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and, using the notation introduced above, we have d = 14, R*> = 882,
r = TW6and M = 28. Now (4) shows that for any solution (x, y, z) of (5), we
have z = 14 — 14 cosf so that |z| < 28. However, as 94> > R?, all entries
of all solutions will be non-negative, so that 0 < z < 28. It follows that if

(x, v, z) is an integer solution to (5) then z € {0, e 28},
42 — z + \/32(28 - 2)
X = > , y =42 —x - z.
If we now compute the values of (x, y,z) forz = 0, 1, ..., 28, we find

that the only integer solutions of (5) are (0, 21, 21), (7, 7, 28), (3, 12, 27),
(1, 16, 25) and all triples obtained by permuting the entries.

Example 2.2: The simultaneous equations
x+y+z=-1, X+y+7=21 (6)

provide an example in which some of the entries are negative. The
discussion above shows that if (x, y, z) is an integer solution of these

equations, then z € {—4, ,4} and, in addition,
—(1 +2) + evdl — 2z — 322
X = .
2

A computation now shows that the only integer solutions to (6) are
(1, 2, —4) and all triples obtained by permuting the entries.

References

1. G.J. O. Jameson, Equal sums, sums of squares and sums of cubes,
Math. Gaz. 106 (565) (March 2022) pp. 54-60.

10.1017/mag.2023.100 © The Authors, 2023 A. F. BEARDON
Published by Cambridge University Press Centre for Mathematical Sciences,
on behalf of The Mathematical Association University of Cambridge,

Wilberforce Road, Cambridge CB3 OWB
email: afb@dpmms.cam.ac.uk

107.29 A cautionary example relating to the interpretation
of numerical computations

1. An example case

The availability of software tools [1, 2, 3, 4, 5, 6] and multi-function
calculators has unquestionably had an impact on how students interpret
numerical solutions to mathematical problems. However, these tools can also
lead to an overly-casual attitude about how to interpret the effects of numerical
precision. For example, students quickly learn to interpret a numerical result of
0.99999999 as being exactly 1, or 3.54e-16 as being zero. The problem, of
course, is that they may become so habituated to disregarding low-order terms
that they fail to recognise results that are nearly an integer — but are not. The
following trig expression (in radians) provides a cautionary example:

arcsin (1 + sin (11)) — sin (11). (1)

t.)
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https://doi.org/10.1017/mag.2023.101 Published online by Cambridge University Press updates


http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/mag.2023.101&domain=pdf
https://doi.org/10.1017/mag.2023.101

NOTES 491

Figure 1 shows the result for (1) using WolframAlpha, which is
probably the most widely used online mathematical tool. As can be seen, it
seems to indicate that the expression evaluates to 1. Figures 2 and 3 show
results obtained from Octave/Matlab and Mathematica, respectively, that
are similarly 1 to within the precision of the display. In fact, a student could
be forgiven for concluding from the Mathematica result in Figure 3 that the
answer given is exactly 1, i.e., not just nearly 1 up to some level of precison.

If a student were to increase the displayed precision using
WolframAlpha or Mathematica, the result would be what is shown in Figure
4 with zeros out to 16 decimal places. A student might very well conclude
that digits beyond that long sequence of zeros are just due to numerical
inaccuracy. This is a natural assumption to make based on practical
experience with calculators and other common mathematical tools.
However, students are likely to be very surprised when they discover that
the number shown in Figure 4 is in fact accurate to the precision shown, i.e.,
that the expression of (1) does not equal 1.

2. Considerations on Numerology

There are multiple factors that may contribute to students drawing a
mistaken inference from the example of the previous section. First is the fact
that some calculators display spurious degrees of precision. This can occur
when equations are solved to a precision less than the default display
precision. One might expect a few spurious low-order digits to be of little
consequence — let alone be noticed. However, student homework problems
are typically designed to be amenable to solving by hand and often have
integer solutions. Thus, students become habituated to seeing slight
deviations from known integer results due to numerical imprecision from
their calculators. It is no wonder, then, that such experience could lead to
false presumptions when real-world problems happen to produce near-
integer solutions.

