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Abstract

Motivated by applications to COVID dynamics, we describe a model of a branching
process in a random environment {Z,} whose characteristics change when crossing
upper and lower thresholds. This introduces a cyclical path behavior involving periods
of increase and decrease leading to supercritical and subcritical regimes. Even though
the process is not Markov, we identify subsequences at random time points {(zj, vj)}—
specifically the values of the process at crossing times, viz. {(Zy;, Z,;)}—along which the
process retains the Markov structure. Under mild moment and regularity conditions, we
establish that the subsequences possess a regenerative structure and prove that the limit-
ing normal distributions of the growth rates of the process in supercritical and subcritical
regimes decouple. For this reason, we establish limit theorems concerning the length of
supercritical and subcritical regimes and the proportion of time the process spends in
these regimes. As a byproduct of our analysis, we explicitly identify the limiting vari-
ances in terms of the functionals of the offspring distribution, threshold distribution, and
environmental sequences.
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branching process; size-dependent branching process with a threshold; subcritical
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1. Introduction

Branching processes and their variants are used to model various biological, biochemical,
and epidemic processes [1-4]. More recently, these methods have been used to model the
spread of COVID cases in communities during the early stages of the pandemic [5, 6]. As
time progressed, varying local containment efforts caused changes in the number of infected
members in each community [7, 8], leading to periods of increase and decrease. In this paper,
we describe a stochastic process model built on a branching process in random environments
(BPRE) that explicitly takes into account periods of growth and decrease in the transmission
rate of the virus.
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Specifically, we consider a branching process model initiated by a random number of ances-
tors (thought of as initiators of the pandemic within a community). During the first several
generations, the process grows uncontrolled, allowing immigration into the system. This ini-
tial phase is modeled using a supercritical branching process with immigration in random
environments, specifically independent and identically distributed (i.i.d.) environments. When
consequences of rapid spread become significant, policymakers introduce restrictions to reduce
the rate of growth, hopefully resulting in a reduced number of infected cases. The limitations
are modeled using upper thresholds on the number of infected cases, and beyond the thresh-
old the process changes its character to evolve as a subcritical branching process in random
environments. During this period—owing to strict controls—immigration is also not allowed.
In practical terms, this period typically involves a ‘lockdown’ and other social containment
efforts, the intensity of which varies across communities.

The period of restrictions is not sustainable for various reasons, including political, social,
and economic pressures leading to the easing of controls. Policymakers use multiple metrics
to gradually reduce controls, leading to an ‘opening of communities’, resulting in increased
human interaction. As a result, or because of changes undergone by the virus, the number
of infected cases increases again. We use lower thresholds in the number of ‘newly infected’
to model the period of change and let the process evolve again as a supercritical BPRE in
ii.d. environments after it crosses the lower threshold. The process continues to evolve in
this manner, alternating between periods of increase and decrease. In this paper, we provide a
rigorous probabilistic analysis of this model.

Although we have taken the dynamics of COVID spread as a motivation for the proposed
model, the aforementioned cyclic behavior is often observed in other biological systems, such
as those modeled by predator—prey models or the susceptible—infected—recovered (SIR) model.
In some biological populations, the cyclical behavior can be attributed to a decline in fecundity
as the population size approaches some threshold [9]. Deterministic models such as ordinary
differential equations, dynamical systems, and corresponding discrete-time models are used
for analysis in the applications mentioned above [10—12]. While many of the models described
above yield good qualitative descriptions, uncertainty estimates are typically unavailable. It is
worth pointing out that the previously described branching process methods also produce rea-
sonable point estimates for the mean growth during the early stages of the pandemic. However,
these point estimates are unreliable during the later stages of the pandemic. In this paper, we
address statistical estimation of the mean growth and characterize the variance of the estimates.
We end the discussion with a plot, Figure 1, of the total number of confirmed COVID cases
per week in Italy from 23 February 2020 to 20 July 2022. The plot also includes the number
of cases estimated using the proposed model. Other examples with similar plots include the
hare-lynx predator—prey dynamics and measles cases [12—14].

Before we provide a precise description of our model, we begin with a brief description
of BPREs with immigration. Let IT,, = (Pn, Q,,) be i.i.d. random variables taking values in
P x P, where P is the space of probability distributions on No; that is, P, = {Py -}, and
0,= {Qn,r}fio for some non-negative integers P, , and O, , such that Z‘fio P,,=1 and
Zfio On,r = 1. The process IT={I1,}7° is referred to as the environmental sequence. For
each realization of IT, we associate a population process {Z,}7° ; defined recursively as follows:
let Zy take values on the positive integers, and for n > 0, let

Z71
Zn+1 = Z 'i:n,i + In,

i=1
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FIGURE 1. In black weekly COVID cases in Italy from February 23, 2020 to February 3, 2023. In blue
a BPRE starting with the same initial value and offspring mean having the negative binomial distribution
with predefined number of successful trials » = 10 and Gamma-distributed mean with shape parameter
equal to the mean of the data and rate parameter 1.

where, given I1, = (Pn, Qn), {gn,i}?; are i.i.d. with distribution P, and I, is an indepen-
dent random variable with distribution Q,,. The random variable Y, =log (P,), where P, =
Y220 rPnr, plays an important role in the classification of BPREs with immigration. It is
well known that when E[Yy] > 0, the process diverges to infinity with probability one, and
if E[Yp] <0 and the immigration is degenerate at zero for all environments, then the pro-
cess becomes extinct with probability one [15]. Furthermore, in the subcritical case, that is,
E[Yp] < 0, one can identify three distinct regimes: (i) weakly subcritical, (ii) moderately sub-
critical, and (iii) strongly subcritical. The regime (i) corresponds to the case when there exists
a 0 < p <1 such that E[Ype?"0] =0, while (i) corresponds to the case when E[Ype'] = 0.
Finally, (iii) corresponds to the case when E[Ype'0] < 0 [16]. In this paper, when working with
the subcritical regime, we will assume that the process is strongly subcritical, and we will refer
to it as a subcritical process in the rest of the manuscript.

We now turn to a description of the model. Let 1Y = {ITY 1o o Where ny = (P,Ll’ , oY ),
denote a collection of supercritical environmental sequences. Here, PV = {P,l,{ 2, indicates
the offspring distribution and Q,Ll’ = {Q,llj’ 12, represents the immigration distribution. Also,
let Ml ={M5)% ), where M5 =PL={PL }°° . denote a collection of subcritical environ-
mental sequences. We now provide an evolutionary description of the process: at time zero
the process starts with a random number of ancestors Zy. Each of them lives one unit of
time and reproduces according to the distribution Pg . Thus, the size of the first-generation

population is
Zo
Zi=) &+1g,
i=1
where, given ny= (Pg , Q(L)’ ), the éolf ; are i.i.d. random variables with offspring distribution P(()]

and are independent of the immigration random variable Ié/ with distribution Qg . The random
variable Eé{ ; 18 interpreted as the number of children produced by the ith parent in the Oth
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generation, and 16] is interpreted as the number of immigrants whose distribution is generated
by the same environmental random variable H(l)j .

Let U; denote the random variable representing the upper threshold. If Z; < U}, each mem-
ber of the first-generation population lives one unit of time and evolves, conditionally on the
environment, as the ancestors independent of the population size at time one. That is,

Z
U U
22:251’,.“1 .
i=1

As before, given TV = (PY, 0V, the éllf - are i.i.d. with distribution P{ and 7V has distribution
Q{]. The random variables élU ; are independent of Zj, §(§/ i and Ié] i f] IfZ; > Uy, then

Z

2 : L
ZZ = éua

i=1

where, given T} = P%, the &, are i.i.d. with distribution P}. Thus, the size of the second-
generation population is

. YA VIV itz < Uy,
2:

Z .

>l sﬁi if Z; > Uy.

The process Z3 is defined recursively as before. As an example, if Z) < Uy, Zp < Uj or Z1 >
U1, Zp < Ly, for arandom lower threshold L, then the process will evolve like a supercritical
BPRE with offspring distribution Péj and immigration distribution Qéj . Otherwise (thatis, Z; <
Ui and Z; > Uj or Z1 = U and Z, > L), the process will evolve like a subcritical BPRE with
offspring distribution P]2“ . This dynamics continues with different thresholds (Uj, L;), yielding
the process {Z,},°,, which we refer to as a branching process in random environments with
thresholds (BPRET). The consecutive set of generations where the reproduction is governed
by a supercritical BPRE is referred to as the supercritical regime, while the other is referred
to as the subcritical regime. As we will see below, non-trivial immigration in the supercritical
regime is required to obtain alternating periods of increase and decrease.

The model described above is related to size-dependent branching processes with a thresh-
old as studied by Klebaner [9] and more recently by Athreya and Schuh [17]. Specifically, in
that model the offspring distribution depends on a fixed threshold K and the size of the previ-
ous generation. As observed in these papers, these Markov processes either explode to infinity
or are absorbed at zero. In our model the thresholds are random and dynamic, resulting in a
non-Markov process; however, the offspring distribution does not depend on the size of the
previous generation as long as they belong to the same regime. Indeed, when U; — 1 =L; =K
for all j > 1, the immigration distribution is degenerate at zero, and the environment is fixed,
one obtains as a special case the density-dependent branching process (see for example [9, 17—
20]. Additionally, while the model of Klebaner [9] uses Galton—Watson processes as a building
block, our model uses branching processes in i.i.d. environments.

Continuing with our discussion on the literature, Athreya and Schuh [17] show that in the
fixed-environment case, the special case of a size-dependent process with a single threshold
becomes extinct with probability one. We show that this is also the case for the BPRE when
there is no immigration; the details are in Theorem 2.1. Similar phenomena have been observed
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in slightly different contexts in Jagers and Zuyev [21, 22]. The incorporation of an immigration
component ensures that the process is not absorbed at zero and hence may be useful for model-
ing stable populations at equilibrium as done in deterministic models. For additional discussion
see Section 7.

For ease of further discussion, we introduce some notation. Let ¥, flj = log (I_’,[l] ) and YL =

log (I_’ﬁ), where
U L
] Z U P } : pL .
Pn = rPn,r and P}’l = r n,ro
r=0 r=0

.= =L . . .
that is, P,l,] and P, represent the offspring means conditional on the environments H,ll] =

. —U S
(PY, QV) and I = PL, respectively. Also, let 0, = Y72, rQY, denote the immigration mean
conditional on the environment, and let

=U ad _I\2 —L i _\2
P=Y (r—P,ll}) PY, and P,=) (r—Pﬁ) PE,
r=0 r=0

denote the conditional variance of the offspring distributions given the environment.

From the description, it is clear that the crossing times at the thresholds (U}, L;) of Z,,
namely 7; and v;, will play a significant role in the analysis. It will turn out that {Z;} and
{Z,;} form time-homogeneous Markov chains with state spaces SL:= NgN [0, Ly] and SV :=
NN [Ly + 1, 00), respectively, where we take L; < Ly and U; > Ly + 1 for all j > 1. Under
additional conditions on the offspring distribution and the environment sequence, the processes
{Z;} and {Z,;} will be uniformly ergodic. These results are established in Section 3.

The amount of time the process spends in the supercritical and subcritical regimes, beyond
its mathematical and scientific interest, will also arise in the study of the central limit theorem

. =U =L . . .
for the estimates of MV := IE[P" ] and ML = E[Pn]. Using the uniform ergodicity alluded
to above, we will establish that the time averages of 7; — v;_; and v; — 7; converge to finite
positive constants, MU and ,uL. Additionally, we establish a central limit theorem related to
this convergence under a finite-second-moment hypothesis after an appropriate centering and
scaling, that is,
1 < d

U 2U

— Ti—vi_1)——>N(u’,o0°"),
305 Mo

Jn
j=
and we characterize o>U in terms of the stationary distribution of the Markov chain. A similar
result also holds for v; — 7;. This, in turn, provides qualitative information regarding the pro-
portion of time the process spends in these regimes. That is, if C,l/ is the amount of time the
process spends in the supercritical regime up to time n — 1, we show that n_lC,? converges

to ,LLU(MU + ,u,L)_l; a related central limit theorem is also established, and in the process we
characterize the limiting variance. Interestingly, we show that the central limit theorem pre-
vails even for the joint distribution of the length of time and the proportion of time the process
spends in the supercritical and subcritical regimes. These results are described in Sections 4
and 5.

An interesting question concerns the rate of growth of the BPRET in the supercritical
and subcritical regimes described by the corresponding expectations, namely MY and M~L.
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Specifically, we establish that the limiting joint distribution of the estimators is bivariate normal
with a diagonal covariance matrix, yielding asymptotic independence of the mean estimators
derived using data from supercritical and subcritical regimes. In the classical setting of a super-
critical BPRE without immigration, this problem has received some attention (see for instance
Dion and Esty [23]). The problem considered here is different in the following four ways: (i)
the population size does not converge to infinity, (ii) the lengths of the regimes are random,
(iii) in the supercritical regime the population size may be zero, and (iv) there is an additional
immigration term. While (iii) and (iv) can be accounted for in the classical settings as well,
their effect on the point estimates is minimized because of the exponential growth of the popu-
lation size. Here, while the exponential growth is ruled out, perhaps as anticipated, the Markov
property of the process at crossing times, namely {Z;;} and {Z,,}, and their associated regener-
ation times plays a central role in the proof. It is important to note that it is possible for both
regimes to occur between regeneration times. Hence, the proportion of time that the process
spends in the supercritical and subcritical regimes also plays a vital role in the derivation of the
asymptotic limit distribution. The limiting variance of the estimators depends additionally on
nY and pl, beyond VY := V[T)g , VE= V[ﬁé], VY= E[T)g], and V} := IE[ ] In the
special case of fixed environments, the limit behavior of the estimators takes a different form
compared to the traditional results, as described for example in Heyde [24]. These results are
in Section 6.

