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Abstract
We introduce a new non-abelian quantum synchronisation model over the unitary group, represented as a gradient
flow, where state matrices asymptotically converge to a common one up to phase translation. We provide a sufficient
framework leading to quantum synchronisation based on Riccati-type differential inequalities. In addition, uniform
time-delayed interaction is considered for modelling realistic communication, and we demonstrate that quantum
synchronisation is persistent when a small time delay is allowed. Finally, numerical simulation is performed to
visualise qualitative behaviours and support theoretical results.

1. Introduction

Collective synchronous behaviour of a many-body quantum system has attracted much attention from
many scientific disciplines, particularly from quantum optics and quantum information [3, 4, 8, 15, 17,
20, 23]. In order to provide a mathematically rigorous analysis of such a phenomenon, several math-
ematical models (even phenomenological ones) have been proposed in literature after Winfree [22],
Kuramoto [12] and Vicsek [21]. Among tractable candidates, we are concerned with the following model
[14] on the unitary group U(d) of degree d:

iU̇jU
†
j = Hj + iκ

2N

N∑
k=1

ajk(UkU
†
j − UjU

†
k ), t> 0, (1.1)

subject to initial data:

Uj(0) = U0
j ∈ U(d), j ∈ [N] := {1, 2, . . . , N}. (1.2)

Here, Uj is a state matrix on j-th node, Hj plays a role of intrinsic frequency on j-th node, κ > 0 measures
a (uniform) coupling strength between nodes, and aij > 0 describes network structures. Note that system
(1.1)–(1.2) preserves unitarity and is represented as a gradient flow. It has been shown that when Hi ≡ H
for all i ∈ [N], then every state asymptotically collapses to a common one, and when Hi �= Hj for some
i �= j ∈ [N], relative correlation matrix UiU

†
j converges to a definite one for each i, j. For the latter case,

convergence of Uj itself is still unknown. For detailed statements of the convergence results, we refer
the reader to [6, 7, 14].

However, it is more natural to expect the situation that state converges to another state up to phase
translation. This is more reasonable and fits better with quantum mechanics where gauge invariance
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is allowed. In this regard, we suggest a new model on the unitary group satisfying following the two
properties:

• (P1): Each state converges to a stationary state.
• (P2): Such stationary states are identical up to phase translation.

For this purpose, we introduce a new model on the unitary group:

U̇j = κ

N

N∑
k=1

(
〈Uj, Uk〉Uk − 〈Uk, Uj〉UjU

†
k Uj

)
, t> 0, (1.3)

subject to initial data:

Uj(0) = U0
j ∈ U(d), j ∈ [N]. (1.4)

Here, the inner product between matrices is defined by the Frobenius inner product, and the correspond-
ing Frobenius norm is defined as follows:

〈A, B〉 := tr(AB†), ‖A‖ := √〈A, A〉.
One can easily verify that unitary group U(d) is positively invariant under system (1.3) (see Lemma 2.1).

For (P1), we show that (1.3) is represented as a gradient flow with the following analytical potential:

V(U) := κ

2N

N∑
i,j=1

(d2 − |〈Ui, Uj〉|2), U= (U1, . . . , UN) ∈ (U(d))N . (1.5)

Since the unitary group is compact, we deduce from the Łojasiewicz inequality that Uj converges to a
definite state, say U∞

j ∈ U(d), for each j ∈ [N]. See Lemma 2.3 for detailed verification.
On the other hand for (P2), since (1.3) is a gradient flow with potential (1.5), it would be expected that

a solution approaches a state that minimises the potential so that V(U) becomes zero. In this situation,
there exists αij ∈C such that

|〈U∞
i , U∞

j 〉| = d2 ⇐⇒ U∞
i = αijU

∞
j , |αij| = 1

which implies (P2). Hence, in what follows, our analysis is dedicated to rigorously providing this
minimising process. To be more specific, we find a sufficient condition leading to

lim
t→∞

|〈Ui, Uj〉(t)|2 = d2

which is called quantum synchronisation (see Definition 2.1). For our argument, we define the matrix-
valued synchronisation quantity:

Fij := 〈Ui, Uj〉Id − dUiU
†
j , (1.6)

and show that Fij tends to zero (see Theorem 3.1). This plausible scenario is verified for N = 2 as a
simple motivation in Section 2.4.

Recently, when quantum synchronisation is considered, time-delayed interaction would be introduced
for the emission time of some experiments at the laboratory level [1, 19]. One of the simplest imple-
mentations of the time delay is to consider a uniform delay time τ > 0 in the interaction. For example,
what Uj receives in (1.3) at time t is the information of Uk at time t − τ . Hence, for possible realistic
application of the model, we also introduce the following delayed system for (1.3):

U̇j = κ

N

N∑
k=1

(
〈Uj, Uτ

k 〉Uτ

k − 〈Uτ

k , Uj〉UjU
τ ,†
k Uj

)
, t> 0, (1.7)

subject to initial data

Uj(t) =�j(t) ∈ U(d), −τ ≤ t ≤ 0, j ∈ [N]. (1.8)
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Here, τ > 0 is a uniform time delay among all states, and Uτ
j is defined as

Uτ

j (t) := Uj(t − τ ),

and initial data {�j(t)} are given to be Lipschitz continuous function. Thus, the system (1.7)–(1.8) admits
a local solution from the standard Cauchy-Lipschitz theory, and this local solution directly extended to a
unique global one due to the uniform boundedness of U̇j. Then, our second goal is to verify an emergence
of quantum synchronisation for (1.7) when τ is sufficiently small by analysing the synchronisation quan-
tity Fij in (1.6). For the analysis, we closely follow [5] where a uniform time delay for (1.1) is considered.
See Theorem 4.1 for the result.

Lastly, we perform numerical simulations for both (1.3)–(1.4) and (1.7)–(1.8) to compare theoretical
results with numerical ones. We numerically verify that the potential V (in fact, rescaled one) converges
to zero with and without (small) delay for randomly chosen initial data.

The rest of this paper is organised as follows. In Section 2, we study elementary properties and
detailed description of our model and review previous relevant results. Moreover, motivation is provided
by analysing the case of N = 2. In Section 3, we show that quantum synchronisation emerges for (1.3)
under some frameworks, and in Section 4, we verify that quantum synchronisation still emerges when
the time-delay between nodes is sufficiently small. Finally, we present numerical simulation results in
Section 5 to observe that quantum synchronisation of (1.3) and (1.7) indeed appears for the generic
initial data. Finally, Section 6 is devoted to conclusion of the paper and further discussion.

