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Abstract

We investigate neighbourhood sizes in the enhanced power graph (also known as the cyclic graph)
associated with a finite group. In particular, we characterise finite p-groups with the smallest maximum
size for neighbourhoods of a nontrivial element in its enhanced power graph.
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1. Introduction

All groups considered in this paper are finite unless otherwise stated. To study the
structure of a group, one can look at the invariants of some graphs whose vertices are
the elements of the group and whose edges reveal some properties of the group itself.
More precisely, if G is a group and B is a class of groups, the B-graph associated with
G, denoted by ΓB(G), is a simple and undirected graph whose vertices are the elements
of G, and there is an edge between two elements x and y of G if the subgroup generated
by x and y is a B-group.

Several features of a finite group can be detected by analysing the invariants of its
B-graph. We refer to [5] for a survey on this topic and to [10, 11] for related work.
Recent papers deal with the investigation of the (closed) neighbourhood IB(x) of a
vertex x in ΓB(G), that is, the set of all y in G such that x and y generate a B-group.
When B is the class of abelian groups, then IB(x) coincides with the centraliser of x in
G, thus IB(x) is a subgroup. However, in general this is not the case when B is distinct
from the class of abelian groups. Nevertheless, even though IB(x) is not a subgroup
of G in general, it can happen that the characteristics of a single neighbourhood in
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a B-graph could affect the structure of the whole group G. For instance, when B
coincides with the class S of soluble groups, it has been shown that the combinatorial
properties, as well as arithmetic ones, of IB(x) may force the whole group to be abelian
or nilpotent (see [2, 3] for more details).

Here we start by considering the class C of all cyclic groups. Cameron in [5] calls
the graph ΓC(G) the enhanced power graph. The term enhanced power graph appears
to have originated in [1]. However, this graph was first studied in [12] under the name
cyclic graph. Further investigations under this name occurred in [13]. Recently, this
graph has been investigated in [6–8] and there are still several open questions, as
described in [15].

Our interest in ΓC(G) chiefly concerns the cardinality of IC(x), discussing the
possible values that can occur for |IC(x)| when x belongs to a p-group G. Denote by
nG the maximum of the sizes of all IC(x) for x ∈ G \ {1}. Then clearly

exp(G) ≤ nG ≤ |G|,

where exp(G) denotes the exponent of the group G. Whenever G has a nontrivial
universal vertex, that is, a nontrivial element adjacent to any element of G, nG = |G|.
These groups have been characterised in the soluble case in [8]. Our first goal is to
characterise p-groups G with nG = exp(G). Indeed we prove the following result.

THEOREM 1.1. Let G be a finite p-group. Then nG = exp(G) if and only if G is cyclic,
or exp(G) = p, or G is a dihedral 2-group.

It is worth mentioning that a problem connected to closed neighbourhoods has been
addressed in [14]. Going further, one may ask what is the second value that can occur
for nG, and the answer is given by the following proposition.

PROPOSITION 1.2. Let G be a p-group and assume nG > exp(G). Then we have
nG ≥ pα+1 − pα + pα−1.

We point out that the bound in Theorem 1.2 is sharp in some sense. Indeed,
for G = Cp2 × Cp we have nG = p3 − p2 + p, where Ck denotes the cyclic group of
order k.

2. The cyclic graph

In this section we will deal with the enhanced power graph of a group, or what
we like to call the cyclic graph of a group. Recall that the cyclic graph of a group G,
denoted by Δ(G), is the graph whose vertex set is G \ {1}, and two distinct elements
x, y of G are adjacent if and only if 〈x, y〉 is cyclic. When x and y are adjacent we will
write x ∼ y. We denote by nG the maximum of the sizes of all IC(x) for x ∈ G \ {1}.
We begin with the following useful lemma.

LEMMA 2.1. Let p be a prime and let G be a p-group. Then there exists an element
z ∈ G of order p such that |IC(z)| = nG.
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PROOF. Observe that there exists an element x ∈ G such that |IC(x)| = nG. If o(x) = p,
then we are done. Therefore, we assume that o(x) = pk, where k is an integer so that
k ≥ 2. Take z = xpk−1

, and observe that x and z belong to the same connected component
Υ in Δ(G), and that z is the only element of order p in Υ. By [6, Lemma 2.2], z ∼ y for
any element y ∈ Υ, and so |IC(z)| ≥ |IC(x)| = nG, which implies |IC(z)| = nG. �

By Lemma 2.1 and [6, Lemma 2.2], one can easily see that nG = |Υ| − 1, where Υ
is a connected component of Δ(G) containing a vertex of degree nG.

