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The eddy-viscosity model, as initially used to model the mean Reynolds stress, has been
widely used in the linear analysis of turbulence recently by direct extension. In this
study, the mechanism of the eddy viscosity in improving the prediction of fluctuation
structures with linear analysis is clarified by investigating the statistical properties of
forcing, eddy-viscosity term and their correlations. From the direct numerical simulation
(DNS) results of turbulent channel flows with Reτ = 186–2003, the spatial correlation
of forcing is partially cancelled due to its interaction with eddy-viscosity terms. The
stochastic forcing after excluding the eddy-viscosity term is nearly uncorrelated spatially,
which better matches the condition where the resolvent modes are consistent with the
spectral proper orthogonal decomposition (SPOD) modes from DNS. With the above
findings, an optimisation framework is developed by minimising the spatial correlations
of the stochastic forcing. The optimised eddy-viscosity profiles nearly overlap with
the mean-quantity-based model in the near-wall region, but have different maximum
values. Compared with the mean-quantity-based model, the optimised results enhance the
consistency between the resolvent and DNS results significantly. Based on the optimised
results, a new modelling framework is further abstracted, leaving only one to-be-modelled
parameter of the maximum value of the eddy-viscosity profile. This parameter follows
distinctive rules with spanwise flow scales, based on which a simplified predictive model
is constructed. The resolvent modes predicted by the new model exhibit high consistency
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with SPOD modes, which are essentially comparable to the optimised results for wide
ranges of streamwise and spanwise scales.

Key words: channel flow, turbulent boundary layers, turbulence theory

1. Introduction

The prediction and low-order reconstruction of flow patterns are important topics for
fundamental research of turbulence as well as engineering applications. The physics-based
approaches (Hwang & Cossu 2010b; McKeon & Sharma 2010) utilise the linearised
Navier–Stokes (LNS) equations that govern the flow dynamics to analyse the dominant
coherent flow motions. In these approaches, the Navier–Stokes equations are written as
linear evolution equations with nonlinear forcing as feedback, which drives the dynamic
system (McKeon 2017). On the other hand, the fluctuations of the flow state, such as
velocities, pressure and temperature, are defined as the responses of the dynamic system.
The dynamic patterns of the flow system are determined by the energy amplification and
redistribution mechanisms, which are described by the linear operator and the nonlinear
forcing (Morra et al. 2021).

When the linearised formulations of the Navier–Stokes equations are built at a given
spatiotemporal scale, the linear operator that links the response and nonlinear forcing is
referred to as the resolvent (McKeon & Sharma 2010; Sharma & McKeon 2013). Taking
singular value decomposition (SVD) to the resolvent operator, the response and forcing
modes are obtained, which are ordered by their singular values. The resolvent analysis
has been actively applied in turbulence studies by focusing on the leading response mode
with the largest energy amplification, which captures the dominant flow structures (e.g.
Moarref et al. 2013; Sharma & McKeon 2013; McKeon 2019). These studies bypass the
need to model the nonlinear forcing based on the assumption of the low-rank behaviour,
which is valid when the singular value of the leading mode is significantly larger than
the subsequent modes (Pickering et al. 2021). Meanwhile, the significant influence of
the colour of forcing on the resultant responses is widely reported (Zare, Jovanović
& Georgiou 2017; Illingworth, Monty & Marusic 2018; Madhusudanan, Illingworth &
Marusic 2019; Morra et al. 2019).

To partially model the forcing colours, Del Alamo & Jiménez (2006) introduced the
eddy-viscosity model (Cess 1958) that linearises a part of the input forcing, where the
linear operator is correspondingly changed by adding the linearised eddy-viscosity term
in the original operator. On the other hand, the unmodelled part of forcing remains to
be assumed as uniform and uncorrelated in space. With the modified resolvent operator
modelled by the eddy-viscosity term, the low-order models have improved alignments
with the spectral proper orthogonal decomposition (SPOD) modes in the turbulent channel
flow (Morra et al. 2019; Symon et al. 2023; Zhu, Chen & Fu 2024) and jets (Pickering
et al. 2020, 2021). Here, the alignments between the resolvent and SPOD modes are
utilised to assess the validity of the resolvent analysis quantitatively (Morra et al. 2019;
Pickering et al. 2021; Symon et al. 2023; Fan et al. 2024) since the leading SPOD mode
extracts the most energetic spatiotemporally coherent structures (Lumley 1967, 2007;
Schmidt et al. 2018). Meanwhile, the eddy-viscosity model (e.g. Cess 1958) is based
on the relationship between the Reynolds stress and mean shear rate of strain rather
than the fluctuation variables investigated in the resolvent analysis. In Hwang (2016), the
mechanism of the eddy-viscosity model in the linear analysis of turbulence is attributed to
the fact that the eddy viscosity mimics the nonlinear interactions in the process of energy
cascade and turbulent dissipation. In the near-wall region, the dissipation mechanism is
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Optimise and model the eddy viscosity in resolvent analysis

dominated by the molecular viscosity. Meanwhile, due to the large separation between the
integral scale and dissipation scale in the outer region, the turbulent dissipation should
be vigorous. The spatial distribution of the eddy viscosity (Cess 1958) matches well
with the above patterns, which explains its success in predicting the optimal transient
growth of small organised perturbations. Symon, Illingworth & Marusic (2021) analyse
the nonlinear transfer modelled by the eddy-viscosity term, finding that the leading
resolvent mode successfully identifies the main production mechanisms in the flow. Kuhn,
Soria & Oberleithner (2021) quantitatively investigated the turbulent production in linear
modelling of turbulent jet flow. In Symon et al. (2023), it was demonstrated that the
accuracy of the eddy-viscosity model relies on striking the right balance between the
positive and negative energy transfers. On the other hand, in Hwang & Cossu (2010b) and
Alizard et al. (2015), the role of the eddy viscosity in modelling the fluctuation of nonlinear
terms is explained via the triple decomposition (Hussain & Reynolds 1970; Reynolds &
Hussain 1972). According to Chen et al. (2023b) and Cheng et al. (2024), the shear stress
term of the (large-amplitude) unsteady component of the base flow is linearised with the
organised wave under the Boussinesq assumption using the eddy viscosity. However, it is
still ambiguous how the eddy-viscosity model works in modelling part of the fluctuating
nonlinear terms to be the linear function of the fluctuation flow state.

The introduction of eddy-viscosity models also improves the physics-based estimation
of turbulence (Illingworth et al. 2018; Madhusudanan et al. 2019; Martini et al. 2020;
Towne, Lozano-Durán & Yang 2020; Amaral et al. 2021; Ying, Li & Fu 2024) with the
LNS equations. In Illingworth et al. (2018), the role of eddy viscosity was explained to
model the influence of small-scale turbulent fluctuations on large-scale ones. It is found
that the accuracy of the estimated large-scale motions from the modelled estimator is
improved significantly. Towne et al. (2020) utilise the eddy-viscosity-modelled resolvent
operator to predict the space–time properties based on the measured information in
the buffer layer. The predicted flow statistics in the near-wall region are consistent
with the direct numerical simulation (DNS) results. The improvement of the estimation
accuracy with the eddy-viscosity-modelled resolvent operator compared with that with
the unmodelled one was also reported by Amaral et al. (2021). Meanwhile, compared
with the optimal linear estimation results informed by the real forcing statistics, the
eddy-viscosity-modelled results still have substantially larger estimation errors (Amaral
et al. 2021), which hinders the engineering applications of the resolvent-based estimations
where the real forcing statistics are unavailable. Thus, the forcing models need to be further
improved to enhance the practical values of the linear estimation of turbulence.

Since the treatments of the forcing term are found to have a significant effect on the
results of the resolvent analysis and the physics-based estimations, the modelling strategy
and fundamental research of forcing have drawn increasing interest. In addition to the
eddy-viscosity models that are adopted by the literature mentioned above, there are also
attempts to propose new eddy-viscosity models (Gupta et al. 2021; Pickering et al. 2021)
or directly model the stochastic forcing defined as the remaining part of forcing after
excluding the modelled part (Gupta et al. 2021; Holford, Lee & Hwang 2023; Ying
et al. 2023). Tissot, Cavalieri & Mémin (2021) improved the prediction of the resolvent
analysis by considering the stochastic interaction with the background turbulence via
nonlinear energy redistribution. Pickering et al. (2021) optimised the eddy viscosity of
turbulent jet flow by minimising the relative error between the leading resolvent and
SPOD modes. On the other hand, Holford et al. (2023) optimised the stochastic forcing
according to the auto-spectra of the velocity fluctuations from the DNS data while using
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the mean-quantity-based eddy viscosity. Without the requirement of the DNS data in
the near-wall region, Ying et al. (2023) modelled the stochastic forcing by taking the
resolvent-based near-wall prediction (Towne et al. 2020) of turbulent channel flow into
consideration. Using the measurements from a horizontal layer lower than the upper bound
of the logarithmic region, the predicted space–time properties of the near-wall velocities
match well with the DNS results with Reτ = 187–934. Gupta et al. (2021) propose the
scale-dependent model (λ-model), which simultaneously modifies the eddy viscosity and
stochastic forcing profile based on the scaling of the energy-containing eddies in wall
turbulence (Jiménez 2012).

The studies focusing directly on the forcing in wall turbulence have been actively
conducted in recent years (Morra et al. 2021; Nogueira et al. 2021; Karban et al.
2022). In Nogueira et al. (2021), the forcing statistics of turbulent Couette flow with
Reτ = 400 are studied. Two representative energetic modes are specially focused on,
i.e. mode with (kx/h, kz/h) = (0, 1) related to the streamwise vortices and streak, and
mode (kx/h, kz/h) = (1, 0) related to spanwise-coherent fluctuations, where h is the
half-channel height. It is found that the response can be well reconstructed with a
subset of forcing. Later, Morra et al. (2021) report the counteraction effect between the
streamwise component of forcing and the remaining part. In Karban et al. (2022), the
self-similar structures of forcing are revealed, finding that both the estimated forcing from
the resolvent-based estimation with wall measurements and that correlated to the wall
shear stress show self-similar behaviours.

In the above-reviewed studies, the mechanisms of eddy-viscosity terms in linear analysis
of turbulence were preliminarily explored (Hwang 2016; Symon et al. 2023). Such
mechanism still remains to be clarified after several existing studies on the forcing
statistics (Morra et al. 2021; Nogueira et al. 2021), where the clarification of the effect
of the interactions of the forcing and eddy-viscosity terms on the resultant stochastic
forcing and response is somehow absent. To date, the mean-quantity-based eddy viscosity
is still widely used in the linear analysis of turbulence on an ad hoc basis (e.g. Zhu
et al. 2024). In this study, the underlying mechanism of the eddy viscosity in the linear
analysis of turbulence is investigated through the statistical properties of the forcing and
eddy-viscosity terms, based on which an effective optimisation framework of the eddy
viscosity is constructed. Further, a predictive eddy-viscosity model is developed based on
the characteristics of the optimised eddy viscosity.

The remainder of this article is organised as follows. In § 2, the linearisation of the
incompressible Navier–Stokes equations and the concept of SPOD are described, followed
by the relationship between the resolvent and SPOD modes. The mechanisms of the eddy
viscosity in the linear analysis of turbulence are investigated with the DNS results in § 3.
In § 4, an optimisation framework of the eddy-viscosity profiles is proposed and validated.
A new predictive eddy-viscosity model is then constructed based on the optimised results.
Discussion and concluding remarks are provided in § 5.

