous diffusion is necessary to accurately
represent liquid plugs over a large liquid viscosity range, thus distinguishing our model
from liquid-plug models based on the lubrication approximation.

In comparison with previous studies relying on the DNS of liquid plugs, our
continuation approach distinguishes itself by enabling a low-cost high-fidelity prediction
of how travelling-state solutions (TSS), i.e. TWS and TPS, evolve across the conducting
zone of the tracheobronchial tree, as the airway generation, n, is increased. In particular,
it allows us to predict critical conditions for airway occlusion and the occurrence of wall
stresses with high potential for epithelial cell damage, as well as the effect of the relevant
control parameters thereon. This may prove useful in the design of drugs and protocols
for the treatment of pulmonary diseases. We use the approach of Halpern et al. (1998) to
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represent the branching nature of the tracheobronchial tree, i.e. we assume that all airway
properties evolve continuously with n, according to the lung architecture model of Weibel
& Gomez (1962). Importantly, we track TSS that are most likely to emerge in a real system,
by imposing the linearly most-amplified wavelength in our continuation calculations,
which is obtained by simultaneously solving the linear stability problem. Thereby, we
distinguish between convective instability (CI) and absolute instability (AI) regimes,
which allows us to identify the critical airway generation for CI/AI transition. Also, our
WRIBL calculations account for gravity and an active-gas phase, which were neglected
in most of the above-discussed DNS studies. Gravity is not necessarily negligible, e.g.
for airway generation n = 7, the Bond number, Bo = ρ1gR�2/σ = 1.6, where g denotes
the gravitational acceleration, and where we have taken ρ1 = 1000 kg m−3 for the mucus
density and σ = 0.02 N m−1 for the surface tension of mucus, according to Muradoglu
et al. (2019). And, in the presence of surfactant, this value further increases (Muradoglu
et al. 2019).

Our manuscript is structured as follows. In § 2, we will introduce the employed
augmented WRIBL model, followed by § 3, where we will describe the numerical
approaches used to solve the model equations, i.e. linear stability analysis, numerical
continuation of nonlinear TSS and transient computations of liquid-plug formation in
periodic or open domains. In § 4, we will demonstrate the predictive power of the
augmented WRIBL model in terms of representing liquid plugs, by comparing with
experiments and DNS. In § 5, we will present our results. There, we will use numerical
continuation of TSS to predict the effect of different parameters, i.e. airway generation,
n, airway orientation vs gravity, mucus properties, air flow rate and airway radius, on the
threshold for airway occlusion (§ 5.1) and on the maximum wall stresses and spatial wall
stress derivatives (§ 5.2). Conclusions will be drawn in § 6.

2. Mathematical description

We consider the flow sketched in figure 1(a), a liquid film (subscript, k = 1) lining
the inner surface of a narrow cylindrical tube of radius, R� (the star symbol denotes
dimensional quantities throughout) in contact with a gas phase in the core (subscript,
k = 2). Both fluids are considered Newtonian with constant fluid properties and the flow
as laminar. As a result of the Plateau–Rayleigh instability, the liquid can come to occlude
the tube in the form of travelling plugs that enclose a gas bubble in between. Figure 1(b)
represents streamlines within such a flow for a gravity-driven vertical configuration.

We denote as d the core radius, i.e. the radial distance between the tube axis and
the liquid–gas interface, and as h the liquid film thickness. We describe the flow in the
framework of the long-wave approximation, which implies ε = R�/Λ� � 1, introducing
the long-wave parameter ε and the wavelength, Λ�, of the plug/bubble arrangement.
Based on the most-amplified wavelength of the classical Plateau–Rayleigh instability,
Λ� = 2

√
2πd�

0, where the subscript zero denotes the primary flow, we obtain ε =
(R�/d�

0)/(2
√

2π). As we will see, liquid-plug formation occurs for d�
0/R� ∼ 0.8 in our

study, yielding ε ∼ 10−1.
The studied flow is governed by the phase-specific (subscript k) Navier–Stokes and

continuity equations truncated at O(ε2), and written here in non-dimensional form

Xkε∂tuk + εuk∂xuk + ευk∂ruk = −ε∂xpk + 1
Rek

{
ε2∂xxuk + 1

r
∂r (r∂ruk)

}
+ X2

k

Fr2 , (2.1a)
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0 = −ε∂rpk + ε2 1
Rek

∂r

{
1
r
∂r (rυk)

}
, (2.1b)

∂xuk + 1
r
∂r (rυk) = 0, (2.1c)

where x and r denote the axial and radial coordinates, uk, υk and pk the corresponding
velocity components and pressure in phase k and t denotes time. Also, we have X1 = 1
and X2 = Π−1

u , and Πu = U2/U1 denotes the velocity scale ratio, Rek = UkL/νk denotes
the phase-specific Reynolds number and Fr = U1/

√
gL denotes the Froude number. Here,

we have applied the following scaling:

uk = u�
k

Uk
, υk = υ�

k
ε Uk

, x = ε
x�

L , r = r�

L , t = ε t�
U1

L , pk = p�
k

ρkU2
k
, (2.2a–f )

choosing the tube radius as the length scale, L = R�, and the phase-specific superficial
velocities, Uk = q̄�

k/π/R�2, as the velocity scales, where q̄�
k denotes the phase-specific

average cross-sectional flow rate. The truncated inter-phase coupling conditions for the
normal and tangential stresses at r = d are

εp1 + εWeε2κ − 2ε2

Re1
∂rυ1 = ΠρΠ2

u εp2 − ΠμΠu
2ε2

Re1
∂rυ2, (2.3a)

−(∂ru1 + ε2 ∂xυ1) + 2 ε2 ∂xd (∂xu1 − ∂rυ1)

= ΠuΠμ{−(∂ru2 + ε2 ∂xυ2) + 2 ε2 ∂xd (∂xu2 − ∂rυ2)}, (2.3b)

where Πμ = μ2/μ1 and Πρ = ρ2/ρ1 denote the viscosity and density ratios, We =
σ/ρ1/U2

1 /L the Weber number and κ the (truncated) surface curvature

κ = 1
d

− 1
2

∂xd2

d
− ∂xxd = κϕ − ∂xxd. (2.4)

We will also use the Kapitza number, Ka = σ/(ρ1g1/3ν
4/3
1 ), to characterize the working

liquid. Further, we have the kinematic coupling conditions at r = d

u1 = Πuu2, (2.5a)

υ1 = Πuυ2, (2.5b)

X−1
k υk = dd

dt
= ∂td + X−1

k uk ∂xd, (2.5c)

and the radial boundary conditions

u1|r=R = 0, ∂ru2|r=0 = 0, (2.6a)

υ1|r=R = 0, υ2|r=0 = 0. (2.6b)
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Liquid plugs in narrow tubes

We simplify the truncated governing equations further by applying the WRIBL
technique (Kalliadasis et al. 2012). We only sketch the procedure here, referring the reader
to Dietze et al. (2020) for details. First, we substitute pk in (2.1a) via an integration of
(2.1b), yielding the phase-specific boundary-layer equations, BLEk

BLEk : Xkε∂tuk + εuk∂xuk + ευk∂ruk = −ε∂x[pk|d] + X2
k

Fr2

−ε2 1
Rek

∂x[∂xuk|d] + 1
Rek

{2 ε2∂xxuk + ∂rruk}. (2.7)

Next, we decompose the velocity components according to

uk(x, r, t) = ûk(x, r, t)︸ ︷︷ ︸
O(ε0)

+ u(1)
k (x, r, t)︸ ︷︷ ︸
O(ε1)

, (2.8a)

υk(x, r, t) = υ̂k(x, r, t)︸ ︷︷ ︸
O(ε0)

+ υ
(1)
k (x, r, t)︸ ︷︷ ︸
O(ε1)

, (2.8b)

introducing the leading-order velocity ûk, which is governed by

1
r
∂r(r∂rûk) = Zk, (2.9a)

∂ru1|d = ΠμΠu ∂ru2|d , u1|d = Πu u2|d , u1|R = ∂ru2|0 = 0, (2.9b)

2π

∫ R

d(x,t)
rû1 dr = q1(x, t), 2π

∫ d(x,t)

0
rû2 dy = q2(x, t), (2.9c)

where qk denotes the phase-specific cross-sectional flow rate. This leads to

ûk = fki(r, d) qi(x, t), (2.10a)

v̂1 = −1
r

∫ 1

r
r̃∂xû1 dr̃, v̂2 = 1

r

∫ r

0
r̃∂xû2 dr̃, (2.10b)

where υ̂k is obtained via integration of (2.1c). Then, we introduce (2.8) in the BLEk from
(2.7), and combine the resulting equations via a weighted integration

∫ R

d(x,t)
rw1(r) BLE1 dr + ΠρΠ3

u

∫ d(x,t)

0
rw2(r) BLE2 dr, (2.11)

where the weight functions, wk, satisfy

wk(r, d) = fk1(r, d) − Π−1
u fk2(r, d). (2.12)

Finally, truncating (2.11) at O(ε2), dropping inertial corrections of order O(Rekεu(1)
k ) and

introducing the source term Πϕ , yields the final integral momentum equation rescaled by
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G.F. Dietze

setting ε = 1

Si∂tqi + Fijqi∂xqj + Gijqiqj∂xh = We
2π

∂xκ + Πϕ + 1
2π

Fr−2(1 − Πρ) + 1
2π

Ciqi

+ Jiqi∂xh2 + Ki∂xqi∂xh + Liqi∂xxh + Mi∂xxqi, (2.13a)

to which are added the integral continuity equations

∂td − 1
2πd

∂xq1 = 0, ∂td + Πu

2πd
∂xq2 = 0, (2.13b)

obtained through integration of (2.1c), with the help of (2.5c). The model coefficients Si,
Fij, Gij, Ci, Ji, Ki, Li and Mi are known functions of d (Dietze 2022). Equations (2.13a)
and (2.13b) constitute the 3-equation WRIBL model of Dietze et al. (2020) for the three
unknowns, d, q1 and q2.

The source term, Πϕ , is designed to represent liquid pseudo-plugs

Πϕ = −We
2π

ΠCRL exp
[
λ

(
1 − d(x, t)

dplug

)]
∂xκϕ, (2.13c)

where ΠCRL sets the magnitude of Πϕ , λ is a slope coefficient (λ = 1 in all our
computations) and dplug designates the core radius of a pseudo-plug. By pseudo-plug,
we mean a liquid annulus that fills the entire tube cross-section except for an arbitrarily
thin filament of core fluid with d = dplug � 1 (dplug = 0.01 in our computations). Thanks
to this approach, liquid plugs can be represented without violating the mathematical
requirement of a finite core radius d(x).

The source term, Πϕ , is comparable to the so-called disjoining pressure typically
used for imposing a precursor film in lubrication models for contact line problems
(Thiele et al. 2001). At d = dplug and ΠCRL = 1, Πϕ exactly cancels the azimuthal
capillary term, (We/2π)∂xκϕ , in (2.13a), which is responsible for the Plateau–Rayleigh
instability, thus rendering the cylindrical surface of the pseudo-plug stable. For d > dplug,
Πϕ < (We/2π)∂xκϕ and the Plateau–Rayleigh mechanism remains dominant, whereas the
opposite holds for d < dplug. As a result, the film surface is attracted toward d = dplug from
both sides. Because Πϕ varies very sharply around dplug, this effect is felt only when d is
close to dplug, and it translates into a very strong repulsion of the film surface in the limit
d → 0. Moreover, the cylindrical surface d = dplug can be rendered entirely stable in the
presence of a mean flow via an appropriate choice of ΠCRL ≥ 1 (see § 3.1).