2.1. Abelian p-groups. In this subsection, we focus on Abelian p-groups. In the next
lemma, we compute nG when G is a nontrivial cyclic group.

LEMMA 2.2. If G is a nontrivial cyclic group, then nG = |G|.

PROOF. Let x ∈ G such that G = 〈x〉. Since o(x) = |G| and G \ 〈x〉 = ∅, we conclude
that nG = |G|. �

We next compute nG when G is a p-group having exponent p.

LEMMA 2.3. Let p be a prime and let G be a p-group of exponent p. Then nG = p.

PROOF. If G is a cyclic group of order p, then the result follows from Lemma 2.2.
Assume that G is not cyclic, and consider an element x ∈ G such that |IC(x)| = nG. As
o(x) = p, we have nG ≥ p.

Now observe that if y ∈ G \ 〈x〉, then 〈x, y〉 is not cyclic. Indeed, arguing by
contradiction, let z ∈ G be such that 〈x, y〉 = 〈z〉. Since G has exponent p, there exist
i, j ∈ {1, . . . , p − 1} such that x = zi and y = zj. Therefore, from (i, p) = 1 it follows that
〈x〉 = 〈zi〉 = 〈z〉 and y ∈ 〈x〉, a contradiction. Hence, we conclude that nG = p. �

We now show that if G is a noncyclic abelian group whose exponent is larger than
p, then nG is larger than the exponent of G.

LEMMA 2.4. Let p be a prime and let G be a noncyclic abelian p-group of
exponent exp(G) = pα, where α ≥ 2. Then nG ≥ pα+1 − pα + pα−1. As a consequence,
nG > exp(G).

PROOF. As G is abelian, we may assume

G = Cpα1 × · · · × Cpαr ,

where r ≥ 2, 1 ≤ α1 ≤ · · · ≤ αr = α and Cpαi = 〈xi〉 is a cyclic group of order pαi .
If αr−1 = 1, then the vertex xpα−1

r is adjacent to pα − 2 nontrivial elements of 〈xr〉
and to any element of the form xi

r−1xk
r , where i = 1, . . . , p − 1 and k is a positive integer

less than pα and coprime with p. Hence, there are precisely pα − pα−1 choices for k,
which implies

|IC(x)| ≥ pα + (p − 1)(pα − pα−1) = pα+1 − pα + pα−1.

If αr−1 > 1, then one can consider the subgroup 〈xpαr−1−1

r , xr〉, arguing as in the
previous case. �
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We now collect these lemmas in a proposition where we note that, for an abelian
p-group G, nG equals the exponent of G if and only if G is cyclic or elementary abelian.

PROPOSITION 2.5. Let p be a prime and let G be an abelian p-group. Then
nG = exp(G) if and only if G is either cyclic or elementary abelian.

PROOF. If G is either cyclic or elementary abelian, then the result follows from
Lemmas 2.2 and 2.3. Conversely, assume that nG = exp(G). If G is neither cyclic
nor elementary abelian, then, applying Lemma 2.4, we have nG > exp(G), a
contradiction. �

2.2. Nonabelian p-groups. We now shift our focus to nonabelian p-groups. When
p is a prime, we take α to be an integer greater than 1 when p is odd and an integer
greater than 2 when p = 2. We denote by Mpα+1 the group

Mpα+1 = 〈x, y | xpα = yp = 1, xy = xpα−1+1〉.

Going further, we respectively denote by D2α+1 , Spα+1 and Q2α+1 the dihedral, semidihe-
dral and generalised quaternion groups given by the following presentations:

D2α+1 = 〈x, y | x2α = y2 = 1, xy = x−1〉,

Spα+1 = 〈x, y | xpα = yp = 1, xy = xpα−1−1〉,
Q2α+1 = 〈x, y | x2α−1 = y2, y4 = 1, xy = x−1〉.