2. Methodology

2.1. Linearisation of the incompressible Navier–Stokes equations
The incompressible Navier–Stokes equations are given by

∂u
∂t

+ u · ∇u = −∇p + 1
Reτ

∇ · (∇u + ∇uT), (2.1a)

∇ · u = 0, (2.1b)
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where Reτ = uτ h/ν is the friction Reynolds number, uτ is the friction velocity, ν is
the kinetic viscosity and superscript T denotes transpose. By rearranging (2.1), the LNS
equations for fluctuating velocity u′ and pressure p′ hold as

∂u′

∂t
+ U · ∇u′ + u′ · ∇U + ∇p′ − 1

Reτ

∇ · [(∇u′ + ∇u′T)] = f ′, (2.2a)

∇ · u′ = 0, (2.2b)

where U is the mean velocity. The forcing f ′ that contains the nonlinear interactions of
velocity fluctuations is defined as

f ′ = − (u′ · ∇u′ − 〈u′ · ∇u′〉) , (2.3)

where 〈 〉 denotes time average.
When considering modelling the forcing term with eddy viscosity, the eddy-viscosity-

based linearised Navier–Stokes (eLNS) equations hold as

∂u′

∂t
+ U · ∇u′ + u′ · ∇U + ∇p′ − 1

Reτ

∇ ·
[
νm + ν

ν
(∇u′ + ∇u′T)

]
= d′, (2.4a)

∇ · u′ = 0, (2.4b)

where νm is the eddy kinetic viscosity, and the stochastic forcing d′ is defined as

d′ = f ′ − e′, (2.5)

where e′ = (1/Reτ )∇ · [νm/ν(∇u′ + ∇u′T)] is the eddy-viscosity term.
Taking the Fourier transformation to (2.4) in the homogeneous spatial directions,

the LNS equations in each spatial scale ks are obtained. Denoting x(x1), y(x2) and
z(x3) as the streamwise, wall-normal and spanwise coordinates, respectively, the Fourier
transformation is taken in x and z directions for the fully developed turbulent channel flow
with ks = (kx, kz). To eliminate the pressure term, the standard conversion (Jovanovic &
Bamieh 2001) is applied, where the state is determined by the wall-normal velocity (v)

and vorticity (η = ∂zu − ∂xw) fluctuations. Consequently, the evolution equation of the
dynamic system with input d̂ks(t) and output ûks(t) is expressed as

∂ q̂ks
(t)

∂t
= Aks q̂ks

(t) + Bks d̂ks(t), (2.6a)

ûks(t) = Cks q̂ks
(t), (2.6b)

where the state q̂ks
(t) = [v̂, η̂]T and the superscript ∗ denotes the Hermitian transpose.

The operators Aks and Bks are defined as

Aks =
[
Δ−1LOS 0

−ikzUy LSQ

]
, Bks =

[
−ikxΔ

−1D −k2Δ−1 ikzΔ
−1D

ikz 0 −ikx

]
,

(2.7a,b)

where Δ = E − k2, k2 = k2
x + k2

z , the operator D and superscript y both denote ∂/∂y, and
the Orr–Sommerfeld operator LOS and Squire operator LSQ are defined by (Hwang &
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Cossu 2010b)

LOS = −ikx
(
UΔ − Uyy)+ (ν + νm)Δ2 + 2νy

m�D + νyy
m (E + k2),

LSQ = −ikxU + (ν + νm)Δ + νy
mD,

}
(2.8)

respectively, where the operator E and superscript yy both denote ∂2/∂2y. The original
velocity fluctuation ûks(t) is retrieved from q̂ks

(t) via (2.6b), where the output matrix Cks
is expressed as

Cks = 1
k2

⎡
⎣ikxD −ikz

k2 0
ikzD ikx

⎤
⎦ . (2.9)

Equation (2.6) of the dynamic system can be further Fourier-transformed in the temporal
(t) direction when the system achieves statistically stationary in the temporal direction
at each spatial location. The LNS equations at each spatiotemporal scale k = (ks, ω) is
expressed as

ûk = Hk · d̂k, (2.10)

where the transfer function
Hk = Cks · Rk · Bks, (2.11)

Rk = (iωI − Aks)
−1 is the resolvent of Aks , i = √−1 and I is the identity matrix. Here,

we define the inner product of variables a and b as

{a, b} = a∗ · W · b, (2.12)

where W is a diagonal matrix that accounts for the energy norm. Taking SVD to the
transfer function Hk considering the energy norm, the following relationship holds:

H̃k = Ψ̃k ·Σk · Φ̃∗
k, (2.13)

where H̃k = W 1/2 · Hk · W−1/2, Ψ̃k = W 1/2 · Ψk and Φ̃k = W 1/2 · Φk. The resolvent
response modes ψk,i, forcing modes φk,i and singular values σk,i are assembled as Ψk =
[ψk,1,ψk,2, . . .], Φk = [φk,1,φk,2, . . .] and Σk = diag[σk,1, σk,2, . . .], respectively. The
resolvent modes are ordered by the singular values, which means that the first one reflects
the most amplified shape with respect to the given energy of the corresponding forcing
mode.

Further defining the expansion coefficient

βk = d̂∗
k · W · Φk, (2.14)

whose physical meaning is the projection of the actual stochastic forcing d̂k onto the
orthonormal forcing modes (McKeon 2017), the resolvent formulation (2.10) can be
rewritten as

ûk = Ψk ·Σk · βk =
∑

i

σk,iβk,iψk,i. (2.15)

From (2.15), the response ûk can be interpreted as the linear summation of all the response
modes weighted by the product of βk,i and σi. To conduct the resolvent analysis in this
study, the mean velocity profiles from the DNS are utilised to construct the linear operator.

The linearised equations are discretised in the wall-normal direction with the same
settings as the DNS that will be introduced in § 3.1, which avoids interpolation of the
mean velocity profiles onto different grids. The boundary conditions of v̂ = 0, ∂v̂/∂y = 0
and η̂ = 0 at the walls on both sides of the channel, i.e. y/h = 0 and 2, are imposed here.
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2.2. SPOD
The SPOD finds the deterministic function that best approximates a zero-mean stochastic
process at each spatiotemporal scale (Lumley 1967; Berkooz, Holmes & Lumley 1993;
Towne, Schmidt & Colonius 2018). Defining the cross-spectral density (CSD) tensor at a
given spatiotemporal scale k, i.e.

Suu,k = 〈ûk · û∗
k
〉
, (2.16)

the SPOD modes can be obtained by taking eigendecomposition on the CSD tensor
considering the energy norm, i.e.

S̃uu,k = Ũk ·Λk · Ũ∗
k, (2.17)

where S̃uu,k = W 1/2 · Suu,k · W 1/2, Ũk = W 1/2 · Uk. The tensor Uk = [uk,1, uk,2, . . .]
consists of SPOD mode uk,i at the ith column, and the tensor Λk = diag[λk,1, λk,2, . . .]
consists of eigenvalue λk,i at the (i, i) position, both of which are ordered by the
eigenvalues.

Further defining the CSD tensor of the stochastic forcing as

Sdd,k = 〈d̂k · d̂∗
k
〉
, (2.18)

the response CSD tensor can be calculated by

S̃uu,k = H̃k · S̃dd,k · H̃∗
k, (2.19)

based on (2.10). where S̃dd,k = W 1/2 · Sdd,k · W 1/2. When the forcing is uniform and
uncorrelated in space, i.e. S̃dd,k = nI with n as a constant, the following relationships
hold:

ψk,i = uk,i, nσ 2
i = λi, (2.20a,b)

based on the relationship between the SVD and eigendecomposition (Taira et al. 2017).
In the meantime, it can also be derived that the SPOD and resolvent response modes are
identical when the covariance matrix 〈βk · β∗

k〉 = nI according to (2.15). As the physical
meaning of 〈βk · β∗

k〉 is the correlation of the forcing modes, such finding means that the
resolvent and SPOD modes are identical to each other when all the forcing modes at k
are uncorrelated with each other and have the same energy. The consistency between the
resolvent modes and SPOD modes when S̃dd,k = nI shown in (2.20a,b) is also illustrated
in Towne et al. (2018).

3. Investigation of the eddy viscosity in modelling the forcing

In many existing works (Madhusudanan et al. 2019; Morra et al. 2019; Pickering et al.
2021; Chen et al. 2023a; Ying et al. 2023; Cheng et al. 2024), the mechanism of
the eddy-viscosity term is attributed to the modelling of part of the nonlinear forcing.
However, to date, no studies have elaborated on the roles of the eddy-viscosity term and
its interactions with the nonlinear forcing in improving the results of the linear analysis.
Moreover, in order to further improve the eddy viscosity, we need to clarify which part of
forcing is virtually modelled by the eddy-viscosity term. In the following, the mechanisms
of the eddy-viscosity term in the linear analysis based on the turbulent channel flows with
Reτ = 186, 547, 934 and 2003 are discussed.
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Reτ Nx Nz Ny Lx/h Lz/h Ly/h (Ucδt)/h δt+ (uτ T)/h

186 256 256 97 4π 2π 2 0.2 2.13 57.23
547 768 768 257 4π 2π 2 0.12 3.21 29.34
934 1536 768 385 4π π 2 0.1 4.24 22.70
2003 3072 1536 633 4π π 2 0.05 4.14 12.39

Table 1. Parameters of the incompressible channel DNS set-ups.

3.1. Descriptions of the DNS datasets
The code that generates the widely validated open-source DNS database for
incompressible turbulent channel flows (Del Alamo & Jiménez 2003; Hoyas & Jiménez
2006, 2008) is applied to compute the DNS results in this study. Details of the DNS
set-ups are listed in table 1, where Nx, Nz and Ny are the numbers of grid nodes in the
streamwise, spanwise and wall-normal directions, respectively; Lx, Lz and Ly are the sizes
of the computational domains in corresponding directions; and Uc is the mean velocity
at the centreline y = h. In the wall-parallel directions, the dealiased Fourier expansions
are applied for the spatial discretisation. In the wall-normal direction, the Chebyshev
polynomials and seven-point compact finite differences (Lele 1992) are used for the spatial
discretisation for the cases with Reτ = 186–934 and 2003, respectively. The third-order
semi-implicit Runge–Kutta method is used for temporal discretisation (Spalart, Moser
& Rogers 1991). To provide temporally resolved results, the sampling time intervals
δt+ = δt · u2

τ /ν are set less than 5.0 in all the cases. The normalised total simulation
time (uτ · T)/h is larger than 5.0 in each case to obtain statistically convergent results.
Considering that the fully developed channel flow is statistically symmetric about the
centreline, the DNS data that are mirrored about the centreline are treated as another set
of blocks besides the original. The time periods of the blocks are set as 200δt in each case,
with 75 % overlap in the temporal direction. The Hann window function is utilised along
the temporal direction for spectral analysis. With the above set-ups for data processing, the
numbers of blocks are 194 for cases with Reτ = 186, 547 and 934, and 234 for the case
with Reτ = 2003.

Comprehensive validations of the DNS datasets are provided in Appendix A, where the
mean and root-mean-squared (r.m.s.) velocity profiles and two-dimensional energy spectra
are compared with those from the open-source DNS database (Hoyas & Jiménez 2008).
The convergence tests of the SPOD modes calculated from the present DNS datasets are
conducted in Appendix B.