At the LPs of a real liquid plug, d→0 and ∂xd→ ± ∞. Of course, such an infinitely
steep liquid–gas interface cannot be represented in the framework of the long-wave
approximation. Consequently, the leading and trailing fronts of pseudo-plugs computed
with our augmented WRIBL model (2.13a) are less steep than for real plugs. We will show
in § 4 that this does not prevent our model from producing excellent estimates of different
plug measures (see e.g. figure 5). Nonetheless, a static approximation (Lamstaes & Eggers
2017) can improve our prediction of the plug shape. Here, following Bretherton (1961),
we approximate the liquid–gas interface by a spherical cap (see e.g. figure 6), denoted by
the subscript sc, in regions where the interface slope, ∂xd, is too large for the long-wave
approximation to hold, i.e. for |∂xd| ≥ εmax, whereby we choose εmax ∼ 1. The radius,
Rsc, and centre, xsc, of the spherical cap are obtained by requiring continuity of d and ∂xd
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Liquid plugs in narrow tubes

across the patching point, (xp,dp)

dp = d|x=xp ≡
{

R2
sc − (

xp − xsc
)2

}1/2
, (2.14)

∂xd|x=xp = εmax ≡ −xp − xsc

dp
. (2.15)

We point out that a spherical approximation is valid only when the effect of gravity is weak
over the axial length scale of the cap and liquid viscous stresses are dominated by surface
tension (small capillary number, Ca), which turns out to be the case for typical conditions
of liquid plug formation in the pulmonary airways (see figures 13d and 15c).

Our WRIBL model can be extended with a fourth evolution equation for the gas pressure
at the liquid–gas interface, p2|d. This is obtained by performing the operation in (2.11) with
the modified weight functions, w̃k = fk1(r, d) + Π−1

u fk2(r, d), in which case p2|d does not
cancel from (2.7) and can be solved for, yielding

2ΠρΠ2
u ∂x[p2|d] = −S̃i∂tqi + NLP(x, t),

NLP(x, t) = −F̃ijqi∂xqj − G̃ijqiqj∂xh

+ We
2π

∂xκ + 1
2π

Fr−2(1 + Πρ) + 1
2π

C̃iqi

+ J̃iqi∂xh2 + K̃i∂xqi∂xh + L̃iqi∂xxd + M̃i∂xxqi, (2.16)

where the tilde distinguishes coefficients from their counterparts in the momentum
equation (2.13a). Introducing the total flow rate, qtot = q1+Πu q2, this pressure equation
(2.16) can be integrated across the domain length L (Einstein’s summation convention is
applied below)

�p2 =
∫ L

0
∂x[p2|h]dx = 1

2ΠρΠ2
u

{∫ L

0
NLP(x, t) dx −

∫ L

0
S̃i∂tqi dx

}

= 1
2ΠρΠ2

u

{∫ L

0
NLP(x, t) dx −

∫ L

0

(
S̃1 − S̃2

Πu

)
∂tq1 dx − ∂tqtot

∫ L

0

S̃2

Πu
dx

}
,

(2.17)

and then used as an integral condition on the pressure drop �p2, or, when q2 is imposed,
to evaluate �p2 a posteriori. For this, we introduce the normalized pressure gradient M

M = �p2

ρ2 g L
. (2.18)

In (2.13a), the velocity corrections, u(1)
k , were eliminated via truncation and an

appropriate choice of the weight functions, wk (2.12). However, they can be reconstructed
a posteriori, after having obtained a solution for d and qk. For this, we insert (2.8) and
(2.10a) into (2.1a), (2.1b), (2.3b), (2.5a) and (2.6a), eliminate pk via cross-differentiation,
truncate at O(ε2) and drop terms of O(Rekεu(1)

k ). The resulting boundary value problem
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can be readily solved for u(1)
k

u(1)
1 = C1r6 + C2r4 + C3r2 + C4 + ln(r)2{C5r2 + C6} + ln(r){C7r4 + C8r2 + C9},

(2.19a)

u(1)
2 = D1r6 + D2r4 + D3r2 + D4, (2.19b)

where the coefficients, Ci and Di, are known functions of d, qk and their derivatives. The
cross-stream velocity corrections υ

(1)
k are again obtained via integration of (2.1c), using

(2.8), (2.10a) and (2.19). The velocity corrections u(1)
k and v

(1)
k will be useful for producing

accurate predictions of the wall stresses and their spatial derivatives in §§ 4 and 5.2.

3. Numerical methods

We perform three types of numerical computations based on our WRIBL model (2.13).
Linear stability calculations, which allow us to identify the most-dangerous surface
structures (waves or liquid plugs) emanating from interfacial instability. Numerical
continuation of TSS with the continuation software Auto07P (Doedel 2008) allows us
to identify the threshold at which nonlinear TWS transform into TPS. And, thirdly,
spatio-temporal computations using custom codes based on a finite-difference spatial
discretization. In the latter case, we distinguish computations with periodicity boundary
conditions on a domain spanning one wavelength, Λ, from computations on an open
domain with inlet/outlet conditions.

3.1. Linear stability analysis
We consider the primary flow of an annular liquid film of core radius, d0, and flow rate,
q10, in contact with a gas of flow rate, q20, and perturb it in terms of d and qk

d = d0 + d′ = d0 + d̂ exp {i(kx − ωt)} , (3.1a)

qk = qk0 + q′
k = qk0 + q̂k exp {i(kx − ωt)} , (3.1b)

where i = √−1, and where we have assumed the infinitesimal perturbations, d′ and q′
k,

grow according to exponential modes with wavenumber, k, and angular frequency, ω.
Their amplitudes, d̂ and q̂k, are linked via the continuity equations (2.13b)

q̂1 = −2πd0 d̂
ω

k
, q̂2 = 2πd0 Π−1

u d̂
ω

k
. (3.2a,b)

Inserting (3.1) into (2.13a), and linearizing around the primary flow, we obtain the
dispersion relation

DR = i ω2 2πd{Π−1
u S2 − S1}

+ i k ω 2πd{−Π−1
u F22 q2 + F21 q2 − Π−1

u F12 q1 + F11 q1}
+ i k2{G22 q2

2 + 2 G12 q2 q1 + G11 q2
1}
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Liquid plugs in narrow tubes

−
{
ω C1 d + k

1
2π

∂dC1 q1

}
+

{
ω Π−1

u C2 d − k
1

2π
∂dC2 q2

}

− i2 k3 {L1 q1 + L2 q2} + i2 k2 ω 2πd{Π−1
u M2 − M1}

− i3 k4 We
1

2π
− i k2 We

1
2π

1
d2

{
1 − ΠCRL exp

[
λ

(
1 − d

dplug

)]}
= 0, (3.3)

where we have dropped the subscript 0 for convenience.
The capillary term involving i k2 We is due to the azimuthal curvature of the film surface,

and it includes the source term, Πϕ , introduced in (2.13c). Through ΠCRL, this term can
be tuned to fully stabilize a cylindrical surface at d = dplug � 1.

In the classical Plateau–Rayleigh configuration, where qk = Πμ = Πρ = 0, assuming
temporally growing modes, i.e. k, ωi ∈ R and ω = iωi ∈ C, the cutoff wavenumber, kc, is
given by

kc = 1
d

{
1 − ΠCRL exp

[
λ

(
1 − d

dplug

)]}1/2

. (3.4)

In the limit ΠCRL = 0, our model recovers the analytical cutoff wavenumber kc = 1/d for
all core radii, d. By contrast, when setting ΠCRL = 1, full stabilization (kc = 0) is achieved
for d/dplug = 1, without affecting stability for d/dplug � 1. This makes it possible to
produce nonlinear pseudo-plug solutions with our WRIBL model, where the plug is
represented via a liquid annulus filling almost the entire tube cross-section, except for a
narrow cylindrical gas filament of radius d ∼ dplug around the tube axis, which is stable
and does not pinch.

Conditions for obtaining stable pseudo-plugs may change when there is a sufficiently
strong primary flow, in which case the stability limit may be affected by inertia, in contrast
to the classical Plateau–Rayleigh configuration discussed above. We discuss this based
on figure 2, which represents stability calculations for spatially growing modes, i.e. k =
kr + iki ∈ C and ω ∈ R. Figure 2(a) compares dispersion curves of the spatial growth
rate, −ki, obtained from (3.3) with the solution of the full Orr–Sommerfeld eigenvalue
problem (Hickox 1971), for three examples of stratified gravity-driven liquid films within
a cylindrical tube. For all three working liquids, which correspond to different experiments
(Dao & Balakotaiah 2000; Piroird et al. 2011; Camassa et al. 2014) and cover a wide Ka
range, our model predictions are in good agreement with the Orr–Sommerfeld solution.

For the low-viscosity silicone oil (blue open circles), the cutoff wavenumber kcd0 is
shifted with respect to the classical Plateau–Rayleigh solution, kcd0 = 1, as a result of the
inertia-driven Kapitza instability. Thus, in the passive-core limit (Πμ = Πρ = 0), ΠCRL >

1 is required to fully stabilize a pseudo-plug at d = dplug. We show this in figure 2(b),
which represents −ki(ω) curves for a pseudo-plug of d = dplug = 0.01. Comparing the
dashed and dot-dashed curves, we see that full stabilization is achieved by changing ΠCRL
from 1 to 1.01. In the case of an active-core fluid, e.g. air, full stabilization is already
achieved at ΠCRL = 1 (solid curve), but the growth rate is only very slightly negative in
this case (−ki has been multiplied by 103 in the graph).

Above, we have used linear stability analysis to demonstrate that stable pseudo-plug
solutions can be obtained with our WRIBL model (2.13). In addition, we will use linear
stability calculations to identify the most-dangerous linear instability modes, i.e. those that
are most likely to emerge in a real system, and thus select the nonlinear solutions that will
be of interest in the next section. In such calculations, we will distinguish between CI and
AI modes. We will discuss this in detail in § 3.2.
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Figure 2. Spatial linear stability of an annular liquid film in contact with air. Symbols: WRIBL; solid
lines: Orr–Sommerfeld. (a) Falling liquid film. Circles: R� = 1.5 mm, Ka = 121.4 (silicone oil II/air I in
table 1), Re1 = 15.4, M = 1; asterisks: run 13 in Dao & Balakotaiah (2000), R� = 3.175 mm, Ka = 3.5
(glycerol(89 %)-water/air I), Re1 = 0.258, M = 1, diamonds: experiment from figure 3(c) of Camassa et al.
(2014), Ka = 3.3 × 10−3 (silicone oil I, air I in table 1), R� = 5 mm, Re1 = 4.5 × 10−4, M = 1; (b) stability of
a pseudo-plug obtained with our augmented WRIBL model (2.13c). Silicone oil film from panel (a): d0 =
dplug = 0.01, λ = 1. Dashed: ΠCRL = 1, Πμ = Πρ = 0; dot-dashed: ΠCRL = 1.01, Πμ = Πρ = 0; solid:
ΠCRL = 1 (−ki has been multiplied by 103).