2. Preliminaries

In this section, we provide several dynamical properties and detailed description for the system (1.3)
and review several relevant previous results.

2.1. Dynamical properties

As a synchronisation model on the unitary group, it should be guaranteed that the unitary group is a
positively invariant manifold of the system (1.3). Of course, positive invariance of the unitary group
directly follows from the projection operator in (2.4). However, for readers’ convenience, we provide an
alternative proof in analytic way.

Lemma 2.1. Let {Uj} be a solution to (1.3)–(1.4). Then, the unitary group is positively invariant under
the flow (1.3):

Uj(t) ∈ U(d), t ≥ 0.

Proof. We first define a critical time T∗ as a maximal time that the Frobenius norms of Ui are smaller
than

√
d + 1:

T∗ = sup

{
t ≥ 0

∣∣∣∣∣ sup
0≤s≤t

max
1≤i,≤N

‖Ui(s)‖<√
d + 1

}
.

Since the initial data U0
i are on the unitary group, which implies ‖U0

i ‖ = √
d, we have T∗ > 0. We will

show that T∗ = +∞. Suppose to the contrary that T∗ <+∞. Then, there exists an index i0 such that
‖Ui0 (T∗)‖ = √

d + 1. On the other hand, it is straightforward to observe that

d
dt

(Id − UiU
†
i ) = − κ

N

N∑
k=1

(
(Id − UiU

†
i )VjkU

†
i + UjV

†
jk(Id − UiU

†
i )
)

(2.1)

where Vjk := 〈Uj, Uk〉Uk. Therefore for 0 ≤ t ≤ T∗, we have
1

2

d
dt

‖Id − UiU
†
i ‖2 ≤ C(d)‖Id − UiU

†
i ‖2,
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where we used a boundedness of ‖Ui(t)‖ in the time interval [0, T∗]. Then, since ‖Id − U0
i (U0

i )†‖ = 0,
Grönwall’s inequality implies

Id − Ui(t)Ui(t)
† = 0, 0 ≤ t ≤ T∗, i ∈ [N],

and in particular, Ui0 (T∗) ∈ U(d), and therefore, ‖Ui0 (T∗)‖ = √
d. This contradicts the choice of index

i0, and therefore, we conclude that T∗ = +∞. Then, we return to the estimate (2.1) and use the same
argument as above to conclude that Ui(t) ∈ U(d) for all i ∈ [N] and t ≥ 0.

Next, we show that system (1.3)–(1.4) is invariant under phase translation.

Lemma 2.2. Let {Uj} be a solution to (1.3)–(1.4). Then, the system is invariant under the phase trans-
lation, that is, for a set of constants {θ1, θ2, . . . , θN}, if {U1, U2, . . . , UN} is a solution to (1.3), then
{eiθ1 U1, eiθ2 U2, . . . , eiθN UN} also becomes a solution to (1.3).

Proof. One can easily notice that if {Uj} is a solution to (1.3), then

d
dt

(eiθi Ui) = κ

N

N∑
k=1

(
〈eiθi Ui, eiθk Uk〉eiθk Uk − 〈eiθk Uk, eiθi Ui〉(eiθi Ui)(e

iθk Uk)
†(eiθi Ui)

)
. (2.2)

Thus, if we define Wi := eiθi Ui, then (2.2) can be written as

Ẇi = κ

N

N∑
k=1

(
〈Wi, Wk〉Wk − 〈Wk, Wi〉WiW

†
k Wi

)
.

Therefore, Wi is also a solution to (1.3) subject to the initial data Wi(0) = eiθi Ui(0).

In most of the synchronisation models on the unitary group, such as (1.1), the system is said to be
synchronised if the difference between two oscillators Ui and Uj tends to zero:

lim
t→∞

‖Ui(t) − Uj(t)‖ = 0.

However, a generalised definition of synchronisation, called quantum synchronisation was introduced
in [9], based on the idea that if the one state is the phase factor multiplication of the other state, then the
two states are indistinguishable.

Definition 2.1. [9] For a solution {Ui} to system (1.3)–(1.4), we say that the system exhibits quantum
synchronisation if for each i, j ∈ [N], there exists a constant αij ∈R such that

lim
t→∞

‖Ui(t) − eiαij Uj(t)‖ = 0, or equivalently lim
t→∞

‖Ui(t)Uj(t)
† − eiαij Id‖ = 0.

In particular, if αij ≡ 0 for all i, j ∈ [N], we say that the system exhibits complete quantum
synchronisation.

Next, we show that the system (1.3) can be represented as a gradient flow on the unitary group.

Lemma 2.3. The system (1.3) can be represented as a gradient flow of the following analytical potential:

V(U) := κ

2N

N∑
k,�=1

(d2 − |〈Uk, U�〉|2), U= (U1, . . . , UN) ∈ (U(d))N . (2.3)

Moreover, for each i ∈ [N], there exists a constant unitary matrix U∞
i ∈ U(d) such that

lim
t→∞

Ui(t) = U∞
i .

Proof. In order to show that system (1.3) is a gradient flow, we first calculate ∂|〈Ui ,Uj〉|2
∂Ui

and then take the
orthogonal projection of the resulting relation by using the projection formula.
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Note that projection of any d × d matrix X onto TUU(d), the tangent space of U(d) at U ∈ U(d), is
given by

PU(X) = 1

2
(X − UX†U) ∈ TUU(d). (2.4)

We now compute the gradient of |〈Ui, Uj〉|2 for fixed indices i and j. Since Ui ∈Md,d(C) =R
2d2 , where

Md,d(C) denotes the set of all d × d complex-valued matrices, partial derivatives of Ui can be achieved
by the partial derivatives of real and imaginary components of Ui inR2d2 . Similarly, taking partial deriva-
tives of a scalar-valued function of U can be obtained by taking partial derivatives of the function with
respect to real and imaginary components. Let us denote the (k, l)-component of Ui as [Ui]kl = ai

kl + ibi
kl.

