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1. Room squares

A Room square 8% of order 2n is a way of arranging In objects (usually
1,2, ••-,2n) in a square array @t of side 2« — 1 so that:

(i) every cell of the array is empty or contains two objects;
(ii) each unordered pair of objects occurs once in £%;
(iii) every row and column of 3t contains one copy of each object.

In his original note [6], Room showed that there are squares of orders 2 and
8, but not of orders 4 and 6. It is known that Room squares exist of every order
22k+1, k integral [1], of every order 2n = pr + 1 where pr is a prime power other
than a Fermat prime (of type 22' + 1) [4], and of every order from 10 to 48 [8].
Moreover, if there are squares of orders 2m and 2n, then there is a square of order
(2m - l)(2n - 1) + 1 [9].

In this paper we prove that
If2n — 1 =nPiri> where each pt is a prime congruent to 3 modulo 4 and no
p[l is 3, 32, or 34, then there is a Room square of order An.
This provides apparently new Room squares of orders 56, 88 and 96 (leaving

six orders less than 100 undecided, namely 52, 58, 66, 76, 86 and 94) and seven
new squares of orders between 100 and 500.

We consider two Room squares to be isomorphic if one can be obtained
from the other by interchanging two rows, interchanging two columns, inter-
changing two objects, or any sequence of these operations. We say a square
of order 2n is standardized if it has the pair {i,2n} in its ith diagonal position;
obviously any Room square is isomorphic to a standardized one.

The incidence matrix of a Room square St of order 2n will mean the square
matrix of size 2« — 1 which has 1 in its (i,j) position when Si has an entry in that
position and — 1 otherwise. A standardized Room square will be called skew-type
if its incidence matrix is / + S, where S is a skew-symmetric matrix; and an
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arbitrary Room square is skew-type if it is isomorphic to a skew-type standardized
square.

2. Concerning Latin squares

A Latin square of order r is a square array of size r on r symbols (usually
1,2, ••-,/•) such that every symbol occurs once in each row and each column.
Given arrays L = (/y) and M = (mu) of the same size, we will write (L,M) for
the array whose (/',/) element is the ordered pair (Zy, my). In this notation two
Latin squares L and M of the same order are called orthogonal if (L,M) has no
two entries the same.

THEOREM 1. (i) A Room square Si of order In is equivalent to a pair of
symmetric Latin squares Rt and R2 of order In, each having constant diagonal
(0,0, ••-,0), such that (R1,R2) has no two entries the same above the main
diagonal.

(ii) / / Sfi. is standardized then Rt and R2 each have last column
(l,2,-,2w-l,0).

(iii) / / the standardized Room square is skew-type then (R1,R2) and
(R2,R{) have no common entries above the main diagonal except for (1,1),
(2, 2), •••(2« — l,2n — 1), which appear in the last column of each.

PROOF, (i) Given a Room square Si on the objects 1,2, ••• 2n, write r,7for the
number of the row and ci} for the number of the column which contain the pair
{i,j}. Write rn = cH = 0, and write Rl = {ri}), R2 = (ctJ). It follows immediately
from the definition of Room squares that Rt and R2 are symmetric Latin squares.
They have the required diagonal. If the entry (a, b) occurs in the (i,j) position of
(R1,R2) this means {1,7} lies in row a and column b of 3t and consequently (a, b)
cannot occur elsewhere in (R1,R2) except in the (j,i) position.

Given two Latin squares of the specified type, this construction can be
reversed to give the Room square.

(ii) is obvious.
(iii) follows because entry (i,j) occurs above the diagonal in (RUR2) if and

only if the incidence matrix of & has 1 in its (i,j) position, and because Latin
squares R2 and R1 correspond via part (i) to the transpose of 9t.

We will call the R1 and R2 which we have constructed the row and column
Latin squares of Si respectively.

Part (i) of Theorem 1 could be deduced from the facts that both Latin squares
and Room squares are related to loops [3, Chapters 6, 10].

3. Duplication of skew-type Room squares

In this section we give a construction for a Room square twice the order of a
given skew-type square.
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Suppose 0t is a skew-type Room square of order 2n. We may assume 01 to be
standardized. Write Rl and R2 f ° r the row and column Latin squares of S%.
Suppose further that there are orthogonal Latin squares Lt and L2 of order 2n,
each having last column (1,2, •••,2n). Write M, to mean the square Lx with each
entry increased by In — 1. Now write

e = „ s2 =

and write Sx for the array obtained from Q by interchanging rows 2n and An and
interchanging columns 2n and An. Then (S1 ;S2) is as shown, where the notations
are that mf is the {In, i) element of Ma and that X means the array X with the last
row and column deleted.

S t and S2 are symmetric Latin squares of order An with constant diagonal
(0,0, •••,()). In the event of no duplications above the diagonal in (Sl,S2) they
will imply the existence of a Room square of order An, by Theorem 1.

The entries above the diagonal in (S1,S2)
 a r e of three types:

(a) both elements less than In: we have all the entries above the diagonal
in (ku R2) and (R2, At) once each. By Theorem 2(iii) these include no duplications.

(b) both elements at least 2n: we have certain of the entries from (M1,M2)
(not including the entry (An — 1, An — 1) which was in the 2nth row and column
of (MX,M2)) and also (An - 1, An - 1). As Mt and M2 are orthogonal, these
include no duplications.

(c) one element less than 2n, and one not: we have all the (i,2n + i — 1),
(i,m2

i), (2n + i-l,i) and (m],i) for i = l,2,---,2n - 1. These will include
duplications if and only if m\ = 2n + i - 1 or mf = 2« + i - 1 for some
i ^ 2n - 1; in terms of the original squares Lx and L2, if and only if the ith
element of the last row of Lx or L2 is i for some i =£ 2n.