3.2. Travelling-state solutions
To construct TSS, we introduce the wave/plug celerity, c, and express the space and time
derivatives in (2.13b) and (2.13a) via the wave coordinate ξ

ξ = x − c t, ∂x = ∂ξ , ∂t = −c ∂ξ , (3.5a–c)

thus transforming our system of partial differential equations into a dynamical system
given by

d′′′ = NL(d, d′, d′′, qMF
1 , qtot), (3.6a)

qMF
1 = q1 − π(R2 − d2) c = q̄1 − π(R2 − d2) c, (3.6b)

qtot = q1 + Πuq2 = q̄1 + Πuq̄2, (3.6c)

where primes denote differentiation with respect to ξ , bars signify averaging over the
wavelength Λ in terms of ξ , the superscript MF refers to the wave-fixed moving reference
frame and where we have used (3.6b) and (3.6c) to replace derivatives q( j)

k by derivatives
d( j) in (3.6a). Equations (3.6b) and (3.6c) were obtained from the phase-specific continuity
equations in (2.13b). Further, q̄k = π for the scaling used here.

The system is closed through the periodicity boundary conditions

d( j)∣∣
ξ=0 = d( j)∣∣

ξ=Λ
, j = 0, 1, 2, (3.6d)

and it is solved for fixed values of q̄�
1 (controlled via Re1), which is enforced through the

integral condition

Λ−1
∫ Λ

0
q1 dξ = q̄1, (3.7)
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Figure 3. Transition from TWS to TPS. The TSS are based on our augmented WRIBL model (2.13a). Annular
liquid film in contact with air within a vertical cylindrical tube: Ka = 121.4 (silicone oil II and air I in table 1),
R� = 1.5 mm, M = 1, Λ = 5.4. (a) Minimal core radius, dmin, in terms of the normalized liquid volume. Solid
blue: ΠCRL = λ = 1, dplug = 0.01; dashed red: ΠCRL = 0; (b) profiles of TSS corresponding to crosses in panel
(a). Toward the tube axis: V1/π/R3 = 1, 2, 2.5, 2.5, 2.85. Dot-dashed blue lines correspond to spherical-cap
reconstruction (2.14) between the patching points (blue asterisks), where |∂xd| = εmax = 0.75.

and q�
tot (via Re2), which is imposed either explicitly, or indirectly through an integral

condition on the pressure drop (2.17)

�p2 2ΠρΠ2
u =

∫ Λ

0
NLP(d, d′, d′′, d′′′, qMF

1 , qtot) dξ −
∫ Λ

0
(S̃1 − Π−1

u S̃2)d′c dξ. (3.8)

The equation system given by (3.6) and (3.7), or by (3.6) and (3.8), is solved via
numerical continuation using Auto07P (Doedel 2008). Figure 3 represents TSS obtained
this way for the silicone oil and tube radius, R� = 1.5 mm, used in the experiments of
Piroird et al. (2011), only that the cylindrical tube is oriented vertically here and that we
have air and not water as the core phase. The dashed red line in figure 3(a), where we
have plotted the minimal core radius, dmin, of TSS vs the liquid volume, V1, corresponds
to the standard model, i.e. ΠCRL = 0. The LP of this curve (LP1) corresponds to the
occlusion bound identified in Dietze et al. (2020). Its upper branch corresponds to stable
TWS and its lower branch to unstable TWS, as has been demonstrated by the stability
calculations of Camassa et al. (2021). Thus, even though there is multiplicity of TWS for
a fixed V1, only TWS on the upper branch should prevail in an experiment. The lower
TWS branch stops abruptly as the core radius tends to zero (dmin → 0). By contrast, the
solid blue curve, which corresponds to our augmented model (ΠCRL = 1, dplug = 0.01),
displays a second LP (LP2), from which a branch of TPS originates. Figure 3(b) represents
selected profiles (corresponding to crosses in figure 3a) of the liquid–gas interface along
this curve, illustrating the evolution from TWS (dashed curves) to a TPS (solid blue curve).
The dot-dashed blue curves correspond to the spherical-cap approximation (2.14), using
εmax = 0.75, which allows us to represent more accurately the leading and trailing fronts of
the liquid plug. We will use this approximation from here on to reconstruct these portions
of TPS, i.e. starting from the patching points marked by asterisks in figure 3(b).

In our numerical continuation of TSS, we can impose the linearly most-dangerous
wavenumber, k = 2π/Λ = kmax, which is obtained by simultaneously solving the
dispersion relation (3.3) governing the linear response of the liquid film. Depending on
the flow conditions, we distinguish between CI and AI modes. In the case of CI, we
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choose a spatial stability formulation, ω ∈ R, k ∈ C, and kmax corresponds to the spatially
most-amplified wavenumber

DR(ω, kmax) = 0, ∂ωki|k=kmax = 0, (3.9a)

where the expression for ∂ωki is obtained by rearranging ∂ωDR = 0. In the case of AI,
we choose a spatio-temporal stability formulation (Brevdo et al. 1999), ω ∈ C, k ∈ C, and
kmax corresponds to the absolute wavenumber

DR(ω, kmax) = 0,
d
dk

DR(ω, k)|k=kmax = 0,
dω

dk

∣∣∣∣
k=kmax

= 0, (3.9b)

where dω/dk ∈ C denotes the group velocity in the wall-fixed reference frame. For most
of our calculations in § 5, a CI/AI transition is observed on a given TSS branch (marked
by crosses, e.g. in figure 10). The transition point can be readily identified by detecting
ωi = dω/dk = 0.

The primary flow underlying the solution of (3.9a) and (3.9b) is set according to the
properties of the corresponding nonlinear TSS, i.e. d0 = dVE and q20 = q̄2 or M0 = M,
depending on whether the gas flow rate (figure 10) or the gas pressure drop (figure 11) is
imposed. Here, dVE is the volume-equivalent core radius

dVE =
{

1 − 1
Λ

∫ Λ

0
(1 − d2) dx

}1/2

. (3.10)

3.3. Transient periodic computations
We perform transient periodic computations to represent the dynamics of liquid-plug
formation from an initially uniform liquid film. For this, our model equations (2.13a)
and (2.13b) are solved by numerically advancing the solution in time, i.e. from t = told
to t = tnew. Our equations are recast by eliminating q2 via (3.6c)

∂tq1 + S2 (ΠuS1 − S2)
−1 ∂tqtot = NL(∂x jd, ∂xiq1) + Πϕ (ΠuS1 − S2)

−1, (3.11a)

∂td = 1
2π d

∂xq1, (3.11b)

and then integrated over the time increment �t = tnew-told

q1|new − q1|old + S2 (ΠuS1 − S2)
−1 ∂tqtot �t =

∫ tnew

told

NL dt, (3.12a)

hnew − hold =
∫ tnew

told

∂xq1 dt. (3.12b)

The time evolution of the right-hand side terms in (3.12) is represented via the
semi-implicit Crank–Nicolson approximation (Patankar 1980)

NL = NL|old + t − told

�t
{NL|new − NL|old} , (3.13a)

∂xq1 = ∂xq1|old + t − told

�t
{∂xq1|new − ∂xq1|old}, (3.13b)

and all spatial derivatives are approximated with central finite differences. Further, it is
assumed in (3.12) that the model coefficients, Si, Fij, Gij, Ci, Ji, Ki, Li and Mi (evaluated at
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Liquid plugs in narrow tubes

told), as well as ∂tqtot are constant over the time step. The nonlinear operator NL|new of the
momentum equation at tnew = told + �t is linearized in terms of the dependent variables,
h = R − d and q1, and their derivatives, h( j) and q(i)

1

NL|new = NL|old + ∂ NL|old

∂h( j)

{
h( j)∣∣

new − h( j)∣∣
old

}

+∂ NL|old

∂q(i)

{
q(i)∣∣

new − q(i)∣∣
old

}
, (3.14)

where the bracketed superscripts denote the power of differentiation with respect to x.
The thus obtained discretized evolution equations are evaluated at the Nx-1 points of an
equidistant grid spanning from x = �x to x = Λ with grid spacing �x = Λ/(Nx − 1).
The point x = 0 is excluded as it coincides with x = Λ due to streamwise periodicity. The
periodicity conditions

h( j)∣∣
x=0 = h( j)∣∣

x=Λ
, q(i)∣∣

x=0 = q(i)∣∣
x=Λ

, (3.15a)

are imposed directly, by making use of the nodes at and downstream of x = 0 in the
formulation of spatial derivatives at and upstream of x = Λ, and vice versa. We thus obtain
a linear system of 2(Nx − 1) algebraic difference equations with a cyclic pentadiagonal
structure (Navon 1987) for the unknowns q1|ix and h|ix. This system is solved through
lower-upper (LU) decomposition at each time step, starting from the initial condition

d(x, t = 0) = d0[1 + εI sin(2πx/Λ)], q1(x, t = 0) = q10 (qtot(t = 0), d0) , (3.16)

where εI denotes the initial perturbation amplitude. Alternatively, the computation can be
started from a TSS constructed with Auto07P, e.g. to study its stability.

The control parameters are Λ, qtot and the liquid volume V1

V1 = πR2Λ
{

1 − 1
2

d2
0

R2 (2 + ε2
I )

}
. (3.17)

The total flow rate qtot is either prescribed explicitly, or it results from an integral condition
on the pressure drop (2.17). In the second case, (2.17) is recast to isolate ∂tqtot

∂tqtot
1

Πu

{∫ L

0
S2

ΠuS̃1 − S̃2

ΠuS1 − S2
dx −

∫ L

0
S̃2 dx

}
= 2ΠρΠ2

u �p2 −
∫ L

0
NLP(x, t) dx

+
∫ L

0

(
S̃1 − S̃2

Πu

)
NL(x, t) dx, (3.18)

where ∂tq1 has been eliminated via (3.11) in the limit ΠCRL = 0, and then used to update
qtot at each time step

qtot|new = qtot|old + ∂tqtot|old �t. (3.19)

Figure 4 represents results of a transient periodic computation for parameters according
to figure 3. In particular, we have set V1/π/R3 = 2.85, which lies far beyond the occlusion
limit of TSS in figure 3(a). As shown in figure 4(b), our transient periodic computation,
which was started from a virtually uniform film (εI = 0.015), evolves toward the TSS,
represented here with a dashed blue profile and marked by a blue cross on the TPS branch
in figure 3(a). Thus, we expect this branch to be representative of liquid plugs forming as a
result of interfacial instability in a real system (comparisons with experiments are reported
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Figure 4. Transient periodic computation of a liquid plug forming from an initially quasi-uniform film.
Parameters according to figure 3: V1/π/R3 = 2.85, εI = 0.015. (a) Time traces of the instantaneous Reynolds
numbers, q̄�

k/νk, with q̄k = Λ−1 ∫ Λ

0 qk dx, in the liquid (solid) and gas (dashed). Dot-dashed green lines: final
values for the DNS in figure 6(b); (b) profiles corresponding to crosses in panel (a) (solid) and to the TSS in
figure 3(b) (dashed).

in § 4). The dot-dashed green curves in figure 4(a) correspond to the converged values for
the instantaneous Reynolds numbers, q̄�

1/ν1 and q̄�
2/ν2, obtained from our own transient

periodic DNS (which will be introduced in figure 6b), using the solver Gerris (Popinet
2009). The time traces of q̄�

1/ν1 and q̄�
2/ν2 obtained from our transient periodic WRIBL

computation (solid and dashed black curves) converge to these values (more comparisons
with DNS are reported in § 4).