We first consider the case when i �= j. Then, since

|〈Ui, Uj〉|2 =
∣∣∣∣∣∑

k,l

[Ui]kl[Uj]kl

∣∣∣∣∣
2

=
∣∣∣∣∣∑

k,l

(ai
kla

j
kl + bi

klb
j
kl) + i(aj

klb
i
kl − ai

klb
j
kl)

∣∣∣∣∣
2

=
(∑

k,l

(ai
kla

j
kl + bi

klb
j
kl)

)2

+
(∑

k,l

(aj
klb

i
kl − ai

klb
j
kl)

)2

,

we have

∂|〈Ui, Uj〉|2

∂ai
kl

= 2

(∑
k,l

(ai
kla

j
kl + bi

klb
j
kl)

)
aj

kl − 2

(∑
k,l

(aj
klb

i
kl − ai

klb
j
kl)

)
bj

kl

= 2Re
(〈Ui, Uj〉[Uj]kl

)
,

and

∂|〈Ui, Uj〉|2

∂bi
kl

= 2

(∑
k,l

(ai
kla

j
kl + bi

klb
j
kl)

)
bj

kl + 2

(∑
k,l

(aj
klb

i
kl − ai

klb
j
kl)

)
aj

kl

= 2Im
(〈Ui, Uj〉[Uj]kl

)
.

Similarly, when i = j, then we have

∂|〈Ui, Ui〉|2

∂ai
kl

= 4Re(〈Ui, Ui〉[Ui]kl),
∂|〈Ui, Ui〉|2

∂bi
kl

= 4Im(〈Ui, Ui〉[Ui]kl).

Thus, the derivative of |〈Ui, Uj〉|2 by Ui is

∂|〈Ui, Uj〉|2

∂Ui

= (2 + 2δij)〈Ui, Uj〉Uj,

where δij denotes the Kronecker delta. This yields the following formula of the gradient of |〈Ui, Uj〉|2

at Ui:

∇Ui |〈Ui, Uj〉|2 = PUi

(
(2 + 2δij)〈Ui, Uj〉Uj

)= 〈Ui, Uj〉Uj − Ui(〈Ui, Uj〉Uj)
†Ui,

since PUi (〈Ui, Ui〉Ui) = 0. Hence, the gradient of potential is given by

∇UiV= κ

2N

N∑
k,�=1

(−∇Ui |〈Uk, U�〉|2
)= − κ

N

N∑
j=1

∇Ui |〈Ui, Uj〉|2

= − κ

N

N∑
j=1

(
〈Ui, Uj〉Uj − 〈Uj, Ui〉UiU

†
j Ui

)
.
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Therefore, the system (1.3) is a gradient flow with the potential V in (2.3), that is

U̇j = −∇UjV.

On the other hand, it is known that the gradient flow on a compact manifold must converge [6,
Theorem 5.1], by using Łojasiewicz inequality. Since (U(d))N is a compact manifold, we conclude that
the system (1.3) must converge, that is, there exists U∞

i ∈ U(d) such that limt→∞ Ui(t) = U∞
i .

2.2. Model description

Since (1.3) is a gradient flow equipped with potential (2.3), a solution is expected to converge to a
minimiser of (2.3), that is, a solution converges to some definite states tending to minimise the potential
V. When a solution reaches global minimum of V(U), then we have for all i, j ∈ [N]:

|〈Ui, Uj〉|2 = d2 ⇐⇒ Ui = αijUj, |αij| = 1.

This condition exactly coincides with the emergence of quantum synchronisation in Definition 2.1.
Hence, it is natural to expect that the system (1.3)–(1.4) exhibits the quantum synchronisation, instead
of the complete quantum synchronisation.

Another motivation for quantum synchronisation is as follows. We note that the only difference
between classical synchronisation system (1.1) with (Hi, aij) = (Od, 1) and the system (1.3) is that Uk

in (1.1) is replaced by 〈Ui ,Uk〉
d

Uk, by rescaling κ �→ dκ . Since a solution to (1.1) with (Hi, aij) = (Od, 1)
tends to a common state, that is, ‖Ui(t) − Uk(t)‖ → 0 as t → ∞ [7], one can expect that our model would
exhibit the following convergence:∥∥∥∥Ui(t) − 〈Ui(t), Uk(t)〉

d
Uk(t)

∥∥∥∥→ 0, as t → ∞,

which also coincides with the definition of quantum synchronisation in Definition 2.1.

Remark 2.1. (1) We also mention that the model (1.3) is essentially high-order model. If we consider
the case when d = 1 and parameterise Ui = eiθi , then the system (1.3) reduces to

θ̇j = 0, or, θj(t) = θj(0), t> 0,

which is a trivial dynamics. However, with the same parameterisation, the system (1.1) with (Hi, aij) =
(Od, 1) reduces to the well-known Kuramoto model [12]:

θ̇j = κ

N

N∑
k=1

sin(θk − θj).

The reason why the system (1.3) reduces to the trivial dynamics is that the two phases are considered
to be identical if they are only different in phase factor. In this sense, all the one-dimensional phases
are identical, and therefore, the dynamics becomes trivial. Therefore, the new model (1.3) is essentially
high-dimensional, and it is qualitatively different from the usual synchronisation model.
(2) One might consider the non-identical extension of the system (1.3) as in (1.1):

U̇j = −iHjUj + κ

N

N∑
k=1

(〈Uj, Uk〉Uk − 〈Uk, Uj〉UjU
†
k Uj

)
. (2.5)

If we consider the diagonal Hamiltonian, that is,

Hj = ajId, aj ∈R,

then (2.5) becomes

U̇j = −iajUj + κ

N

N∑
k=1

(〈Uj, Uk〉Uk − 〈Uk, Uj〉UjU
†
k Uj

)
.
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However, if we introduce Vj := eiajtUj, then by using similar argument as in Lemma 2.2, Vj exactly
satisfies (1.3):

V̇j = κ

N

N∑
k=1

(〈Vj, Vk〉Vk − 〈Vk, Vj〉VjV
†
k Vj

)
.

Therefore, the effect of aj disappears up to the phase factor. See also Remark 3.2.

2.3. Previous results

In this part, we review previous results on the quantum synchronisation models that are closely related
to (1.3). First of all, the first non-abelian quantum synchronisation model (1.1) on the unitary group
was introduced in [14]. Here, we briefly recall the previous results on (1.1). For detailed statements and
proofs, we refer the reader to [7, 11].