3.2. The eddy-viscosity model based on mean quantities
For the linear analysis of wall-bounded turbulence, a widely used model to calculate the
eddy viscosity νm in (2.4) is the semi-empirical expression by Cess (1958), i.e.

νm = ν

2

{
1 + κ2Re2

τ

9
(2ỹ − ỹ2)2(3 − 4ỹ + 2ỹ2)2

[
1 − exp

(−Reτ ỹ
A

)]2
}1/2

− ν

2
, (3.1)

where the constants κ = 0.426 and A = 25.4, and ỹ = 1 − |1 − y/h|. Such an approach
is initially designed to model the mean Reynolds shear stress 〈u′v′〉, which is directly
extended for the modelling of the fluctuation part of forcing in linear analysis (Hwang
& Cossu 2010a; Hwang 2016). Since the model described in (3.1) is based on the mean
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Optimise and model the eddy viscosity in resolvent analysis

λx λz c

Near-wall structure (NW) 600h/Reτ 120h/Reτ U( y+ = 15)

Large-scale structure (L1) 1.0h 0.2h U( y/h = 0.1)

Large-scale structure (L2) 2.0h 0.4h U( y/h = 0.2)

Large-scale structure (L3) 4.0h 0.8h U( y/h = 0.2)

Table 2. Investigated flow scales for the validation of the optimisation framework.

quantities, the eddy viscosity calculated from (3.1) will be denoted as νm,MEAN , whereas
the LNS equations based on such a model are denoted as eLNSMEAN in the following parts
of this study. The prediction results with eLNSMEAN will be used to provide comparisons
with our new model for validations in § 4.

3.3. Statistics of the forcing and eddy-viscosity terms
The CSD tensor of the stochastic forcing at spatiotemporal scale k can be decomposed by

Sdd,k = 〈( f̂ k − êk) · ( f̂ k − êk)∗
〉
,

= 〈 f̂ k · f̂ ∗
k
〉− 〈êk · f̂ ∗

k
〉− 〈 f̂ k · ê∗

k
〉+ 〈êk · ê∗

k
〉
,

= Sff ,k − Sef ,k − Sfe,k + See,k. (3.2)

Since Sef ,k and Sfe,k are the Hermitian-transposed tensors of each other by definition,
they will be discussed together via [−(Sef ,k + Sfe,k)], which represents the correlation
between the forcing and the eddy-viscosity term.

Both the prediction results of the near-wall and large-scale structures are investigated in
the following. Parameters of these to-be-investigated structures are summarised in table 2.
The near-wall structure (NW) with (λ+x , λ+z , c) = (600, 120, U( y+ = 15)) corresponds to
the energy peak of the energy spectra at the near-wall region. On the other hand, the
large-scale structures (L1 and L2) are set with λx and λz that are 10 and 2 times the
critical layer heights yc, respectively, which correspond to the self-similar attached eddies
(Cheng et al. 2019). The large-scale structure L3 has the same critical layer height as
L2 but with larger streamwise and spanwise scales to study the effect of flow scales on
the resolvent results. Here, the critical layer yc is defined as the wall-normal plane where
the mean velocity U equals the convection velocity c = −ω/kx at a given spatiotemporal
scale k (McKeon 2017). The frequency ω is selected such that the height corresponding
to U = −ω/kx is the closest to the target critical layer height yc. Note that the actual
critical layer height based on the selected frequency ω may not be precisely the target
one, since the frequency determined by the discretised samplings with time difference δt
is not continuous. Due to the statistical symmetry of the turbulent channel flow about
the centreline, the resolvent modes come in pairs with the same singular values with
streamwise and spanwise wavelengths smaller than h (Moarref et al. 2013), which is met
by NW, L1 and L2. For brevity, we only focus on the odd modes from the resolvent analysis
and SPOD in the following.

The CSD tensors of different components of Sdd,k are shown in figures 1 and 2 for NW
and L3, respectively, for the case with Reτ = 934. To denote different components of the
CSD tensors, we use ‘i–j’ to indicate the submatrix corresponding to the cross-spectrum
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Figure 1. CSD tensors of Sff ,k (a–f ), Sef ,k + Sfe,k (g–l), See,k (m–r) and Sdd,k (s–x) for the near-wall
structure NW with Reτ = 934. Submatrices 1–1 (a,g,m,s), 2–2 (b,h,n,t), 3–3 (c,i,o,u), 1–2 (d, j,p,v),
1–3 (e,k,q,w) and 2–3 ( f,l,r,x) of the CSD tensors are separately depicted. The values are normalised by the
maximum value of Sdd,k(1 − 1). The expression ‘i–j’ is used to represent the submatrix corresponding to the
cross-spectrum between the quantities in xi and xj directions.

between the quantities in xi and xj directions. It is found that the signs of the correlation
term [−(Sef ,k + Sfe,k)] and nonlinear forcing term Sff ,k are opposite in most energetic
off-diagonal regions of the submatrix (1–1) for the streamwise variables. In particular,
for the large-scale structures, the off-diagonal values of Sff ,k are nearly cancelled by the
additional terms with eddy viscosity. As a result, the stochastic forcing is weakly correlated
in space, with higher energy concentrated near the diagonal of the CSD tensors of Sdd,k.
Considering that the resolvent modes are equivalent to the SPOD ones when the input
of the linear system is uniform and uncorrelated in space, the stochastic forcing in the
eLNSMEAN case is closer to such condition in a statistical sense.

From figures 1 and 2, it might be prone to consider that the CSD tensor Sdd,k of
the stochastic forcing could be simply approximated by that of the eddy-viscosity term,
which is demonstrated to be inaccurate based on the findings in figure 3 that depicts
the spatial correlations between y/h = 0.2 and all the other heights. To quantify the
spatial correlations, the cross-spectral elements are sampled from the CSD tensors Sff ,k,
[−(Sef ,k + Sfe,k)], See,k and Sdd,k, which are denoted as Cff , [−(Cef + Cfe)], Cee and
Cdd , respectively. From figure 3, it is found that the eddy-viscosity terms also have
significant spatial correlations, which are in similar magnitudes as those of the forcing
term f̂ k. For instance, the values of Cee at y/h = 0.3 that is far away from the reference
height y/h = 0.2 are 3.22 and 1.46 times those of Cff for L2 and L3, respectively.
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Figure 2. Same as figure 1, but for the large-scale structure L3.

The term [−(Cef + Cfe)] eliminates not only the spatial correlation of the forcing term,
but also that of the eddy-viscosity term, both of which have significant spatial correlations.
Consequently, the values of Cdd concentrate around the diagonal elements at y/h = 0.2 for
all the tested scales, which means that the resultant stochastic forcing is weakly correlated
in space due to the interactions between the forcing and eddy-viscosity terms.

In § 2.2, it has been demonstrated that the resolvent and SPOD modes are identical
when the covariance matrix of the expansion coefficient 〈βk · β∗

k〉 = nI . Figure 4 shows
〈βk · β∗

k〉 from LNS and eLNSMEAN for different flow scales with Reτ = 934. Note
that the eddy-viscosity term is not excluded from nonlinear forcing in LNS. Unlike the
LNS results where the off-diagonal elements are significant compared with the diagonal
ones, the diagonal elements in the eLNSMEAN results are observed to be larger than the
off-diagonal ones, which indicates that the relative magnitude of the correlations between
βk with different orders are reduced compared with the energies of βk by introducing
the eddy-viscosity model. Thus, the mean-quantity-based eddy-viscosity model roughly
meets the condition of 〈βk · β∗

k〉 = nI where the resolvent modes equal the SPOD modes.
However, a critical deficiency exists in the energy distributions of the expansion coefficient
βk,i in low-order modes for the eLNSMEAN results, where the energies of the leading
forcing modes are significantly lower than the subsequent modes. As the low-order forcing
modes correspond to much larger gains to the response modes than the subsequent ones,
the relatively low energy in the first forcing modes will induce non-negligible deviations
between the resolvent and DNS results (Morra et al. 2021).
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Figure 3. Spatial correlation of the forcing and eddy-viscosity term for (a) NW, (b) L1, (c) L2 and (d) L3
between y/h = 0.2 and all the other heights with Reτ = 934. The values are normalised by the value of Cdd at
y/h = 0.2 for each depicted scale.
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Figure 4. Covariance of the expansion coefficients βk of forcing with Reτ = 934 for near-wall structures
NW (a) and large-scale structures L1 (b), L2 (c) and L3 (d). The resolvent forcing modes are obtained from
LNS (a–d) and eLNSMEAN (e–h). The values are normalised by the averaged value of the first 20 elements of
the diagonal of 〈βk · β∗

k〉 in each case separately. Only the results for the odd modes are depicted here. The
results for the even modes are close to those for the corresponding odd modes.

Finally, the comparisons between the SPOD and resolvent response modes from
eLNSMEAN are investigated. To quantify the consistency between the SPOD and resolvent
modes, the projection of the ith SPOD mode on the jth resolvent one at a given
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spatiotemporal scale k is defined as

Pk(i, j) = ∣∣u∗
k,i·W ·ψk,j

∣∣ . (3.3)

When the resolvent modes are identical to the SPOD modes with each other, the mode
projection Pk should be an identity matrix considering the orthogonality of the response
modes. The values of Pk with the resolvent modes calculated from eLNSMEAN when
Reτ = 934 are shown in figure 5. The eLNSMEAN provides fair predictions that match
with the SPOD results in the first mode, which is consistent with that reported in previous
literature (Morra et al. 2019; Symon et al. 2023). However, the value of Pk(1, 1) for the
leading mode from the eLNSMEAN results shows a decreasing trend with the increase of
Reτ , which decreases from 0.89 to 0.74 for L2 when Reτ increases from 187 to 2003. This
makes it questionable regarding the performance of eLNSMEAN in wall-bounded turbulent
flows with even higher friction Reynolds numbers. Moreover, for the subsequent modes,
the eLNSMEAN does not provide reliable results for NW, L1 and L2. Only for L3 with
the largest considered flow scale (λx = 4.0h, λz = 0.8h), the eLNSMEAN results align well
with the DNS results with Pk(5, 5) � 0.73 for all the tested friction Reynolds numbers.

In this section, the role of the eddy-viscosity term in linear analysis is explained
physically. It serves to model the spatially correlated component of the nonlinear forcing
term, while the remaining portion is weakly correlated in space. From a modelling
perspective, this can be further simplified to assume that such remaining part is
spatially uncorrelated. Such a mechanism is different from that in the Reynolds-averaged
Navier–Stokes equations, where the eddy-viscosity term models the mean value of the
entire nonlinear term. The minimisation of the spatial correlations of the remaining
stochastic forcing effectively enhances the uniformity and uncorrelation of the covariance
matrix of the expansion coefficients βk for the leading modes, which eventually improves
the alignment between the resolvent analysis and DNS results. Note that the comparisons
between the predicted results from LNS and eLNSMEAN have been discussed thoroughly in
Morra et al. (2019) and Symon et al. (2023), which are not repeated in this study for brevity.
However, it should be noted here that such improvements by the eLNSMEAN derived from
the mean flow quantities are limited. For instance, the energies of βk of the leading modes
for eLNSMEAN are still not quite uniform. The correlations of βk of different modes can
neither be neglected compared with the diagonal elements. In the next section, further
improvements of the eddy viscosity are explored based on the statistical relationships
between the forcing and eddy-viscosity terms.