3.4. Open-domain computations
To represent the spatio-temporal evolution of liquid plugs, we apply the numerical
procedure discussed in the previous section to an open domain with inlet and outlet
conditions at x = 0 and x = L. Inlet conditions are set by prescribing d and q1 at the
first two grid points (ix = 1, 2) based on the primary flow

d|ix=1 = d|ix=2 = d0, (3.20a)

q1|ix=1 = q1|ix=2 = q10 [1 + F(t)] . (3.20b)

The function F(t) in (3.20b) allows us to apply a tailored inlet forcing

F(t) = ε1 sin(2π f t) + ε2

N∑
k=1

sin(2π k �f t + ϕrand), �f = 2 fc/N. (3.21)

The first term constitutes a harmonic perturbation of frequency, f , and the second one
mimics white noise through a series of N = 1000 Fourier modes that are shifted by a
random phase shift, ϕrand = ϕrand(k) ∈ [0, 2π], and that span a frequency range of twice
the linear cutoff frequency, fc (Chang, Demekhin & Kalaidin 1996). All our computations
were run with the same ϕrand(k) number series, which was generated once and for all with
the pseudo-random number generator RandomReal in Mathematica (2014). The strength
of the two terms in (3.21) is determined through their amplitudes, ε1 and ε2. When ε1 = 0,
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the inlet perturbation consists of only white noise. This setting will be used to simulate the
noise-driven formation of liquid plugs, as it would occur in an experiment.

At the outlet, we apply boundary conditions inspired by those of Richard, Ruyer-Quil
& Vila (2016), which ensure that liquid is always sufficiently drained from the domain, by
introducing two downstream ghost nodes at ix = Nx + 1 and ix = Nx + 2

d|ix=Nx+1 = d|ix=Nx+2 = d|ix=Nx , (3.22a)

q1|ix=Nx+1 = q10
qPG

10 (d|ix=Nx)

qPG
10 (d0)

, (3.22b)

where qPG
10 (d) = q10(Πρ = Πμ = 0, d) is the passive-gas limit of the primary flow rate

q10 for a given d, which is known analytically. Our computations are started from the
initial condition

d(x, t = 0) = d0, q1(x, t = 0) = q10. (3.23)

We point out that no information for the interface height in the second downstream ghost
cell (d|ix=Nx+2 in our case) was given in Richard et al. (2016). Our choices for d|ix=1 (3.20)
and d|ix=Nx+2 (3.22) were guided by numerical convenience. The twice removed ghost
cells only affect the discretized form of the third derivative, ∂xxxd, which is negligible at
the inlet. At the outlet, the flow is dominated by the imposed flow rate, q1|ix=Nx+1, and,
thus, the effect of d|ix=Nx+2 is weak.

4. Validation vs DNS and experiments

We validate our approach for computing liquid plugs by confronting our WRIBL model
(2.13) with experiments and DNS. We start with the configuration from figure 3(a), which
corresponds to silicone oil II in table 1, subject to an aerostatic pressure drop (M = 1).
Figure 5 represents TSS in terms of two important measures, i.e. the plug speed, c,
and the gas Reynolds number, Re2, which quantifies the entrained gas flow rate. As
discussed in figure 3(a), liquid-plug solutions lie beyond LP1 on the solid blue curves
in figure 5(a,b), which represent our WRIBL predictions. The green squares in the same
graphs mark data points obtained via transient periodic DNS with Gerris (see Dietze et al.
(2020) for details of such runs), evidencing very good agreement with the WRIBL model.
For the low-viscosity liquid considered here, Re1 is quite large, and, thus, inertia is not
negligible. This is evidenced by the substantial difference (approximately 25 %) between
our full-model predictions (solid blue curves) and the black dashed curves, which represent
the inertialess limit of our WRIBL model (Sk = Fkj = Gkj = 0 in (2.13)).

Figure 6 shows streamlines in the moving reference frame for one of the liquid-plug
solutions from figure 5 (Vl/π/R3 = 2.85), as obtained from our WRIBL model (figure 6a)
and our DNS (figure 6b). Our model captures all relevant flow features, in particular the
toroidal vortex within the liquid plug (Ubal et al. 2008) and the three main toroidal vortices
within the gas bubble. The shape of the liquid–gas interface is predicted accurately in
the thin portion of the liquid film, whereas agreement deteriorates in the steepest parts
of the leading and trailing fronts of the liquid plug. In these regions, the spherical-cap
approximation (2.14) allows us to recover good agreement (dashed green lines).

In figure 7(a), the solid black line represents the thus reconstructed liquid–gas interface
for the system in figure 6 (crosses mark patching points), evidencing good agreement with
the DNS profile (green line with open circles). The other three panels in figure 7 compare
spatial profiles of different quantities related to the stress field at the tube wall. We start
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Fluids ρ (kg m−3) μ (Pa s) σ (N m−1) Ka Reference

silicone oil I 970 12.9 0.0215 3.3 × 10−3 Camassa et al. (2014)
silicone oil II 900 4.5 × 10−3 0.020 121.4 Piroird, Clanet & Quéré (2011)
glycerol(89 %)-water 1223.9 0.167 0.065 3.5 Dao & Balakotaiah (2000)
mucus I 1000 13 × 10−3 0.020 30.6 Muradoglu et al. (2019)
air I 1.2 1.8 × 10−5 — — —

Table 1. Properties of the fluids used in our computations. The Kapitza number, Ka, is defined as Ka =
σ/(ρ1g1/3ν

4/3
1 ), where σ , ρ1 and ν1 denote the surface tension and the density and kinematic viscosity of

the liquid, and g = 9.81 m s−2 designates the gravitational acceleration.
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Figure 5. The TSS from figure 3 (curves) compared with our own DNS (symbols) using Gerris (Popinet 2009):
Ka = 121.4, R� = 1.5 mm, M = 1, Λ = 5.4. Solid blue curve: full model (2.13), dot-dashed black curve:
inertialess limit (Sk = Fkj = Gkj = 0). (a) Plug celerity c; (b) gas Reynolds number, Re2, quantifying the gas
flow rate transported by the gas bubbles in between two liquid plugs.
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Figure 6. The TPS forming in a vertical cylindrical tube. Streamlines in the reference frame moving with
the plug speed, c. Parameters according to figure 3(a): Λ = 5.4, V1/π/R3 = 2.85, M = 1. (a) Transient
periodic computation with our augmented WRIBL model (2.13): Re1 = 30.8, Re2 = 14.6, c� = 0.31 m s−1.
Dashed green lines correspond to spherical-cap approximation (2.14) between patching points (marked by
green asterisks), using εmax = 0.75; (b) periodic DNS with Gerris: Re1 = 30.4, Re2 = 14.4, c� = 0.30 m s−1.
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Figure 7. Liquid stresses at the tube wall, r = 1, within a TPS. Parameters according to figure 6. Open green
circles: DNS; solid black lines: WRIBL model. (a) Liquid–gas interface, showing gas bubble in between two
liquid plugs; (b) pressure difference across the tube, �pw (4.1); (c) axial wall shear stress derivative, ∂xτw,
according to (4.2b); (d) axial wall pressure derivative, ∂xpw, according to (4.2a). Crosses mark patching points
for spherical-cap reconstruction (2.14), using εmax = 0.75, plus signs mark apex of spherical cap and diamonds
mark limits of pseudo-plug.

with the excess pressure �pw

�pw = �p�
w

ρ1U2
1
, �p�

w = p�
∣∣
r�=R� − p�

∣∣
r�=0 , (4.1)

which is obtained by integrating (2.1b), substituting (2.8), truncating at order O(ε2),
introducing (2.10b) and setting ε = 1. As shown in figure 7(b), our WRIBL model
(solid curves) accurately predicts both the �pw profile and its maximum absolute value
compared with the DNS (open green circles). The segment between the apex of the
spherical cap (marked by plus sign) and the start of the pseudo-plug (marked by filled
diamond) is not drawn, as it has no physical meaning.

Experiments of Kay et al. (2004) and Tavana et al. (2011) have shown that
liquid-plug-induced epithelial cell damage is controlled by the magnitude of the axial
derivatives of wall pressure, pw, and wall shear stress, τw

∂xpw = ∂x[p1]r=1 = Re−1
1

[1
r
∂r (r∂ru1)

]
r=1

+ Fr−1, (4.2a)

τw = ∂ru1|r=1 , ∂xτw = ∂x [∂ru1]r=1 , (4.2b)
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Figure 8. Highly viscous falling liquid film in contact with air: Ka = 3.3 × 10−3 (silicone oil I, air in table 1),
R� = 5 mm, Re1 = 4.5 × 10−4, M = 1. (a) Experiment from figure 3(c) of Camassa et al. (2014), reproduced
here with permission from Cambridge University Press. (b) Open-domain WRIBL computation (true to scale)
using inlet noise (3.21): ε1 = 0, ε2 = 10−4. Leading and trailing portions of the liquid plugs were reconstructed
with the spherical-cap approximation (2.14), using εmax = 0.68.

where (4.2a) is obtained by evaluating (2.1a) at r = 1 (and setting ε = 1), and where u1
is reconstructed according to (2.8), using (2.10a) and (2.19), which ensures consistency
at order O(ε2). Figure 7(c,d) plots profiles of ∂xτw and ∂xpw obtained from our WRIBL
model (solid curves) based on (4.2b) and (4.2a), in comparison with our DNS predictions
(green curves with open circles). Our WRIBL model predicts the spatial variation and the
maximum magnitude of both quantities, in good agreement with the DNS.

All three quantities, �pw (figure 7b), ∂xτw (figure 7c) and ∂xpw (figure 7d), exhibit
pronounced extrema around the first capillary trough preceding the leading front of the
liquid plug. Also, ∂xτw and ∂xpw change sign over a very short length scale in this
region, implying a temporally oscillatory stress field during the passage of a liquid
plug. Spatio-temporal variations increase the potential of mechanical damage to epithelial
cells in the pulmonary airways (Romano et al. 2021). In § 5.2, we will use our WRIBL
predictions obtained from (4.1), (4.2b) and (4.2a), and the corresponding time derivatives,
∂tτw = −c∂xτw and ∂tpw = −c∂xpw, to assess the potential for epithelial cell damage
linked to TPS under representative flow conditions in the conducting zone of the
tracheobronchial tree.

Further validation of our WRIBL model (2.13) is provided in figure 8, where we have
reproduced numerically the experiment in figure 3(c) of Camassa et al. (2014), who studied
liquid-plug formation in a narrow vertical tube, using a high-viscosity liquid (silicone oil
I in table 1) in contact with air.

Our WRIBL computation (figure 8b) was performed on an open domain, applying the
noisy inlet perturbation (3.21) to mimic experimental noise. Occlusion in the present
case occurs according to scenario I in Dietze et al. (2020), i.e. the liquid Reynolds
number, Re1 = 4.5 × 10−4, lies beyond the LP of the linearly most-amplified TWS, and
liquid plugs form as a result of surface waves emerging from linear wave selection.
This limit point is marked by LP1 in figure 9(a), which represents TSS at f = fmax,
where fmax denotes the spatially most-amplified frequency obtained from linear stability
analysis. Comparing the upper panel (experiment) and lower panel (WRIBL) in figure 8,
we conclude that our model correctly represents this occlusion regime. In particular,
the spatial evolution of precursory surface waves, their pinch-off to form liquid plugs
(subsequently convected downstream) and the number and shape of these plugs, are
predicted quite well.
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Figure 9. The TSS at f = fmax and M = 1 obtained with our WRIBL model (2.13) for the configuration in
figure 8. Solid blue curves with circles: full model; dot-dashed black: Jk = Kk = Lk = Mk = 0 in (2.13). Filled
black diamonds mark AI limit. Lower branch beyond LP2 in panel (a) corresponds to TPS, which are compared
with experiments (filled red squares) from figures 3(c) (Re1 = 4.5 × 10−4) and 3(d) (Re1 = 6.22 × 10−4)
of Camassa et al. (2014). (a) Minimal core radius; (b) wavelength; (c) wave/plug speed; (d) plug profiles
corresponding to cross and asterisk in panels (a–c). Solid: Re1 = 4.5 × 10−4, f �

max = 0.145 Hz; dashed:
Re1 = 6.22 × 10−4, f �

max = 0.155 Hz.