Theorem 2.1. [7, 11]

1. [7] Suppose that Hi = Od for all i ∈ [N] and initial data {U0
j } satisfy

max
1≤i,j≤N

‖U0
i − U0

j ‖<
√

2

and let {Uj} be a solution to (1.1) with initial data {U0
j }. Then, we have

lim
t→∞

max
1≤i,j≤N

‖Ui(t) − Uj(t)‖ = 0.

2. [7] Suppose that system parameters satisfy

κ >
54

17
max

1≤i,j≤N
‖Hi − Hj‖> 0, max

1≤i,j≤N
‖U0

i − U0
j ‖ � 1,

and let {Uj} be a solution to (1.1) with initial data {U0
j }. Then, the limit limt→∞ (UiU

†
j )(t) exists.

3. [11] Suppose that system parameters satisfy

Hi = −aiId,
N∑

i=1

ai = 0, κ � max
1≤i,j≤N

|ai − aj|, max
1≤i,j≤N

‖U0
i − U0

j ‖ � 1

and let {Uj} be a solution to (1.1) with initial data {U0
j }. Then, there exists a constant unitary matrix

V ∈ U(d) and a real number θ∞
j such that

lim
t→∞

Uj(t) = eiθ∞
j V .

We remark that the results in Theorem 2.1(3) exactly coincide with quantum synchronisation in
Definition 2.1, whereas Theorem 2.1(2) is, in fact, not quantum synchronisation.

On the other hand, the system (1.3) is also closely related to a swarming model on the complex sphere
in the Hilbert space [9] suggested by the present authors, which reads as:

ψ̇i = κ

2N

N∑
k=1

(ψk − 〈ψk,ψi〉ψi), t> 0, (2.6)

subject to initial data

ψi(0) =ψ 0
i ∈H, ‖ψ0

i ‖ = 1, i ∈ [N]. (2.7)

Here, H is a complex Hilbert space and ψi =ψi(t) is a state vector on the i-th node. In addition, the
inner product in H is linear in the first argument and conjugate linear in the second argument just as the
Frobenius inner product: for c ∈C and x, y ∈H,

〈cx, y〉 = c〈x, y〉, 〈x, cy〉 = c̄〈x, y〉.
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Then, the authors showed the following statement.

Theorem 2.2 (9, Theorem 4). Let {ψi} be a solution to (2.6)–(2.7). Suppose that the norm of the average
of initial data is strictly positive, that is, ‖ 1

N

∑N
i=1 ψ

0
i ‖> 0. Then, there exist complex-valued functions

αij(t) such that

lim
t→∞

‖ψj(t) − αij(t)ψi(t)‖ = 0, lim
t→∞

|αij(t)| = 1.

If we adopt our definition for quantum synchronisation in Definition 2.1 to the swarming model (2.6),
then one can say that (2.6) exhibits quantum synchronisation (see also Definition 1 in [9]).

Finally, it should be mentioned that (2.6) is also related to the Schrödinger–Lohe model [13] where
H= L2(Rd) which reads as:

ψ̇i = κ

2N

N∑
k=1

(ψk − 〈ψi,ψk〉ψi), t> 0. (2.8)

The only difference between (2.6) and (2.8) is the order of the inner product. Precisely, 〈ψk,ψi〉 is
given in (2.6) and 〈ψi,ψk〉 is given in (2.8). However, with this change, their asymptotic behaviours
are completely different.

2.4. Two-state system

As a starting point of the analysis, we first consider a two-state system of (1.3):

U̇1 = κ

2
(〈U1, U2〉U2 − 〈U2, U1〉U1U†

2U1),

U̇2 = κ

2
(〈U2, U1〉U1 − 〈U1, U2〉U2U†

1U2),
(2.9)

subject to initial data:

(U1, U2)(0) = (U0
1 , U0

2) ∈ U(d) × U(d). (2.10)

We define a correlation matrix G for (2.9):

G(t) := U1(t)U†
2(t), t> 0.

Below, we study the temporal evolution of the correlation matrix G.

Lemma 2.4. Let {U1, U2} be a solution to (2.9)–(2.10). Then, G satisfies

Ġ = κ(tr(G)Id − tr(G†)G2), t> 0. (2.11)

Proof. It directly follows from the governing equations (2.9).

We note that the matrix G is normal, and therefore, it is always diagonalisable. By following the idea
in [10], we show that it suffices to consider the diagonalisation of G.

Lemma 2.5. Let G = G(t) be a solution to (2.11) with initial datum G0 whose diagonalisation is
given as:

G0 =: V0D0V†
0 , (2.12)

where V0 is a d × d unitary matrix and D0 is a d × d complex diagonal matrix. Then, G(t) is
determined by:

G(t) = V0D(t)V†
0

where D(t) is a solution to the following Cauchy problem:{
Ḋ = κ(tr(D)Id − tr(D†)D2), t> 0,

D(0) = D0.
(2.13)
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Proof. Let D be a solution to (2.13). We multiply V0 and V†
0 in the left- and right-hand sides of (2.13).

Then, one has

V0ḊV†
0 = κ(tr(D)Id − tr(D†)V0D

2V†
0 ) = κ(tr(V0DV†

0 )Id − tr(V0D†V†
0 )(V0DV†

0 )(V0DV†
0 )).

If we define

X(t) := V0D(t)V†
0 , X(0) = V0D0V†

0 ,

then, X = X(t) satisfies

Ẋ = κ(tr(X)Id − tr(X†)X2),

X(0) = V0D0V†
0 ,

which is the same governing equation (2.11) for G(t). Since the initial datum G0 of G(t) is also
decomposed as (2.12), the desired assertion follows from the uniqueness of the solution to (2.11).

We use Lemma 2.5 and a well-known result for the Kuramoto synchronisation model to show that
the system (2.9)–(2.10) exhibits the quantum synchronisation for generic initial data.

Theorem 2.3. Let {U1, U2} be a solution to (2.9)–(2.10). Then, for almost all initial data, there exists a
constant θ∞ ∈R such that

lim
t→∞

(U1U†
2)(t) = eiθ∞

Id.

Proof. It follows from Lemma 2.4 that G = U1U†
2 satisfies

Ġ = κ(tr(G)Id − tr(G†)G2)

and we assume that initial datum G0 is decomposed into G0 = V0D0V†
0 where D0 is diagonal and V0 is

unitary. Then, G(t) is completely determined by the relation G(t) = V0D(t)V†
0 where D satisfies (2.13).