WolframAlpha
Input: N [sin~! (1 + sin(11)) — sin(11)]
Result: 1.000000000000000...

FIGURE 1: Result of the evaluation of (1) using WolframAlpha [1] with default
precision (and defined in radians, not degrees). Note that the ellipsis (...) can
reasonably be taken to imply that the sequence of decimal zeros continues
indefinitely, or it can be taken to imply there are additional significant digits
(possibly nonzero) that are not shown.
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Octave

octave: output precision(17)

error: output precision: arg must be less than or equal to 16
octave: output precision(16)

octave: asin(1+sin(11)) - sin(11)

ans = 1.000000000000000

FIGURE 2: Result of the evaluation of (1) using Octave [3] with maximum output/
display precision.

Mathematica 12.1
In[1]:= N [sin! (1 + sin(11)) — sin(11)]
Out[1]=1.

FIGURE 3: Result of the evaluation of (1) using Mathematica [2] with default
precision. It may not be clear from the form of the result (1.) whether the answer is
precisely the integer 1 or has been rounded.

WolframAlpha

Input

sin~! (1 + sin(11)) — sin(11)

Decimal approximation
1.000000000000000156550978780639507426489343516601462092
(result in radians)

FIGURE 4: Result of the evaluation of (1) using WolframAlpha with increased
displayed precision. The shown digits are entirely accurate, i.e. the expression does
not equal 1, but at first glance the natural inclination might be to assume that the
nonzero decimal digits are simply numerical inaccuracy.

A natural response to this concern might be to point out that such events
are relatively rare. After all, the chances of a solution to a ‘random’ problem
being within 6 or 7 digits of an integer is on the order of one in a million.
Yes, that's roughly correct, but what if a solution happens to be near 7, 2,
1, \/2, or some other commonly-encountered special number? Is it likely
that a student might assume a result beginning with ‘3.14159..." is
identically & even though discrepancies appear at the 6th decimal place?
Probably so. Thus, opportunities for numerological misadventure are
somewhat greater than might be estimated at first glance.

The risk of numerological seduction is further complicated by the fact
that proximity to an integer, or some other special number, could potentially
hint that ‘something deeper’ may be at play. For example, in 1859 Charles
Hermite recognized that exp(7\/163) (now commonly referred to as
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Ramanujan's constant [7]) is a near-integer to 12 decimal places, and this
has inspired subsequent efforts to explain why this is the case. Yes, there
could be something deeper, but if its near-integer status is purely
coincidental then search for an ‘explanation’ can only yield another
numerological chimera that is no more revealing than the existence of a line
that connects two given points.

3. Discussion

One way to reduce susceptibility to mistakes of the kind discussed in
this Note is to avoid using calculators that display spurious digits of
precision. Educators can also emphasise to students that many modern tools
(e.g., WolframAlpha | Mathematica) never display spurious digits, so if a
displayed result deviates from an integer or other special number, then it
truly is not equal to that special number. More generally, a full discussion of
this topic with students is likely to be stimulating and provoke greater
sensitivity to the possiblity that tantalizing features of a given solution may
be purely accidental.

Acknowledgement: The author would like to thank Warren D. Smith for an
interesting conversation about ‘specialness’ of the Hermite-Ramanujan

number.
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107.30 Remark on Cauchy-Schwarz inequality

In the mathematical sciences, inequalities play an important role. There
are many mathematical inequalities, some of which are the basis for
constructing other inequalities. One of the fundamental inequalities is the
well-known Cauchy-Schwarz inequality. Let uy, u,, ..., u, and vy, vy, ..., v,
be real numbers. The Cauchy—Schwarz inequality states that (see, e.g., [1])
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