Further, we show in figure 9 that several liquid-plug measures from the experiment
can be predicted accurately based on TSS at f = fmax obtained with our WRIBL model.
Both the wavelength, Λ (combined length of liquid plug and gas bubble), represented
in figure 9(b), and the plug speed, c = Λfmax, represented in figure 9(c), lie within the
experimental error bars (experimental points are marked by filled squares), which were
determined graphically from the variation of Λ between different plug/bubble pairs in
figure 3(c) of Camassa et al. (2014). Crosses and asterisks on the TSS branches in
figure 9(a–c) mark the experimental conditions corresponding to figure 3(c,d) in Camassa
et al. (2014), whereby the former figure is reproduced here in figure 8(a).

The dot-dashed black curves in figure 9(a–c) represent TSS obtained in the absence of
axial viscous diffusion, i.e. when setting Jk = Kk = Lk = Mk = 0 in (2.13). In this limit,
agreement with the experiments is greatly deteriorated. Thus, accounting for axial viscous
diffusion, by developing our WRIBL model up to order ε2, has proven necessary in order
to accurately capture liquid plugs of highly viscous liquids.

Finally, we point out that our open-domain computation in figure 8(b) was run with an
imposed total flow rate qtot, corresponding to the TPS at M = 1 in figure 9(a). For this
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high-viscosity working liquid, gas–liquid coupling is very weak (Πμ = 1.4 × 10−6) and
thus imposing M = 1 via (2.17) requires a very fine grid resolution around the liquid plug,
which is prohibitive in open-domain computations.

5. Results: application to airway occlusion

We apply our WRIBL model (2.13) to study liquid-plug formation by a mucus film lining
the inner surface of a respiratory airway. We assume a mucus rheology corresponding
to healthy conditions, where neither viscoelasticity (Choudhury et al. 2023) nor shear
thinning (Chatelin et al. 2017) play a significant role. In particular, our computations are
based on a Newtonian model mucus according to Muradoglu et al. (2019), i.e. mucus I in
table 1. For the gas phase, we assume ambient air, i.e. air I in table 1.

We focus on the conducting zone of the human respiratory network, i.e. the first 16
airway generations according to the lung architecture model of Weibel & Gomez (1962)

R� = R�
Weib = R�

0 2−(n/3), (5.1a)

L� = L�
Weib = L�

0 2−(n/3), (5.1b)

Re2 = ReWeib
2 = Re20 2−(2/3)n = Q�

20
πR�

0ν2
2−(2/3)n, (5.1c)

where n denotes the airway generation, R� and L� the radius and length of the airway, Q�
2

and Re2 the corresponding gas flow rate and gas Reynolds number and the subscript 0
refers to the trachea, i.e. n = 0, for which we set R�

0 = 9 mm and L�
0 = 120 mm, according

to a typical adult (Weibel & Gomez 1962).
In the current manuscript, we do not account for the time variation of the air flow rate

during the breathing cycle. Instead, we set a time-constant tracheal gas flow rate, which is
based on the reference value Q�

20 = ±V�
T f �

T = ±2.5 × 10−4 m3 s−1, with a tidal volume,
V�

T = 500 × 10−6 m3, and a tidal frequency, f �
T = 0.5 Hz, according to typical settings for

assisted ventilation (Halpern et al. 1998), yielding Re20 = ±590. Based on this, the gas
flow is always laminar for generations n > 2, and we restrict our investigation to this range,
as our WRIBL model does not account for turbulence.

The sign of Q�
20 and Re20 allows us to distinguish between situations where the gas flow

is oriented in the direction of gravity (Q�
20, Re�

20 > 0) or opposite to gravity (Q�
20, Re�

20 <

0). We will designate these as co-current and counter-current configurations throughout.
Due to the branching nature of the lung architecture, two airways of the same generation
can be oriented in opposite directions, and, thus, the co- and counter-current configurations
can occur both during expiration and inspiration. Of course, the direction of the gas flow is
relevant only when gravity plays a role, and we will show that this is the case here. Strictly
speaking, our WRIBL model, which is based on an axisymmetric formulation (2.13), is
valid only for airways aligned with gravity, and we will focus on this situation. Thus, we
cannot account for cross-stream gravity, which can lead to asymmetric liquid distribution
about the airway equator (Suresh & Grotberg 2005). For this, a full three-dimensional
model is required.

Further, we neglect the effect of beating cilia lining the airway walls, which are
responsible for mucociliary clearance (Spagnolie 2015), as well as the periciliary liquid
(PCL) in which they are immersed. These effects are assumed to be negligible for
conditions in the vicinity of liquid-plug formation. For reference, the thickness of the PCL
layer is h�

PCL ∼ 8 μm for n = 16, i.e. hPCL/R ∼ 4 %. Finally, we assume the inner surface
of the airways to be perfectly cylindrical.
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Figure 10. Airway occlusion under imposed gas flow rate for different hVE . Linearly most-dangerous TSS vs
airway generation n based on lung architecture (5.1) of Weibel & Gomez (1962): Ka = 30.6 (mucus I and air
I in table 1), Re20 = ±590, k = kmax, R� = R�

Weib, Re2 = ReWeib
2 . Crosses mark transition between CI, where

ωi = ∂ωki = 0 is imposed (3.9a), and AI, where dω/dk = 0 (with k, ω ∈ C) is imposed (3.9b). Filled circles to
open diamonds: hVE = 0.4, 0.3, 0.267, 0.24, 0.2 and 0.15. (a,c) Co-current configuration: Re20 = 590, Mdry <

0; (b,d) counter-current configuration: Re20 = −590, Mdry > 0. (a,b) Minimum core radius; (c,d) normalized
pressure drop, where Mdry (5.3) corresponds to dry airways (hVE = 0).

5.1. Liquid-plug formation based on TSS
We apply the numerical continuation procedure introduced in § 3.2 to advance TSS in
terms of the airway generation n (see e.g. figure 10). For this, we assume that all quantities
evolve continuously with n (Halpern et al. 1998), based on the lung architecture model
(5.1) of Weibel & Gomez (1962). In particular, we are interested in predicting the transition
from TWS to TPS, which allows us to identify in what airway generation liquid plugs may
arise. In generations where TPS do not exist, plug formation is highly unlikely, even in
a transient setting. In addition to the airway generation, n, there is one other free control
parameter in our problem, for which we choose the liquid holdup, hVE = h�

VE/R�

hVE = 1 − dVE, (5.2)

which controls the thickness of the mucus film. This parameter can increase significantly in
the case of mucus overproduction or impeded mucociliary clearance caused by respiratory
diseases (Fahy & Dickey 2010).

In our calculations, we track the linearly most-dangerous TSS by setting k = kmax, where
kmax is the most-dangerous wavenumber, as obtained by simultaneously solving the linear
stability problem (3.9). Thus, for each airway generation, we obtain the TSS most likely
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Figure 11. Airway occlusion under imposed pressure drop for different values of the liquid holdup, hVE.
Linearly most-dangerous TSS vs airway generation, n, based on lung architecture (5.1) of Weibel & Gomez
(1962): Ka = 30.6 (mucus I and air I in table 1), M/Mdry = 20, Redry

20 = 590 (Mdry < 0), k = kmax, R� = R�
Weib.

Filled circles to open diamonds: hVE = 0.4, 0.3, 0.267, 0.24, 0.2 and 0.15. (a) Minimum core radius; (b)
normalized gas Reynolds number. Mdry (5.3) and Redry

2 correspond to dry airways (hVE = 0) in the absence
of gravity (Fr−1 = 0). The LPs mark onset of TPS. Crosses mark transition between CI, where ωi = ∂ωki = 0
is imposed (3.9a), and AI, where dω/dk = 0 (with k, ω ∈ C) is imposed (3.9b).

to emerge in a real system, and we have checked that the corresponding most dangerous
wavelength, Λmax = 2π/kmax, satisfies Λmax ≤ LWeib, i.e. that the most-dangerous TSS
fits into the typical length of the considered airway generation (see figure 12, which will
be introduced later). Further, our spatio-temporal stability formulation introduced in § 3.2
allows us to distinguish between: (i) CI, where we set ωi = ∂ωki = 0 via (3.9a), and kmax
corresponds to the linear mode with maximum spatial growth rate, and (ii) AI, where we
set dω/dk = 0 via (3.9b), and kmax corresponds to the absolute mode, i.e. a perturbation
growing in time at fixed axial position, x. The TPS in the AI regime are particularly
dangerous, as the linear perturbation in that case cannot be advected out of the airway, and
plug formation is thus more likely in a transient setting. Therefore, the CI/AI transition is
highlighted by crosses in all figures of the current section, i.e. figures 10–16.

Figure 10 represents TSS vs the airway generation n for imposed R� = R�
Weib and

Re2 = ReWeib
2 , according to (5.1), for different values of the liquid hold up, hVE. Here,

we confront the co-current (Re20 = 590, figure 10a,b) and counter-current (Re20 = −590,
figure 10c,d) configurations. Figure 10(a) represents TSS in terms of the minimum core
radius, dmin (solid curves). Upon decreasing hVE (from hVE = 0.4 to hVE = 0.2), the
critical generation for TPS formation (LPs, marked by symbols) shifts significantly toward
distal airways (from n = 6 to n = 14). At the same time, the CI/AI transition (marked by
crosses) increasingly shifts from the TPS branch to the TWS branch, making liquid-plug
formation in a transient setting more and more likely. In particular, for hVE ≤ 0.267, the
entire TPS branch lies in the AI regime. We point out that the observed multiplicity of TSS
at fixed hVE and n is similar to the one discussed in figure 3(a). It is quite probable that the
TWS on the intermediate branches between the upper LP and the TPS are unstable here as
well. To check this rigorously, the approach of Camassa et al. (2021) for investigating the
stability of TWS needs to be applied to the continuation results in figure 10(a), where the
continuation parameter is different. This is outside the scope of the current manuscript.

According to figure 10(c), the TPS from figure 10(a) are associated with a spectacular
increase of the normalized gas pressure gradient, M (2.18), vs its reference value, Mdry, for
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Figure 12. Length scales of TSS from figure 10, as compared with the airway length, LWeib (5.1). (a,b) Relative
distance of propagation, LT/LWeib, during half of one breathing period, 1/fT , where LT = c/2/fT ; (c,d) relative
wavelength, Λ/LWeib. (a,c) Co-current: Re20 = 590; (b,d) counter-current: Re20 = −590.

dry gravity-free airways

Mdry = lim
d→R

1/Fr→0

{∂x�p�
2}

1
ρ2g

= −8
Re2

Ga2
, Ga2 = R�3g

ν2
2

, (5.3)

where Ga2 denotes the gas Galileo number. Conversely, when M/Mdry is imposed instead
of Re20, as shown in figure 11, occlusion leads to a virtual halt of the gas flow trough
the affected airway, as demonstrated via the Re2 vs n plot in figure 11(b), where we have
fixed M/Mdry = 20 based on Redry

20 = 590 (Mdry < 0), keeping all other parameters as in
figure 10(a). Indeed, when moving from the upper TWS branches to the TPS branches
at constant n in figure 11(b), Re2 drops by one order of magnitude. This underlines
the extremely noxious implications of airway occlusion for the proper operation of the
respiratory tract.