Since D is a d × d diagonal and unitary matrix, we can parameterise D as:

D = diag(eiθ1 , . . . , eiθd ). (2.14)

By substituting the representation (2.14) of D into (2.13), we obtain

iθ̇ie
iθi = κ

(
d∑

k=1

eiθk −
d∑

k=1

e−iθk e2iθi

)
, i ∈ [d]

or, equivalently,

θ̇i = κ

d∑
k=1

sin(θk − θi),

which is nothing but a classical Kuramoto synchronisation model. On the other hand, it is already known
in [2] that for almost all initial data, there exists θ∞ ∈R such that

lim
t→∞

θi(t) = θ∞, i ∈ [d].

This yields

lim
t→∞

D(t) = eiθ∞
Id.

Finally, the relation U1(t)U2(t)† = G(t) = V0D(t)V†
0 yields the desired convergence.

Theorem 2.3 implies that quantum synchronisation for (1.3) with N = 2 occurs for generic initial data.
Thus, it is naturally expected that quantum synchronisation also emerges for N > 2 at least under some
appropriate condition on the parameters and initial data. We will show the general results for N > 2 in
Section 3.

Finally, we close this section with the Riccati-type differential inequality.
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Lemma 2.6. Let y : [0, ∞) →R+ be a positive, almost everywhere differentiable function satisfying
dy

dt
≤ −ay + by2 + cy3, t> 0, y(0) = y0

where a, b, c> 0 are positive constants. If

y0 <α+ := −b + √
b2 + 4ac

2c
,

then, there exists a constant λ> 0 such that

y(t) ≤ y0e−λt, t> 0.

Proof. Let us consider a quadratic function f (x) := cx2 + bx − a. Then, the differential inequality that
y satisfies becomes

dy

dt
≤ yf (y).

On the other hand, note that the equation f (x) = 0 has two real roots α± satisfying

α− := −b − √
b2 + 4ac

2c
< 0<

−b + √
b2 + 4ac

2c
=: α+.

Hence, if 0< y0 <α+, then
dy

dt

∣∣∣
t=0

= y0f (y0)< 0,

which implies y(t) decreases from time t = 0. However, for 0< y(t)< y0 <α+,
dy

dt
≤ yf (y) ≤ yf (y0), i.e., y(t) ≤ y0ef (y0)t.

Therefore, we choose λ= −f (y0)> 0 to obtain the desired exponential decay.

3. Emergence of quantum synchronisation of (1.3)

We already observed in the previous section that the model (1.3) with N = 2 exhibits quantum synchro-
nisation for generic initial data. In this section, we present the quantum synchronisation estimate of the
model (1.3)–(1.4) when N > 2. Precisely, we will provide a sufficient condition on the initial data and
the model parameters for the quantum synchronisation of (1.3).

Motivated by the heuristic idea that the following quantity∥∥∥∥Ui − 1

d
〈Ui(t), Uj(t)〉Uj

∥∥∥∥
decays to 0 as t → ∞, we define the matrix Fij as:

Fij := 〈Ui, Uj〉Id − dUiU
†
j ,

which measures a degree of quantum synchronisation between Ui and Uj. Moreover, for simplicity, we
also define

Gij := UiU
†
j , hij := tr(Gij) = 〈Ui, Uj〉.

Then, one can observe that the following relations hold

Fij = hijId − dGij, tr(Fij) = 0.

We start with deriving a temporal evolution of Fij.
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Lemma 3.1. Let {Uj} be a solution to (1.3)–(1.4). Then, Fij satisfies

Ḟij = −2κdFij − κ

d2N

N∑
k=1

(
hkitr(FikFij) + hjktr(FijFkj)

)
Id

+ κ

dN

N∑
k=1

(
1

d
‖Fki‖2Fij + 1

d
‖Fkj‖2Fij − hkiFikFij − hjkFijFkj

)

+ κ

N

N∑
k=1

(
hikFkj + hkjFik

)− κ

dN

N∑
k=1

(hkiFik + hjkFkj)hij.

(3.1)

Proof. Since the proof is too lengthy, we present it in Appendix A.

In order to observe the quantum synchronisation, we define the radius of Fij:

DF(t) := max
1≤i,j≤N

‖Fij(t)‖, t> 0.

Then, it is straightforward to observe that the quantum synchronisation appears if and only if DF

converges to 0. In the following lemma, we estimate DF.

Lemma 3.2. Let {Ui}N
i=1 be a solution to (1.3)–(1.4). Then, we have

dDF

dt
≤ −2κdDF +

(
2κ√

d
+ 2κ

)
D2

F + 2κ

d2
D3

F, t> 0. (3.2)

Proof. We use the estimate of Fij in (3.1) and the fact that tr(Fij) = 0 to derive the time derivative of
‖Fij‖2 as:

1

2

d
dt

‖Fij‖2 = 1

2

d
dt

Re
[
tr(F†

ijFij)
]
= Re

[
tr(F†

ijḞij)
]

= Re

[
tr

(
−2κdF†

ijFij + κ

N

N∑
k=1

hikF
†
ijFkj + hkjF

†
ijFik

)]

+ κ

dN

N∑
k=1

Re
[
tr
(

1

d
‖Fki‖2F†

ijFij + 1

d
‖Fkj‖2F†

ijFij − hkiF
†
ijFikFij − hjkF

†
ijFijFkj

)]

− κ

dN

N∑
k=1

Re
[
tr
(
hkihijF

†
ijFik + hjkhijF

†
ijFkj

)]
= −2κd‖Fij‖2 + κ

N

N∑
k=1

Re
[
tr
((

hik − 1

d
hjkhij

)
F†

ijFkj +
(

hkj − 1

d
hkihij

)
F†

ijFik

)]

+ κ

d2N

N∑
k=1

(‖Fki‖2 + ‖Fkj‖2
) ‖Fij‖2 − κ

dN

N∑
k=1

Re
[
tr
(
hkiF

†
ijFikFij + hjkF

†
ijFijFkj

)]
.