Clearly, no duplications occur between the different types.
From [2] there are two orthogonal Latin squares of order 2n provided

2n 7̂  2 or 6. Suppose we have two such Latin squares. By proper labelling of the
entries and ordering of the columns, we can assure that both squares have last
column (l,2,---,2n), and that the last row is (1,2, •••,2n) in one and
(a1,a2,--- ,a2 n_1,2n) in the other where at^ i. By Theorem 2.2 of Chapter 6 of
[7] we can find bub2,---,b2n-x such that i ^ bt ^ at. Re-order the columns of
the squares so that column i becomes column b{. If we take these squares as Lt

and L2, there will be no duplications in the elements of type (c).
Summarising, we have the following result.

THEOREM 2. / / there is a skew-type Room square of order 2n > 2, then
there is a Room square of order An.
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4. The Mullin-Nemeth squares

Suppose n is even and In — 1 is a prime power greater than 3. Choose a
generator x of the multiplicative group of non-zero elements in the Galois field
GF(2n — 1), and write the elements of GF(2n — 1) as tfi,gf2>'">fl2n-i> where
gt = 0 and gf = xl~2 otherwise. A Room square of order 2n may be formed in
the following way:

(i) the (i, 0 cell contains {i, 2n};
(ii) the (1,/c) cell contains {2p,2p + 1} when gk = #2p + #2p+i, P = 1>2, •••

w — 1; if gk cannot be expressed in this way, then cell (1, k) is empty;
(iii) the (i,j) cell depends on the (1,/c) cell where gk = gs — gt. If the (1,/c)

cell is empty then the (i,j) cell is empty; if the (l,fc) cell contains {2p,2p + 1}
then the (i,j) cell contains {q,r}, defined by

dq = dip + 9h 1r = 02p+ 1 + 9i-

This is the construction given by Mullin and Nemeth in [4]. (For proof of the
Room property see [4] and [5].) Its incidence matrix A has diagonal elements
aH — 1; if i # j , atJ = 1 if and only if gs — gt is (x + 1) times an even power of x.
If a,7 = fly; = 1 then both (x + l)~1(gJ — gt) and (x + l)~1(^i — gj) are quadratic
elements in GF(2n — 1), which is impossible as In — 1 = 3(mod 4). So the Mullin-
Nemeth construction gives a skew-type Room square.

COROLLARY 3. There is a skew-type Room square of order 2n = pr + 1 > 4
whenever pr is a prime power congruent to 3 modulo 4.

5. A multiplication theorem

THEOREM 4. / / there are Room squares Jt and J/~ of orders 2m and 2n,
then there is a Room square 8% of order (2m — 1) (2n — 1) 4- 1. If Jt and^V are
skew-type, then so is 3t.

PROOF. If n = 1 there is nothing to prove. So we assume n > 1, whence there
exist a pair of orthogonal Latin squares of order 2n — 1; call them L1 and L2.
Assume that Jl and^f" are standardized; write the row and column Latin squares
of Jt as M, = (a,)) and M2 = (a,*), and those of JV as Nt and N2. Again .#"„ is
Nx with the last row and column deleted.

For convenience we will write the numbers from 1 to (2m — 1) (2n — 1) in
the form xy, where

xy = x+(y - l)(2n - 1), 0 < x < 2n, 0 < y < 2m.

(Define 0,, as 0.) If A is any of the matrices TV*!, 7V"2, Lu L2, we will write A(y) to
mean the matrix A with each entry x replaced by xr
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^ is defined by its row and column squares Rx and R2. Each R\ is a
(2m — 1) x (2m — 1) array whose entries are (In — 1) x (2n — 1) blocks:

the (i, 0 block of Ra is Nx(i),

the (i,j) block of Rx is La(a*j) if i <j,

the (i,j) block of kx is La(a*j)T if i > j .

The last row and column of Rx are (l,2,--,(2m — l)(2n — l),0). One sees
immediately that the Rx are symmetric Latin squares with constant diagonal 0.

Assume that k and / are non-zero. If the entry (/c,,/,) occurs in (AUA2) then
it occurs in the block (ft1(i),N2(i)) at the place where (k, I) occurs in (N1,N2);
sinceJf is a Room square, (k, I) can arise at most once above the diagonal, and if
also Jf is skew-type, (/, k) cannot also arise above the diagonal in (NUN2). So
(kh Z,-) can occur at most once above the diagonal in (Rt, R2); ifJ^ is skew-type,
(/j.fei) and (kiJi) cannot both occur. (We need not distinguish the case kt = /,-,
since this pair does not arise in {AltA2).) If the entry (fc,,/,-) occurs in (RUR2),
i #y, it occurs above the diagonal in the block (Lt(i), L2(j)), which appears at
most once since Jt is a Room square; (kh l}) occurs only once in (L^O.i^O)) since
L1 and L2 are orthogonal. If further Jl is skew-type then (Lt(i), L2(j)) and
(L1(j),L2(i)) cannot both be in (RUR2), so (fc;,/;) and (/,-, kt) cannot both occur.
The last column of (Ru R2) contains the pairs (i, i) once each. So, from Theorem 1,
Rt and ,R2 define a (standardized) Room square SI of the required order. If Jt and
*/T are skew-type then 3t is skew-type.

COROLLARY 5. If In — \ =WvW where each pt is a prime congruent to 3
modulo 4 and no pf'is 3, 32, or 34, then there is a skew-type Room square of
order In and consequently a Room squre of order An.

This Corollary simply combines Theorems 2 and 4 and Corollary 3. It gives
ten new Room square orders less than 500, including 56,88 and 96. If there is a
skew-type Room square of order 10, then we need only bar the case p*' = 3 in
Corollary 5.
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