We turn now to figure 10(b,d), which represents TSS for the same parameters as in
figure 10(a,c), but for the counter-current configuration. Comparing figure 10(a,b), we see
that the critical n for airway occlusion shifts by one or two generations between the co-
and counter-current configurations. Based on this, we may conclude that gravity affects
the occlusion limit up to generation n = 10, where Bo = ρ1gR�2/σ ∼ 0.4. This relatively
small gravitational effect is contrasted by the spectacular difference in the core radius,
dmin, for the TWS branches associated with these two configurations. While TWS do not
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significantly obstruct the airways for the co-current configuration (figure 10a), dmin attains
values that are smaller by one order of magnitude for the counter-current configuration
(figure 10b). As shown in figure 10(d), this translates to extremely large gas pressure drops,
even before the onset of TPS. Thus, in contrast to the co-current configuration, breathing
in the counter-current configuration can be drastically impaired even in the absence of
liquid-plug formation.

In figure 12, we characterize different length scales associated with the TSS obtained in
figure 10 vs the airway generation, n, by comparing them with the airway length, LWeibel
(5.1). Figure 12(a,b) represent the distance, LT = c/2/fT , which a TSS would travel during
one half of the breathing cycle, i.e. 2/fT , where c is the nonlinear TSS speed. Both
for the co-current configuration (figure 12a) and for the counter-current configuration
(figure 12b), TPS are associated with very large values of |LT |/LWeib. This implies that
liquid plugs can easily propagate into more distal airways, thus exacerbating the noxious
implications of airway occlusion. Of course, Re2 is not constant in time during a real
breathing cycle, and thus our predictions in figure 12(a,b) provide only a conservative
estimate.

In figure 12(c,d), we compare the wavelength, Λ, of the TSS from figure 10(a,b) with the
corresponding airway length, LWeibel. First of all, we observe that Λ < LWeibel is satisfied
across the first 16 airway generations, implying that at least one TSS fits into every airway.
At small n, where TWS prevail, that number can increase to five. At large n, where TPS
prevail, we observe approximately two liquid plugs per airway, independent of the liquid
holdup hVE. Thus, nonlinear interactions between liquid plugs may need to be accounted
for when modelling the dynamics of airway occlusion.

Figure 13 compares the liquid volume, V1, of the TSS in figure 10(a) with two thresholds
corresponding to static equilibrium shapes that do not fully wet the inner surface of
the airway. Quasi-static conditions can occur when the gas flow rate becomes zero in
between the inspiration and expiration strokes, provided the effect of gravity is negligible.
Firstly, figure 13(a) compares V1 with the threshold, VU (Everett & Haynes 1972), for the
formation of liquid unduloids (Delaunay 1841)

VU = 1.73πR3. (5.4)

Unduloids are always shorter than the most-amplified wavelength of the classical
Plateau–Rayleigh instability, and, thus, inevitably lead to a dewetting of the liquid film
for V1 ≤ VU , as a result of the subcritical nature of the instability. Figure 13(a) shows that
V1 ≤ VU can indeed occur within the airways, i.e. for n < 7 and hVE ≤ 0.24. However, the
corresponding Bond number, BoU = ρ1gh�2

VE/σ , which is plotted in figure 13(c), indicates
that quasi-static conditions can be reached only for n > 5, where BoU < 0.1, at least for the
considered values of hVE. Widespread conditions for dewetting due to unduloid formation
are limited to much smaller values of hVE, but the growth rate of the Plateau–Rayleigh
instability may be very small there, vs the frequency of the breathing cycle.

Secondly, figure 13(b) compares V1 with the threshold, VP, for the existence of fully
wetting static spherical liquid plugs

VP = πR3
{
Λ − 4

3

}
, (5.5)

and we see that all represented TSS satisfy V1/VP < 1. Assuming that quasi-static
conditions can be reached over the course of the breathing cycle, dewetting due
to plug formation is thus possible in all airway generations. However, according to
figure 13(d), which represents the corresponding Bond number, BoP = Bo = ρ1gR�2/σ ,
such conditions are limited to the most distal airways, i.e. n > 13, where BoP < 0.1.
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Figure 13. Liquid volume, V1, of TSS in figure 10(a) compared with different static dewetting thresholds,
VU (5.4) and VP (5.5). From filled circles to open diamonds: hVE = 0.4, 0.3, 0.267, 0.24, 0.2 and 0.15. (a)
Compared with critical volume for the existence of unduloids: VU = 1.73πR3 (5.4); (b) compared with critical
volume for the existence of fully wetting spherical liquid plugs: VP = πR3(Λ − 4/3) (5.5); (c,d) Bond numbers
for liquid unduloids, BoU = ρ1gh�2

VE/σ , and liquid plugs, BoP = Bo = ρ1gR�2/σ .

We proceed with figures 14 and 15, where we discuss the effect of different control
parameters that are important in the treatment of diseases involving airway occlusion, i.e.
Re20, which is representative of the tracheal breathing flow rate imposed during assisted
ventilation, and the Kapitza number, Ka, Laplace number, La = R�σρ1/μ

2
1, and capillary

number, Ca = U2μ1/σ , which characterize the hydrodynamic physical properties of
mucus and can typically be modified via medication, e.g. via mucolytics (acting on the
mucus viscosity) or surfactants (acting on the surface tension). We consider the same
reference parameters as in figure 10, focusing on one liquid holdup, hVE = 0.24, and
we vary Re20 (figure 14a,b), Ka (figure 14c,d), La (figure 15a,b) and Ca (figure 15c,d)
around their reference values (marked by thin vertical lines in figure 14 and open circles in
figure 15).

Figure 14(a,b) represent the minimum core radius of TSS vs Re20 for hVE = 0.24. The
curve parameter is the airway generation n, which we have varied from n = 10 (filled
circles) to n = 14 (asterisks), and, as in figure 10, we track the linearly most-dangerous
TSS by fixing k = kmax. The considered range of Re20 is limited by the turbulence
threshold, |Re20| ∼ 1300. Based on the curves in figure 14(a,b), we observe that TPS
can be effectively prevented by increasing |Re20| beyond a threshold that increases with
increasing n. Further, for the proximal airways (closer to the trachea, e.g. pentagons,
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Figure 14. Effect of air flow and mucus properties on airway occlusion. The TSS for reference parameters
from figure 10: k = kmax, R� = R�

Weib, Re2 = ReWeib
2 , hVE/R = 0.24, air I in table 1. Circles: n = 10, pentagons:

n = 11, squares: n = 12, diamonds: n = 13 asterisks: n = 14. Reference state (thin vertical lines): Ka = 30.6,
Re20 = ±590. (a) Versus Re20, co-current; (b) vs Re20, counter-current; (c) vs Ka at fixed Ga = R�3g/ν2

1 :
Re20 = 590; (d) vs Ka at fixed Ga: Re20 = −590. Pluses in panels (a,b) mark turbulence onset.

corresponding to n = 11), we observe a non-negligible difference between the co-current
(figure 14a, Re20 > 0) and counter-current (figure 14b, Re20 < 0) configurations. Once
again, we point out that Re20 varies in time over the course of a real breathing cycle. Thus,
even if the mean |Re20| lies beyond the TPS bound given in figure 14(a,b), there is still a
risk of airway occlusion in between the inspiration and expiration strokes. In an effective
assisted ventilation protocol, this can be avoided by applying a step-like variation of the air
flow rate, with a rapid change from inspiration to expiration (Weber et al. 2020). Finally, as
can be deduced from the absence of crosses in figure 14(a,b), the nature of the instability
remains unchanged during a variation of Re20, i.e. CI for n = 10 and AI for n > 10.

We now turn to figure 14(c,d), where we have plotted dmin vs Ka for TSS at Re20 ±
590, k = kmax and n fixed according to figure 14(a,b). Further, we have fixed the liquid
Galileo number, Ga = R�3g/ν2

1 , and thus our variation of Ka mimics a change in mucus
surface tension at fixed dynamic viscosity, i.e. via surfactants. Based on these results,
we may conclude that the formation of TPS can be prevented by reducing Ka, e.g. by
reducing surface tension. In particular, at the considered hVE = 0.24, airway occlusion
can be avoided for n ≤ 14 via reducing Ka by a factor of roughly 3 vs its reference value
(marked by thin vertical lines). And, comparing figures 14(c) and 14(d), we observe that
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Figure 15. Effect of mucus surface tension and viscosity on airway occlusion. The TSS for reference
parameters of co-current configuration in figure 10: air I in table 1, k = kmax, R� = R�

Weib, Re2 = ReWeib
2 ,

R�
0 = 9 mm, Q�

20 = 2.5 × 10−4 m3 s−1, hVE/R = 0.24. Circles: n = 10, pentagons: n = 11, squares: n = 12,
diamonds: n = 13, asterisks: n = 14. (a) Change in La = R�σρ1/μ

2
1 at fixed Ga = R�3g/ν2

1 ; (b) change in La
at fixed Bo = ρ1gR�2/σ ; (c) data from panel (a) vs Ca = U2μ1/σ ; (d) data from panel (b) vs Ca. Absolute
instability everywhere except on branch to the right of blue cross. In all panels, open circles correspond to
Ka = 30.6, i.e. mucus I in table 1.

slightly lower values of Ka are required to avoid occlusion in the co-current (figure 14c)
vs the counter-current (figure 14d) configuration. Finally, we observe that increasing Ka
causes a transition from CI to AI, and that all plotted TPS branches lie entirely in the AI
regime.

In figure 15(a,c), we have re-plotted the TSS from figure 14(c), which corresponds to
the co-current configuration, in terms of La and Ca. We recall that Ga is fixed in these
calculations, so that they mimic a change in mucus surface tension at constant mucus
dynamic viscosity, i.e. via surfactants. Interestingly, the onset of TPS in figure 15(c)
collapses to a single threshold for all considered airway generations, i.e. Ca ∼ 0.05.

By contrast, figure 15(b,d) represents TSS obtained by varying La and Ca at constant
Bond number, Bo = ρ1gR�2/σ . This mimics a change in mucus dynamic viscosity at
constant mucus surface tension, e.g. via mucolytics. Based on these results, we may
conclude that an increase in mucus viscosity allows us to suppress TPS in favour of
TWS. However, the resulting TWS are associated with small values of the core radius
dmin. Thus, although liquid plugs can be suppressed by increasing mucus viscosity, the

998 A50-31

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

60
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.607


G.F. Dietze

8 9 10 11 12 13 14 15 16

dmin

LPLP 10–2

10–1

100

10–2

10–1

100

8 9 10 11 12

nn
13 14 15 16

LP

(b)(a)

Figure 16. Self-similar airway contraction/expansion based on lung architecture model (5.1) of Weibel &
Gomez (1962). Effect of R�

0 on TSS: k = kmax, R� = R�
Weib, Re2 = ReWeib

2 , Ka = 30.6 (mucus I and air
I in table 1), hVE = 0.24. Circles: R�

0 = 11 mm, pentagons: R�
0 = 10 mm, squares: R�

0 = 9 mm, diamonds:
R�

0 = 8 mm, asterisks: R�
0 = 7 mm. (a) Co-current configuration: Mdry < 0, Q�

20 = 2.5 × 10−4 m3 s−1; (b)
counter-current configuration: Mdry > 0, Q�

20 = −2.5 × 10−4 m3 s−1.

airways nonetheless remain significantly obstructed, except for n = 10 (blue curves with
filled circles), where non-occluding TWS exist over the entire La and Ca ranges. This is in
contrast to suppressing liquid plugs via surfactants (figure 15a,c).