On the other hand, we observe that the following relation holds:

hik − 1

d
hijhjk = tr

((
Ui − 1

d
hijUj

)
U†

k

)
,

which implies∣∣∣∣hik − 1

d
hijhjk

∣∣∣∣≤ ∥∥∥∥Ui − 1

d
hijUj

∥∥∥∥ ‖Uk‖ = 1√
d
‖dUi − hijUj‖ = 1√

d
‖dUiU

†
j − hijId‖ = 1√

d
‖Fij‖,

where we used ‖Uk‖ = √
d. Similarly, we also obtain∣∣∣∣hkj − 1

d
hkihij

∣∣∣∣≤ 1√
d
‖Fij‖.
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Using |hij| = |tr(UiU
†
j )| ≤ d, we finally obtain

1

2

d
dt

‖Fij‖2 ≤ −2κd‖Fij‖2 + κ

N

N∑
k=1

(
1√
d
‖Fij‖2‖Fkj‖ + 1√

d
‖Fik‖‖Fij‖2

)

+ κ

d2N

N∑
k=1

(‖Fki‖2 + ‖Fkj‖2)‖Fij‖2 + κ

N

N∑
k=1

(‖Fij‖2‖Fik‖ + ‖Fij‖2‖Fkj‖
)

.

Therefore, once we choose the indices i and j so that ‖Fij‖ =DF, then we derive the desired differential
inequality for DF:

dDF

dt
≤ −2κdDF +

(
2κ√

d
+ 2κ

)
D2

F + 2κ

d2
D3

F.

Now we are ready to introduce our first main theorem that concerns the emergence of quantum
synchronisation for (1.3). It is nothing but a corollary of Lemmas 2.6 and 3.2

Theorem 3.1. Suppose that the initial data satisfy

DF(0) = max
1≤i,j≤N

‖〈U0
i , U0

j 〉Id − dU0
i (U0

j )†‖< 2d
√

d√
d + 2

√
d + 5 + √

d + 1
(3.3)

and let {Uj} be a solution to (1.3)–(1.4). Then, system (1.3) exhibits quantum synchronisation:

lim
t→∞

max
1≤i,j≤N

∥∥∥∥Ui(t) − 〈Ui, Uj〉
d

Uj(t)

∥∥∥∥= 0,

and the decay rate is exponential.

Proof. It follows from (3.2) that the diameter DF satisfies the differential inequality in Lemma 2.6 with
the coefficients:

a = 2κd, b = 2κ

(
1 + 1√

d

)
, c = 2κ

d2
.

After the straightforward computation, the constant α+ in Lemma 2.6 becomes

α+ = 2d
√

d√
d + 2

√
d + 5 + √

d + 1
.

Therefore, if DF(0)<α+, we conclude that DF(t) exponentially decays to 0, which implies the desired
convergence.

Remark 3.1. Since d ≥ 1, we have

α+ = 2d
√

d√
(
√

d + 1)2 + 4 + √
d + 1

≥ 2d
√

d√
(
√

d + 1)2 + (
√

d + 1)2 + √
d + 1

= 2d
√

d

(
√

2 + 1)(
√

d + 1)
≥ d(

√
d + 1)

(
√

2 + 1)(
√

d + 1)
= (

√
2 − 1)d � 0.414d.

We already observed in Lemma 2.3 that the convergence toward equilibrium is guaranteed. In the
following corollary, we show that the convergence rate is indeed exponential by using Theorem 3.1.

Corollary 3.1. Suppose that the initial data satisfy (3.3), and let {Uj} be a solution to (1.3)–(1.4). Then,
for each j ∈ [N], there exists U∞

j ∈ U(d) such that

lim
t→∞

Uj(t) = U∞
j .
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Here, the convergence rate is exponential. Moreover, there exist αj ∈C with |αj| = 1 and U∞ ∈ U(d)
such that for each j ∈ [N],

lim
t→∞

U∞
j = αjU

∞.

Proof. We note that the convergence of Uj(t) as t → ∞ is already guaranteed from the gradient flow
structure in Lemma 2.3. To show that the convergence is exponential, recall the governing equation (1.3)
of Uj:

U̇j = κ

N

N∑
k=1

(〈Uj, Uk〉Uk − 〈Uk, Uj〉UjU
†
k Uj)

= κ

N

N∑
k=1

(〈Uj, Uk〉Uk − dUj + dUkU
†
k Uj − 〈Uk, Uj〉UjU

†
k Uj).

Then, we observe

‖U̇j‖ ≤ κ

N

N∑
k=1

(
‖〈Uj, Uk〉Uk − dUj‖ + ‖dUkU

†
k Uj − 〈Uk, Uj〉UjU

†
k Uj‖

)
= κ

N

N∑
k=1

(
‖〈Uj, Uk〉Uk − dUj‖ + ‖dUk − 〈Uk, Uj〉Uj‖

)
= κ

N

N∑
k=1

(‖Fjk‖ + ‖Fkj‖) ≤ 2κDF ≤ Ce−λt

for some positive constants C and λ by Theorem 3.1. Therefore,∥∥Uj(t) − U∞
j

∥∥≤
∫ ∞

t

‖U̇j(s)‖ ds ≤ C

λ
e−λt,

which verifies the exponential convergence toward equilibrium. For the last assertion, we first note that,
again by Theorem 3.1, we have

U∞
i = 〈U∞

i , U∞
j 〉

d
U∞

j ,

which implies

|〈U∞
i , U∞

j 〉(t)| = d.

Therefore, for each i, j ∈ [N], there exists a constant αij ∈C with |αij| = 1 such that

U∞
j = αijU

∞
i .

Fix i = 1 and write

U∞ := U∞
1 , αj := α1j.

Then, U∞
j = α1jU∞

1 = αjU∞ for all j ∈ [N]. This completes the proof.

Remark 3.2. As mentioned in Section 2, we can consider the non-identical model (2.5) of (1.3):

U̇j = −iHjUj + κ

N

N∑
k=1

(〈Uj, Uk〉Uk − 〈Uk, Uj〉UjU
†
k Uj

)
. (3.4)

In this case, the dynamics of Gij becomes

Ġij = −iHiGij + iGijHj + κ

N

N∑
k=1

(
hikGkj − hkiGikGij + hkjGik − hjkGijGkj

)
,
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and the dynamics of hij becomes

ḣij = −itr(HiGij) + itr(GijHj) + κ

N

N∑
k=1

(
hikhkj − hkitr(GikGij) + hkjhik − hjktr(GijGkj)

)
.