4. Optimisation and modelling of the eddy viscosity

In this section, an optimisation framework that derives the eddy-viscosity profiles based
on statistical properties of forcing and the eddy-viscosity terms is developed. Based on
the optimised eddy viscosity, a new model that robustly improves the alignments between
the resolvent and SPOD modes for all the tested cases with Reτ = 187–2003 for wide
spatiotemporal scale ranges is proposed.

4.1. Optimisation process
From the analyses of the existing eddy-viscosity model in the last section, an idealised
eddy-viscosity profile should eliminate the spatial correlations of the forcing from the
resultant stochastic forcing to the largest extent. Based on such premise, an optimisation
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Figure 5. Projections of the eLNSMEAN -predicted resolvent modes on the SPOD modes for near-wall
structures NW (a,e,i,m) and large-scale structures L1 (b, f, j,n), L2 (c,g,k,o) and L3 (d,h,l,p) with
Reτ = 186 (a–d), 547 (e–h), 934 (i–l) and 2003 (m–p). Only the results for the odd modes are depicted here.
The results for the even modes are close to those for the corresponding odd modes.

framework is proposed by minimising the spatial correlation of the stochastic forcing term
d̂k, with the cost function J described by

J =
3∑

r=1

Ny∑
i=1

Ny∑
j=1

wij
(
M(i)Sr

dd(i, j)S̄r
dd(i, j)M( j)

)+ γ

Ny∑
i

Lνm(i), (4.1)

where i, j ∈ [1, Ny] denote the node indices along the wall-normal direction, M(i) =√
W(i, i) accounts for the energy norm, the bar denotes complex conjugate and Sr

dd denotes
the CSD tensor of the stochastic forcing in the xr direction, which is a function of Suu,k,
Suf ,k and Sff ,k from the DNS datasets and the eddy viscosity νm. The weighting function
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wij is defined as

wij =
{

0,

∣∣∣y+
i − y+

j

∣∣∣ � D+,

1, otherwise,
(4.2)

which ensures that only the correlation between the flow signals beyond a certain distance
D+ in the viscous unit is minimised, where D+ = 30 that is tested to provide generally
optimal results is adopted. When |y+

i − y+
j | � D+, the locations of di and dj are quite

close to each other, which could be approximately considered to be the diagonal elements.
The second term in (4.1) is used to promote the smoothness of the result and thus called

the regularisation term (Holford et al. 2023), which is a function of the inner product of
the second derivative ν

yy
m . Considering that ν

yy
m should be large in the near-wall region due

to the growth of νm with wall-normal height from 0 at the wall, smaller weights should be
assigned to the near-wall portions of ν

yy
m compared with that in the higher region to avoid

over-modification of νm in the near-wall region. Thus, Lνm(i) is expressed as

Lνm(i) = (M(i)νyy
m (i)dy(i)

)2 =
⎛
⎝M(i)

Ny∑
j

Eijνm( j)dy(i)

⎞
⎠

2

, (4.3)

with dy(i) as the square of the non-dimensional distance to the nearest wall of the channel,
which assigns larger weighting for the smoothing in the higher regions. The value of γ is
automatically determined based on the trade-off between the minimisation of the first term
in (4.1) and the smoothness of the obtained νm, where the detailed procedure is provided
in Appendix C. The elements of the CSD tensors Sdd,k are quadratic functions of νm,
making the cost function J a quartic equation of νm. To minimise the cost function J , its
derivative to νm should be zero, i.e. dJ /dνm(s) = 0, which is a cubic equation system. The
Newton–Raphson method is applied to solve the equations. Detailed processes for solving
the optimisation problem are provided in Appendix D. In the following, the optimised
eddy viscosity solved from (4.1) is denoted as νm,OPT , whereas the LNS equations based
on such eddy viscosity are denoted as eLNSOPT .

4.2. Optimised results
In this section, the optimisation results of the eddy viscosity and the resultant response
are shown and discussed. The optimised eddy-viscosity profiles are shown in figure 6.
It is found that the optimised profiles for different flow scales share similar tendencies
as the mean-quantity-based eddy viscosity νm,MEAN . Specifically, the values of νm,OPT
increase rapidly in the near-wall region with nearly the same rate as that of νm,MEAN and
reaches the maximum value at a specific height. Afterwards, the values of νm,OPT decrease
slowly towards a specific value until y/h = 1. Although there is no restriction on the
value of the eddy viscosity at the wall in the optimisation problem (4.1), all the optimised
results approach zero when y/h = 0, which is consistent with the fact that the dissipation
mechanism is dominated by molecular viscosity in the near-wall region (Hwang 2016). On
the other hand, the relatively large values of νm,OPT in the higher regions also support the
inference in Hwang (2016), where a relatively large value of eddy viscosity is expected in
the outer layer due to the vigorous turbulence dissipation through the energy cascade. The
different distributions of νm,OPT and νm,MEAN indicates that eLNSm,OPT has a different
mechanism of energy transfer from that of eLNSm,MEAN , which will be discussed further
later on.
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Figure 6. Optimised eddy-viscosity profiles with Reτ = 186 (a), 547 (b), 934 (c) and 2003 (d).

Figure 7 shows the CSD tensors of the stochastic forcing obtained from eLNSOPT .
For both the near-wall and large-scale structures, the spatial correlations of the stochastic
forcing are effectively reduced in eLNSOPT results compared with those in the eLNSMEAN
results, as shown in figures 1 and 2. It is also noted that the stochastic forcing energy
for NW is not as uniformly distributed in the wall-normal direction as that for L3. The
covariance of βk, which quantifies the energy and correlations of different forcing modes,
are depicted in figure 8. As mentioned in § 2.2, the resolvent and SPOD modes are identical
to each other when 〈βk · β∗

k〉 = nI . Given that the low-order forcing modes correspond
to much larger gains to the response modes than the subsequent ones, the uniformity in
energy distribution and uncorrelation between different forcing modes are more important
for the lower-order ones. It is found that the low-order forcing energies of near-wall
structures are not so uniform as those of the large-scale structures, which is consistent with
the observations of the forcing CSD tensors in figure 7. This indicates that the resolvent
modes of the large-scale structures are more consistent with the SPOD ones than those
of the near-wall structures. On the other hand, the eLNSOPT results are more uniform
in energy and uncorrelated between different modes than the eLNSMEAN ones shown in
figure 4 for the low-order forcing modes, which means that the resolvent modes predicted
by eLNSOPT are more consistent with the SPOD ones.

In the following, the validations of the optimised results are separated into two parts,
i.e. the coherent structures in § 4.2.1 and the CSD tensors in 4.2.2, both of which
are important for turbulence research. The prediction of coherent structures, which is
conducted extensively via the resolvent analysis, is important in predicting and analysing
the energetic turbulence dynamics (McKeon & Sharma 2010; McKeon 2019). Meanwhile,
the predictions of the CSD tensors directly provide information on energy distribution
and spatial coherence of the flow motions, which could be further applied for the state
estimation of turbulence (Martini et al. 2020; Amaral et al. 2021; Gupta et al. 2021; Ying
et al. 2024).
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in each case separately. Only the results for the odd modes are depicted here. The results for the even modes
are close to those for the corresponding odd modes.

4.2.1. Coherent structures
The projections of the SPOD modes on resolvent ones obtained from eLNSOPT are shown
in figure 9. The eLNSOPT results match well with the SPOD modes for the first modes. For
instance, when Reτ = 2003, the values of the first mode projections Pk(1, 1) are equal to
0.93, 0.96, 0.93 and 0.97 for NW, L1, L2 and L3, respectively, which are much higher than
those from LNS and eLNSMEAN shown in figure 5. For the subsequent modes, the accuracy
of the eLNSOPT results is enhanced with the increase of the flow scales. Specifically, the
values of the fifth mode projection Pk(5, 5) of L3 are 0.83, 0.87, 0.85 and 0.91 for Reτ =
186, 547, 934 and 2003, respectively, which keep relatively high levels for all the tested
cases. For the near-wall structures, the accuracy of the eLNSOPT results is not as high as
that of the large-scale structures. This should be attributed to the vigorous variations of
flow properties in the near-wall region, which could be further improved by taking the
wall-normal deviations of the stochastic forcing into consideration in future studies.
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Figure 9. Projections of the eLNSOPT -predicted resolvent modes on the SPOD modes for near-wall structures
NW (a,e,i,m) and large-scale structures L1 (b, f, j,n), L2 (c,g,k,o) and L3 (d,h,l,p) with Reτ = 186 (a–d),
547 (e–h), 934 (i–l) and 2003 (m–p). Only the results for the odd modes are depicted here. The results for
the even modes are close to those for the corresponding odd modes.

To further investigate the spatial distributions of the resolvent modes, comparisons
of the profiles of the SPOD and resolvent modes for streamwise velocity are shown in
figure 10. The eLNSMEAN results could generally reflect the tendencies of the wall-normal
distributions of the first mode for each considered flow scale. However, it is observed that
the resolvent modes from eLNSMEAN are overly energetic in the near-wall region, which is
attributed to the overestimation of the energy transport towards the wall by eLNSMEAN
(Symon et al. 2023). For the subsequent modes, the eLNSMEAN results could hardly
reflect the characteristics of the SPOD modes. On the other hand, the eLNSOPT results
are consistent with the SPOD ones, especially for large-scale structures. For instance,
the fraction of the energy peak heights of the first modes from eLNSOPT and SPOD are
0.015/0.016, 0.038/0.050, 0.14/0.16 and 0.18/0.21 for NW, L1, L2 and L3, which means
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Figure 10. Profiles of the SPOD and resolvent modes for the streamwise velocity with Reτ = 934. The first
mode (a–d), third mode (e–h) and fifth mode (i–l) are shown in the figure for the near-wall structure NW (a,e,i)
and large-scale structures L1 (b, f, j), L2 (c,g,k) and L3 (d,h,l).

that the eLNSOPT successfully predicts the spatial distributions of the coherent structures
quantitatively. Following the definitions of the local energy dissipation and transport in
(21) of Symon et al. (2023), the better agreement between the eLNSOPT and SPOD results
could be attributed to a rational energy balance achieved. In the near-wall region, νm,OPT
has nearly the same values as that of νm,MEAN , meaning that the energy transport and
dissipation by eLNSOPT are both close to those of eLNSMEAN there. Meanwhile, in the
higher region, the substantially lower values of νm,OPT compared with that of νm,MEAN
indicates that the eLNSOPT reduces the energy dissipation there. With such a new energy
transfer mechanism, the eLNSOPT prevents the resolvent modes from being over-predicted
in the near-wall region compared with those in the higher region.

To provide more intuitive comparisons of the predicted coherent structures in physical
space, the flow fields corresponding to the first and third modes of L1 on x−y plane
are shown in figures 11, 12 and 13 for streamwise, wall-normal and spanwise velocities,
respectively. The eLNSOPT results are consistent with the SPOD ones in both the energy
distributions and the inclination angles that are important features of turbulence (Cheng,
Shyy & Fu 2022), which further demonstrates the effectiveness of the optimisation
framework in this study in predicting the coherent structures.