Finally, in Appendix B we provide some numerical experiments illustrating the behavior of
the model. Specifically, we illustrate the effects of different distributions on the path behavior
of the process and describe how they change when the thresholds increase. The experiments
also suggests that if different regimes are not taken into account, the true growth rate of the
virus may be underestimated. We now turn to Section 2, where we develop additional notation
and provide precise statements of the main results.

—L
Py

2. Main results

The branching process in random environments with thresholds (BPRET) is a supercriti-
cal BPRE with immigration until it reaches an upper threshold, after which it transitions to
a subcritical BPRE until it crosses a lower threshold. Beyond this time, the process reverts
to a supercritical BPRE with immigration, and the above cycle continues. Specifically, let
{;, Lj)}f; denote a collection of thresholds (assumed to be i.i.d.). Then the BPRET evolves
like a supercritical BPRE with immigration until it reaches the upper threshold Uy, at which
time it becomes a subcritical BPRE. The process remains subcritical until it crosses the thresh-
old Ly; after that it evolves again as a supercritical BPRE with immigration, and so on. We now
provide a precise description of the BPRET.

Let {(U;, L/)}]?’il be i.i.d. random vectors with support Sg X SIL;, where Sg =NN[Ly+1,
00), Sk:= NN[Ly, Ly], and 1 <Ly < Ly are fixed integers. We denote by MY and I~ the
supercritical and subcritical environmental sequences; that is,

nV={n)2,={(PY. o)} ana mE={MERT, = (PHL,,

We use the notation Pzv and Pz for probability statements with respect to the supercritical and
subcritical environmental sequences. As in the introduction, given the environment, the SnU ; are

i.i.d. random variables with distribution PV and are independent of the immigration random
variable I,l/ . Similarly, conditionally on the environment, the E,I; ; are i.i.d. random variables
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with offspring distribution PL. Finally, let Zy be an independent random variable with support
included in NN [1, Ly]. We emphasize that the thresholds are independent of the environmen-
tal sequences, offspring random variables, immigration random variables, and Zy. For technical
details regarding the construction of the probability space we refer the reader to Appendix A.1.
We denote by M7 := E[I_’g ], Te{L, U}, and NV := E[@g ] the annealed (averaged over the
environment) offspring mean and the annealed immigration mean, respectively. Throughout
the manuscript, we make the following assumptions on the environmental sequences.

Assumptions:

HD) 1’7 = {H,{}Zio are i.i.d. environments such that Pgo <land0< Fg < 00 Pgr-almost
surely (a.s.).

(H2) E[v5e | <0, E[¥{] >0, MY < o0, and E[log(1 - PYy)] > —oc.
(H3) Pru(Qf, <1)>0and NV < o0.

(H4) {(Uj, Lj)};i] are i.i.d. and have support Sg X Sg, where 1 < Lo <MLy and E[U;] <
Q.

The above assumptions rule out degenerate behavior of the process and are commonly used
in the literature on BPRE (see Assumption R and Theorem 2.2 of Kersting and Vatutin [16]).
Assumption (H2) states that [TV is a supercritical environment and T1% is a (strongly) subcriti-
cal environment. Additionally, by Jensen’s inequality it follows that M* < 1 and 1 < MY < oo.
Assumption (H3) states that immigration is positive with positive probability and has finite
expectation NV, while (H4) states that the upper thresholds Uj have finite expectation.

We are now ready to give a precise definition of the BPRET. Let vy := 0. Starting from Zj,
the BPRET {Z,}° , is defined recursively over j > 0 as follows:

1j. Forn>v; and until Z, < Uj;1,

Zn
Zipi=y &Y +1Y. (1)

i=1
Next, let 7j;1 := inf{n > v;: Z, > Uj1}.
2j. Forn > tjy1 and until Z,, > Ljy 1,

Zy

Zup1=) &F; )
i=1

Next, let vy := inf{n > 7711 : Z, < Ljy1}.

It is clear from the definition that v; and 7; are stopping times with respect to the o -algebra
Fn generated by {Zj}j’.’:0 and the thresholds {(U;, Lj)}j?’il. Thus, Z,,, Z;, 512].,,-, ErLjH,i’ and Ig are
well-defined random variables.

It is also clear from the above definition that the intervals [v;_1, T;) and [7}, v}) represent
supercritical and subcritical intervals, respectively. We show below that the process {Z,}7°
exits and enters the above intervals infinitely often. Let A/U = 17— vj_1 and AJL =V T

denote the lengths of these intervals. Since a supercritical BPRE with immigration diverges
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with probability one (see Theorem 2.2 of Kersting and Vatutin [16]), it follows that 7j;; is
finite whenever vj is finite:

]P’(AjU+1 = ooly; < oo) =P(N2 {Zy41 < Ujs1}Ivj < 00) =0. 3)
We emphasize that Assumption (H3) is required, since otherwise, if Iéj = 0, the process may
fail to cross the upper threshold and thus may become extinct (see Theorem 2.1 below). On the
other hand, since a strongly subcritical BPRE becomes extinct with probability one, AJ.LJrl < 00
whenever 71 < o0; that is,

]P’(AjLH <o0|Ti < oo) =1 4)
Using vg =0 and induction over j, we see that Ajlil, A].LH, Tj+1, and vjyq are finite a.s. We

emphasize that (4) holds whenever IT% is a subcritical or critical (but not strongly critical)
environmental sequence (see Definition 2.3 in Kersting and Vatutin [16]). That is, it remains

valid if the assumption E[Y{)‘eyé ] < 0in (H2) is weakened to E[ Y]] < 0 and Py (Y] #0) > 0,
which leads to the following assumption:

(H2)) E[Y)] <0, Pg(YE #0) >0, and E[YY] > 0.
The next theorem shows that if immigration is zero, the process becomes extinct a.s.

Theorem 2.1. Assume (H1), (H2'), and Q(l){o =las. LetT:= inf(n>1:2,=0}. Then P(T <
o0)=1.
Theorem 1 of Athreya and Schuh [16] follows from the above theorem by taking Ly = K,

Li=K, Uj=K + 1, where K is a finite positive integer, and assuming that the environments
are fixed in both regimes.

2.1. Path properties of BPRET

We now turn to transience and recurrence of the BPRET {Z,}° ;. Notice that even though
{Z,};2, is not Markov, the concepts of recurrence and transience can be studied using the
definition given below (due to [25, 26]).

Definition 2.1. A non-negative stochastic process {X,} 2, satisfying P(limsup,_, ., X, =
00) =1 is said to be recurrent if there exists an r < oo such that P(liminf, . X, <r)=1,
and transient if P(lim,,_, o0 X;, = 00) = 1.

Our next result is concerned with the path behavior of {Z,}7° ) and the stopped sequences

{Zvj}ooo and {Zy, }21

Theorem 2.2. Assume (HI1)-(H4). Then
(i) the process {Zn}gio is recurrent;

(i) {Z,)j };’:0 and {Zf_]. }21 are time-homogeneous Markov chains.

We now turn to the ergodicity properties of {ZUJ. };io and {Z,j }j’i |- These rely on conditions

on the offspring distribution that ensure that the Markov chains {Z,, };:0 and {Z;, };21 are
irreducible and aperiodic. While several sufficient conditions are possible, we provide below
some possible conditions:
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(H5) Ppe(N)_ {Pf, >0}) >0.

(H6) Pru (N2 {P§,>0}n{0fy>0})>0 and Pr(Qf;>0)>0 for some
se{l,..., Ly} '

H7) Pro({Pf, >0}, {0f, >0})>0.

The condition (HS) requires that on a set of positive Pr. probability, an individual can
produce zero and one offspring, while (H6) requires that on a set of positive Pzv probability,
P(l){ > 0 for all r € Ny and Q(I){ o > 0. Also, on a set of positive Pru probability, Q(l){ ;>0 for
some s € {1, ..., Ly}. Finally, (H7) states that on a set of positive Pgv probability, P(L)f 0>0
and Qé{ > 0forall r > Ly + 1. These are weak conditions on the environment sequences and
are part of the standard BPRE literature. We recall that S” is the set of non-negative integers
not larger than Ly, and SY is the set of integers larger than L.

Theorem 2.3. Assume (HI)-(H4). (i) If (HS) also holds, then {Zvj };20 is a uniformly ergodic
Markov chain with state space S*. (ii) If (H6) (or (H7)) holds, then {ij };21 is a uniformly

ergodic Markov chain with state space SU.

When the assumptions (H1)~(H6) (or (H7)) hold, we denote by 7t = {7}},cqz and 7V =
{m/}iesv the stationary distributions of the ergodic Markov chains {Z,, }]io and {Z; };21’
respectively. While 77 has moments of all orders, we show in Proposition A.1 below that
7Y has a finite first moment. These distributions will play a significant role in the study of the

lengths of the supercritical and subcritical regimes, which we now undertake.

2.2. Lengths of supercritical and subcritical regimes

We now turn to the law of large numbers and central limit theorem for the differences
AJU and A]-L. We denote by P_.(-), E .[-], V_ .[-], and C.[-, -] the probability, expectation,
variance, and covariance conditionally on Z,, ~ . Similarly, when r* is replaced by 7V in

the above quantities, we understand that they are conditioned on Z;, ~ V. We define u¥ :=
E,[AV], ut = E v[AL],

oo
oV =V [AV]+2) Cu[a]. AF,].  and (5)
j=1
oo
ot =V u[AT]+2)  Cuu[Al, AL, ] (6)
j=1

In the supercritical regime, we impose the additional assumption (H8) below, to avoid need-
ing to qualify our statements with the phrase ‘on the set of non-extinction’. Assumption
(H9) below ensures that the immigration distribution stochastically dominates the upper
threshold.

(H8) P{,=0Pgu-as.
(H9) E[¢] <o0.

PUY >U1UY)

Let SY := Zj":l A J.U and SL := Z}’zl AJ.L. ‘We now state the main result of this subsection.
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Theorem 2.4. Assume (H1)—(H4). (i) If (H5) and (H8) hold, then

1 1 d
nli)n;o ;Sfl] =unYas., and %(53 — n,uU) — N(O, oz’U).

(ii) If (H6) (or (H7)) and (H9) hold, then

1
lim —St=pFas, and —(Sﬁ - }’l/,LL) AN N, o>1y.

n—>oo n n n— 00
[

2.3. Proportion of time spent in supercritical and subcritical regimes

We now consider the proportion of time the process spends in the subcritical and supercriti-
cal regimes. To this end, for n > 0, let xnU = IUfil (i1 ,,j)(n) be the indicator function assuming
value 1 if at time n the process is in the supercritical regime and 0 otherwise. Similarly, let
an =1- X,f/ = IU,'o;[Tj’Vj)(n) take value 1 if at time n the process is in the subcritical regime

and 0 otherwise. Furthermore, let C := Y77 X]E’] and Cy:= Y7, X]-L, ,=n—CU be the

total time that the process spends in the supercritical and the subcritical regime, respectively,
up to time n — 1. Let

U CL
% and OLl:=
n n

9,? =
denote the proportion of time the process spends in the supercritical and the subcritical regime.
Our main result in this section is concerned with the central limit theorem for 6Y and 6%. To

this end, let
U L

W L 1
—— and 60":= ——.
MU + /’LL /’LU + ML
Theorem 2.5. Assume (H1)—(H6) (or (H7)) and (H8)-(H9). Then, for T € {L, U}, 9,,T con-
verges a.s. to 0. Furthermore,

oY .=

d
V(6] —6") —— N©, "),

where nz*T is defined in (19).

We now use these results to describe the growth rate of the process in the supercritical and
subcritical regime, as defined by their expectations (that is, MY and ML).

2.4. Offspring mean estimation

We begin by noticing that er >Ly+1and ij+1, ooy Zyj—1 = Lo are positive for all j € N.
However, there may be instances where ZV_,., e Zf_/,l could be zero. To avoid division by
zero in (7) below, we let XV := xTiz,=1), C¥:= Y1 %", and use the convention that
0/0 =0 00 = 0. The generalized method-of-moments estimators of MY and M" are given by

1%
n Z]—[J_

1

n
1~y L . 1 ZJ L
=X and ML= EZZ-_IXJ*" (7)
noj=t I noj=197

where the last term is non-trivial whenever Cﬁ > 1, that is, n > 71 + 1. Our assumptions will

. . . =T
involve first- and second-moment assumptions on the centered offspring means (Pn -M T)
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and the centered offspring random variables S,Z i ﬁ:) To this end, we define the quan-
- s -
tities AT := PZ—MT‘ and AT = E[@n,l —P,f|s|n,{]. Next, let M, := (MY, M),

M .= (M U ML)T, and let ¥ be the 2 x 2 diagonal matrix with elements

1 ([, AYVY 1/, ALV
é_U(Vl + IELU and Q_L V1+ /,LL s

where iV := E . [Z,?: 1 )ku, 1] is the average length of supercritical regime, not taking into
account the times at which the process is zero;

o i

i
is the average proportion of time the process spends in the supercritical regime and is positive;
. o~ A
A =FE 1 [; K]

is the average sum of ZL over a supercritical regime, discarding the times at which Z, is
n
zero; and

V]

L
AL = E_u E —Xk_l
' g Zk—1
k=t1;+1

is the average sum of Zl_,, over a subcritical regime. Obviously, 0 < iV < V. Finally, we recall

! . —T
that VIT =V[Pg ] is the variance of the random offspring mean Pg and VZT = ]E[PO] is the

expectation of the random offspring variance I_’O.