Thus, when we consider the dynamics of ‖Fij‖2, the additional term is only

Re
[
tr
(
F†

ij

(−itr(HiGij) + itr(GijHj)
)

Id

)]− dRe
[
tr
(
F†

ij( − iHiGij + iGijHj)
)]

.

Using the fact that tr(Fij) = 0, the first term vanishes. On the other hand, by considering the relation
dGij = hijId − Fij, the second term is reformulated as:

Re
[
tr
(
F†

ij(iHi

(
hijId − Fij

)− i(hijId − Fij)Hj)
)]

= −Im
[
tr
(
F†

ij(Hihij − hijHj)
)]

which also vanishes when Hj = ajId. Thus, newly introduced terms from the natural frequencies disap-
pear. Therefore, the results in Theorem 3.1 and Corollary 3.1 are still valid for the non-identical model
(3.4) when Hj = ajId with aj ∈R.

4. Emergence of quantum synchronisation with time-delayed interaction

In this section, we show that how quantum synchronisation is robust under time-delayed interaction.
Recall the time-delayed model introduced in (1.7):⎧⎪⎨⎪⎩U̇j = κ

N

N∑
k=1

〈Uj, Uτ

k 〉Uτ

k − 〈Uτ

k , Uj〉UjU
τ ,†
k Uj, t> 0,

Uj(t) =�j(t) ∈ U(d), −τ ≤ t ≤ 0, j ∈ [N].

Although time-delayed interaction is employed, the unitary property of {Uj} is still guaranteed.

Lemma 4.1. Let {Uj} be a solution to (1.7)–(1.8). Then, we have

Ui(t)U
†
i (t) = Id, t> 0, i ∈ [N].

Proof. Once we notice that the right-hand side of (1.7) can be represented in terms of the projection
formula (2.4):

κ

N

N∑
k=1

〈Uj, Uτ

k 〉Uτ

k − 〈Uτ

k , Uj〉UjU
τ ,†
k Uj = PUj (X), X := 2κ

N

N∑
k=1

〈Uj, Uτ

k 〉Uτ

k

then the positive invariance directly follows.

We first study some elementary lemmas which will be crucially used for the quantum synchronisation
for the time-delayed model (1.7). We define a delayed fluctuation for Ui:

�τ

i (t) := ‖Ui(t) − Uτ

i (t)‖, i ∈ [N]. (4.1)

Then, we can show that the fluctuation is uniformly bounded by O(1)τ .

Lemma 4.2. Let {Uj} be a solution to (1.7)–(1.8). Then, for any t> 0, we have

‖�τ

i (t)‖ ≤ Mτ , M := max{‖�i‖Lip, 2κd
√

d}> 0. (4.2)

Proof. We basically follow the proof in [5, Lemma 4.1]. By integrating (1.7) over [(t − τ )+, t] for t> 0
to find

Ui(t) − Ui((t − τ )+) = κ

N

N∑
k=1

∫ t

(t−τ )+

[〈Uj, Uτ

k 〉Uτ

k − 〈Uτ

k , Uj〉UjU
τ ,†
k Uj

]
ds.
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Here, we used the notation x+ := max{x, 0}. Then, we observe

‖〈Uj, Uτ

k 〉Uτ

k − 〈Uτ

k , Uj〉UjU
τ ,†
k Uj‖ ≤ 2d

√
d

to obtain

‖Ui(t) − Ui(t − τ )‖ ≤ ‖Ui(t) − Ui((t − τ )+)‖ + ‖Ui((t − τ )+) − Ui(t − τ )‖

≤ κ

N

N∑
k=1

∫ t

(t−τ )+
‖〈Uj, Uτ

k 〉Uτ

k − 〈Uτ

k , Uj〉UjU
τ ,†
k Uj‖ ds

+ ((t − τ )+ − (t − τ ))‖�i‖Lip

≤ 2(t − (t − τ )+)κd
√

d + ((t − τ )+ − (t − τ ))‖�i‖Lip ≤ Mτ .

Next, we define quantities that measure a degree of delayed quantum synchronisation, which are
analogous to those introduced in Section 3:

Gτ

ij(t) := Ui(t)U
τ ,†
j (t) = Ui(t)U

†
j (t − τ ), hτij = tr(Gτ

ij), Fτ

ij = hτijId − dGτ

ij. (4.3)

For this notation, we observe

Gτ ,†
ij (t) = Uj(t − τ )U†

i (t).

Similar to Lemma 4.2, we need to estimate the fluctuations for Fij.

Lemma 4.3. Let {Uj} be a solution to (1.7)–(1.8). Then, for any t> 0, the following estimates hold

(i) ‖Fij(t) − Fτ

ij(t)‖ ≤ 2dMτ . (ii)
∣∣‖Fij(t)‖2 − ‖Fτ

ij(t)‖2
∣∣≤ 2d2

√
dMτ .

Here, M is the constant introduced in (4.2).

Proof. (i) We use Lemma 4.2 to find

‖Fij(t) − Fτ

ij(t)‖ = ∥∥〈Ui(t), Uj(t)〉Id − dUi(t)U
†
j (t) − 〈Ui(t), Uτ

j (t)〉Id + dUi(t)U
τ ,†
j (t)

∥∥
≤ ‖〈Ui(t), Uj(t) − Uτ

j (t)〉Id‖ + d‖Ui(t)(Uj(t) − Uτ ,†
j (t))‖

≤ dMτ + dMτ = 2dMτ .

(ii) We first observe ∣∣‖Fij(t)‖2 − ‖Fτ

ij(t)‖2
∣∣= |tr(FijF

†
ij − Fτ

ijF
τ ,†
ij )|.

On the other hand, we have

tr(FijF
†
ij) = tr

[
(〈Ui, Uj〉Id − dUiU

†
j )(〈Uj, Ui〉Id − dUjU

†
i )
]

= tr
[
|〈Ui, Uj〉|2Id − d〈Uj, Ui〉UiU

†
j − d〈Ui, Uj〉UjU

†
i + d2Id

]
= d3 − d|〈Ui, Uj〉|2,

and by using the same argument, we see

tr(Fτ

ijF
τ ,†
ij ) = d3 − d|〈Ui, Uτ

j 〉|2.

