ON NEIGHBOURHOODS IN THE ENHANCED POWER GRAPH ASSOCIATED WITH A FINITE GROU[P](#page-0-0)

\mathbf{MARK} \mathbf{MARK} \mathbf{MARK} L. LEWIS $\mathbf{\mathbb{O}}^{\boxtimes}$ and CARMINE MONETTA

(Received 29 August 2024; accepted 4 September 2024)

Abstract

We investigate neighbourhood sizes in the enhanced power graph (also known as the cyclic graph) associated with a finite group. In particular, we characterise finite *p*-groups with the smallest maximum size for neighbourhoods of a nontrivial element in its enhanced power graph.

2020 *Mathematics subject classification*: primary 20D10; secondary 05C25, 20D60. *Keywords and phrases*: enhanced power graph, cyclic graph, A-group.

1. Introduction

All groups considered in this paper are finite unless otherwise stated. To study the structure of a group, one can look at the invariants of some graphs whose vertices are the elements of the group and whose edges reveal some properties of the group itself. More precisely, if *G* is a group and $\mathcal B$ is a class of groups, the $\mathcal B$ -graph associated with *G*, denoted by $\Gamma_{\mathcal{B}}(G)$, is a simple and undirected graph whose vertices are the elements of *G*, and there is an edge between two elements *x* and *y* of *G* if the subgroup generated by *x* and *y* is a B -group.

Several features of a finite group can be detected by analysing the invariants of its \mathcal{B} -graph. We refer to [\[5\]](#page-5-0) for a survey on this topic and to [\[10,](#page-5-1) [11\]](#page-5-2) for related work. Recent papers deal with the investigation of the (closed) neighbourhood $I_{\mathcal{B}}(x)$ of a vertex *x* in $\Gamma_{\mathcal{B}}(G)$, that is, the set of all *y* in *G* such that *x* and *y* generate a *B*-group. When B is the class of abelian groups, then $I_B(x)$ coincides with the centraliser of x in *G*, thus $I_{\mathcal{B}}(x)$ is a subgroup. However, in general this is not the case when \mathcal{B} is distinct from the class of abelian groups. Nevertheless, even though $I_B(x)$ is not a subgroup of *G* in general, it can happen that the characteristics of a single neighbourhood in

This work was partially supported by the National Group for Algebraic and Geometric Structures, and their Applications (GNSAGA – INdAM). The second author was funded by the European Union – Next Generation EU, Missione 4 Componente 1 CUP B53D23009410006, PRIN 2022-2022PSTWLB – Group Theory and Applications.

[©] The Author(s), 2024. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

a B-graph could affect the structure of the whole group *G*. For instance, when B coincides with the class S of soluble groups, it has been shown that the combinatorial properties, as well as arithmetic ones, of $I_B(x)$ may force the whole group to be abelian or nilpotent (see [\[2,](#page-4-0) [3\]](#page-4-1) for more details).

Here we start by considering the class C of all cyclic groups. Cameron in [\[5\]](#page-5-0) calls the graph $\Gamma_C(G)$ the *enhanced power graph*. The term enhanced power graph appears to have originated in [\[1\]](#page-4-2). However, this graph was first studied in [\[12\]](#page-5-3) under the name *cyclic graph*. Further investigations under this name occurred in [\[13\]](#page-5-4). Recently, this graph has been investigated in [\[6–](#page-5-5)[8\]](#page-5-6) and there are still several open questions, as described in [\[15\]](#page-5-7).

Our interest in $\Gamma_C(G)$ chiefly concerns the cardinality of $\mathcal{I}_C(x)$, discussing the possible values that can occur for $|I_C(x)|$ when *x* belongs to a *p*-group *G*. Denote by *n_G* the maximum of the sizes of all $I_C(x)$ for $x \in G \setminus \{1\}$. Then clearly

$$
\exp(G) \le n_G \le |G|,
$$

where $exp(G)$ denotes the exponent of the group G. Whenever G has a nontrivial universal vertex, that is, a nontrivial element adjacent to any element of G , $n_G = |G|$. These groups have been characterised in the soluble case in [\[8\]](#page-5-6). Our first goal is to characterise *p*-groups *G* with $n_G = \exp(G)$. Indeed we prove the following result.

THEOREM 1.1. Let G be a finite p-group. Then $n_G = \exp(G)$ if and only if G is cyclic, $or \exp(G) = p$ *, or G is a dihedral* 2*-group*.