4.2.2. CSD tensors
The CSD tensors directly quantify the energy distribution and spatial coherence of the flow
motions at a given scale. Based on the predicted CSD tensors from the forcing model,
the state estimation of instantaneous turbulence field could be conducted (Martini et al.
2020). The CSD tensors for all the velocity components are shown in figures 14 and 15
for NW and L2, respectively. The eLNSOPT results match well with the DNS results for
all the components of the CSD tensors and both the tested flow scales. The eLNSMEAN
results, on the other hand, are consistent with the DNS ones only for NW. For L2, the
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(b,e) and eLNSMEAN (c, f ) for the large-scale structure L1 of streamwise velocity u. The values shown in each
subfigure are normalised by the maximum velocity in the corresponding case.
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Figure 12. Same as figure 11, but for the wall-normal velocity v.
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Figure 13. Same as figure 11, but for the spanwise velocity w.
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Figure 15. Same as figure 14, but for the large-scale structure L2.

features of the eLNSMEAN results differ from the DNS results. The CSD tensors of the
large-scale structures L1 and L3 that are not shown here lead to the same conclusions
about the performances of eLNSOPT and eLNSMEAN as those for L2.
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Figure 17. Same as figure 16, but for the spatial correlations.

To further quantify the performance of the eLNSOPT in predicting the CSD tensors, the
energy profiles and spatial correlations between y/h = 0.2 and other wall-normal locations
are depicted in figures 16 and 17, respectively. Compared with the eLNSMEAN-predicted
results, the eLNSOPT -predicted results are closer to the DNS results for the large-scale
structures for both energy profiles and spatial correlations. Although both methods
deviate from the DNS results for the wall-normal and spanwise velocities for the NW,
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the eLNSOPT results are still closer to the DNS results for the streamwise velocity. In
future studies, the wall-normal variations of the stochastic forcing could be taken into
consideration for further optimisations if a higher consistency between the DNS and
predicted results is needed for the near-wall structures.

In this section, an optimisation framework for the eddy viscosity is proposed by
minimising the correlations of the stochastic forcing. By simplifying the stochastic forcing
to be uncorrelated in space, improved results are obtained compared with those from
the mean-quantity-based eddy-viscosity model (Cess 1958). Indeed, the real stochastic
forcing after excluding the eddy-viscosity term in eLNSOPT are not strictly uncorrelated
in space, as indicated by figure 7. However, such uncorrelated-in-space simplification
for the stochastic forcing is considered to be rational from the significantly improved
prediction accuracy of eLNSOPT as in figures 9–17, which also facilitates the modelling of
eddy-viscosity terms in the following.

4.3. Modelling the eddy viscosity based on the optimisation results
In this section, a simplified optimisation framework with only one to-be-determined
parameter is first developed based on the optimisation results discussed in the last section.
A new eddy-viscosity model is then proposed and validated with such a simplified
framework.

4.3.1. Simplified optimisation framework for the eddy viscosity
From the discussion of the optimised eddy viscosity in § 4.2, it is demonstrated that the
eLNSOPT is effective in predicting the energy-containing structures. Thus, it is natural
to consider finding a universal rule for the key features of the eddy-viscosity profiles for
different flow scales and friction Reynolds numbers. From figure 6, we have found that the
optimal eddy-viscosity profiles have nearly the same increasing rate as that of νm,MEAN
in the near-wall region. Although the values of νm,OPT slowly vary after reaching the
maxima point, they generally maintain large values in the higher region. Thus, simplified
optimisation frameworks that assume the eddy-viscosity profiles to (i) have the same
increasing rate as νm,MEAN and (ii) be unchanged after reaching the maxima point are
expected to provide comparable results as the framework described in (4.1). In this way,
only one parameter ν̌m is needed to determine the distributions of the eddy-viscosity profile
in the simplified frameworks, which is defined as the friction between the maximum values
of the optimised eddy viscosity νm and the mean-quantity-based eddy viscosity νm,MEAN .
With the above assumptions, two simplified optimisation frameworks could be established,
with the cost functions defined by

J1 =
3∑

r=1

Ny∑
i=1

Ny∑
j=1

wij
(
M(i)Sp

dd(i, j; ν̌m)S̄r
dd(i, j; ν̌m)M( j)

)
, (4.4)

which directly extends the optimisation target in (4.1), and

J2 = − ∣∣ψ∗
k,1(ν̌m)·W ·uk,1

∣∣ , (4.5)

which maximises the projection of the first SPOD mode on the resolvent one. These two
simplified frameworks, both of which stem from the original in (4.1), optimise the eddy
viscosity in different aspects and need different amounts of DNS data for optimisation.
The framework defined in (4.4) aims to minimise the spatial correlations of the stochastic
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forcing in the wall-normal direction, which needs the CSD tensors Suu,k, Suf ,k and Sff ,k
from the DNS dataset for the optimisation. On the other hand, that defined in (4.5) adopts
the characteristics of the eddy-viscosity profiles from the original optimisation framework
defined in (4.1) but simplifies the target to maximise the alignment between the SPOD
and resolvent modes, which only needs the CSD tensor Suu,k. If the optimised results
from (4.4) and (4.5) with different targets are consistent with each other, the universality
of the original framework in (4.1) by minimising the spatial correlation of stochastic
forcing could be further supported. The results solved from the simplified problems (4.4)
and (4.5) are denoted as νm,OPTS−1 and νm,OPTS−2, respectively. Correspondingly, the
LNS equations with the above eddy-viscosity settings are denoted as eLNSOPTS−1 and
eLNSOPTS−2, respectively. Here, ν̌m is the only parameter that determines the profile of
νm, which is restricted within [0, 1]. From the optimisation results shown in the following,
such extent for ν̌m is wide enough to provide satisfying results that align well with the DNS.
To determine the profile of νm from ν̌m, the eddy viscosity is first initialised by

νm,init( y) = min{νm,MEAN( y), νmax
m }, (4.6)

where νmax
m = ν̌m · max{νm,MEAN}. Then, the initial eddy-viscosity profile is smoothed by

minimising the cost function

K =
Ny∑
i

[
M(i)

(
νm(i) − νm,init(i)

)]2 + ε

Ny∑
i

Lνm(i), (4.7)

where the regularisation parameter ε = 5 × 10−3 that achieves an appropriate balance
between the smoothness and the maximisation of J1 and J2 is adopted. The definition
of the regularisation term Lνm is the same as that in (4.1). Theoretical solution of the
minimum point with ∂K/∂νm = 0 is expressed by

νm = (W + εD)−1 · W · νm,init, (4.8)

with D(i, j) =∑Ny
s (M(s)dy(s))2EsiEsj. Since the optimisation problems (4.4) and (4.5)

might not be convex, the minimum points are found via global searching all across the
one-dimensional parameter space for ν̌m from 0 to 1.

To find the relationships among the optimised results from different frameworks, the
results from the simplified frameworks (4.4) and (4.5) are both shown in figure 18, together
with those from (4.1). Compared with the optimised results via (4.1), the simplified results
provide very close values in the outer region for all the tested scales and friction Reynolds
numbers. Moreover, the profiles of νm,OPTS−1 and νm,OPTS−2 are close to each other, the
consistency between which is even enhanced with the increase of Reτ . For instance, when
Reτ = 2003, the maximum relative deviation is only 5.0 % with respect to νm,OPTS−2
for L3.

The projections of resolvent modes on the SPOD modes for different flow scales
and with different friction Reynolds numbers are shown in figure 19. The results from
eLNSOPTS−1 and eLNSOPTS−2 have almost the same accuracy as the eLNSOPT results for
most cases, especially for the first modes. For the subsequent modes of NW, the eLNSOPT
results appear to be more accurate than those from eLNSOPTS−1 and eLNSOPTS−2 when
Reτ � 547 to a limited extent. For instance, when Reτ = 547, the values of mode
projection from eLNSOPT are 5.6 % and 8.4 % larger than those from eLNSOPTS−1 results
for the third and fifth modes, respectively. Meanwhile, with the enlargement of flow
scale and Reynolds numbers, the differences between the eLNSOPT results and those
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Figure 18. Simplified eddy-viscosity νm,OPTS profiles with Reτ = 186 (a), 547 (b), 934 (c) and 2003 (d). The
translucent curves denote the optimised results from (4.1). The dashed curves with empty scatters denote the
eLNSOPTS−1 results from (4.4), whereas the solid lines with filled scatters denote the eLNSOPTS−2 results from
(4.5).

from the simplified framework further decrease. For the large-scale structures L2 and
L3, the mode projections from all these three optimised results closely overlap with each
other. This demonstrates the validity of the optimisation frameworks of the simplified
model. Moreover, the consistency between the eLNSOPTS−1 and eLNSOPTS−2 results from
different optimisation targets also supports the universality of the optimisation framework
of eddy viscosity by minimising the spatial correlations of the stochastic forcing. On the
other hand, the results from all the above three optimisation frameworks perform better
than the eLNSMEAN results for all the considered cases. In the next section, we further find
the rules of the distributions of optimal values of ν̌m, which are denoted as ν̌m,OPTS, with a
wider range of streamwise and spanwise scales based on the eLNSOPTS−2 results in order
to build up a new eddy-viscosity model. For brevity, the terms νm,OPTS−2 and eLNSOPTS−2
are denoted as νm,OPTS and eLNSOPTS in the following, respectively.

4.3.2. A new eddy-viscosity model
The variations of the parameter ν̌m,OPTS with the streamwise and spanwise scales are
investigated by changing the values of λx and λz, respectively, of the near-wall and
large-scale structures defined in table 2, respectively, while keeping the other parameters
unchanged. The values of ν̌m,OPTS as functions of λx and λz are shown in figures 20 and 21,
respectively. For the structures with the same λz(λx) and yc but various λx(λz), we will still
name these structures according to table 2 based on their λz(λx) and yc values for brevity.

From figure 20, the variations of ν̌m,OPTS are not so obvious with the streamwise scales
λx. Thus, we consider using a unified value to describe ν̌m,OPTS with different λx for a
given pair of λz and yc. Such simplification that considers ν̌m,OPTS to be unchanged with
λx are further tested in § 4.3.3. On the other hand, significant variations of ν̌m,OPTS with the
spanwise scales λz are found in figure 21. For L3 with Reτ = 2003, the value of ν̌m,OPTS
is 0.86 and 0.02 when λz/h = 0.5π and 0.01π, respectively. Moreover, it is found that the
values of ν̌OPTS become 0 when λ+z � 28.5 and 27.9 for Reτ = 186 and 547, respectively.
This indicates that the energy dissipation of the small-scale structures vanishes for the
scales when λ+z is lower than around 28. The dramatic variations of ν̌m,OPTS with the
spanwise scales indicate that the prediction of ν̌m,OPTS with different values of λz should
be a key of the modelling.

To further find the rules of the values of ν̌m,OPTS with different λz, the variations of
ν̌m,OPTS as functions of λ+z that is normalised by the viscous scale are depicted in figure 22.
Note that the flow structure L1 with Reτ = 186 is categorised into the near-wall structures
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Figure 19. Projections of the optimised resolvent modes on the SPOD modes for near-wall structures NW
(a,e,i,m) and large-scale structures L1 (b, f, j,n), L2 (c,g,k,o) and L3 (d,h,l,p) with Reτ = 186 (a–d), 547 (e–h),
934 (i–l) and 2003 (m–p).

in figure 22(a) considering that the spanwise scale λz/h = 0.2 (λ+z = 37.2) for Reτ = 186
is below the critical value of λ+z = 100 for the attached eddies (Hwang 2015), which means
that the flow structure L1 with Reτ = 186 follows the characteristics of near-wall motions.
It is found that all the tested values of Reτ · ν̌m,OPTS that are multiplied by the friction
Reynolds numbers collapse well when λ+z is smaller than a critical value λ+c ≈ 100, which
can be described by a fitted function of

ν̌m = (70 ln(λ+z ) − 250)/Reτ . (4.9)

When λ+z decreases below 50, the values of ν̌m,OPTS gradually approach 0. The curve
described above is denoted as A in the following. When λ+z > λ+c , the values of
Reτ · ν̌m,OPTS from different Reτ diverse. Since the smallest attached eddies in
wall-bounded turbulence correspond to λ+z ≈ 100 (Hwang 2015), the flow properties start
to be affected by the large-scale motions characterised by the outer scale h when λ+z
increases above λ+c .
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Figure 21. Variations of the parameter ν̌m,OPTS with λz/h for Reτ = 186 (a), 547 (b), 934 (c) and 2003 (d).
The solid lines denote the modelled values of ν̌m,OPTS in (4.9)–(4.10). Lines and scatters with the same Reτ are
depicted with the same colours.