Theorem 2.6. Assume (HI1)-(H6) (or (H7)). (i) If u! < oo and le[Agf] < 00 for some
s> 1, where i=1,2 and T € {L, U}, then M,, is a strongly consistent estimator of M. (ii)
If additionally for some § > 0 E[Agf%] <oofori=1,2andT € {L, U}, then

d
VnM, — M) —— N(0, ).
n—oo
— =T
Remark 2.1. In the fixed-environment case, Pg =M" and P = VI are deterministic con-

stants. Therefore, VIT =0, and X is the 2 x 2 diagonal matrix with elements

AUU Ly/L
Avvy oA
oUpU OLul

3. Path properties of BPRET

In this section we provide the proofs of Theorems 2.1, 2.2, and 2.3, along with the required
probability estimates. The proofs rely on the fact that both the environmental sequence and
the thresholds are i.i.d. It follows that probability statements like P(Z, | = k|Z,; =i, v; < 00)
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and P(Z,,,, =i|Zy,
Lemma A.1 in Appendix A.2 and will lead to time-homogeneity of {Z,,} ) and {Z;} = . As
expected, this property does not depend on the process being strongly subcrltlcal Assumptlons
(H1) and (H2') are more than enough. We denote by Py.(-), Es[-], Vse[-], and Cye[-, -] the

probability, expectation, variance, and covariance conditionally on Z,, ~ SiL, where 83 is the

=k, Tj+1 < 00) do not depend on the index j. This idea is made precise in

restriction of the Dirac delta to S*. Similarly, when SiL is replaced by Sl.U in the above quantities,
we understand that they are conditioned on Z;, ~ (SiU , where Sg is the restriction of the Dirac

delta to SU.

3.1. Extinction when immigration is zero

In this subsection, we provide the proof of Theorem 2.1, which is an adaptation of Theorem
1 of Athreya and Schuh [17] for BPRE. Recall that for this theorem there is no immigration in
the supercritical regime, and hence the extinction time T is finite with probability one.

Proof of Theorem 2.1. For simplicity, set 7o := —1. We partition the sample space as
Q= (UZ {1741 =00, 7 < 00}) U (N2, {7} < o0})

and show that (i) {71 = 00, 7j < 00} C {T < oo} for all j € Np and (ii) IP( i< oo})
First, we notice that if 7; < oo, then v; < 0o by Theorem 2.1 of Kerstlng and Vatutin [16]
Thus,

{tjir1 =00, 7j <00} ={Z, < Uj11 Vn > v}, Tj < 00},

where {Z,}52 = is a supercritical BPRE until Ujy is reached. Since Z, < U;y1 for all n > v,
(2.6) of Kerstlng and Vatutin [16] yields that lim, . Z, =0 a.s. and {7j;1 =00, Tj < 00} C
{T < oo}. Turning to (ii), since the events {r; < co} are nonincreasing, IP’( i< oo})
limj_, oo P(7j41 < 00) and P(1j11 < 00) =P(1j41 < o0|1j < 00)P(7j < 00). Smce 7; =00, if
Z,; , =0, it follows that

P(gj41 < 00lt; < 00) < P(gj41 < 00lt; < 00, Zy,, €11, Lyl)

< max P(g <oo|tj < 00,7, =i)
i=1,...Ly -

<1- %nm IP(Z,H 0|7 < 00, Zy,_, =1i).
i=1,....Ly

Lemma A.1 yields that for all k € S5,
IF’(ZTJ. =kltj < o0, ZUJ._1 = i) = PaiL (ZT] =k|t < oo) ®)
Also, forallj > 1,

P(Zg41 =017y < 00, Zgy =k) = (0, {£5, =015 < o)
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Multiplying by IP’(ZTJ._H =0[tj <00, Z; = k) and ]P’(ZTI_H =0|t1 <00, Z; = k) and summing
over k> Ly + 1 in (8), we obtain that

IP’(Z,PL] =0[tj<00,Z, , = i) :PaiL(ZﬂH =0/t < oo)

o0
= Z }P’(SI_L(Zrl =klt1 < oo)IP(Eé‘J =O)k.
k=Ly+1

.....

Py (Zr] =k|t1 < oo) > 0 for some k, we have that p; > 0 and p> 0. Hence, P(7j;1 < 00) <

(1 = p)P(zj < 00). Iterating the above argument, it follows that (7| < 00) < (1 —l_a)jIP’(tl <
00), yielding lim;_, o P(1j41 < 00) =0. 0

3.2. Markov property at crossing times

Proof of Theorem 2.2. We begin by proving (i). We first notice that since {Uj}]?’i1 are i.i.d.
random variables with unbounded support Sé/, lim sup;_, , U; = oo with probability one. Next,
observe that along the subsequence {Tj}jﬁ 1»Zz; = Uj. Hence, lim sup,,_, o, Z, = 00. On the other
hand, along the subsequence {v; j’il, we have Z, <L Thus, 0 <liminf; ., Z; <Ly < o0. It
follows that {Z,}>° , is recurrent in the sense of Definition 2.1. Turning to (ii), we first notice
that, since Zy < Ly, Z,)/, <L;<Ly, and ZT/ >U;j>Ly+1 for all j> 1, the state spaces St

00 U ’ 00 )
of {Z, }j=0 and §Y of {Z; }j=

. are included in S~ and SY, respectively. We now establish

the Markov property of {Z”j}ZO' For all j>0, ke SL. and 0, i1, ..., € SL. we consider
the probability ]P’(Zvj " =k|le0 =1ip,..., Z‘,j =1i;). By the law of total expectation, this is
equal to

E[P(Zy,, =k|Z =10, . ... Zy, =i}, Lix1, U1, o5, 7).
Now, setting Avj,s(u) = {Z,,j+s >u, Z,,j+s_1 <u,..., Zu_,~+1 <u}, Buj,s,l(l) = {Z,,j+, =
k, Zyivi—1>1, ..., Zy+s+1 > I}, we have that

. . L U
P(Zl)j+1 =k|ZV():l07 "'7ZUj=lj7Lj+17 l]]-‘rlvr[ , T )

oo o0
=D > P(AysUinIZy =i, Upsr, 7V)P(BysuLis)lAvs: Livt, 7°)
s=1 t=s+1

= ]P(ZU/'+1 = k|ZVj = lj’ Lj+1 ’ l]j+] ’ 7TL7 T[U)y

where in the second line we have used that {Z,};2, is a supercritical BPRE with immigration
until it crosses the threshold Uj at time Tj11 = v; + s, and similarly {Zn};'f;r_Jr , Is a subcritical
BPRE until it crosses the threshold L;y; at time vj1; =v; +t. By taking the expectation on
both sides, we obtain that

P(Zy,,, =kIZy =10, ..., 2y, =ij) =P(Z

Vi+1

=k|Zy; =1j).

Vi+1
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Turning to the time-homogeneity property, we obtain from Lemma A.1(iii) that

oo
P(Zyy =k|Zyy=i) = Y P(Zy,, =KZy,, =)P(Z,, =11Z; =)
I=Ly+1

oo
= Y P(Zy, =klZ, =)P(Z, =112y, =1))
I=Ly+1

=P(Z,, =KIZyy =1)).

The proof for {th }fi] is similar. t

3.3. Uniform ergodicity of {Z,} J‘?:O and {Z;; ;21

In this subsection we prove Theorem 2.3. The proof relies on the following lemma.
We denote by pji(j) =Ps(Z,; =k), i, k € S¥, and p{(j) = Psu(Zy,,, = k), i, k € SY, the j-step
transition probability of the (time-homogeneous) Markov chains {Z,, };:0 and {Z; };:1 For
j=1, we also write p; =pk (1) and p§ = pY(1). Finally, let p(j) = {p% ()} 1est and pY(j) =
{PY()}resv be the j-step transition probability of the Markov chains {2, };io and {Z; }21
from state i € S* (resp. i € SY).

Lemma 3.1. Assume (H1)—(H4). Then (i) if (H5) also holds, then p}, > p" > 0 for all i, k € S*.
Also, (ii) if 2 (or 3) holds, then pj > p! > 0 for all i, k € SU.

Proof of Lemma 3.1. The idea of proof is to establish a lower bound on pﬁ( and p% using
(9) and (10) below, respectively. We begin by proving (i). Using Assumption (HS), let A be a
measurable subset of P satisfying ]P)EL(H(L)' € A) >0 and P’6 ,>0forr=0, 1 and 1'[16 €A. By
the law of total expectation,

ok =]E(SZL[P(ZU1 =k|Zy,, L1, 7")]. 9)
Since IE”(ZV1 =k|Zy, Ly, JTL) =0 on the event {L; < k}, it follows that
P(Zy, =k|Zq,, Ly, 7%) =P(Z,, =k|Zy,, Ly, 7)1, 24

Now, notice that on the event {L; > k}, the term IP(ZVl =k|Z, Ly, nL) is bounded below by
the probability of reaching state k from Z;, in one step; that is,

P(Zy, =k|Ze,, L1, 7% > P(Z,, =k, vi =11 + 1|1Z¢,, Ly, 7)1 549

The right-hand side of the above inequality is bounded below by the probability that the first &
individuals have exactly one offspring and the remaining Z;, — k have no offspring; that is,

k Zfl
L L L L
I{Lle} H]P)(grl,r: 1|H‘L'1) 1_[ ]P)(‘i:‘r],r:OH_I‘L'])‘
r=1 r=k+1
Once again, using that, conditional on the environment 1'[51, the E,Ll o are ii.d., this is equal to
k Ze —k
I{LIZk} (Pgl,l) (Pgl,O) b
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Since I{HL ea} < 1 and {L; >k} D{L; =Ly} because k <Ly, the last term is bounded
71
below by

- —k
Tz, —20) (PL 1) (PE o)™

Finally, again using that the Hﬁ are i.i.d., and taking the expectation Ez.[-] as in (9), we obtain

Iint cay-

that pl > p o where

Py =P(Li= LU)E(S,.L[( rl,l)k(Pé,O)ZTl_kI{HéleA}:I‘

Notice thatp’k“ is positive, because P(L; = Ly) > 0, Pz (I15 € A) > 0, PS ,>0forr=0,1,and
l'IL € A, and the environments T1% are i.i.d. Finally, since S is finite, p = min; kest > 0.

We now turn to the proof of (11) which is similar to the proof of (i). Using (H6), let A and
B be measurable subsets of P x P satisfying the following conditions:

(a) Pro (MY €A) > 0and ng >0, P((){r > 0 for all r € Ng and I1{ € A; and
(b) Pgu(T1§ € B) > 0and Qf ; > 0 for some (fixed) s € {1, ..., L,} and T1{ € B.
Again using the law of total expectation, we obtain

p,'lji = EBiU []P)(ZTZ =k|Z,,, Us, JTU)]. (10)

Since P(Z;, = k|Z,,, U, V) = 0 on the event {U, > k}, it follows that
Ly
P(Ze, =kIZy,, Up, 7Y) = Z P(Ze, =Kl Zy,, Us, V) wy <z, =) - (11)
z=0

If Us <k and Z,, =z > 0, then P(Z,, =k|Z,,, Us, 7Y) is bounded below by the probability
that z individuals have a total of exactly k offspring and no immigration occurs; that is,

P(Z-L-Q == k|Zv1 ’ Uz’ T[U)I{UZEk}I{ZW =z}

Z
ZIP’< ZEVL{ ,=k 1) =01Zy,, Us, ”U)I{Uggk}I{ZU1=z}~

The right-hand side of the above inequality is bounded below by the probability that the first
z1 := (k1 + 1)z — k individuals have k; := LIE‘J offspring and the last 75 := z — z; individuals
have ky := ki + 1 offspring (indeed k121 + k2z2 = k) and no immigration occurs—that is, by

P(NL, (& r =k}, N2 —z 1 =k} 1Y v =012y, Ua, ﬂU)I{Uzgk}I{ZVI =g}

Using that, conditional on the environment, nv are i.i.d., the above is equal to

vy Evl r

v 'Y pUu \2oU
(Pvl,lq) (Pvl,k2> Oy, olwr=nliz, =2- (12)

Next, if Uy <k and Z,, =z=0, then IP’(Z,2 =k|Z,,, Us, JTU) is bounded below by the prob-
ability }P’(ZT2 =k, o =v1 +2|Z,, Us, 7TU). Now, this probability is bounded below by the
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probability that there are s immigrants at time vy + 1, these immigrants have a total of exactly
k offspring, and no immigration occurs at time v; + 2—that is, by

( _S ZE“H’ kL =012, Up, )I{U2<k}I{Zv1=O}'

As before, this last probability is bounded below by the probability that 51 := (¢t + 1)s — k
individuals have 1 := Léj offspring and s, := s — 51 individuals have t; := f; + 1 offspring.
Thus, the above probability is bounded below by

U s U s U
00 (P 11)" (P 1.) 00 1 olwa<u iz, =0)- (13)

Combining (11), (12), and (13) and using that I{nu cA}s I{HU+16A}’ I{nu eBy = 1, we obtain that
V] vy vy
P(Z,, =k|Z,,, Uz, 7Y) is bounded below by

Ly
U v 25U
I{Uzik}ZI{Zv1=Z}<Pv1,k1) <Pv1 kz) Qv oliny ea)
z=1

52

U U SUOnU U
+ Ly, <nliz,, =0}Qv1,s<Pv1+l,t1) (Pvl-i-l,tz) Qu1+1,01{1'15f1 eB}I{nﬁleeA}-
Using that the I"I,l/ are i.i.d. and taking the expectation Esu[-] as in (10), we obtain that

Ly

PY=PWI <)Y Hl@Pyu(Zy, =2),
z=0

where H; : S — R is given by

U 25U -
[QU1 A( vi+1, tl) (PU1+1 l‘z) QU1+1,OI{H1€/1 EB}I{H‘EII_HEA}:I le:()’

Hi(z) = E[(Pf)j]’k) (pg] kz)ZszI OI{HUGA}] if 7 £0.