Over the course of a breathing cycle, the lung expands during inspiration and contracts
during expiration (Grotberg 1994), according to a tidal volume of V�

T ∼ 500 × 10−6 m3 in
the case of an adult (Halpern et al. 1998). Also, the lung geometry can differ quantitatively
from one individual to another. Such geometrical effects are bound to modify the threshold
for airway occlusion. We investigate this in a rudimentary way by changing the trachea
radius R�

0, while keeping the gas flow rate Q�
20 = 2.5 × 10−4 m3 s−1 constant. This

amounts to assuming a self-similar contraction/expansion of the lung architecture, as
controlled by R�

0 via (5.1).
Figure 16 represents TSS, in the form of dmin vs n curves, as obtained for different

values of R�
0, ranging from R�

0 = 7 to R�
0 = 11 mm, for the co-current (figure 16a) and

counter-current (figure 16b) configurations. In both configurations, the onset of TPS is
delayed toward distal airways upon decreasing R�

0 (compare curves with circles with
curves with asterisks). This is because Re20 increases with decreasing R�

0 at constant
Q�

20, and we have seen in figure 14(a,b) that increasing the strength of the air flow delays
airway occlusion. Comparing figures 16(a) and 16(b), we observe that the effect of R�

0 is
approximately the same for the co-current and counter-current configurations. Finally, we
observe that the CI/AI transition moves to more distal airways as R�

0 is reduced, and that
almost all TPS lie in the AI regime.

5.2. Wall stresses based on TSS
In § 4, we have shown that our WRIBL model (2.13) can accurately predict the wall stresses
developed within the liquid film of a TPS, as well as the axial spatial derivatives of these
stresses (see figure 7). Several studies have provided clear evidence that these mechanical
quantities are responsible for damaging epithelial cells within the pulmonary airways, as
a result of liquid plugs formed by the mucus film lining their inner surface. These studies
either focused on a particular airway generation (Muradoglu et al. 2019), or simplified
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the problem with respect to the pulmonary setting, e.g. by using rectangular instead of
cylindrical channels (Bilek et al. 2003; Fujioka & Grotberg 2004; Kay et al. 2004; Huh
et al. 2007; Zheng et al. 2007), or by neglecting gravity (Fujioka et al. 2008; Hassan et al.
2011; Olgac & Muradoglu 2013; Fujioka et al. 2016) or advection via the gas flow (Romano
et al. 2021). Several of these works aimed at establishing correlations based on the fluid
mechanical control parameters. In the current section, we aim to complement these works
by accounting for how these parameters evolve throughout the respiratory network.

For this, we use our TSS from § 5.1 to investigate how the maximum magnitudes of the
mechanical wall stresses and their space and time derivatives (calculated according to (4.1)
and (4.2) § 4), evolve throughout the respiratory network, and how they are affected by the
main control parameters. By comparing our WRIBL predictions of these measures with
the ex vivo experimental data of Bilek et al. (2003) and Kay et al. (2004), we can assess
the damage potential for epithelial cells.

In figure 17, we plot the maximum magnitudes of the wall shear stress (figure 17a), τw
(4.2b) and excess pressure (figure 17b), �pw (4.1), vs the airway generation, n, for the
TSS in figure 10(a), where crosses mark the CI/AI transition and other symbols mark LPs
corresponding to the onset of TPS (superscripts max and min will refer to extrema across
the spatial profile of a TSS throughout). These maximum magnitudes are associated with
the capillary ripple preceding the leading front of the liquid plug (Fujioka & Grotberg
2004; Zheng et al. 2007), which can be seen in figure 7(a). From figure 17(a), we may
conclude that the maximum wall shear stress magnitude, |τ �

w|max, associated with TPS
(curve portions to the right of polygonal symbols except for open diamonds) is an order of
magnitude larger than in the ex vivo experiments of Kay et al. (2004), i.e. |τ �

w|max ∼ 10 Pa
here vs |τ �

w|max ∼ 1 Pa in the experiments, where significant epithelial cell damage was
observed.

The trend of the |τ �
w|max vs n curves in figure 17(a) is not trivial. Although the transition

from TWS to TPS is always associated with a significant increase in the stress magnitude,
|τ �

w|max, the latter quantity can intermediately decrease with increasing n for TPS (see
e.g. curves with filled circle and filled pentagon). As a result, the overall maximum of
|τ �

w|max is not necessarily associated with the most distal airways. We also point out that, for
n ≥ 14, the stress magnitude is dictated by the stress minimum, τ �min

w , as can be deduced by
comparing figures 17(c) and 17(d), which represent τ �min

w and the stress maximum, τ �max
w ,

with figure 17(a). The excess pressure, |�p�
w|max, represented in figure 17(b), displays more

or less the same behaviour as |τ �
w|max, only that it attains considerably larger magnitudes

in the most distal airways.
We now turn to figure 18, which represents the spatial and temporal derivatives of the

wall shear stress, τw (figure 18a,c), and of the wall pressure, pw (figure 18b,d) in terms
of the airway generation, n, for the TSS in figure 10(a). The seminal experiments of Kay
et al. (2004) have proven that the maximum magnitude of the axial wall pressure derivative
within a liquid plug, |∂x�p�

w|max (figure 18b), is directly correlated with epithelial cell
damage. According to our figure 18(b), TSS attain the required level for high cell damage
according to table 1 in Kay et al. (2004), i.e. |∂x�p�

w|max ∼ 0.6 Pa μm−1, for all values of
hVE, i.e. in the most distal airways (n ≥ 14). Further, the level for low but appreciable cell
damage, |∂x�p�

w|max ∼ 0.3 Pa μm−1, can be attained in quite proximal airways, i.e. n = 6
for hVE = 0.4 (blue line with filled circle).

According to figure 18(a), the maximum magnitude of the wall shear stress derivative,
|∂x�τ �

w|max, is comparable in magnitude and behaves similarly to that of the wall pressure
derivative in figure 18(b). This is a significant difference with the experiments of Kay
et al. (2004), where the wall shear stress derivative was an order of magnitude smaller.
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Figure 17. Wall stresses for TSS in figure 10(a). Co-current configuration: Re20 = 590, Ka = 30.6, k = kmax,
R� = R�

Weib, Re2 = ReWeib
2 . Crosses mark CI/AI transition and other symbols correspond to LPs in figure 10(a),

marking the onset of TPS (except for open diamonds). Filled circles to asterisks: hVE = 0.4, 0.3, 0.267, 0.24,
0.2, and 0.15. (a) Maximum magnitude of wall shear stress, τw (4.2b); (b) maximum magnitude of excess
pressure, �pw (4.1); (c,d) maximum and minimum values of τw.

This discrepancy could be due to the different flow configuration used in the experiment,
i.e. a rectangular horizontal channel instead of a cylindrical tube. By contrast, our results in
figure 18(a) imply that the spatial wall shear stress derivative is sufficiently large to cause
significant epithelial cell damage. Moreover, as the loci of |∂x�τ �

w|max and |∂x�p�
w|max do

not coincide, but lie close to one another in the region of the capillary ripple downstream
of the leading plug front (see figure 7c,d), the passage of a TPS subjects the epithelial cells
to a double mechanical solicitation of lethal magnitude.

In that context, it is useful to evaluate the maximum magnitudes of the temporal
derivatives of the wall stresses, |∂t�τ

�
w|max and |∂t�p�

w|max, which are represented in
figure 18(c,d). For TSS, these quantities can be obtained from the spatial derivatives
via the transformation ∂t = −c∂x, where c denotes the TSS propagation speed. We
observe that the overall maxima of |∂t�τ

�
w|max and |∂t�p�

w|max across the considered airway
generation range can occur at significantly more proximal airways vs the spatial derivatives
represented in figure 18(a,b). For example, at hVE = 0.4 (curves with filled circles), the
overall maximum of |∂t�τ

�
w|max for TPS is reached at n = 6 (figure 18c), whereas the overall

maximum of |∂x�τ �
w|max is reached at n = 16 (figure 18a). Thus, the question arises as to

whether epithelial cell damage is mainly driven by the temporal or the spatial variation of
wall stresses.
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Figure 18. Maximum magnitudes of wall stress derivatives for TSS in figure 10(a). Same parameters and
attributions as in figure 17. (a,c) Wall shear stress τw according to (4.2b); (b,d) wall pressure pw according to
(4.2a); (a,b) spatial derivative ∂x; (c,d) temporal derivative ∂t = −c∂x.

Figure 19 represents the maximum magnitudes of the spatial wall stress derivatives
for the counter-current configuration, i.e. for the TSS in figure 10(b). In that case, TWS
are associated with much smaller values of dmin and this greatly affects the wall stress
derivatives. In particular, the overall maximum of |∂x�τ �

w|max is reached in the most
proximal airways for almost all values of hVE (figure 19a), and lies well above the threshold
for significant epithelial cell damage (|∂�

x τ �
w| ∼ 1 Pa μm−1), whereas it is always reached

in the most distal airways for the co-current configuration (figure 18a). Also, the overall
minimum of |∂x�τ �

w|max for the counter-current configuration (figure 19a) is greater by one
order of magnitude vs the co-current configuration (figure 18a), meaning that the average
level of mechanical solicitation is much greater in the counter-current configuration.
Similar observations can be made for |∂x�p�

w|max in figure 19(b) vs figure 18(b). Thus,
the orientation of a particular airway with respect to gravity may have a significant effect
on the level of epithelial cell damage.

We proceed with figure 20, which reports the effects of the tracheal Reynolds number,
Re20, the Kapitza number, Ka, and the tracheal airway radius, R�

0, on the maximum
magnitude of the spatial derivative of the tangential wall shear stress, |∂x�τ �

w|max.
According to figure 20(a,b), which corresponds to the TSS for the co-current and
counter-current configurations in figure 14(a,b), the effect of Re20 is rather weak for all
considered airway generations (from filled blue circles, marking n = 10, to red asterisks,
marking n = 14). Thus, avoiding airway occlusion by increasing |Re20|, as discussed with
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Figure 19. Maximum magnitudes of spatial wall stress derivatives for TSS in figure 10(b). Counter-current
configuration: Re20 = −590, Ka = 30.6, k = kmax, R� = R�

Weib, Re2 = ReWeib
2 . Crosses mark CI/AI transition

and other symbols correspond to LPs in figure 10(a), marking the onset of TPS (except for open diamonds).
Filled circles to asterisks: hVE = 0.4, 0.3, 0.267, 0.24, 0.2 and 0.15. (a) Derivative of wall shear stress, τw,
according to (4.2b); (b) derivative of wall pressure, pw, according to (4.2a).

respect to figure 14(a,b), comes at the expense of producing an additional wall shear stress,
so that epithelial cell damage cannot be reduced in the end.