It is worth mentioning that a problem connected to closed neighbourhoods has been addressed in [\[14\]](#page-5-8). Going further, one may ask what is the second value that can occur for *nG*, and the answer is given by the following proposition.

PROPOSITION 1.2. Let G be a p-group and assume $n_G > \exp(G)$. Then we have $n_G \ge p^{\alpha+1} - p^{\alpha} + p^{\alpha-1}.$

We point out that the bound in Theorem [1.2](#page-1-0) is sharp in some sense. Indeed, for $G = C_{p^2} \times C_p$ we have $n_G = p^3 - p^2 + p$, where C_k denotes the cyclic group of order *k*.

2. The cyclic graph

In this section we will deal with the enhanced power graph of a group, or what we like to call the cyclic graph of a group. Recall that the cyclic graph of a group *G*, denoted by $\Delta(G)$, is the graph whose vertex set is $G \setminus \{1\}$, and two distinct elements *x*, *y* of *G* are adjacent if and only if $\langle x, y \rangle$ is cyclic. When *x* and *y* are adjacent we will write *x* ∼ *y*. We denote by *n_G* the maximum of the sizes of all $I_C(x)$ for $x \in G \setminus \{1\}$. We begin with the following useful lemma.

LEMMA 2.1. *Let p be a prime and let G be a p-group. Then there exists an element* $z \in G$ *of order p such that* $|I_C(z)| = n_G$.

PROOF. Observe that there exists an element $x \in G$ such that $|I_C(x)| = n_G$. If $o(x) = p$, then we are done. Therefore, we assume that $o(x) = p^k$, where *k* is an integer so that $k \ge 2$. Take $z = x^{p^{k-1}}$, and observe that *x* and *z* belong to the same connected component Υ in Δ(*G*), and that *z* is the only element of order *p* in Υ. By [\[6,](#page-5-5) Lemma 2.2], *z* ∼ *y* for any element $y \in \Upsilon$, and so $|I_C(z)| \ge |I_C(x)| = n_G$, which implies $|I_C(z)| = n_G$.

By Lemma [2.1](#page-1-1) and [\[6,](#page-5-5) Lemma 2.2], one can easily see that $n_G = |\Upsilon| - 1$, where Υ is a connected component of $\Delta(G)$ containing a vertex of degree n_G .

2.1. Abelian *p*-groups. In this subsection, we focus on Abelian *p*-groups. In the next lemma, we compute n_G when G is a nontrivial cyclic group.

LEMMA 2.2. *If G is a nontrivial cyclic group, then* $n_G = |G|$ *.*

PROOF. Let $x \in G$ such that $G = \langle x \rangle$. Since $o(x) = |G|$ and $G \setminus \langle x \rangle = \emptyset$, we conclude that $n_G = |G|$.

We next compute n_G when G is a p-group having exponent p.

LEMMA 2.3. Let p be a prime and let G be a p-group of exponent p. Then $n_G = p$.

PROOF. If *G* is a cyclic group of order *p*, then the result follows from Lemma [2.2.](#page-2-0) Assume that *G* is not cyclic, and consider an element $x \in G$ such that $|I_C(x)| = n_G$. As $o(x) = p$, we have $n_G \geq p$.

Now observe that if $y \in G \setminus \langle x \rangle$, then $\langle x, y \rangle$ is not cyclic. Indeed, arguing by contradiction, let $z \in G$ be such that $\langle x, y \rangle = \langle z \rangle$. Since G has exponent p, there exist *i*, *j* ∈ {1, ..., *p* − 1} such that $x = z^i$ and $y = z^j$. Therefore, from $(i, p) = 1$ it follows that $(x) = (z^i) = (z^i)$ and $y \in (x)$ a contradiction. Hence we conclude that $n \in \mathbb{R}$. $\langle x \rangle = \langle z^i \rangle = \langle z \rangle$ and $y \in \langle x \rangle$, a contradiction. Hence, we conclude that $n_G = p$.

We now show that if *G* is a noncyclic abelian group whose exponent is larger than p , then n_G is larger than the exponent of *G*.

LEMMA 2.4. *Let p be a prime and let G be a noncyclic abelian p-group of exponent exp*(*G*) = p^{α} , where $\alpha \geq 2$. Then $n_G \geq p^{\alpha+1} - p^{\alpha} + p^{\alpha-1}$. As a consequence, n_G > exp(*G*).