Since Zngo Psu (ZU1 = Z) =1, we conclude that pilli > B/lcj’ where

U .
= P(U; < k) min Hi(z) > 0.

Py Uy )zeSL k(2)

This concludes the proof of (ii). If, instead of 2, 3 holds, the proof is similar: one notices

that for all z € S%, on the event {U; <k} N {Z,, =2z}, there is a positive probability that at time

v1 + 1 there are k immigrants and the z individuals have no offspring. A detailed proof can be

obtained in the same manner as above. U
Before turning to the proof of Theorem 2.3, we introduce some notation. Let T o= 0and

TL inf {j > TF b2y = i}, 1> 1, be the random times at which the Markov chain {Z,, }Jio

enters state i € S© when the initial state is Z,, = i. Similarly, we let T.U = 1 and TiL; = inf{j >

TIUI | i Zy =i}, [ =1, be the random times at which the Markov chaln {Z,j };i | enters state

ieSY when the initial state is Z;, =i. The expected times of visiting state k starting from i are
denoted byfk = ]ESL[ 3 1] andfk = E(SU[ 1], respectively.

https://doi.org/10.1017/apr.2023.26 Published online by Cambridge University Press


https://doi.org/10.1017/apr.2023.26

Branching processes in random environments with thresholds 511

]

Proof of Theorem 2.3. Lemma 3.1 implies that the state spaces of {Z,,j }20 and {ij}jzl

are St and SY, respectively. Next, to establish ergodicity of these Markov chains, it is
sufficient to verify irreducibility, aperiodicity, and positive recurrence. Irreducibility and ape-
riodicity follow from Lemma 3.1 in both cases. Now, turning to positive recurrence, let
1X(k):= {(i1, i2, . . ., in—1) : ij € SL'\ {k}} for k € ST. Then, using the Markov property and Part
(i) of Lemma 3.1, it follows that

o0 o0
fi= Z Pst (T¢) =n) = Z Pyt (m;l;ll {z, # k})
n=1

n=1
o o0 n—1
L
Zzpkil 1_[171']-,11‘,-§Z<1 _B ) < Q.
n=1 n=1

1K)

Now from the finiteness of ST it follows that {Z,,j }20 is uniformly ergodic. Next, as above, for

all ke SY,
o0 o0 n—1
fkl,i—Z]P’au(Tkl—lzn)gZ(l—pU) <00
n=1 n=1

o0
j=r
for one-step transition: that is, for a probability distribution ¢ = {g},sv and every set A C SV

satisfying ) o4 gr > €,
inf 7l>s.
lesY (Zplk>

keA

To complete the proof of uniform ergodicity of {Z,j} we will verify the Doeblin condition

Now, taking g := (p)/( Xyes Py )» it follows from Lemma 3.1(ii) that

inf (Zpﬁi) > (Zlﬁf) >

keA keS keA
Choosing § = (D ;s 1_?]?)6 yields uniform ergodicity of {er }21 O

Remark 3.1. An immediate consequence of the above theorem is that {Z,,,, };io possesses

a proper stationary distribution 7’ = {nkL } where nkL =1 /kak > ( and satisfies nkL =

keSL>
> ies wlpk for all k € SE. Furthermore, limj_, o sup,cge [pF(j) — 7l = 0, where ||-|| denotes
the total variation norm. Furthermore, under a finite-second-moment hypothesis, the central
limit theorem holds for functions of Zy,. A similar comment also holds for {er }21 with L

replaced by U.

Remark 3.2. It is worth noticing that the stationary distributions 7 and 7Y are connected
using 7l =", v Py (2,, =i)n} foralli € S, since by time-homogeneity (Lemma A.1) we

have ]P’(ZV_H] =ilZy,, = l)= ]P)(SIU (Z,, =1i). Now, if we take the limit as j — oo in
P(Z‘fjﬂ = i) = Z IEJ>(Zvj+1 =ilZg,, = Z)P(ij+l = l),
lesv

the above expression follows. Similarly, 7/ = 3", ¢ ]Ple (Zr, =k)n} forall k e SY.
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Since the state space S” is finite, 77* has moments of all orders. Proposition A.1 in Appendix
A.3 shows that 77 ¥ has a finite first moment 7V := >, (o k.

4. Regenerative property of crossing times

In this section, we establish the law of large numbers and central limit theorem for the
lengths of the supercritical and subcritical regimes {AjU }21 and {A]L }j’i - To this end, we
will show that {AJ.U};; and {AJL};; are regenerative over the times {Til,‘z}?:o and {Til’]l}z],

. . . . —U
respectively. In our analysis we will also encounter the random variables A;" := A jU + AJL and

A= AjL +AY . Forl/>1andieSt let BL, := (Kl.Ll, Afl, Kﬁl), where

J 1
L._ 7L _ 7L L._ (AU U AL _ (RY N
Kl,l = Tl,l —_ Tl,l*l’ Al,l = <ATILI_]+1 g e ey AT,{‘[) and Al,l = <ATll:ll+1, ey ATzL,] .

The triple B{: ; consists of the random time Kfl required for {ZW }jio to return for the /th time
to state i, the lengths of all supercritical regimes A]U between the (I — 1)th return and the /th
return, and the lengths ZJU of both regimes in the same time interval. Similarly, for /> 1 and

i€ SY we let BiUl = (KI.U[, AY KUZ) where

i,l° =,

U._ U U U._ L L 2V . (AL ~L
Ki,l’_ Ti,l_Ti,l—l’ Ai,l = (ATU , ...,ATiUl_l> and Ai,l'_ <ATU , ...,ATU71 .

i,l—1 il-1 il

The proof of the following lemma is included in Appendix A.4.
Lemma 4.1. Assume (H1)—(H4). (i) If (H5)also holds and Z,, =i € SL, then {Bl.Ll}?il are i.i.d.
(ii) (H6) (or (H7)) holds and Z;, =i € SY, then {Bgl}fil are i.i.d.

The proof of the following lemma, which is required in the proof of the Theorem 2.4, is
also included in Appendix A.4. We need the following additional notation: 3,11] = Z;l:l ZjU,

< —L
Sﬁ = A

oo
7V i= V&) [+2 Y Cu[A AL |,
=1

o
F2L.— VnU[Al] +2Z<cnu[Af, A]LH],
=1
> U
(CU = Z(CNLI:A?’ A]+I:I+Z(C7TL|:A1 s Aj[_]|_11|7 and
J=0 J=1
oo . 00 .
ct.= Z (Cnu[A%, Aj+1:| + Z (CNUI:AP AJ'L+1]-
Jj=0 J=1
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Lemma 4.2. Under the assumptions of Theorem 2.4, for all i € S* the following hold:

W Eg s |=(x)"'n? and Eg[Sp | = ()7 (¥ +uh):

i) Vye [8Y ] = (1) "'oY and Vg [S7 | = ()16 and
! il i i,

(iii) CS[L[ . STL ] — (xh)~'cv.

The above statements also hold with U replaced by L.

Proposition A.2 in Appendix A.5 shows that o>7 and a7

513

are positive and finite, and

|CT| < 0o. We are now ready to prove Theorem 2.4. The proof relies on decomposing S,? and
Sﬁ into i.i.d. cycles using Lemma 4.1. Specifically, conditionally on Z,, =i € S (resp. Zy =

L
— Sy

o
i € SY), the random variables [ng/ — SIT]f,_] }1:1 (resp {Sé,/ |

Proof of Theorem 2.4. We begin by proving (i). For i € S- and n € N, let

o
NE) = 3 irt <y
=1 :

OO ..
} ) are 1.i.d.
-1~ i=1

be the number of times TiLl isin {0, 1, ..., n}. Conditionally on Z,, = i, notice that NiL(n) isa

renewal process (recall that Tl. =0). We recall that KLI = TL TL 7, and let

I,

Kib=n—T NL(n)» R,IfJ = ST S , and R* L. SU SU

nn 1
’ ’ Ty ,NL(n)

Using the decomposition

1 N[ 1 N I
—SU _ - R 4 R L
non n <NlL(l’l) ; il NL( ) l n

and the fact that {RlLl};>o

large numbers for random sums and Lemma 4.2(i) that

1 NF(n)
fim Riy=E [SU ]= 7l as.
o0 NE(n) ; il = s Ok ()

Also,

R*L . 1 L

< lim =0a.s.
NEG = B NGy b1

lim sup
n—oo

(14)

are 1.i.d. and lim,,— o NiL(n) =00 a.s., we obtain using the law of

15)

Finally, using the key renewal theorem (Corollary 2.11 of Serfozo [27]) and Remark 3.1, we

have
NF 1
lim [ =rlas.
n—oo n ESL[ l]

https://doi.org/10.1017/apr.2023.26 Published online by Cambridge University Press

(16)


https://doi.org/10.1017/apr.2023.26

514 G. FRANCISCI AND A. N. VIDYASHANKAR

Using (15) and (16) in (14), we obtain the strong law of large numbers for S,L,’ . Turning to the

central limit theorem, we let RF,:= RE, — uVKY, and RY; := RY;' — pYK;;). Conditionally
on Z,, = i, using the decomposition in (14) and centermg, we obtam

1 NE 1 d 1
_(Sr(lj _ }’llbLU) — i (n) Rl: R*,L
v T NE(n)

o0 .« . . .
where {RF,},°  arei.id. with mean 0 and variance

V5L[ b —,uUTL] (xl) o2 (17)

1

by Lemma 4.2. Finally, using the central limit theorem for i.i.d. random sums and (16), it
follows that

NE(n) 1 d

=il — 00
n ,/Nl-L(n) =1 "

To complete the proof notice that

1 L 1 L p
| ——R[,| < ——IR. | ——0
InNEm T INEm) PN o0
1 1

The proof for SE is similar. g

When studying the proportion of time the process spends in the supercritical and subcritical
regimes, we will need the above theorem with n replaced by a random time N(n).

Remark 4.1. Theorem 2.4 holds if  is replaced by a random time N (n), where limy,_, oo N (n)=
o0 a.s.

5. Proportion of time spent in supercritical and subcritical regimes

We recall that Xn = IU y(n) is 1 if the process is in the supercritical regime and 0

-1
otherwise, and similarly xt =1— xY. Also, 6V = IC,[l] is the proportion of time the process
spends in the supercritical regime up to time n — 1; the quantity G,f is defined similarly. The

limit theorems for 6V and 6} will invoke the i.i.d. blocks developed in Section 4. Let SY :=
SU\T T T
(Y, ST, wVi= (¥, ¥+ ut)", pki= (b, nU + )7, and

0'2’U (CU 0.2,L (CL
V= xh.= .
cvgz2Ul’ CL z2L
We note that while S,Il] represents the length of the first n supercritical regimes, Eflj is the total
time taken for the process to complete the first n cycles.
Lemma 5.1. Under the conditions of Theorem 2.5, %( —np ) L> N((), EU), and

n—oo

d
7 (85 —nut) —— N(0, =F).
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Proof of Lemma 5.1. The proof is similar to that of Theorem 2.4. We let

L . U U *L ., QU U
R = STL _ST.L , Ri,n =S, _STL ,
il il—1 i'NiL(")

L . pL L U L, p*xL *x,L U
R,:=R;, —Kn", R, =R, — K, nr".

=i,n i

Conditionally on Z,, =i, we write

! Ny 1 MO !
—(S) —nnY) == | ——= D_ R+ R,
Vn n JNEm) 1= /NEm)

Now, by Lemma 4.1 and Lemma 4.2, {I_IIL l}?:l are i.i.d. with mean 0 = (0, O)T and covariance

matrix (71)~1 =Y. Using the key renewal theorem, we conclude that

Nf(n)
YR LN(O’ =Y)

n /NlL(n) Pt n—o00

NE(n) 1

and

1
VNF)
The proof of (ii) is similar. t

Remark 5.1. Lemma 5.1 also holds with n replaced by a random time N(n) such that
lim, 00 N(n) =00 a.s. The next lemma concerns the number of crossings of upper and
lower thresholds, namely, NY(n) := sup{j > 0: t; < n} and NL(n) := sup{j > 0: v; < n}, where
ne N().

Lemma 5.2. Under the conditions of Theorem 2.5,

. . NU . NL
(1) limy,_ oo W('ll) = HU-IWL and lim,,_, o W(l}) = u”i—uL a.s.;
(ii) lim, Sy and lim G L as
n—00 FU () 123 n—00 FL ) nea.s.
Proof of Lemma 5.2. We begin by proving (i). We recall that 7o = —1 and 7; < v; < 7j41 a.s.

for all j > 0, yielding that
NEm) < NY(n) < NE(m) + 1.