The characterisation of nonabelian p-groups with a cyclic maximal subgroup is well
known (see [9]).

THEOREM 2.6. Let p be a prime and let G be a nonabelian p-group of order pα+1 with
a cyclic subgroup of order pα.

(i) If p is odd then G is isomorphic to Mpα+1 .
(ii) If p = 2 and α = 2, then G is isomorphic to either D8 or Q8.
(iii) If p = 2 and α > 3, then G is isomorphic to either M2α+1 , D2α+1 , Q2α+1 or S2α+1 .

We compute nG for nonabelian p-groups with a maximal cyclic subgroup of index p.

PROPOSITION 2.7. Let p be a prime and let G be a p-group of order pα+1. Assume that
G has a maximal cyclic subgroup of order pα. Then nG = exp(G) if and only if either
G is cyclic, or exp(G) = p, or G 
 D2α+1 .

PROOF. If G is cyclic or exp(G) = p, then nG = exp(G) by Lemmas 2.3 and 2.2.
Moreover, if G 
 D2α+1 , then G has only one cyclic subgroup of order 2α while all
the other cyclic subgroups have order 2, which implies nG = exp(G).

Now assume that nG = exp(G). If G is abelian then G is either cyclic or elementary
abelian by Proposition 2.5. Now assume that G is neither abelian nor of exponent p.
From Theorem 2.6 we have to analyse two cases. First assume that G is isomorphic
to Mpα+1 . Then (yx)p = x(p(p−1)/2)pα−1+p, which yields a contradiction. Indeed, when p is
odd, we have (yx)p = xp and |IC(xp)| > exp(G) as xp is connected to every element of
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〈x〉 and to every element of 〈yx〉. If p = 2, then (yx)2 = x2α−1+2 and IC(x2α−1+2) contains
more than 2α elements.

Finally, assume that p = 2 and G isomorphic to S2α+1 . Then (yx)2 = x2α−1
and

|IC(yx)| > exp(G). �

We are now in a position to prove Theorem 1.1.

PROOF OF THEOREM 1.1. By Lemmas 2.2 and 2.3 and Proposition 2.7, we only need
to prove that if nG = exp(G) then G is either cyclic, or exp(G) = p, or G is a dihedral
2-group. Thus, let nG = exp(G), and by way of contradiction assume neither that G is
cyclic, nor exp(G) = p, nor G is a dihedral group of order 2exp(G)+1, such that G has
minimal order. Hence, there exists an element x ∈ G such that p < o(x) = exp(G). By
Proposition 2.7, it follows that p · o(x) < |G|, and thus G contains a proper subgroup H
such that x ∈ H and |H| = p · o(x). Then exp(H) = exp(G) and H has a cyclic subgroup
of index p. By Proposition 2.7, H is a dihedral group of order 2 exp(G) since H is
neither cyclic nor such that exp(H) = p. As a consequence G is a 2-group, and by
minimality, |G : H| = 2. If o(x) = 4, then |G| = 16 and an easy computation using GAP
shows that this is a contradiction. Hence, we may assume o(x) > 4. Now assume that
there exists an element a ∈ G \ H such that o(a) > 4. Then a2 ∈ H and o(a2) > 2. This
implies that a2 ∈ 〈x〉 and |IC(a2)| > exp(G). Hence, we may assume that o(a) ≤ 4 for
all a ∈ G \ H. First assume that G \ H contains an element a of order 2. If a does not
invert x, then (xa)2 = xxa is a nontrivial element of 〈x〉, since 〈x〉 is normal in G. As
a consequence, |IC((xa)2)| > exp(G). Now assume that xa = x−1. Let b ∈ H be such
that xb = x−1. Then xab = x and ab belongs to the centraliser in G of x. Thus, (xab)4 =

x4 � 1, and |IC(x4)| > exp(G). Therefore, we only need to address the case in which
o(a) = 4 for every a ∈ G \ H. If a2 ∈ 〈x〉 for some a ∈ G \ H, then |IC(a2)| > exp(G).
This implies that a2 ∈ H \ 〈x〉. As a consequence a2 inverts x. On the other hand, the
dihedral groups have no automorphisms of order 4 whose square inverts its element
of maximal order (see, for instance, Theorem 34.8(a) of [4]). This final contradiction
proves the theorem. �
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