PROOF. As *G* is abelian, we may assume

$$
G=C_{p^{\alpha_1}}\times\cdots\times C_{p^{\alpha_r}},
$$

where $r \ge 2$, $1 \le \alpha_1 \le \dots \le \alpha_r = \alpha$ and $C_{p^{\alpha_i}} = \langle x_i \rangle$ is a cyclic group of order p^{α_i} .

If $\alpha_{r-1} = 1$, then the vertex $x_r^{p^{\alpha-1}}$ is adjacent to $p^{\alpha} - 2$ nontrivial elements of $\langle x_r \rangle$

d to any element of the form $x^i - x^k$ where $i = 1, \ldots, n-1$ and k is a positive integer and to any element of the form $x_{r-1}^i x_r^k$, where $i = 1, ..., p-1$ and *k* is a positive integer
less than p^{α} and contime with *n*. Hence, there are precisely $p^{\alpha} - p^{\alpha-1}$ choices for *k* less than p^{α} and coprime with *p*. Hence, there are precisely $p^{\alpha} - p^{\alpha-1}$ choices for *k*, which implies

$$
|I_C(x)| \ge p^{\alpha} + (p-1)(p^{\alpha} - p^{\alpha-1}) = p^{\alpha+1} - p^{\alpha} + p^{\alpha-1}.
$$

If $\alpha_{r-1} > 1$, then one can consider the subgroup $\langle x_r^{p^{\alpha_{r-1}-1}}, x_r \rangle$, arguing as in the vious case previous case. \Box

We now collect these lemmas in a proposition where we note that, for an abelian *p*-group *G*, n_G equals the exponent of *G* if and only if *G* is cyclic or elementary abelian.

PROPOSITION 2.5. *Let p be a prime and let G be an abelian p-group. Then* $n_G = \exp(G)$ *if and only if G is either cyclic or elementary abelian.*

PROOF. If *G* is either cyclic or elementary abelian, then the result follows from Lemmas [2.2](#page-2-0) and [2.3.](#page-2-1) Conversely, assume that $n_G = \exp(G)$. If *G* is neither cyclic nor elementary abelian, then, applying Lemma [2.4,](#page-2-2) we have $n_G > \exp(G)$, a contradiction. contradiction.

2.2. Nonabelian *p*-groups. We now shift our focus to nonabelian *p*-groups. When *p* is a prime, we take α to be an integer greater than 1 when *p* is odd and an integer greater than 2 when $p = 2$. We denote by $M_{p^{a+1}}$ the group

$$
M_{p^{\alpha+1}} = \langle x, y \mid x^{p^{\alpha}} = y^p = 1, x^y = x^{p^{\alpha-1}+1} \rangle.
$$

Going further, we respectively denote by $D_{2^{a+1}}$, $S_{p^{a+1}}$ and $Q_{2^{a+1}}$ the dihedral, semidihedral and generalised quaternion groups given by the following presentations:

$$
D_{2^{\alpha+1}} = \langle x, y \mid x^{2^{\alpha}} = y^2 = 1, x^y = x^{-1} \rangle,
$$

\n
$$
S_{p^{\alpha+1}} = \langle x, y \mid x^{p^{\alpha}} = y^p = 1, x^y = x^{p^{\alpha-1}-1} \rangle,
$$

\n
$$
Q_{2^{\alpha+1}} = \langle x, y \mid x^{2^{\alpha}-1} = y^2, y^4 = 1, x^y = x^{-1} \rangle.
$$

The characterisation of nonabelian *p*-groups with a cyclic maximal subgroup is well known (see [\[9\]](#page-5-9)).

THEOREM 2.6. Let p be a prime and let G be a nonabelian p-group of order $p^{\alpha+1}$ with *a cyclic subgroup of order p*α*.*

- (i) If p is odd then G is isomorphic to $M_{p^{\alpha+1}}$.
- (ii) *If* $p = 2$ *and* $\alpha = 2$ *, then G is isomorphic to either* D_8 *or* Q_8 *.*
- (iii) *If* $p = 2$ *and* $\alpha > 3$ *, then G is isomorphic to either* $M_{2^{\alpha+1}}$ *,* $D_{2^{\alpha+1}}$ *,* $Q_{2^{\alpha+1}}$ *or* $S_{2^{\alpha+1}}$ *.*

We compute n_G for nonabelian *p*-groups with a maximal cyclic subgroup of index *p*.