Since 7; and v; are finite a.s., we obtain that lim,, , oo NY(n) = 0o and lim,_, oo NE(n) = 00 a.s.
Part (i) follows if we show that

. Ntn) 1
lim =

= a.s.
n—oo n 4+ 1 MU + ML

To this end, we notice that VLG S = VRLG410 and for n > vy,

VAL -_n VRL(n)+1 NEm) +1
NE(n) ~ NE(m) ~ NL(m)+1  NE(n)
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AL ~ ~
Clearly, lim,,_, NN(L’%I =1 a.s. By Remark 4.1 with N(n) = NY(n),

VyL
lim s

NL(n)
n—00 NL(n) -

“U_ U L
7 bo NL(n) ;:1 A =p” +ptas
Thus, we obtain

Nemy 1
lim

n—oo n4+ 1 MU + ub s
Turning to (ii), we notice that

(18)

NYm)
Cp1 = ZXJ ZA”+ >

=viu
where ) ;. =0 for r > n. Remark 4.1 with N(n) = NY(n) yields that

NY(n)
: u_ U
nll)rgo ) Z A =p” as. and
J=1
1 n
N
hr?lsogp ) Z 1< nll)ngo NU(n)ANU(n)Jrl 0a.s.
I=vgu )
. . cv
Thus, we obtain that lim,,_, o =—2tL

CL

_ . . . n+1 — L

oo = M a.s. Similarly, lim;,—, oo Ty =M a.s. O
Our next result is concerned with the joint distribution of the last time when the process is
in a specific regime and the proportion of time the process spends in that regime, under the
assumptions of Theorem 2.5. Let

JU(,,U L cv L(, U L _
—vu (M +u ) T WUk s (M + ) L
Y= cU F2.U and X = cL 2L
nU+ul (MUJFHL)3 uY+ul (nV+t)’
Lemma 5.3. Under the conditions of Theorem 2.5
C711/+1 _ MU i U
Vn4+1 NNU(") —>N(0,E ) and
NY@m) 1 n— 00
n+1 MU+ML
C;Lz+1 L

~ — o
e G LN N(o, EL).
Nty 1 n—00

n+1 "
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Proof of Lemma 5.3. We only prove the statement for C 4 and NY(n), since the other case
is similar. We write

CU

_ntl U
[~ - KM
NU(n) thlNU(n)

Fog — (Y +1b)

o & ) 7, 5 ()

and using Lemma 5.1 and Remark 5.1 with N(n) = NY(n), we obtain that

U

= F}H»l _ /’LU d
YyNU@m | N —~ N(0, =Y).
n+1 U n—o00

NU(n) - (,LL + 'LLL)

Next, we apply the delta method with g:R?> — R? given by g(x, y) = (x, 1/y) and obtain that

C;Lz/+l _,U
RVey [ Fo TR L v, £0),
N@m 1 n—>00 2
n+1 ILU'HLL
where v
22U ___ C
U U\ U T 7 (/LUﬂLL)Z
2y =4 (n) 2 (n") = cU F2U

- 7 )
(eat)” Gat)
and Jg(-) is the Jacobian matrix of g(-). Using Lemma 5.2(i), we obtain that

~C£z/+l _ H«U d U
NIESE RO —>N<0,f )
N@m) 1 n— 00
m pLU-i-;,LL
O
U_GC gL _Ci gu_ _nY
We are now ready to prove Theorem 2.5. Recall that 6,” = =, 6, = =, 0 MU L and

oL = ﬁ, and let %Y and 0% be the kth powers of 8 and 6L, respectlvely.

Proof of Theorem 2.5. Almost sure convergence of GnT follows from Lemma 5.3 upon

noticing that
Cr{+1 _ C;{+1 NT(”)
n+1 \NTm)) \n+1)"

Using Lemma 5.2 and the decomposition

T
m(cn—H - ,U~T )

l’l+1 MU+ML
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it follows that </n + ( 1 GT) is asymptotically normal with mean zero and variance
1
"= — (%" —2CT0T + 5103 ). (19)
m
O
Corollary 5.1. Under the conditions of Theorem 2.4, for T € {L, U},
/% Cr{+1 T d 2,T
NT(n)| —=—— —u —>N(0, o )
NT(n) n— 00
Proof of Corollary 5.1. We only prove the case T = U. We write

\/7 cU 1 NYm) | n
IVU(n)<~L+—,uU> E—— 1.

NV(n) szvm Z N . Z(

Taking the limit in the above equation and using Remark 4.1 yields the result. (]

6. Estimating the mean of the offspring distribution

We recall that 3V = xVIiz,>1), C‘f,] = Z/'.':l )Zjlil, and for the subcritical regime we set

7L := xk and CL:= CL. We also recall that the offspring mean estimates of the BPRET
{Z,};2, in the supercritical and subcritical regimes are given by

1 Z—17, 1 &z
MY = — %V, and MLl=— -
' c,sf,zl Zi ' ,%gz o
The decomposition
1
M MT+Ej (M7 + M) (20)

n
will be used in the proof of Theorem 2.6 and involves the martingale structure of M,f i=

n
Zj | DJ ;» where

T . B T\ =T T . 1 T 5L
Dj’1 = <Pj—1 -M )Xj—l and Dj’2 = = (5j—1,i—Pj—1>~ 1)

Specifically, let G, be the o-algebra generated by the random environments {HT}j o> Hn,1
the o-algebra generated by F, and G,_1; and #, > the o-algebra generated by F,, G,—1,
and the offspring distributions {§/;}2), j=0,1,...,n— 1. Hence, Z,, X, and TI}_, are

‘H,,1-measurable, whereas H,{ is not H,, 1-measurable. We also denote by 7:1,,,1 the o-algebra
generated by F,_1 and G,_1, and by H,» the o-algebra generated by F,_1, G,—1, and
{gjﬂ}ggo,jzo, 1,...,n—1. Hence, Z,_1, )?nT_l, and HZ_I are all H,, 1-measurable but not
‘H,—1,1-measurable. We establish in Proposition A.3 in Appendix A.6 that

{( n1s Hn,i)}:il and {(Mn 29 H” 2)}n 1
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are mean-zero martingale sequences. Additionally,
E[(M;,)"]=VIE[C]] and  E[(M},)"] = VIEIA]).

where

N‘Xl

i

is the sum of over supercritical time steps up to time n — 1, discarding times at which Z; is
/
zero, and

n X_L .
AL . AL._ )=
A=A = E 7
— j—1
Jj=1
is the sum of over subcritical time steps up to time n — 1. Proposition A.3 contains other

two martlngales involving the terms DT1 and DJT2 in (21) and related moment bounds, which
will be used in the proof of Theorem 2.6. As a first step, we derive the limit of the variances

E[ (M, ) ] and E[(M] ) | when rescaled by n. By Proposition A.3, this entails studying the

limit behavior of the quantltles —C T and AT To this end, we build i.i.d. blocks as in Section

4. Forl>1landie St let Bry = (K A,l,rl,) where

L _ oL 7L AL _ (xuU AU el (rU U
Kh=Th—Th.  Ajs= (A% .. AL).  Ti= (FTLI 1+1,...,rTﬁ1),
Tj+1 Tj+1 U
SU PU Xk—1
/+1 = Xk—1> j+1 = Ze
k=vj+1 k=vj+1 -

The triple BY, consists of the random time K7, required for {Z,, }]ﬁo to return for the Ith time

to state i, the lengths of all supercritical regimes A]U between the (/ — 1)th return and the /th
return, and the sum of Z;-inverse over supercritical regimes, disregarding the times when the

process hits zero. Similarly, for /> 1 and i € S we let Ef{l = (KZUZ, Al T ) where

U U
K= T Tzz 1> Alz—<Al“,- ATU 1) I/ = (Fl“,. FTU 1)
vj L
Xk—1
F.L:: _—
pe 3 M
k=tj+]

~ L
Notice that, since Ck = CL, Theorem 2.5 already yields that lim,_, % = U ‘- We need
the following slight modification of Lemma 4.1, whose proof is similar and hence omitted.
Lemma 6.1. Assume (H1)~(H4). (i) If (H5) holds and Z,, =i € S*, then {1§ﬁ,}‘><>

|y are iid.
(H6) (or (H7)) holds and Z,, =i € SY, then {Egl}f’il are i.i.d.
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Proposition 6.1. Suppose that (H1)—(H6) (or (H7)) hold and 1Y, u* < co. Then

- cv U . cy Y
(1) limy,— 0 NL_'(ln) = [ and limy_, oo = = #‘HLL a.s.;
N AV~ . AY AY
(i) limy— oo o, =AY and lim,_, o "+ = WUk 45
o AL AL L
(i) lim,— 0o =g~ = AL and lim,_, - = UAJr L 4.5

NU(n)

. cr AT . . Lo
Since =% and —* are non-negative and bounded by one, Proposition 6.1 implies conver-

gence in mean of these quantities.

Proof of Proposition 6.1. By Lemma 5.2(i) it is enough to show the first part of the state-
ments (i)—(iii). Since the proofs of the other cases are similar, we only prove (i). We recall that
forieStandjeN,

o0
NiG) =) Lt <
=1

is the number of times TiLl isin {0, 1, ..., j}. We define
_L ~ ~ ~ ~ ~ ~ ~
Ni:=Nf(N'®), D=0, —C, . and Dj:=C/-CY,
il i,l—1 t.N,-L(n)

Conditionally on Z,, =1, TiLO =0, and we write

. _ N
¢ N 1 RV o
“1 =~L —_ ZDi,l+—L Di”

N(n)  N-(n) \ N;(n) 15 N; (n)

Lemma 6.1 implies that {f)lL 1}21 are i.i.d. with expectation given by
~U L\—l~U
Byt [CvT_LI } = () A

using Proposition 1.69 of Serfozo [27]. Since lim,— IViL(n) = 00 a.s., we obtain that

N (n)

lim Dk = = (7; =0as.,
n_)OON(}’l)Z n—)OON() ln
since
=, L ~L
Diy = PNFm+1
. . . )
Finally, it holds that lim,,—, o =-— = niL a.s. O

NL(n)
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We next establish that, when rescaled by their standard deviations, the terms M ., where

n, i’
i=1,2and T € {L, U}, are jointly asymptotically normal. To this end, let
T I, T T
M, M, — —INT /—INT
Z: and M, := <<M,llj) ,(Mﬁ) ) .
Sl e

Lemma 6.2. Under the assumption of Theorem 2.6(ii), M, LN N(O, I).
n— oo

Proof of Lemma 6.2. By the Cramér—Wold theorem (see Theorem 29.4 of Billingsley [28]),
it is enough to show that for t[T eR,wherei=1,2and T € {L, U},

2 v . 2
ZtiT n,i . N<O7 Z Z(tlT) ) (22)

reLuy =1 JE[(MT)] " Te(L,U} i=1

Using Proposition A.3, we see that

()

Te{L,U} i=1 n=1

is a mean-zero martingale sequence. In particular,

T n

> Zt M2
Te(L.U) i=1 E[(MT )] i

is a mean-zero martingale array. We will apply Theorem 3.2 of Hall and Heyde [29] with
k, = n,

N Sy

TelL.U} i=1 E[(Mn ) ]

Spj = Z,_ Xui, Fnj=H;2, and B = ZTG LU Zl 1 ( ) from this we will obtain (22). To
this end, we need to verify the following condltlons

() E[(S)"] < oc,

(i) max;—;

,,,,,

(i) Y 1X2 —>B2 and

(iv) sup,cy E[max;— le] < 00.

.....

Using Proposition A.3 (iv), we have E[( ik ) (M.T? )] =0if either Ty # T or iy # i2, and since

Jiia
E[(MjTl) ] are non-decreasing in j, we obtain that
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E (Z > MTJ.)Z]) > [( n)l)z]

Te(L,U} i=1

=2 2

Te(L.U} i=1
which yields Condition (i). Using again that E[(D lll)(Dl )] =0if either Ty # T2 or i1 # i
and ]E[(M;,) |=> E[(D l’,-) ], we obtain that

2

E e (Te%ju};:t E[(MT )2]) Z(re%:w, ltl E[(MT) ])

> 2y

Te{L,U} i=1

yielding Condition (iv). Turning to Condition (ii), assuming without loss of generality that
tiT # 0; using that

reiLvy =1 JE[(M],

we obtain that for all € > 0,

P | max
I=1,...,n

% (Z S e >]) -

TelL,U} i=1 E[(M,{l.

reoy izt JE[(MT)?] -

= ¥ 3 yr(ehr= () =)

Te{L,U} i=1 I=1 !

For i = 1, we use that x Xl—l € {0, 1} and obtain

> e((01)" = () =Lt

1

- ip<(Dzl)2 g (ﬁ)zE[(MZ,l)z]le_] ~1)
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It follows from Proposition A.3(i) and Proposition 6.1(i) that

n 1

lim = < 00, 23)
n—00 E[(MT ) ] 9TV1T

where, for T =L, §* := 6%, and since VI < o0,

—T 2 €\’ 2
i B0 Te((7 - m7) = (7 ) Bl ) =0
yielding that

A Z ( D) = (%)Z]E[(Mil)z]) =0.

1

For i = 2, we use that if )2171 =1 then Z;_; > 1 and obtain that
- T \2 e\ T \2
Sor((01)° = (5 ) ELMME))
=1 2
< nsup ]P’((l i (gT _FT)>2 > (i)zE[(MT )2])
= 2N 7 - 0,i 0 = 412T n,2 .