By contrast, figure 20(c), which reports the effect of the Kapitza number based on
the TSS in the counter-current configuration of figure 14(c), shows that avoiding TPS by
reducing Ka at constant Ga is associated with a very significant reduction in |∂x�τ �

w|max, i.e.
by one order of magnitude. Also, on the TPS branches (curve portions to the right of the
symbols marking LPs in figure 20c), |∂x�τ �

w|max diminishes with decreasing Ka according
to a power law, i.e. |∂x�τ �

w|max∝KaC, where C > 0 is a constant. Thus, decreasing Ka,
i.e. by reducing the mucus surface tension, may help to significantly reduce the level of
epithelial cell damage. We point out that we have compared our TPS data from figure 20(c)
with the correlation in equation (33) of Fujioka et al. (2016) by re-plotting these in terms of
the modified capillary number, Ca = μ1c�/σ , and evaluating the minimum film thickness,
hmin. Although the trend of |∂x�τ �

w|max vs Ca is similar, the trend in terms of the airway
generation, n, is inverted. This may be due to the finite length of the TPS considered here
(infinite plugs were considered in the reference), or the effect of inertia and/or axial viscous
diffusion, which were not accounted for in the model of Fujioka et al. (2016).

Finally, figure 20(d) demonstrates the effect of a self-similar expansion/compression
of the lung, by plotting |∂x�τ �

w|max vs n for the TSS in figure 16(a), which corresponds
to different values of the tracheal airway radius, R�

0. Even though a reduction of R�
0

allows us to delay the formation of TPS to more distal airways (as discussed with respect
to figure 16a), its net effect is to increase the wall stress derivative for all n. This is due to
the fact that the tracheal gas flow rate, Q�

0, is kept constant in figure 20(d), which means
that Re2 increases at a given n when decreasing R�

0.

6. Conclusion

In the current manuscript, we have used the augmented cylindrical WRIBL model (2.13),
which was proposed in the appendix of Dietze et al. (2020), to simulate liquid plugs in
narrow cylindrical tubes. In the first part (§ 4), we have extensively validated our model
by comparing with occlusion experiments from the literature and with our own DNS.
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Figure 20. Effect of different control parameters on the maximum magnitude of the spatial wall shear stress
derivative, ∂xτw (4.2b). Parameters and symbols as in figures representing corresponding TSS. (a) Effect of
air flow: co-current configuration. The TSS according to figure 14(a); (b) effect of air flow: counter-current
configuration. The TSS according to figure 14(b); (c) change in Ka at fixed Ga: co-current. The TSS according
to figure 14(c); (d) effect of trachea radius R�

0: co-current. The TSS according to figure 16(a).

Thereby, we have demonstrated that our model accurately captures: (i) the linear and
nonlinear dynamics of liquid plug formation (figures 4 and 8); (ii) the flow field associated
with TPS (figure 6); (iii) the speed and entrained gas flow rate of TPS and their variation
with the liquid volume (figures 5 and 9); and (iv) the associated tangential and normal
wall stresses, as well as their spatial derivatives (figure 7). In the second part (§ 5), we
then applied our WRIBL model to predict liquid-plug formation by the mucus film coating
the inner surface of the pulmonary airways, based on a continuum representation of the
tracheobronchial tree, using the lung architecture model (5.1) of Weibel & Gomez (1962),
which describes how the airway radius, R�, air Reynolds number, Re2, and airway length,
L�, vary with the airway generation, n. Here, we have assumed typical conditions for
assisted ventilation (Halpern et al. 1998), and taken into account the effect of gravity by
comparing the co-current and counter-current configurations.

This was done via low-cost calculations based on numerical continuation that allow
us to track the evolution of TSS, i.e. TWS and TPS, in terms of n, throughout the
conductive region of the tracheobronchial tree (n < 16). An important feature of our
WRIBL model is that it provides a direct continuation path from TWS to TPS (see e.g.
figure 3), which allows us to readily identify the threshold for liquid-plug formation, e.g.
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in terms of the airway generation, n (see e.g. figure 10). In our continuation calculations,
we have imposed the most-dangerous wave number, k = kmax, which is either given by the
spatially most-amplified mode, in the case of CI, or by the absolute mode, in the case of
AI. This wavenumber, kmax, is determined via simultaneous (spatial or spatio-temporal)
linear stability calculations based on the dispersion relation of our WRIBL model (3.3),
which allow us to identify the CI/AI transition (Brevdo et al. 1999). As a result, we were
able to track TSS that are most likely to emerge in a real system. On the one hand,
our WRIBL continuation calculations enabled us to identify the critical conditions for
liquid-plug formation in the conducting zone of the tracheobronchial tree, and the effect
of the principal control parameters thereon (§ 5.1). On the other hand, they allowed us
to predict the maximum magnitude of the wall stresses (and their spatial and temporal
derivatives) exerted by the mucus film on the airway wall and to compare these with the
thresholds for epithelial cell damage (§ 5.2), as identified in the seminal experiments of
Kay et al. (2004).

Our main conclusions are as follows. (i) Liquid plugs form for values of the liquid hold
up, hVE, larger than hVE ∼ 0.15, starting in the most distal airways (n = 16), and moving
toward more proximal airways with increasing hVE. At n = 6, a holdup of hVE = 0.4 would
be required to reach occlusion, which is quite unlikely in a physiological setting. These
observations are in agreement with postmortem studies identifying the major sites of
airway obstruction in chronic obstructive pulmonary disease at n ≥ 8 (Corrin & Nicholson
2011) and with the state of the art on this topic published by Hogg (2006). (ii) The TPS
are associated with a very significant increase in the pressure drop when the gas flow rate,
Q�

2, is imposed (figure 10c), and with a drastic reduction in Q�
2 when the gas pressure

drop is imposed (figure 11b). (iii) In most cases, TPS lie in the AI regime, i.e. the base
flow is absolutely unstable and plug formation is highly likely. (iv) Although the critical
n for TPS formation is not significantly affected by the airway orientation with respect
to gravity, TWS in the counter-current case display a much larger amplitude (compare
figures 10a and 10b), which leads to a significant increase (by more than one order of
magnitude) of the gas pressure drop (compare 10c and 10d). (v) In some regimes, the
liquid volume associated with TWS and TPS can lie below the limit for liquid unduloids
or fully wetting spherical liquid plugs (figure 13a,b), making a dewetting of the mucus
film possible, e.g. in between inspiration and expiration strokes. (vi) While the typical
wavelength of TPS corresponds to approximately half the length of a considered airway,
Λ/LWeibel ∼ 0.5, their travelling distance is many times larger than LWeibel (figure 12),
meaning that liquid plugs can easily propagate into more distal airways. (vii) Liquid-plug
formation can be avoided in all generations by increasing the air flow rate (figure 14a,b),
e.g. via assisted ventilation, and by reducing the surface tension via surfactants (variation
of Kapitza number at constant liquid Galileo number in figure 14c,d). Although TPS can
also be suppressed by increasing mucus viscosity (reduction of Laplace number at constant
Bond number in figure 15b), the resulting TWS still significantly obstruct the airways. For
a given liquid holdup, the onsets of TPS in distal airway generations collapse to a single
critical value for the capillary number, Ca (figure 15c,d). (viii) Contraction/expansion of
the lung, moves the critical airway generation for TPS formation to more distal/proximal
airways (figure 16). (ix) Transition from TWS to TPS is associated with a drastic increase
in the maximum magnitudes, |∂x�τ �

w|max and |∂x�p�
w|max, of the spatial derivatives of the

tangential and normal wall stresses (figure 18), and both magnitudes attain values well
beyond the limit for epithelial cell damage according to the ex vivo experiments of Kay
et al. (2004), even in quite proximal airways (n = 6). (x) Depending on the orientation
of gravity, the wall stress derivative magnitudes attain their maxima in the most proximal

998 A50-38

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

60
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.607


Liquid plugs in narrow tubes

(counter-current configuration, figure 19a) or in the most distal (co-current configuration,
figure 18a) airways. (xi) The temporal wall stress derivative magnitudes, |∂t�τ

�
w|max and

|∂t�p�
w|max, attain their maximum in much more proximal airways vs the spatial derivatives

(figure 18c,d). Thus, determining which one of these measures is most representative to
assess epithelial cell damage is an important future task. (xii) Preventing TPS formation
by increasing the air flow rate (figure 14a,b) is associated with consistently high levels
of the spatial wall shear stress derivative (figure 20a,b). In some cases, these lie beyond
the threshold for epithelial cell damage. (xiii) A significant reduction in the wall stress
derivatives can be achieved by reducing mucus surface tension (figure 20c).

Future work should focus on extending our WRIBL model to further approach the
physiological setting of airway occlusion. In particular, the model should be extended
to the fully three-dimensional case, in order to represent configurations where the airway
is not aligned with gravity (Suresh & Grotberg 2005). Another promising direction is
to study plug formation via transient computations (Fujioka et al. 2016; Romano et al.
2021). This would allow us to simulate assisted ventilation regimes with the goal of
predicting optimal operating conditions, where plug formation is avoided over the course
of a breathing cycle while wall stresses (and the associated epithelial cell damage) are
minimized. Also, the presence of the PCL layer (Ogrosky 2021a), the effect of beating
cilia (Bottier et al. 2017), the non-Newtonian mucus rheology (Vasquez et al. 2016) and
the secretion of mucus should be accounted for. On the other hand, our model could be
applied to other configurations involving liquid plugs, e.g. for the cleaning of contaminated
surfaces (Zoueshtiagh et al. 2014; Khodaparast et al. 2017) or the filtering of particles (Yu,
Khodaparast & Stone 2018). In the context of SRT, it would be interesting to study the
stability of the TPS predicted by our WRIBL model. Instability can represent a second
route toward plug rupture, which may occur earlier than the loss of TPS at the LP
connecting TWS and TPS (LP2 in figure 3a). Such an investigation would allow us to
extend the work of Ubal et al. (2008), where gravity was neglected.
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Appendix A. Full expressions for coefficients introduced in § 2

The source terms, Zk, in the boundary value problem (2.9) for the axial base velocity
profiles, ûk, are defined as follows:

Z1 = −Re−1
1 {C11Q1 + C12Q2} , Z2 = −Re−1

2 {C21Q1 + C22Q2}, (A1a)

with the constants, Cij, according to:

C11 = 8
Ξ

{4Πμ[ln (d) − ln (R)] − 1}, (A1b)
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C12 = 16
Ξ

ΠμΠu

d2 {2d2[ln (d) − ln (R)] − d2 + R2}, (A1c)

C21 = 16
Ξ

1
d2Πu

{2d2[ln (d) − ln (R)] − d2 + R2}, (A1d)

C22 = 8
Ξ

1
d4 {4d4[ln (d) − ln (R)] − 3d4 + 4d2R2 − R4}, (A1e)

where the common term, Ξ , is defined as

Ξ = π{4[d4(Πμ − 1) − ΠμR4](ln (d) − ln (r))

−(d2 − R2)[d2(4Πμ − 3) + (1 − 4Πμ)R2]}, (A1f )

and where the chosen scaling implies R = 1.
The coefficients, fki, of the axial base velocity profiles, ûk, according to (2.10a) are

defined as follows:

f11 = 1
4

C11(r2 − R2) + D11 [ln (r) − ln (R)] , (A2a)

f12 = 1
4

C12(r2 − R2) + D12 [ln (r) − ln (R)] , (A2b)

f21 = Π−1
u F11 + 1

4
C21(r2 − d2), (A2c)

f22 = Π−1
u F12 + 1

4
C22(r2 − d2), (A2d)

where we have introduced the constants, Dij

D11 = −1
2

d2(C11 − ΠμΠuC21), (A2e)

D12 = −1
2

d2(C12 − ΠμΠuC22). (A2f )
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