To find out the rules of ν̌m,OPTS with λ+z > λ+c , the variations of ν̌m,OPTS for large-scale
structures as functions of λz/h that is normalised by the outer scale are depicted in
figure 23. For each scale λz/h, it is found that the values of ν̌m,OPTS from different friction
Reynolds numbers that satisfy Reτ · λz/h > λ+c are close to each other. For instance, at
λz/h = 0.2π where the condition Reτ · λz/h > λ+c is met by all the friction Reynolds
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lines denote A that describes the distribution of ν̌m,OPTS when λ+z � 100, whereas the black solid line denotes
curve B that describes the distribution of ν̌m,OPTS when λ+z > 100.

numbers, all the results collapse well. Meanwhile, at λz/h = 0.04π where the above
condition is just met by Reτ = 934 and 2003, only the results with Reτ = 934 and 2003
collapse. Based on the above observations, it is reasonable to assume that the optimisation
results with a large enough Reτ could collapse with the results with smaller Reτ as long
as Reτ · λz/h > λ+c , which form an envelope that could be used to describe the values of
ν̌m,OPTS for the large-scale structures. Such envelope is denoted as B in the following.

We first consider the descriptions of curve B when 186λz/h � λ+c . To ensure the
continuity of the distributions of ν̌m,OPTS, the inner-scaled curve A for a given Reτ should
intersect the curve B at the conjunction point Reτ · λz/h = 100. That is, each point at
the curve B for 186λz/h � λ+c could be regarded as the end point of one curve A with an
assumed friction Reynolds number. The resultant expression of B by linking the endpoints
of curves A with continuously varying values of Reτ can be demonstrated to be

ν̌m = (70 ln(λ+c ) − 250)λz/(λ
+
c h). (4.10)

Here, the critical value λ+c = exp(32/7) is adopted to exactly ensure that the values of
ν̌m described by A and B at two sides of the intersection point λ+c are second-order
differentiable. Note that exp(32/7) ≈ 96.68 is very close to our observations in figure 22,
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Figure 24. Comparisons of the new model described by curve B and the parameter ν̌m,OPTS for the near-wall
structures NW (a). The premultiplied streamwise fluctuation energy integrated along the height with λ+z is
shown in (b). The black dashed line denotes λ+z = λ+c . Each coloured solid line denotes one curve B for results
with a given Reτ in the same colour.

where the critical value of λ+z is approximated as 100. For the sake of simplicity of the
model, the valid range of (4.10) is specified as λz/h � λ+c /180. When λz/h > λ+c /180, the
averaged values of ν̌m,OPTS gradually approaches around 0.75. To ensure the second-order
differentiability of the modelled values of ν̌m in at λz/h = λ+c /180, the hyperbolic tangent
function

ν̌m = (0.75 − β3) · tanh ((λz/h − β1)/β2) + β3 (4.11)

is adopted when λz/h > λ+c /180, where β1 = λ+c /180, β2 = 0.5 and β3 = (70 ln(λ+c ) −
250)/180. The curve B is shown in figure 23 with the black solid curve, which matches
well with values of ν̌m,OPTS for the large-scale structures with all the tested Reτ . Based on
B, a simplified model to determine ν̌m is summarised as

ν̌m =
{(

70 ln(λ+c ) − 250
)
λz/(λ

+
c h), for all λz/h ∈ (0, λ+c /180],

(0.75 − β3) · tanh ((λz/h − β1)/β2) + β3, for all λz/h ∈ (λ+c /180, ∞).

(4.12)

With ν̌m obtained from (4.12), the modelled eddy-viscosity profile is then determined by
ν̌m through (4.6) and (4.8).

In the meantime, it should be noted that the values of ν̌m from curve B cannot accurately
describe the distributions of ν̌m,OPTS for the near-wall structures NW when the magnitudes
of spanwise scales are relatively large, as shown in figure 24(a). In figure 24(b), the
relative distributions of the integrated energies of the streamwise velocity fluctuations
along the height at NW are depicted to highlight the energy-containing flow scales, which
are calculated by

Ẽuu(λz; λx) =
∑Ny

i=1 Euu(λx, λz, yi)M(i)2

max
λz

{∑Ny
i=1 Euu(λx, λz, yi)M(i)2}

, (4.13)

where Euu(λx, λz, yi) is the energy of the streamwise velocity fluctuations at the ith
grid in the wall-normal direction. It can also be found that curve B fairly describes the
distributions of ν̌m,OPTS in the scale ranges where the fluctuation energy concentrates.
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Moreover, it is demonstrated in § 4.3.3 that the prediction accuracy is not so sensitive to
the values of ν̌m,OPTS for NW when the spanwise scales are large. That is, although the
predicted values of ν̌m deviate from ν̌m,OPTS when the magnitudes of spanwise scales are
relatively large, the prediction accuracy is comparable to the optimal one. Thus, the new
model described by the curve B can also be considered to be effective for NW.

The new model (4.12) developed in this section needs only the information of the
friction Reynolds number Reτ and the considered spanwise flow scale λz/h, which is quite
convenient to implement. In the next subsection, validations of the new model within wide
scale ranges for both λx and λz will be conducted, where the eddy viscosity described by
the new model is denoted as νm,MOD. The LNS equations based on the new model are
denoted as eLNSMOD.

4.3.3. Validation of the new eddy-viscosity model
The ability of the new eddy-viscosity model to predict the turbulence properties is
validated in this section by checking the consistency of the predicted coherent structures
with the SPOD ones. In the following, comparisons between the results from eLNSMOD,
eLNSOPTS and eLNSMEAN will be included to test the capability of the newly proposed
eddy-viscosity model.

From figure 25 that depicts the projections of the SPOD modes on the resolvent modes
with different streamwise scales, the eLNSMOD results nearly overlap with the optimised
results from eLNSOPTS for the leading mode, where the largest relative deviations are equal
to 1.4 %, 3.0 %, 2.0 % and 1.9 % for NW, L1, L2 and L3, respectively. For the third and
fifth modes, the eLNSMOD results are still close to the optimised ones. For instance, the
standard deviations between eLNSMOD and eLNSOPTS results of L2 for the third and fifth
modes are equal to 0.14 and 0.11, respectively.

The prediction accuracy of eLNSMOD with different spanwise scales are shown in
figure 26. For NW, it is found that the predictions from eLNSMOD match well with the
optimised ones, even for the larger spanwise scales where the mismatches between ν̌m,MOD
and ν̌m,OPTS are observed in figure 24. This should be attributed to the insensitivity of
the prediction accuracy to the values of ν̌m,MOD for NW with large spanwise scales. For
λz/h < 0.5 where the fluctuation energy concentrates, the maximum deviation between
the eLNSMOD and eLNSOPTS results is 1.8 % for the first mode of NW. In the meantime,
the largest relative deviations between the eLNSMOD and eLNSOPTS results are equal to
3.9 %, 3.4 % and 1.6 % for the first modes of the large-scale structures L1, L2 and L3,
respectively.

From the above discussion, the newly proposed eddy-viscosity model is effective
in predicting the coherent structures with different flow scales and different critical
layer heights, which exhibits close accuracy to the optimised results and significantly
outperforms the mean-quantity-based eddy-viscosity model (Cess 1958).

4.3.4. Comparisons with existing linear models
In addition to the approaches that model the nonlinear forcing with the eddy-viscosity
terms, there are several approaches proposed recently that model the nonlinear forcing
from other aspects, e.g. the W model (Gupta et al. 2021) and R2

S model (Wu & He
2023). Here, the W model (Gupta et al. 2021) adopts eLNSMEAN while adjusting the
energy profile of the stochastic forcing with Eff = ν2

m,MEAN . In the R2
s model, the random

sweeping effect of turbulence is considered when constructing the linear operator. The
characteristic length scale in the wall-normal direction of the R2

s model, which is termed
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Figure 25. Variations of the projections of the SPOD modes on the resolvent modes with different streamwise
scales λx for the near-wall structures NW (a,e,i) and large-scale structures L1 (b, f, j), L2 (c,g,k) and L3 (d,h,l)
when Reτ = 934. Results of the first mode (a–d), third mode (e–h) and fifth mode (i–l) are depicted. The
translucent grey curves denote the relative distributions of integrated streamwise velocity fluctuation energies
along the height at given scales.

by λy here, is sampled from the DNS data at each tested spatial scale ks via

λy(ks, y) =

√√√√√ V2
y ( y)

〈∣∣∂yû
∣∣2〉〈∣∣∂y

(
Vy( y)∂y

)
û
∣∣2〉 , (4.14)

where Vy( y) is the r.m.s. spanwise velocity. The profile of λy(ks, y) can be simplified with

λy(ks, y) = B(ks)

√
h2 − y2, (4.15)

where B(ks) is determined such that
∫ h
−h[λDNS

y (ks, y) − B(ks)
√

h2 − y2] dy is minimised.
Considering that the stochastic forcing modelled in both the W and R2

s models are not
uniform or uncorrelated in space, the response modes cannot be directly obtained via SVD
of the resolvent operator without considering the variations of forcing in space. Instead,
eigendecomposition of the CSD tensor of the response obtained from these two models
are conducted to equivalently obtain the response modes. For brevity, we still refer to
such response modes as ‘resolvent modes’ in the following. In the meantime, it should
be noted that the eLNSMOD and W model need the knowledge of mean velocity profiles,
whereas the R2

s model requires the mean and r.m.s. profiles of the velocities and B(ks) at
the investigated spatial scale from the DNS.
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Figure 26. Same as figure 25, but for the variations of projections of the SPOD modes on the resolvent
modes with different spanwise scales λz.