Next, using Proposition A.3(ii) and Proposition 6.1(ii)—(iii), we have that

n wY + uk
lim < =
n—00 E[(MT ) ] VzTAT

o0, (24)

where AL := AL, Since by Jensen’s inequality

1< _
EH;Z(E&—P@

248
]<E[ T2+6]<Oo’
i=1

using the Markov inequality, we obtain

> ne((1 32 (7)) = () Elostar)) <o

n=0 2N

which yields that
lim nsup]P’((l : (gOT__I—,T))2> <i>2E[(MT )2]> =0.
n—oo o z & 00 07) =\ ad n2

For (iii), we decompose
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as

p)

2
> 5 g B OO B X CL)EE)
2 i1 ‘o 2 T, 2
STt E[(M},)’] netongn JE[MD)IE[(ME,)’]
(25)
and show that each of the above terms converges to zero with probability one. Since
E[(M!)*]= Y1, E[(D],)*1. we use Proposition A.3(iii) and obtain that

(s <<DZ,-)2—E[<DL)2]>,ﬁn,i)}:;

T

=1

are mean-zero martingale sequences, and for s =1 4 §/2,

EH(DIT,,Y —~E[(0]))’] S

We use (23) and (24), and apply Theorem 2.18 of Hall and Heyde [29] with S, =
2 2 2 2 Y 2

Xim (07)” —E[(D7,)"]), Xi= (D7) = E[(D},)" ], Fo = Hnis Un=E[(M,;)"], and p =

s, where i = 1, 2, to obtain the convergence of the first term in (25). For the second term we

proceed similarly. Speciﬁcally, using Proposition A.3(iv) and the Cauchy—Schwartz inequality,

we obtain that { ( Y ( I 11)( i 12) H, 2)} is a mean-zero martingale sequence, and for
s=1446/2,

2 2
E[I(D]}) (D13 ) FiFt-12] <E[Agioadz] 5\/1E[Agj;] PIE[Az] < oo,

Finally, we apply Theorem 2.18 of Hall and Heyde [29] with S, =}, ( . 11) (Dl lz) X =

] = ZEIATPIEL ] < oo

2
(DZ}] ) ( i ,2> Fo=Hun2, U \/E[(Mf”,l) ]E[(M,?h)z], and p = s, from which we obtain
convergence of the second term in (25). U

We are now ready to prove the main result of the section.

Proof of Theorem 2.6. Using Proposition A.3(i)—(ii) and )ZJZ] <1, we obtain that for i =
1,2, {( ni Hn ,)} | are martingales and

1 21
2 SElIPfil 1#-1.] <E[ag 27

=17

We apply Theorem 2.18 of Hall and Heyde [29] with S, =M ,, X;j =D/, where i=1, 2 and

n,i’

T e{L, U}, and with U, =n, p=s, and F, =H,,1 fori=1 and ]-'n —7-[,,2 for i =2, From
this we obtain that lim,_, o %MZ ;=0 a.s. From this, Theorem 2.5, and Proposition 6.1(i),
we obtain that lim,,_, o %MZJ =0 a.s. Using (20) we conclude that lim,_, M; =M" as.

Turning to the central limint theorem, Lemma 6.2(iii) yields that

MU MU ML ML !

JELMY)] JE[(MY,)7] JE[(ME )] JE[(ME

M,=
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is asymptotically normal with mean zero and identity covariance matrix. Let Dﬁ be the 4 x 4
diagonal matrix

nE[(My)°] nE[(M;),)°] nE[(M;,)"] nE[(},)"]

D2 := Diag — , — , -~ , —
! (cyy’ (cy)’ (CL)? (CL)?

By Proposition A.3(i)—(ii) and Proposition 6.1, D,,M,, is asymptotically normal with mean zero
and covariance matrix

U AUyU yL ALyl
L U

T g é-Ua é-UllUs QL’ OL/,LL .
Using the continuous mapping theorem, it follows that

M, — M) _%o’ N, 3).

7. Discussion and concluding remarks

In this paper we have developed the BPRE with thresholds to describe periods of growth
and decrease in the population size arising in several applications, including COVID dynamics.
Even though the model is non-Markov, we identify Markov subsequences and use them to
understand the length of time the process spends in the supercritical and subcritical regimes.
Furthermore, using the regeneration technique, we also study the rate of growth (resp. decline)
of the process in the supercritical (resp. subcritical) regime. It is possible to start the process
using the subcritical BPRE and then move to the supercritical regime; this introduces only
minor changes, and the qualitative results remain the same. Finally, we note that without the
incorporation of immigration in the supercritical regime, the process will become extinct with
probability one, and hence the cyclical path behavior may not be observed.

An interesting question concerns the choice of strongly subcritical BPRE for the subcritical
regime. It is folklore that the generation sizes of moderately and weakly subcritical processes
can increase for long periods of time, and in that case the time needed to cross the lower
threshold will have a heavier tail. This could lead to a lack of identifiability of the supercritical
and subcritical regimes. Similar issues arise when a subcritical BPRE is replaced by a crit-
ical BPRE or when immigration is allowed in both regimes. Since a subcritical BPRE with
immigration converges in distribution to a proper limit law [30], we may fail to observe a clear
period of decrease. The path properties of these alternatives could be useful for modeling other
dynamics observed (see [9, 12]). Mathematical issues arising from these alternatives would
involve different techniques from those used in this paper.

We end this section with a brief discussion concerning the moment conditions in Theorem

2.6. It is possible to reduce the conditions ]E[Agg ’i2+5] < 00 to a finite-second-moment hypoth-

esis. This requires an extension of Lemma 4.1 to joint independence of blocks in Bll.“ I BZ.UI,
offspring random variables, environments, and immigration over cycles. The proof will require
the Markov property of the pair {(Z,,_,. Zs;) };:1 and its uniform ergodicity. The joint Markov
property will also yield a joint central limit theorem for the length and proportion of time
spent in the supercritical and subcritical regimes. The proof is similar to that of Theorem 2.3
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and Lemma 4.1, but is more cumbersome, with an increased notational burden. The numerical
experiments suggest that the estimators of the mean parameters of the supercritical and sub-
critical regimes are not affected by the choice of various distributions. A thorough statistical
analysis of the robustness of the estimators and an analysis of the datasets are beyond the scope
of this paper and will be undertaken elsewhere.

Appendix A. Auxiliary results

This section contains detailed descriptions and proofs of auxiliary results used in the paper.
We begin with a detailed description of the probability space for the BPRET.

A.1. Probability space

In this subsection we describe in detail the random variables used to define the BPRET, as
well as the underlying probability space. The thresholds {(Uj;, L; )}"O1 are i.i.d. random vec-
tors with support SB X Sé, where SB =NN[Ly+1,00),SE=NN[Ly, Lyl,and 1 <Lo <Ly
are fixed integers, defined on the probability space (g, F5, Pg). Next, X = {HL}OOO and
nv ={ I'IU}"‘;0 are subcritical and supercritical environmental sequences that are defined on
probability spaces (2, Fpr, Pge) and (QEU Fgu, Pru). Specifically, 1Y = (PY, Q) and
1% = PL, where PY = (P }2°,, PL={PL 1%, and QY ={QF )2, are probability distri-
butlons in P. Let (QU, .7-"U, Py) and (21, Fr, Pr) denote probablhty spaces corresponding
to the supercritical BPRE with immigration and the subcritical BPRE. Hence, the environ-
ment sequence [TV = {HU} -2 o» the offspring sequence {f;‘rf/ ;}i=1» and the immigration sequence
{IU}n o are random variables on (Qy, Fy, Py). Similarly, nt = {l'IL}n o and {Srl;l fatp
n >0, are random variables on (21, Fz, Pz). We point out here that the probability spaces
(RQy, Fu, Py) and (v, Fru, Pgu) are linked; that is, for all integrable functions H:Qy — R,

[H z, TY)dPy(z, 1 //H z, TY)dPy (z|11Y)dPgu (11Y).

Similar comments also hold with U replaced by L in the above. All of the random vari-
ables described above are defined on the probability space (2, F, P) = (Qp x Qu x Qr, Fp ®
Fu® Fr, Pgp x Py x Pr).

A.2. Time-homogeneity of (Z,}%°, and {Z: }ofl

Lemma A.1. Assume (HI) and (H2'). For all i € S*, k € SV, and j € Ny, the following holds:
() P(Zr,, =kIZy; =i, vj < 00) =Py (Z;; =k) and

P(z

T =kl|tj11 <00, Zy, = i) :PBiL(Z-[I =k|t < oo), and

(i) P(Zy;,, =ilZy,, =k, Tj41 <00) = Py (Zy, =ilti <o0) and

P(z

Vir1 =i|vjp) <00,Z

t = k) =Pgu(Zy, =ilvy <o00).
If additionally (H3) holds, then (iii) t; and v; are finite a.s.,

P(Zy,, =k|Z);=i) =Py (Z;, =k), and

T+l

P(va =ilZy,, = k) = Pa,f/ (Zvl = i)'
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Proof of Lemma A.1. We only prove (i) and (iii). Since IP’(Z

T = k|Z,,j =i,V < oo) is
equal to

o o
Z Z ]P’(Z,,j_s_s =k, Zyps—1 <Uy .oy Lyt < u|Zvj =i,V < oo)
s=1 u=Ly+1

it is enough to show thatforall s> 1andu> Ly + 1,

P(Z"./+s =k, Zyjrs—1 <U, ..., Zyt1 <ulZy =i, vj< oo)
(26)
=Pu(Zs=k, Zs_1 <u,...,Z1 <u).
To this end, we condition on HU+Z = (plU, q ) and HU (pl > 4 ) where [=0,1,...,s— 1.

Since, given Hv+l =(p/.qY) and Y = (pV, V), both the sequences {éfjjﬂgi}il, (&1,

and the random variables 1Y I are i.i.d., we obtain from (1) that

v+
]P’(ZVJ._H =k, Zyps—1 <Uy ..., Zyy1 <ulZy, =1i,v; <00, {H‘l)]j+l};_1 {(pl . q) )}é 1)
=Py (Zy=k Zy1 <u,.... Zo <ul{0V 2 = {0} 4 )} p)-

By taking the expectation with respect to IV = {T1Y}° ; and using that the 1Y are i.i.d., we
obtain (26). Next, we notice that

P(Z;., =k|Z), =i, v; <0
P(Zy, =kltjp1 <00, 2y, =i) = Z KA ) , where
! ! P(zj41 < 00|Z,; =i, vj < o0)
o
]P’(tj+1 < oo|Zv]. =i,V < oo) = Z ]P’(th+l = k|Z‘,j =i,V < oo)
k=Ly+1

is positive because MY > 1. Tt follows from Part (i) that ]P’(er 1 =kl <00, Z,, = i)

IP’(SiL(ZT1 = k|71 < 00). Finally, (iii) follows from (i) and (ii) using (3) and (4). O

A.3. Finiteness of 7V
We show that the stationary distribution 7Y of the Markov chain { Zy } has a finite first
moment 7V

Proposition A.1. Under (H1)—~(H4), (H6) (or (H7)), and (H9), 7V < oo.

Proof of Proposition A.1. Using that ¥ = {nk }kESU is the stationary distribution of the
Markov chain {er}]?’il, for all ke SY we write nk =P, v(Z,, =k) =E[P,v(Z;, =k|U)].
Next, we notice that

)
PHU(ZTZ =k|U2) = ZPHU(Z'EZ =k|tp =n, Uz)PﬂU(TQ =n|U2).

n=3

Now, using that the event {ty = n} is same as

{Z, > Uy NNz} 1k < U2y {vy =n—1},
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the right-hand side of the above inequality is bounded above by

o0
X S (2 =KIZ, = Us, U, Zo =i 0,y (< Uadow <= 1)
B n=3

X P_u(ty =n|U»).
Since BPRE is a time-homogeneous Markov chain, it follows that

P(Zy =K|Zy = U, Us, Zyo1 =i, (420 412 < Unh, v <n— 1)
=Ps(Z1 =k|Z) > Uz, W),

where we also use the fact that the process starts in the supercritical regime. Now, using the
fact that U and U, are i.i.d., it follows that

7V <E[ max Pz =Kz =z U, U]
Ui—1 “i

i=0,1,..., 1—

Since

P(SL(Zl k)
Psu(Z1=klZ1 =2 U1, U)) S o————
51 ]P)(SL(ZI > U1|Ul)

using the Fubini—Tonelli theorem, we obtain that

—_U ZkeSU kPaiL(Zl =k) EBL [Z1]
To < E m X < _
=0,1,..U1=1 Pg(Zy = Ui|U1) - 1Py (Z1 = UiUD |

Now, foralli=0, 1, ..., Uy — 1, we have that
Pyi(Z1 = Ur|Uy) = PU = UL U)).
Finally, using the assumptions (H2), (H3), and (H9), we conclude that

U — MY + NV U
ﬁUsE[( 1 U) + }SE[ ; 1
Py > Ui |Uy) Py = Ui|Uy)

:| max(MU, NU) < 00.