PROPOSITION 2.7. Let p be a prime and let G be a p-group of order $p^{\alpha+1}$. Assume that *G* has a maximal cyclic subgroup of order p^{α} . Then $n_G = \exp(G)$ if and only if either *G* is cyclic, or $exp(G) = p$, or $G \simeq D_{2^{\alpha+1}}$.

PROOF. If *G* is cyclic or $exp(G) = p$, then $n_G = exp(G)$ by Lemmas [2.3](#page-2-1) and [2.2.](#page-2-0) Moreover, if $G \simeq D_{2^{\alpha+1}}$, then *G* has only one cyclic subgroup of order 2^{α} while all the other cyclic subgroups have order 2, which implies $n_G = \exp(G)$.

Now assume that $n_G = \exp(G)$. If *G* is abelian then *G* is either cyclic or elementary abelian by Proposition [2.5.](#page-3-0) Now assume that *G* is neither abelian nor of exponent *p*. From Theorem [2.6](#page-3-1) we have to analyse two cases. First assume that *G* is isomorphic to $M_{p^{a+1}}$. Then $(yx)^p = x^{(p(p-1)/2)p^{a-1}+p}$, which yields a contradiction. Indeed, when *p* is odd, we have $(yx)^p = x^p$ and $|I_C(x^p)| > \exp(G)$ as x^p is connected to every element of

 $\langle x \rangle$ and to every element of $\langle yx \rangle$. If $p = 2$, then $(yx)^2 = x^{2^{\alpha-1}+2}$ and $\mathcal{I}_C(x^{2^{\alpha-1}+2})$ contains more than 2^{α} elements.

Finally, assume that $p = 2$ and *G* isomorphic to $S_{2^{a+1}}$. Then $(yx)^2 = x^{2^{a-1}}$ and $|I_C(yx)| > \exp(G).$

We are now in a position to prove Theorem [1.1.](#page-1-2)

PROOF OF THEOREM [1.1.](#page-1-2) By Lemmas [2.2](#page-2-0) and [2.3](#page-2-1) and Proposition [2.7,](#page-3-2) we only need to prove that if $n_G = \exp(G)$ then *G* is either cyclic, or $\exp(G) = p$, or *G* is a dihedral 2-group. Thus, let $n_G = \exp(G)$, and by way of contradiction assume neither that G is cyclic, nor $exp(G) = p$, nor *G* is a dihedral group of order $2^{exp(G)+1}$, such that *G* has minimal order. Hence, there exists an element $x \in G$ such that $p < o(x) = \exp(G)$. By Proposition [2.7,](#page-3-2) it follows that $p \cdot o(x) < |G|$, and thus G contains a proper subgroup H such that $x \in H$ and $|H| = p \cdot o(x)$. Then $exp(H) = exp(G)$ and *H* has a cyclic subgroup of index p. By Proposition [2.7,](#page-3-2) H is a dihedral group of order $2 \exp(G)$ since H is neither cyclic nor such that $exp(H) = p$. As a consequence *G* is a 2-group, and by minimality, $|G : H| = 2$. If $\rho(x) = 4$, then $|G| = 16$ and an easy computation using GAP shows that this is a contradiction. Hence, we may assume $o(x) > 4$. Now assume that there exists an element $a \in G \setminus H$ such that $o(a) > 4$. Then $a^2 \in H$ and $o(a^2) > 2$. This implies that $a^2 \in \langle x \rangle$ and $|I_C(a^2)| > \exp(G)$. Hence, we may assume that $o(a) \leq 4$ for all $a \in G \setminus H$. First assume that $G \setminus H$ contains an element *a* of order 2. If *a* does not invert *x*, then $(xa)^2 = xx^a$ is a nontrivial element of $\langle x \rangle$, since $\langle x \rangle$ is normal in *G*. As a consequence, $|I_C((xa)^2)|$ > exp(*G*). Now assume that $x^a = x^{-1}$. Let *b* ∈ *H* be such that $x^b = x^{-1}$. Then $x^{ab} = x$ and *ab* belongs to the centraliser in *G* of *x*. Thus $(xab)^4 =$ that $x^b = x^{-1}$. Then $x^{ab} = x$ and *ab* belongs to the centraliser in *G* of *x*. Thus, $(xab)^4 =$ $x^4 \neq 1$, and $|I_C(x^4)| > \exp(G)$. Therefore, we only need to address the case in which $a(a) = 4$ for every $a \in G \setminus H$ if $a^2 \in \{x\}$ for some $a \in G \setminus H$ then $|I_{\Omega}(a^2)| > \exp(G)$ *o*(*a*) = 4 for every *a* ∈ *G* \ *H*. If a^2 ∈ $\langle x \rangle$ for some a ∈ *G* \ *H*, then $|I_C(a^2)|$ > exp(*G*). This implies that $a^2 \in H \setminus \langle x \rangle$. As a consequence a^2 inverts *x*. On the other hand, the dihedral groups have no automorphisms of order 4 whose square inverts its element of maximal order (see, for instance, Theorem 34.8(a) of [\[4\]](#page-5-10)). This final contradiction proves the theorem. \Box