In the following, we focus on the alignments of the response modes and SPOD modes
in aspects of the mode shapes and energy distributions of the modes with different
orders. The large-scale structures L2 with (λx, λz, c) = (2h, 0.4h, U( y/h = 0.2)) when
Reτ = 186–2003 are used for comparisons. In figures 27(a)–27(d), the projections of the
resolvent modes on the SPOD modes from DNS are depicted. The shapes of the resolvent
modes for the streamwise velocities are shown in figures 28 to provide intuitive insights
into the performance of different models in predicting the coherent structures. For the first
mode, the results predicted by the eLNSMOD, R2

s and W models all closely match with the
SPOD modes, which show significant improvements compared to those from eLNSMEAN .
Meanwhile, for the third and fifth modes, the accuracy of the W model results quickly
deteriorate. In particular, the accuracy of the W model is even worse than the eLNSMEAN

for the fifth mode when Reτ = 186, 547 and 2003. The R2
s model and eLNSMOD perform

similarly with respect to the alignment with the shapes of the SPOD modes.
To further assess the capabilities of the considered models in predicting the relative

energy distributions of the SPOD modes at different orders, the energies of different
orders of resolvent or SPOD modes from DNS and the tested models are shown in
figures 27(e)–27(h). Here, the mode energy is defined as the eigenvalues of the CSD
tensors of velocities from DNS, R2

s model and W model, and the squares of the singular
values of the resolvent operator for eLNSMEAN and eLNSMOD (Towne et al. 2018). It could
be found that the eLNSMOD results depicted in red circles best matches the DNS results
for Reτ = 186, 934 and 2003. The mode energies from eLNSMEAN in subsequent orders
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Figure 27. Prediction results for the SPOD modes (a–d) and associated energies of corresponding modes
normalised by that of the first mode (e–h) with Reτ = 186 (a,e), 547 (b, f ), 934 (c,g) and 2003 (d,h) for the
large-scale structure L2.
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Figure 28. Profiles of the SPOD and resolvent modes for the streamwise velocity of L2. The first mode (a–d),
third mode (e–h) and fifth mode (i–l) are shown in the figure for Reτ = 186 (a,e,i), 547 (b, f, j), 934 (c,g,k) and
2003 (d,h,l).

are lower than the DNS results for most cases. On the other hand, the results from the R2
s

and W models appear to over-predict the portions of the energies in subsequent orders.
From the above comparisons, for the tested large-scale structures, the eLNSMOD and R2

s
model exhibit similar accuracy in predicting the shapes of the SPOD modes. Meanwhile,
the eLNSMOD performs better in predicting the energies of the SPOD modes with different
orders. Considering that the eLNSMOD proposed in this study need only the mean velocity
profile from the DNS, it is expected to be further enhanced when informed by more
information from the DNS data, which could be explored in the future. In addition to the
energy distributions of different response modes at a given spatiotemporal scale, we also
provide results of the cross-scale prediction of the energies with different spanwise scales,
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which could be found from Appendix E. It could be found that the eLNSMOD successfully
predicts the inner peak at λ+z ≈ 125 (Lee & Moser 2015; Wang, Wang & He 2018) for the
near-wall structures.

4.4. Discussion of the optimisation framework and the new eddy-viscosity model
In this study, two major findings are presented, i.e. an optimisation framework and a new
model based on the optimisation results. Based on the universality of the basic features
of the optimisation framework and eddy-viscosity mode, they have different application
scenarios. The optimisation framework, which is based on a simple criterion to cancel
the spatial correlation of the stochastic forcing with eddy-viscosity terms, is considered
to be universal for the resolvent analysis of turbulence regardless of the flow types. Thus,
the optimisation framework could be further extended to other types of turbulent flows,
including other types of wall-bounded turbulence and jet flows.

On the other hand, the new eddy-viscosity model is designed based on the optimisation
results for the turbulent channel flow. Considering that the flow patterns of different types
of wall-bounded turbulence are similar in the inner layer and different in the outer layer
(Monty et al. 2009; Lee & Sung 2013), the new model is considered to be feasible for the
predictions at least in the inner layers for different types of wall-bounded turbulence such
as turbulent boundary layers. For the other flow types, such as jet flow, the new model is no
longer applicable, since it describes the values of eddy viscosity according to the distance
from the wall. However, eddy-viscosity models for different flow types are expected to be
constructed from the optimised results of the framework proposed in this study.

In this study, we have mainly focused on the predictions at separated spatiotemporal
scales. However, the flow energy distributions among different temporal frequencies at
a given spatial scale, which require the information of the variations of the forcing
energies with temporal frequencies, are not considered yet. Meanwhile, at each spatial
scale investigated in this study, the energy-containing frequency is selected through
−ω/kx = U( yc) with yc the height where the corresponding flow structure is energetic
(i.e. y+

c = 15 for the near-wall structure and yc/h = 0.1–0.2 for large-scale structures)
following Moarref et al. (2013) and McKeon (2019). Given that the space–time properties
of turbulence is crucial to understanding and predicting the evolution features of the
fluctuation variables of turbulence (He, Jin & Yang 2017; Wu et al. 2017; Wu & He 2021a),
the modelling of stochastic forcing in the temporal directions could be further explored in
the future. Such a target could be attempted by combining with the basic ideas of the
existing work (Zare et al. 2017; Wu & He 2020, 2021b, 2023) that focus on the stochastic
modelling of turbulence in time.

5. Conclusions

In this study, the mechanism of the eddy-viscosity model in linear analysis of turbulence
has been investigated, followed by the optimisation and further modelling of the eddy
viscosity for linear analysis of turbulence. The newly proposed eddy-viscosity model in
this study has been demonstrated to provide significantly improved results in terms of the
consistency between the SPOD and resolvent modes within a wide range of Reτ and flow
scales.

First, the mechanisms of the classical eddy-viscosity model based on mean Reynolds
shear stress are studied. It is found that the spatial correlation of the forcing is
nearly eliminated by the interactions between the forcing and eddy-viscosity term.
Consequently, the stochastic forcing after excluding the eddy-viscosity terms from the
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forcing is weakly correlated in the wall-normal direction, which makes it closer to
the condition where the resolvent response modes are identical to the SPOD modes.
The energy projections of the stochastic forcing term on the resolvent forcing modes
also demonstrate that the energy distributions of the modelled stochastic forcing from
eLNSMEAN in different modes are more uniformly distributed and weakly correlated than
the original nonlinear forcing. However, it is also found in the eLNSMEAN results that the
forcing energies at the first modes are significantly lower than the subsequent ones, which
introduces large deviations between the SPOD and resolvent response modes, as also
pointed out by Morra et al. (2021). Meanwhile, the consistency between the eLNSMEAN
and SPOD results deteriorates as the friction Reynolds number increases, which makes
it questionable regarding the performance of such mean-quantity-based eddy-viscosity
model with larger Reτ .

Based on the mechanisms of the mean-quantity-based eddy-viscosity model investigated
above, a new optimisation framework is proposed by minimising the spatial correlations
of the stochastic forcing to further improve the eddy-viscosity model. The optimised
eddy-viscosity profiles are found to nearly overlap with νm,MEAN in the near-wall region,
while with different maximum values. After reaching the maximum point, the optimised
eddy viscosity for each tested scale slowly varies in the outer layer with a relatively large
value compared with that in the near-wall region. The optimised eddy-viscosity-modelled
eLNSOPT significantly improves the consistency between the resolvent and SPOD modes,
which is even better with the enlargement of friction Reynolds number and flow scales.
In particular, for all the tested large-scale structures with Reτ = 2003, the projections
of SPOD modes on the resolvent ones are larger than 0.9 for the leading four modes.
Moreover, the eLNSOPT results also provide better consistency with the DNS in the
energy profiles and spatial correlations, which indicates that the eLNSOPT could be
effective in constructing the transfer function for the state estimation of turbulence with
the resolvent-based approaches (Martini et al. 2020; Amaral et al. 2021; Ying et al. 2024).

According to the characteristics of the optimised eddy-viscosity profiles, a simplified
optimisation framework is developed. The simplified framework assumes that the
eddy-viscosity profiles overlap with νm,MEAN in the near-wall region with only the
maximum value of the profile, quantified as ν̌m,OPTS, to be determined. Such a simplified
strategy is demonstrated to provide comparable results to the optimised ones. Then, a new
eddy-viscosity model is proposed based on the rules of the distribution of ν̌m,OPTS within
wide ranges of streamwise and spanwise scales. It is found that the value of ν̌m,OPTS does
not change significantly with the streamwise scale, while is sensitive to the spanwise scale
with distinctive rules. Based on the above observations, a predictive model is proposed
to describe the distributions of ν̌m,OPTS with a given scale and Reτ . Comparisons of the
modelled results and the optimised results in wide ranges of streamwise and spanwise
scales demonstrate that the newly proposed model provides comparable accuracy to the
optimised ones, which is superior to the mean-quantity-based model (Cess 1958) for most
energy-containing flow scales.

In this study, the energy profiles of the stochastic forcing term is assumed to be uniform
along the wall-normal height. Since the stochastic forcing term also has a significant effect
on the response (Gupta et al. 2021; Holford et al. 2023), it is expected to further improve
the predictive model by simultaneously considering the eddy viscosity and the stochastic
forcing in future studies.

Supplementary material. The data that support the findings of this study are available on request from the
corresponding author, LF.
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Appendix A. Validations of the DNS datasets

The mean streamwise velocity and r.m.s. velocity profiles from the generated DNS datasets
in this study and open-source reference results (Hoyas & Jiménez 2008) are shown in
figure 29. The DNS results from the DNS datasets generated in this study match well with
the reference ones for both the mean and r.m.s. velocity profiles.

The current DNS data sets are further compared with the reference results from the
open-source database (Hoyas & Jiménez 2008) at y+ = 15 and y/h = 0.2 in figure 30,
where the box sizes of DNS are Lx × Lz = 12π × 4π, 8π × 4π, 8π × 3π and 8π × 3π
for Reτ = 186, 547, 934 and 2003, respectively. It is found that the spectra from the
DNS datasets in this study are consistent with the reference ones in the spatial scales
resolved by the current computational domain. Thus, the results analysed in this study
could be considered to be converged with the computational domain size of the current
DNS datasets.

Reτ  = 186 Reτ  = 547 Reτ  = 934 Reτ  = 2003

15

10

5

0

2

1

0

2

1

0

2

1

0

2

3

1

0

15

20

10

5

0

15

20

10

5

0

15

20

25

10

5

0
100 101 102 100 101 102 100 101 102 100 101 102

100 101 102 100 101 102 100 101 102 100 101 102

y+

U+

r.m
.s

.

y+ y+ y+

u′

w′

v′

u′
w′

v′

u′
w′

v′

u′
w′

v′

Hoyas & Jiménez (2008)
Present

(a) (b) (c) (d)

(e) ( f ) (g) (h)

Figure 29. Comparisons of the mean streamwise velocity (a–d) and r.m.s. velocities (e–h) for Reτ = 186
(a,e), 547 (b, f ), 934 (c,g) and 2003 (d,h).
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Figure 30. Comparisons of the premultiplied two-dimensional energy spectra of streamwise velocity
fluctuations as functions of λx/h and λz/h for Reτ = 186 (a,e), 547 (b, f ), 934 (c,g) and 2003 (d,h) at y+ = 15
(a–d) and y/h = 0.2 (e–h). The blue curves denote the spectra from the open-source database (Hoyas &
Jiménez 2008), whereas the orange curves denote those generated in the current study. The curves from the
outside to the inside are contours corresponding to 0.1, 0.3, 0.5 and 0.7 times the maximum value of the
reference spectra from Hoyas & Jiménez (2008), respectively.