A.4. Proofs of Lemma 4.1 and Lemma 4.2

Proof of Lemma 4.1. We begin by proving (i). It is sufficient to show that for n € Ny and
keN,
Pst (Bf41 = (k" d" +d")IB},) =Py (Bl = (k. ", a" +d")), 27

whered” = (ak, ..., dF),d" = (d{f soondf),dl,dY €N, and Bf, := {BF},_,. For simplic-
ity set Xj := Z,,. We recall that A- = AU + AJL and notice

]PJBL( in+1— (k dL dL+dU)|B )
Pot (K1 =k O (AL, y=df AL, j=d )Xy =i, Bf,) =

]PJ(S,L (XTf,"+k = i’ m {XTY "+J ;é l} {ATI n+j = de’ A%‘i,n"‘j = dJL} |XTiljn = i’ BlL»n)
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We now compute the last term of the above equation. Specifically, by proceeding as in the
proof of Lemma A.1 (involving conditioning on the environments), we obtain that for n, k € N,
xj € Sk, and xo =,

Py (Ml X7 4=, AL =d AL =dH| Xy =i BE,)

Il
:l»

U AL _ L R
P(Xpr = AL =df AL, =d |XTf’l+j_1_x]_1)
1 : :

~.
I

U U L L
[TP(xi=x. A =a’', A =abix;1 =)

~.
—

k U U AL _ 4L .
P(mjzl {Xj=xj, AV =d¥, At =d! }|X0 =z>.
Now, by summing over x; € {i} and x; € SL\ {i}, we obtain that

. k=1 U - pL
]P)SIL (XTi.n"l‘k =1 rjj:l {XTi,nJ’_j # } ] 1 {ATI ant T = d Tz n+] j }|XTII:H =i Bi,n)
k—1 U U AL _ 4L

=Py (X =i, "X # i}, N A =df, Af =d}})).

The last term in the above is
Bye (T =k 0oy A =0 AF = d]) =By (B, = (k. d" d" +aV)).

We thus obtain (27). The proof of (ii) is similar. O

Proof of Lemma 4.2. The first part of (i) follows from Proposition 1.69 of Serfozo [27]
with X; =Z,,, 7 =nt = {n}};cqr, and V; = A}il. For the second part of (i) we use the above

U
proposition with V; = A;,; and obtain that

By [S7r, | = (1) B [A] | = (2F) ! (B [AF] + 1Y),
Remark (3.2) yields that
=Y > By[AlPy @y =nf = u*.
keSL leSU
We now prove the first part of (ii). Since, conditionally on Z,, =i, A{] and Aq have the

TE +1
same distribution, using (i) we have that

TiL.l ’ Tva'
2
vlst - | | a0 | =2 [ 20 (g - | et
? j=1 Jj=1
where
T e
¢/ = Ey Yo (@ =nY) Y (af —nY)

j=1 l=j+1

https://doi.org/10.1017/apr.2023.26 Published online by Cambridge University Press


https://doi.org/10.1017/apr.2023.26

530 G. FRANCISCI AND A. N. VIDYASHANKAR

Next, we apply Proposition 1.69 of Serfozo [27] with X; =Z,,,, 7 = rl= {7Tl-L}l-€SL, and V; =

(A ]lil )2 and obtain that
&2 2 I 2
By | Y0 (88, =) | = (D) B f(AY - )]
j=1
Then we compute
o0 TiL,l
=g St 8800 2 (ot -yt =
=1 I=j+1
oo
=Ey [ 2 Ttz I{Zvj=k}gL(k)}
j=1 keSL

T}

_ L

= Z g (k)]E(;’,L X;I{zvj:k} ,
]:

keSL

where gl : SL — R is given by

L
TLI

g ) =Ey | (A%, —nY) D0 (AL —uY)IT 2). 2 =k
I=j+1

o0
=) EaL[( Afr = uY)(AF - MU)I{T5131}|T,‘L,1 2Js 2y, =k]~
I=j+1

Using Theorem 1.54 of Serfozo [27], we obtain

i1
Y = | = ()

which yields

' gttt

keSE
Now, using Lemma 4.1, we see that, conditionally on j < T 1 <1 ( 41 ,uU) is independent

of (AU

o ) IfZ, v~ 7L then using stationarity (see Remark 3.1),

E[(Af, —u)i=<ThH <1, 2, ~ "] =E[(A7; — nY)I1Zy, ~7F] =0,
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Therefore,

Z Z T EaL[ YN U)(AII{H - MU)I{T51<1}|T1'I,“1 = zk] =

I=j+1 keSL

5 (A%, ~ WOEL(8E, — k)i < T <42, ~ x ey T 25,2, ~ ]
I=j+1

equals 0. Adding the above to ) ¢t gL(k)nkL, we conclude that

ZgL(k)nkL:Z > w B [(AL - 1Y) (A = wY)ITH 2. 7 = K]

keSL I=j+1 keSL

oo

3y miEy [(aF = u?)(afl, - 1Y)

I=1 keSL
oo
= Z Ai]’ Al+1]

The second part of (ii) and (iii) are obtained similarly. O

A.5. Finiteness of u7, 07, and >7

We establish positivity and finiteness of 027 and %7, where T € {L, U}. Lemma A.2 below

is used to control the covariance terms in 07 and >7. We recall that uniform ergodicity of

the Markov chains {Zuj };io and {er };:1 is equivalent to the existence of constants C7 > 0 and
pr € (0, 1) such that sup;g,. IpfG) — =Tl < Crpp.
Lemma A.2. Assume (H1)—(H4).The following holds:

() If (H5) holds and w; € R, i € SL, then

1/2
< 2C1/2 PL 72 Z w,%nkL
L=pp" \test

>

j=1

L L L L
> wewirfpi) — | D werp || Y wir

i,keSL keSL ieSL

(ii) If (H6) (or (H7))holds and wy € R, k € SV, then

o]

2

J=1

1/2
< 2C1/2 Py 7 Z w,%nkU
1_'OU keSU

U Upg: U U
Z wiwity pri () — Z W Tty Z WiT;

i,keSU keSU ieSY

The proof of the above lemma can be constructed along the lines of Theorem 17.2.3 of
Ibragimov and Linnik [31] with p = g = 1/2; it involves repeated use of the Cauchy—Schwarz
inequality and the stationarity in Remark 3.1.
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Proof of Lemma A.2. Since the proof of (ii) is similar, we only prove (i). We proceed along
the lines of the proof of Theorem 17.2.3 of Ibragimov and Linnik [31]. Using the Cauchy—
Schwarz inequality, we have that

5wyl — (X went | ( Swint |

i,keSL keSL ieSL
2
= Z Wk(”k)l/ sz(l’kz(/)— )(”k)l/
keSL ieSL
12 2\ 172
< [ D ownf Yo [ Do wilehio) — =)
keSL keSL ieSL

Using the Cauchy—Schwarz inequality again, we obtain that

2 2
(Zwi(pi,-@— ) <Z|w, pk,o>+n)‘/2|p£,-(i>—nf|”2>

ieSt ieSt
< < > (i) + n,-L)) ( > Ik - nh).
ieSt ieSt
Since ) g pﬁi(j)nkL = 7'[,-1‘ by Remark 3.1, we deduce that

(g )

keSL ieSL

1/2
s( > n,f( > ) (P + n,-L)> ( > i) — n,ﬂ))

keSL ieSL ieSL

1/2 1/2
s(zzwl-)znf) sup (Dpkl@ ] |> :

iesL keSt \ jest

Using that sup;cg. [|p-(j) — L[| < Crp],, we obtain that

sup (Dpk,(;) m} |>

keSt ieSL

< sup < > (- )) + sup ( > (mf —p';;i(j))>

keSL \ . . keSE \ . .
< ieSL: pL()—nF>0 € ieSk: pL()—nkt<0

ssup( PO nf)

L
ket N iest : p(p—t>0 ieSL : pl()—rL>0
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L L
+ sup ( Z T = Z pki(/))
ket N iest : pL(p—rk <0 ieSL : ph()—nf <0

<2Cpp).

We have thus shown that

> wwipli() — ( 2 Wk”k) ( 2 )

ikeSL keSL ieSL keSL
which yields that
o p1/2
L. L, L L 1/2 L 2_L
Z Z Wiw; T P () — ( Z Wknk> ( Z WiTT; ) < 2CL/ —1/2( Z Wi T, )
j=1likest kest ieSL L=pp" \jest

O

2.T

We are now ready to study the finiteness of means and variances ul, 02T and =T where

T e{L, U}.

Proposition A.2. Assume (H1)—(H4). (i) If (H5) and (HS) also hold, then uY < oo and 0 <
o2V < 0. (ii) Next, if (H6) (or (H7)) and (H9) hold, then u* < oo and 0 < o*% < oo. (iii)
Additionally, under the assumptions in (i) and (i), we have 0 <>V, %L < occ.

It is easy to see that Proposition A.2 implies that [CY| and |CL| are finite.

Proof of Proposition A.2. We begin by proving (i). For all i € S* it holds that

oo oo
Egplul=) Puizn <) Pu(Z,<U,

n=1 n=0
where {Z, Jo2 is a supercritical BPRE with immigration having environmental sequence
HU—{H oy and, conditionally on 1'[ , offspring dls~tr1but10ns {él’f,]l}loio and immi-
gration distribution I,‘l/ . Using the fact that lim, . Z,=00 as. and E[U;] < oo,

we see that lim,_ o Zn]ID(;L(Zn<U1|Zn)=O a.s. Since lim,_, > (0, we obtain

Zn
~ ~ (ML)n ~
limy—, o0 (MLY'Ps1(Z, < U11Z,) =0 as., which yields lim,_ e (ME)'Ps(Z, < Up)=0.
Therefore, there exists C such that

Pse(Z, < Up) < C(MEY". (28)

Now, using the fact that SL is finite and E[U; ] < oo, it follows that

E[U
UZZESiL[Tl]Tl’iLS<maXCi> [ 1]<oo

sl ieSL 1—y
1

Turning to the finiteness of o>U, replacing n by | \/n] in (28), one obtains that

o0
E(SL 71 Z]P’(SL(r] > f) ZPS,f(ZLﬁJ < Up) < 0.
n=0
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This together with the finiteness of uY yields VnL[A%l] < 00. Turning to the covariance terms
2U we apply Lemma A.2(1) with w; =Es.[r] — ,uU], and using ZiesL winiLzo, we
obtain that

iMCnL[A?, J+1]|_Z|ZE5L[11 Vel 3 By [ 11— wY o)
=1

Jj=1 keSL ieSL

in o

1/2
< zc‘/z(pL—l/z> ( > (Eyfn— MU])zn;%) < o0,

1= keSL

We conclude that 02U is finite. For i € SU, it holds that

oo .
l
Egu[A EOPBU(A1>H)<l§O(ML) R
n=! n=!

where the inequality follows from the upper bound on the extinction time of the process in the

subcritical regime. Hence, usmg Proposition A.1 it follows that ul < ML < 00.
Next we show that o> is finite. As before, we obtain that for all i € S v,
Equ[(A Z]PSU(Al > ij]<lz M) (29)
n=0 n=0
yielding that
o0
Eo[(af)7] <7V Y (MH)YY < co. (30)
n=0

This together with the finiteness of wu’ < oo implies that VnL[Aﬂ < 00. Turning to
covariances we apply Lemma A.2(ii) with w; =Ev [AII‘ - ,uL], and using the fact that

Y iesu wirr;” =0, we obtain that
00 p1/2 )
L 1/2 U L L U
SoIC,[at b )i <2c (1—/) S (B [af - ]t | <oo.
J=1 - kesU
yielding the finiteness of o >~. Turning to (iii), we compute
Vo [B] <2V [ AV ]+ v [ad]).
where, by Part (i), V.« [AY] < 00, and using Remark 3.2,
Vo[ at]= 30 3 vip|ab]Py (2o =k)nf = Vo[ at] <o
keSU ieSL

Turning to the covariance, we again apply Lemma A.2 (i) with w; = Eg1 [K? — WY+ ,uL)]
and conclude that also
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Z(C AV A = 2c‘/2(1fi—:1/2> ( > (Eg[AT - (u”+uL)])2nkL).

J=1 L keSL

The finiteness of the right-hand side yields Y < co. The proof that > < oo is similar.

We finally establish that o2V o2L 52U and %L are positive. We first show that, condi-
tionally on Zy ~ SZL and Z;, ~ 8,? s A{] and A% are non-degenerate. To this end, suppose for the
sake of contradiction that

o0
1=Py (A =u")= Y Pu(ZywzuZyw_y<u....Zi <u)PU=uw).
u=Ly+1
Since U] has support SY we obtain that IP’(,L(ZMU >u, ZMU,I <u,....,Zy<u)=1forallue

Sg. In particular,
Est [Zyw 1] <u< Bt [2,.v]= MU]ES,.L [Z,v-1] +NY.

By taking both u=Ly+ 1 and u > M YLy + 1)+ NV in the above equation, we obtain that
both ESL[ZMU_I] <Ly +1and ESL[ZMU_I] > Ly + 1. Similarly, if

I=Py (Al = Z]PSU i <L Zyg > Zey > )P(L =),
_LO

then using that L has support NN [Lg, Ly], we obtain that
P‘S]g/(ZMLHI <l ZML+T1_1 >l,...,Zyy1>0D)=1 forall Lo <I<Ly.
In particular,
L L_
(MY k<1< (M) k.