Acknowledgement

This work was carried out during the second author's visit to Kent State University. He wishes to thank the Department of Mathematical Science for its excellent hospitality.

References

- [1] G. Aalipour, S. Akbari, P. J. Cameron, R. Nikandish and F. Shaveisi, 'On the structure of the power graph and the enhanced power graph of a group', *Electron. J. Combin.* 24(3) (2017), Article no. 3.16, 18 pages.
- [2] B. Akbari, C. Delizia and C. Monetta, 'On the solubilizer of an element in a finite group', *Mediterr. J. Math.* 20(3) (2023), Article no. 135, 9 pages.
- [3] B. Akbari, M. L. Lewis, J. Mirzajani and A. R. Moghaddamfar, 'The solubility graph associated with a finite group', *Internat. J. Algebra Comput.* 30(8) (2020), 1555–1564.
- [4] Y. Berkovich, *Groups of Prime Power Order, Volume 1*, DeGruyter Expositions in Mathematics, 46 (DeGruyter, Berlin, 2008).
- [5] P. J. Cameron, 'Graphs defined on groups', *Int. J. Group Theory* 11(2) (2022), 53–107.
- [6] D. G. Costanzo, M. L. Lewis, S. Schmidt, E. Tsegaye and G. Udell, 'The cyclic graph (deleted enhanced graph) of a direct product', *Involve* 14(1) (2021), 167–179.
- [7] D. G. Costanzo, M. L. Lewis, S. Schmidt, E. Tsegaye and G. Udell, 'The cyclic graph of a *Z*-group', *Bull. Aust. Math. Soc.* 104(2) (2021), 295–301.
- [8] D. G. Costanzo, M. L. Lewis, S. Schmidt, E. Tsegaye and G. Udell, 'Characterizing finite groups whose enhanced power graphs have universal vertices', *Czechoslovak Math. J.* **74**(2) (2024), 637–645.
- [9] D. Gorenstein, *Finite Groups* (Chelsea Publishing Company, New York, 1980).
- [10] V. Grazian, A. Lucchini and C. Monetta, 'Group nilpotency from a graph point of view', *Int. J. Group Theory* 13(4) (2024), 351–367.
- [11] V. Grazian and C. Monetta, 'A conjecture related to the nilpotency of groups with isomorphic non-commuting graphs', *J. Algebra* 633 (2023), 389–402.
- [12] D. Imperatore, 'On a graph associated with a group', In *Ischia Group Theory 2008* (eds. M. Bianchi, P. Longobardi, M. Maj and M. Scoppola) (World Scientific, Hackensack, NJ, 2009), 100–115.
- [13] D. Imperatore and M. L. Lewis, 'A condition in finite solvable groups related to cyclic subgroups', *Bull. Aust. Math. Soc.* 83(2) (2011), 267–272.
- [14] J. Kumar, X. M. Parveen and S. Singh, 'Certain properties of the enhanced power graph associated with a finite group', *Acta Math. Hungar.* 169(1) (2023), 238–251.
- [15] X. Ma, A. Kelarev, Y. Lin and K. Wang, 'A survey on enhanced power graphs of finite groups', *Electron. J. Graph Theory Appl. (EJGTA)* 10(1) (2022), 89–111.

MARK L. LEWIS, Department of Mathematical Sciences, Kent State University, Kent, OH 44242, USA e-mail: lewis@math.kent.edu

CARMINE MONETTA, Dipartimento di Matematica, Università di Salerno, 84084 Fisciano (SA), Italy e-mail: cmonetta@unisa.it