Appendix B. Convergence test of the SPOD modes

To ensure that the SPOD modes calculated from the DNS datasets provide independent
results with the specific numbers of blocks used, the iteration that quantifies the
convergence of the ith pair of SPOD modes is defined as

Ik,i(Nb) = 1
4

Ny∑
j=1

(∣∣∣(uNmax
b

k,2i−1 − uNb
k,2i−1

)
M( j)

∣∣∣2 +
∣∣∣(uNmax

b
k,2i − uNb

k,2i

)
M( j)

∣∣∣2) , (B1)

where the superscript of uk,2i−1(2i) denotes the number of blocks used to calculate the
SPOD modes, Nb ∈ [1, Nmax

b ] and Nmax
b is the actual number of blocks used in the main

text of this article. In addition to the iteration Ik,i(Nb) that quantifies the consistency of the
shape of SPOD modes, the fractions of energies for the leading pairs of SPOD modes to the
summations of the energies for all the SPOD modes are also used to test the convergence
of the results, as defined by

Ek,i(Nb) = λk,2i−1 + λk,2i∑
j λk,j

. (B2)

The variations of Ik,i(Nb) and Ek,i(Nb) with increasing numbers of Nb for the leading
three pairs of SPOD modes (i.e. the first six SPOD modes) of the flow scales listed in
table 2 with Reτ = 186–2003 are shown in figure 31. It is found that the iterations and
energy fractions of all the tested pairs of modes and flow scales become nearly unchanged
when Nb � 100 for Reτ = 186–934 and Nb � 175 for Reτ = 2003, which demonstrates
that the SPOD modes have been converged with the present DNS datasets are sufficiently
converged.
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Figure 31. Variations of the SPOD results with the increasing number Nb of the sampled blocks. for the
iterations of the shape of SPOD modes (a–d) and energy fractions of the leading pairs of SPOD modes to
the summation of all the modes (e–h). The results according to the first, second and third pairs of SPOD modes
are denoted by opaque solid, dashed and dotted curves. The translucent curves in panels (e–h) denote the
summation of the energy fraction of the leading three pairs of SPOD modes.

From figure 31, it can also be found that the first three pairs of SPOD modes contain
more than half of the total energy at corresponding scales for all the tested cases. In
particular, the first three pairs of SPOD modes of large-scale structures L3 contain
more than 85 % of the total energies for all the tested friction Reynolds numbers. This
demonstrates that the dominant coherent structures could be well evaluated with the DNS
datasets in this study.

Appendix C. Determination of the regularisation parameter

In this section, detailed discussion on the calculation of the parameter γ that determines
the relative magnitude of the regularisation term in (4.1).

An appropriate value of γ should achieve the balance between the two targets expressed
by

J1 =
3∑

p=1

Ny∑
i=1

Ny∑
j=1

wij

(
M(i)Sp

dd(i, j)S
p
dd(i, j)M( j)

)
,

J2 =
Ny∑
i

(M(i)νyy
m (i)dy(i))2,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(C1)

where the weighting term dy(i) is set as 1 for the height beyond the maximum point
of νm and 0 otherwise to avoid over-modification of the near-wall distributions of νm.
The variations of J1 and J2 with different scales are found in figure 32. To choose
an appropriate value of γ that simultaneously provides small values of J1 and J2, two
conditions, i.e. (i) J1 � 110 %J1,min and (ii) J2 ≤ 10.0 are adopted. Condition (i) that
constrains the value of J1 is preferentially ensured, after which condition (ii) is considered.
From figure 32, such criteria achieve a fair trade-off of the minimisation of J1 and J2.
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Figure 32. Variations of J1 and J2 with γ for the near-wall structure (a) and large-scale structures L1 (b),
L2 (c) and L3 (d) with Reτ = 934. The grey vertical lines denote the selected value of γ .

Appendix D. Minimisation of the cost function

In this section, detailed steps are provided to solve the optimisation problem (4.1). When
the cost function J reaches the minimum value, the following relationship holds:

dJ
dνm(s)

=
3∑

r=1

Ny∑
i=1

Ny∑
j=1

(
∂J

∂Sr
dd,νm

(i, j)

dSr
dd,νm

(i, j)

dνm(s)
+ c.c.1

)
+

Ny∑
i

∂J
∂Lνm(i)

dLνm(i)
dνm(s)

= 0,

(D1)

where c.c.1 is the complex conjugate of ((∂J /∂Sr
dd,νm

(i, j))(dSr
dd,νm

(i, j)/dνm(s)). The
derivative of the regularisation term is expressed as

Ny∑
i

∂J
∂Lνm(i)

dLνm(i)
dνm(s)

= 2γ

Ny∑
i

[
M(i)dy(i)

]2
Eis

Ny∑
p

Eipνm( p). (D2)

On the other hand, the derivative of the first term on the left-hand side of (D1) is more
complicated. The term ∂J /∂Sr

dd,νm
(i, j) is calculated by

∂J
∂Sr

dd,νm
(i, j)

= wijM(i)S̄r
dd,νm

(i, j)M( j). (D3)

To derive the explicit expression of dSr
dd,νm

(i, j)/dνm(s) in (D1), the term Sr
dd,νm

(i, j)
should be expanded, i.e.

Sr
dd,νm

(i, j) =
〈[

f (i) + e(i)
] [

f ( j) + e( j)
]〉

= Sr
ff (i, j) + Sr

ee,νm
(i, j) + Sr

ef ,νm
(i, j) + Sr

ef ,νm
( j, i). (D4)

According to the linear equation (2.6), the CSD tensors Sr
ee,νm

(i, j) and Sr
ef ,νm

(i, j) are
functions of νm that are expressed by

Sr
ee,νm

(i, j) = νm(i)Ar
ijνm( j) +

∑
l

Dilνm(l)Br
ijνm( j) + νm(i)Br

ji

∑
t

Djtνm(t)

+
∑

l

Dilνm(l)T r
ij

∑
t

Djtνm(t),

Sr
ef ,νm

(i, j) = νm(i)Π r
ij +

∑
l

Dilνm(l)Υ r
ij .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(D5)
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The term dSr
dd,νm

(i, j)/dνm(s) can thus be calculated by

dSr
dd,νm

(i, j)

dνm(s)
= δisAr

ijνm( j) + νm(i)Ar
ijδjs +

∑
l

Dilνm(l)Br
ijδjs + DisBr

ijνm( j)

+ δisBr
ji

∑
t

Djtνm(t) + νm(i)Br
jiDjs + DisT r

ij

∑
t

Djtνm(t)

+
∑

l

Dilνm(l)T r
ij Djs + δisΠ

r
ij + DisΥ

r
ij , (D6)

with the terms A, B, T , Π and Υ defined as

Ar
ij =

∑
t

∑
s

ΔitSurur(t, s)Δjs

Br
ij =

∑
t

∑
s

(
Dit + Dxr

it
)

Su2ur(t, s)Δjs

T r
ij =

∑
t

∑
s

(
Dit + Dxr

it
)

Su2u2(t, s)
(
Djs + Dxr

js
)

Π r
ij =

∑
t

ΔitSurf (t, j)

Υ r
ij =

∑
t

(
Dit + Dxr

it
)

Su2 f (t, j),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(D7)

where Dxr is the linear operator corresponding to the first derivative along the xr direction
with Dx2 = D , and δij is the Kronecker delta function.

To obtain the optimised value of the eddy viscosity by solving the system of cubic
equations in (D1), the Newton–Raphson method is applied to numerically solve the
equations. The Hessian matrix consisting of the second derivatives of J is thus needed,
which is calculated by

d2J
dνm(s) dνm(k)

=
3∑

r=1

Ny∑
i=1

Ny∑
j=1

∂2J
∂Sr

dd,νm
(i, j)∂ S̄r

dd,νm
(i, j)

dSr
dd,νm

(i, j)

dνm(s)

dS̄r
dd,νm

(i, j)

dνm(k)

+
3∑

r=1

Ny∑
i=1

Ny∑
j=1

∂J
∂Sr

dd,νm
(i, j)

d2Sr
dd,νm

(i, j)

dνm(s) dνm(k)
+ c.c.2

+
Ny∑
i

∂J
∂Lνm(i)

d2Lνm(i)
dνm(s) dνm(k)

, (D8)
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Algorithm 1 Optimisation

Input: Set an initial distribution of νm,0, which can be zero everywhere.
1: while ‖dJk/dνm,k‖2 � ε do
2: Compute the vector Ak with Ak(i) = dJk/dνm,k(i) and Hessian matrix Bk with

Bk(i, j) = d2Jk/[dνm,k(i) dνm,k( j)] at the tth step.
3: Determine the iteration step size with �νm,k = −αkB−1

k Ak, where αk should satisfy
the Wolfe condition (Nocedal 2006).

4: Update the eddy viscosity with νm,(k+1) = νm,k + �νm,k.
5: end while

Output: The optimised eddy viscosity νm.

where c.c.2 is the complex conjugate of the summation of the first two terms on the
right-hand side of (D8). The second derivative terms in (D8) are expressed by

Ny∑
i

∂J
∂Lνm(i)

d2Lνm(i)
dνm(s) dνm(k)

= 2γ
[
M(i)dy(i)

]2 Ny∑
i

EisEik, (D9a)

∂J 2

∂Sr
dd,νm

(i, j)∂ S̄r
dd,νm

(i, j)
= wijM(i)M( j), (D9b)

d2Sr
dd,νm

(i, j)

dνm(s) dνm(k)
= δisAr

ijδjk + δikAr
ijδjs + DikBr

ijδjs + DisBr
ijδjk

+ δisBr
jiDjk + δikBr

jiDjs + DisT r
ij Djk + DikT r

ij Djs.

(D9c)

The algorithm to obtain the optimal eddy viscosity within the above optimisation
framework is described in Algorithm 1, where ‖ · ‖2 = ∫ 2h

0 (·)2 dy denotes L2 norm. The
tolerance ε to stop the optimisation loop is set as 10−5, which is small enough to provide
converged results according to our tests.

Appendix E. Identification of the energetic structures

To identify the energetic structures in turbulent channel flows, the premultiplied energy
amplifications of the optimal harmonic forcing (Hwang & Cossu 2010b) predicted by the
eLNSMEAN and eLNSMOD are investigated here, which is defined by

R(ω; kx, kz) = max
d̃ /= 0

‖ũ‖2

‖ f̃ ‖2
. (E1)

Here, R(ω; kx, kz) is equal to the square of the first singular value of the resolvent operator
Hk. The maximum response amplification at a given spatial scale is then defined by

Rmax(kx, kz) = max
ω

R(ω; kx, kz). (E2)

Five cases with Reτ = 1000–20 000 are set to test the capability of the eddy-viscosity
models in identifying the energetic structures. The Chebyshev-collocation method is
used to spatial discretisation in the wall-normal direction. The numbers of collocation
points are equal to 400, 600, 800, 800 and 1000 for cases with Reτ = 1000, 2000,
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Figure 33. Premultiplied response to optimal harmonic forcing with respect to the spanwise wavenumber for
Reτ = 1000–20 000 based on eLNSMEAN (a,b) and eLNSMOD (c,d): (a,c) scaling in outer units; (b,d) scaling
in inner units.

5000, 10 000 and 20 000, respectively, which are tested to provide converged results.
The mean velocity profile is obtained by integrating dU+/dη = −Reτ η/ν+

T (η), where
ν+

T = (νm,MEAN + ν)/ν.
Figure 33 depicts the premultiplied response to optimal stochastic forcing from

eLNSMEAN and eLNSMOD with kx = 0. The results from both models indicate that the
dominant structures in outer units with a peak amplification value corresponds to λz/h ≈
3.5h. On the other hand, the inner peaks identified by eLNSMEAN and eLNSMOD exhibit
distinct discrepancies. The inner peaks identified by eLNSMEAN is around λ+z = 80, which
deviate from the DNS results where λ+z ≈ 125 (Lee & Moser 2015; Wang et al. 2018).
Meanwhile, the eLNSMOD well identifies the locations of the inner peaks with λ+z ≈ 125
for all the tested cases.
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