By taking both /=Ly and /= Ly, we obtain that Ly > M Ly, which contradicts (H4). We
deduce that

TH —1
Z (A}il MU)
J=0
is non-degenerate, and similarly,
Y -1 Th -1 i -1
Y (ki) Y (B i) ad Y (B - uth)
j=0 j=0 j=0

are non-degenerate. Using Lemma 4.2 below, we conclude that

. 2
T -1
52U L Ul L U U
=7 VBL[STL —uh | =xtEy | | 2 (A% - | [0
Jj=0
and similarly 0> > 0,5>Y > 0, and 3% > 0. t
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A.6. Martingale structure of MT ;
We recall that M, := 3"/ D], where

st
T Zj
T Bl T\ =T T J—1 T Bl
Dj,1=<Pj—1—M )Xj—l and Dj,2_Zj 12(%-1,;“3/—1)-
=1
Also,
n 5T
- X1
AT — =1
NS

and for s > 0,
_|sr T|* Ts_ T BT
=[P -m"| ana A _IEUSJ-J—PJ-‘ ‘nj].
Proposition A.3. The following statements hold:

(i) Fori=1,2, {(MI{J, Hui)loo | is a mean-zero martingale sequence, and for all s > 0,
we have E[leTl |S|’H.,~_1,,-] = E[Ag’f])zjzl a.s. In particular,

B[(0],)*1#y-1.] = VI3 s as, and B[(M],)*] = VIB[T],

(i1) {( 0.2 Ho, 2)} is a mean-zero martingale sequence satisfying

57
E[(D])*1#512] = VI 2", and B (M],)?] = VIE[A] .
j—1
Additionally, for all s > 1, IE[|DT2| [Hj—1 2] < E[ 0. Z]Xj | as.

(i) For i=1,2, {(Z};l ((D/Tl) —E[(D/.TJ.) ]), 7:[",1')}::1 are mean-zero martingale
sequences, and for all s > 1, ‘
E[I(D])" ~ B[(Df) 1 1#-11] < 2E[Ag JE[%4]
@iv) For all T1, T € {L U} and iy, ir € {1, 2} such that either T1 # T, or iy # iy, it holds
that E[ (D A ”)(Dl lz)] Oforallj,l=1,...,nand E[(M, ”)(MT? )] =0. In particu-

n,ip
lar, {(Zj:l (DJT;I)( a 12) , 2)} is a mean-zero martingale sequence, and for all
s>1,

E[|(D]7:11)( 7 12)| |HJ 1 2] = E[A(])WIHYA(?I;]E[XJTIIXJTZI]

Proof of Proposition A.3. We begin by proving (i) with i = 1. We notice that (M |, H..;)
is a martingale, since M,{ | is Hp,1-measurable and

E[M] Hoo1a] =M, + B[Py = M7 |3 =ML .
It follows that IE[MHTJ] =E[M lT 1] = 0. Next, notice that for s > 0,

E[ID] (P 1a] = B[P, — M7 = E[AGTIR L as.
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In particular, if s = 2, then I[']][(DJ-Tl)2 ;. 1,1] = VIT Xﬁl a.s., and the martingale property yields
that
E[( _E|:ZIE ) 1M, 11]]=V1T1E[6,{].

Finally, we notice that, since the DJT do not depend on the offspring distributions {Sj N0
Part (i) holds with H, | replaced by H, 2.
We now turn to the proof of (ii). We notice that MI{ , is Hp,2-measurable, and using that

E[EnT_l,,' - 1_3571 IIT_1=0, we obtain that

Zn—1

ir _
E[M, 5| Hp12] =M, _ 127L o ZE En 11—P5—1|H£—1]] M)y,
i=1

yielding the martingale property. It follows that E[M ,] = E[M{ ,] =0, as

=T %o

B 5 Ho2] = 5> 3 B[R], - PyInf] =o.

i=1
We now compute

b2 Zj-1 2
B0 12] = B B[ (6L~ Ph) | pe i | s
j—1 i=1

=T
Using that, conditionally on the environment H 1 {Sj 1. l} =, are 1.i.d. with variance P _1, We

obtain that

Zj—y
T —T =T \2 T
E Zsj—l,i_ijl Hj-1,2, T1 '— ZE[ j— 11_Pj71) Hj-1.2, Hj—l:l
i=1
=T
=Zj-1Pj_;.
We conclude that ;
2 X
T T2
E[(DjQ) |Hj_1,2] Vi e

" E[(m2,) ] = {ZE |H,12]} VIE[A7]

Additionally, Jensen’s inequality yields that for s > 1,

~TZ

SB[ n{ zns, 1,—70,?1\%%,-1,2} _B[ATI]E  as
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For (iii), we notice that Z” ((DT )2 —IE[(DT )2]) is ’Hn ;-measurable, and since )(” 10
Zy—1, TII_ |, and {&7 | l} —, are not H,_1 ;-measurable, we have that E[(D n’i) I'H,,_L,] =
E[(DZ,) ] and

E[ Z ((0f3)* = E[(Dfi)z])|7%n1,i} =3 ((01) — E[(D1)7).

J=1

Again using the convexity of the function |-|* for s > 1, we get that
E[(D])” ~ E[(D]:) ] 1#-11] <27 (B[(0]:) "] + (B[(D]:)])") < 2°E[(D]))"]-

. e . ~T T \2s . T,2 ~T .
If i =1, then by condltlpnlng on y;_; we bave that E[(Dj’l) ] = E[Ao,ls]E[Xj—l]' Ifi=2,
then we apply Jensen’s inequality and obtain that

B{(D])™] < E[AL3,7] ] = E[ATIELE]. ]

Turning to (iv), we show that for all T, T, € {L, U} and iy, ip € {1, 2} such that either T} # T»
or i1 # iy, it holds that E[(D;, z|)(Dl )] =0forallj,I=1,..., n This also yields that

E[( nTln nzz ZZE jl] 112 =0.
j=1 =1

First, if {=j and T # T, then E[(D /”)(D.Tz. )] =0 because )ZJ.T_II)Z/.T_Zl =0. Next, if /= and

Ji2
i1 #ip (say iy =1 or i =2), then by conditioning on H;_; 1 and HJ.TEI and using the fact that

T —T r
E[Si—zl,i _szerjfl,l, Hj_zl] =0as.

l
and that 1'[/ I

=Ty Zji—
X
E[(Djfll)(pjg)]:za{(pﬂ - MM 7 O IZE[J i .zlm,-_l,l,nfil]}:o.

X JE 1 )"(f_ﬂ, and Z;_ are H;_1 1-measurable, we obtain that

Finally, if [#j (say [ > j), then by conditioning on 7—21_1,2 and using that D;;, is 7:11_1,2-
measurable and E[(Dl,i2)|7:ll—1,2] =E[Dy,;,] =0, we obtain that

E[(Dj il)(Dl 12)] E[DJ llE[Dl 12|H1 1 2]] 0.

We have that {( X7 (DJT}I)( a 7). Hu2)12, is a mean-zero martingale sequence, since

Z}Ll (DjTll)(D]sz) is 7-[,,,2 -measurable and
E[(D]})(Dj2)1Hj-12] =E[(D]},)(Dj2,)] =0

if either 71 #T, or i #ip. If Ty #T, then both E[|( j”)( jlz)l I’HJ 12] 0 and

E[)”(J 1)ZJT21] 0. Finally, if Ty =T and i; #i» (say iy =1 and ip =2), then by Jensen’s
inequality

E[I(D] L) (D7) Fa] < (D) A L 25
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which yields that

E[I(D]1,) (D111 Fim1] <E[AGL AG |70 7
and

]E[| (D]Til ) (D]sz) |S|7:lj—112] = E[Agli’:A(?if]E[iﬁl Xijl]'

Appendix B. Numerical experiments

In this section we describe numerical experiments to illustrate the evolution of the pro-
cess under different distributional assumptions. We also study the empirical distribution of
the lengths of supercritical and subcritical regimes and illustrate how the process changes
when U; and L; exhibit an increasing trend. We emphasize that these experiments illustrate
the behavior of the estimates of the parameters of the BPRET when using a finite number
of generations in a single synthetic dataset. In the numerical experiments 1-4 below, we set
Ly=10%,Ly=10*ne{0, 1, ..., 10*), U; ~ Ly + Zeta(3), L; ~ Unifa(Lo, 10Lo), and we
use different distributions for Zy, Ié/ ~ Qg , Séj 1~ Pé/ , and S& 1~ Pé as follows:

Zo— Lo Ié/ ";:(ijl S()L,l
Exp. 1 Pois(l;Ly — Lo) Pois(AD), Pois(AY), Pois(AD),
A ~Unif(0,10), AY~Unif(0.9,2.1), AL~unif(0.5,1.1),
Exp.2 Pois(l;Ly — Lg) Pois(AD), Pois(AY), Pois(AD),
A~ Gamma(s, 1), AU~ Gamma(2, 1), AL~ Gamma(0.8, 1),
Exp.3 Nbin(l, I;Ly —Lg) Nbin(R!, 0", Nbin(RY, OY), Nbin(RE, Ob),

R'~14Pois(1), RY~1+Pois(l), RE~ 1+ Pois(l),
O ~unif(0,10), OY~Uunif(0.9,2.1) OL~unif(0.5,1.1)

Exp.4 Nbin(l, 1;Ly —Lg) Nbin(R!, 0'), Nbin(RY, OY), Nbin(RE, Ob),
R'~1+4pPois(l), RYU~1+Pois(l), RL~ 1+ Pois(l),
O ~ camma(5, 1), OY ~ Gamma(2, 1), OL ~ Gamma(0.8, 1),

In the above description, we have used the notation Unif(a, b) for the uniform distribution
over the interval (a,b) and Unif (a, b) for the uniform distribution over integers between a
and b. Zeta(s) is the zeta distribution with exponent s > 1. Pois(}) is the Poisson distribution
with parameter A, while Pois(A;b) is the Poisson distribution truncated to values not larger
than b. Similarly, Nboin(r, o) is the negative binomial distribution with predefined number
of successful trials r and mean o, while Nbin(r, o;b) is the negative binomial distribution
truncated to values not larger than b. Finally, Gamma(w, 8) is the gamma distribution with
shape parameter o and rate parameter 8. In these experiments, there were between 400 and
700 crossings of the thresholds, depending on the distributional assumptions. The results of
the numerical experiments 1-4 are shown in Figure 2.

We next turn our attention to the construction of confidence intervals for the means in the
supercritical and subcritical regimes. The values of M T— IE[I_’g 1, VlT = V[Fg ],and VI = E[FO]
in Experiments 1-4 can be deduced from the underlying distributions and are summarized
below. The values of VZU and V2L in Experiments 3—4 are rounded to three decimal digits.
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MY vy vy M- Vi vk
Exp. 1 L5 0.12 L5 0.8 0.03 0.8
Exp. 2 2 2 2 0.8 0.8 0.8
Exp. 3 L5 0.12 2.998 0.8 0.03 1.224
Exp. 4 2 2 5.793 0.8 0.8 1.710

In the next table, we provide the estimators M,lz] , C,l,] /NEn), C‘fzj /NE(n), and Afl] /NE(n) of
E[l_’g ], wY, iV, and AV, respectively. Notice that

(AR b 2
V,f{lz =0 (—] 4 1—Mﬁ/) )Zjlil and
Cn j=1 Zj_l

Zj—1 U 2
1 & 1 Zi—17,
VU . = p— (Eli '_—j> X~li
n,2 CU Z Zj—l ; j—1.i Zj—l Jj—1

n j=1

are used to estimate VIU and V2U . As in the proof of Theorem 2.4, it is easy to see that Vé’ 1
and Vg , are consistent estimators of VlU and V2U . Similar comments hold when U is replaced

by L.

MY vy, vy, CY/Ntm)  CY/NE(m)y — AY/NE(n)
Exp.1 1496  0.122  1.499 9.282 9.282 0.010
Exp.2 2009 2051  2.003 10.807 10.804 0.105
Exp.3 1507  0.119  3.016 9.069 9.069 0.011
Exp.4 2018 2157 5929 10.899 10.893 0.112

ME vE, vE, CL/NY(n)  CL/NY(n)  AL/NY(n)
Exp.1 0799  0.031  0.800 14.063 14.063 0.009
Exp.2 0809  0.805  0.809 5.118 5.118 0.002
Exp.3 0799 0030 1214 14.028 14.028 0.010
Exp.4 0822 0945  1.869 5.136 5.136 0.002

Using the above estimators in Theorem 2.6, we obtain the following confidence intervals for
M,? and M,Ll. We also provide confidence intervals for the estimator M, defined below, which
does not take into account different regimes. Specifically,

T
M, 1 N Zi—1,

Lz _.>n,
Yielgen g 4 7

where IJT_1 is equal to I]lil if T = U and O otherwise.
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95% Clusing MY 95% Clusing ML 95% CI using M,

Exp. 1 (1.485, 1.507) (0.795, 0.804) (1.068, 1.085)
Exp. 2 (1.975, 2.043) (0.778, 0.840) (1.596, 1.651)
Exp. 3 (1.496, 1.518) (0.794, 0.803) (1.068, 1.085)
Exp. 4 (1.982, 2.053) (0.788, 0.855) (1.607, 1.664)

Next, we investigate the behavior of the process when the thresholds L; and U; increase with

j. To this end, we let Lo = 102, Ly = 10%, and
Zy, immigration distribution 1Y, and offspring

nef{0,1,...,10%) and take initial distribution
distributions SOU | and éOLl as in Experiment 1.

We consider four different distributions for L; and Uj, as follows:

Uj—Lu

L;

Exp. 5 Zeta(3)
Exp. 6 Zeta(3)

Exp.7 Zeta(3)+ 500G — 1)
Exp. 8 Zeta(3)+ 500G — 1)

Unifg(Lg, 10Lg)

Unify(Lj1, Lj2), where

L;j 1 =min (Lo + 100( — 1), Ly),
L;j» =min (10Ly + 100¢G — 1), Ly)
Unifgq(Lg, 10Lg)

Unify(Lj1, Lj2), where

L;j1 =min (Lo + 100G — 1), Ly),
L;j» =min (10Ly + 100¢G — 1), Ly)

The results of Experiments 5-8 are shown in Figure 3. From the plots, we see that the
number of cases after crossing the upper thresholds is between 10* and 2 - 10*, whereas when
the thresholds increase they almost reach the 6 - 10* mark. Also, the number of regimes up to

time n = 103 decreases, as it takes more time
the overall number of cases also increases.
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