However, since

||〈Ui, Uj〉|2 − |〈Ui, Uτ

j 〉|2| = d(|〈Ui, Uj〉| + |〈Ui, Uτ

j 〉|)|〈Ui, Uj − Uτ

j 〉| ≤ 2d
√

dMτ ,

we obtain the desired control on the difference between ‖Fij‖2 and ‖Fτ
ij‖2:∣∣‖Fij(t)‖2 − ‖Fτ

ij(t)‖2
∣∣≤ 2d2

√
dMτ .

Next, as in Lemma 3.1, we derive a temporal evolution for Fij.
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Lemma 4.4. Let {Uj} be a solution to (1.7)–(1.8). Then, Fij satisfies

Ḟij = −2dκFij − κ

d2N

N∑
k=1

(hτiktr(F
τ

ikFij)Id + hτjktr(FijF
τ ,†
jk )Id)

+ κ

N

N∑
k=1

[(
hτik − 1

d
hijh

τ

jk

)
Fτ ,†

jk +
(

hτjk − 1

d
hτikhij

)
Fτ

ik

]

+ κ

d2N

N∑
k=1

(‖Fτ

ki‖2 + ‖Fτ

jk‖2
)

Fij + κ

dN

N∑
k=1

(
hτikF

τ

ikFij + hτjkFijF
τ ,†
jk

)
.

(4.4)

Proof. The only difference between (1.3) and (1.7) is that Uk(t) in (1.3) is replaced with Uτ
k (t)

= Uk(t − τ ). Thus, it suffices to replace the terms Uk involving dummy index k in (3.1) by Uτ
k . In partic-

ular, we only need to replace the terms whose first index is k such as hki, Fki, hkj and Fkj. For instance, by
using (4.3), we observe that hki(t) = tr(Gki(t)) = tr(Uk(t)U

†
i (t)) becomes tr(Uk(t − τ )U†

i (t)) = tr(Gτ ,†
ik (t)) =

hτik. Therefore, hki in (3.1) is now replaced by hτik. Similarly, Fki becomes Fτ ,†
ik . After the replacement, the

governing equation of Fij for the time-delayed model (1.7) becomes (4.4).

Next, by following Lemma 3.2, we derive the differential inequality for DF.

Lemma 4.5. Let {Uj}N
j=1 be a solution to (1.7)–(1.8). Then, DF satisfies

dDF

dt
≤ −2κd(1 − (2 + d

√
d)Mτ )DF + 2κ

(
1 + 1√

d

)
D2

F + 2κ

d2
D3

F.

Proof. From Lemma 4.4, ‖Fij‖2 satisfies

1

2

d
dt

‖Fij‖2 = −2dκ‖Fij‖2 + κ

N

N∑
k=1

Re
[
(hτik − 1

d
hijh

τ

jk)tr(F
τ ,†
jk Fji) + (hτjk − 1

d
hτikhij)tr(Fτ

ikFji)
]

+ κ

d2N

N∑
k=1

(‖Fτ

ik‖2 + ‖Fτ

jk‖2)‖Fij‖2

+ κ

dN

N∑
k=1

Re
[
hτiktr(Fτ

ikFijFji) + hτjktr(FijF
τ ,†
jk Fji)

]
.

Here, we observe

hτik − 1

d
hijh

τ

jk = tr
(

UiU
τ ,†
k − 1

d
〈Ui, Uj〉UjU

τ ,†
k

)
= tr

((
UiU

†
j − 1

d
〈Ui, Uj〉

)
UjU

τ ,†
k

)
≤ 1√

d
‖Fij‖.

Similarly, we have

hτjk − 1

d
hτikhij ≤ 1√

d
‖Fij‖.

Hence, we derive a differential inequality for ‖Fij‖:

1

2

d
dt

‖Fij‖2 ≤ −2dκ‖Fij‖2 + κ√
dN

N∑
k=1

(
‖Fij‖2‖Fτ

kj‖ + ‖Fij‖2‖Fτ

ik‖
)

+ κ

d2N

N∑
k=1

(
‖Fτ

ki‖2 + ‖Fτ

jk‖2)‖Fij‖2
)

+ κ

N

N∑
k=1

(
‖Fτ

ik‖‖Fij‖2 + ‖Fτ

kj‖‖Fij‖2
)

.
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We now choose the indices i and j so that ‖Fij‖ =DF, and use Lemma 4.3 to conclude that DF satisfies

dDF

dt
≤ −2κd(1 − (2 + d

√
d)Mτ )DF + 2κ

(
1 + 1√

d

)
D2

F + 2κ

d2
D3

F.

We now derive the quantum synchronisation of the time-delayed model (1.7) by combining the
differential inequality for DF and Lemma 2.6.

Theorem 4.1. Suppose that system parameters and initial data satisfy

0 ≤ τ < 1

(2 + d
√

d)M
, M = max{‖�i‖Lip, 2κd

√
d},

DF(0)<
2d

√
d(1 − (2 + d

√
d)Mτ )√

d + 2
√

d + 1 + 4(1 − (2 + d
√

d)Mτ ) + 1 + √
d

,

and let {Uj} be a solution to (1.7)–(1.8). Then, system (1.7) exhibits quantum synchronisation:

lim
t→∞

max
1≤i,j≤N

∥∥∥∥Ui(t) − 〈Ui, Uj〉(t)
d

Uj(t)

∥∥∥∥= 0.

Proof. The proof is a direct corollary of Lemma 2.6 and 4.5 with the coefficients

a = 2κd(1 − (2 + d
√

d)Mτ ), b = 2κ

(
1 + 1√

d

)
, c = 2κ

d2
.

Remark 4.1. When τ = 0, the result of Theorem 4.1 reduces to the result of Theorem 3.1.

5. Numerical simulation

In this section, we numerically simulate (1.3) and (1.7) to observe whether the quantum synchronisation
appears or not. We randomly generate the initial data U0

j or �j(t) ≡ U0
j for −τ ≤ t ≤ 0 over the unitary

group U(d) and solve the ordinary/delayed differential equations by using the fourth-order Runge–Kutta
method. To verify the emergence of quantum synchronisation, we observe the two quantities. First, we
observe the potential V defined in (2.3). Instead of directly tracking the dynamics of V, we rescale it as:

Ṽ(U) := 1

d2N2

N∑
k,�=1

(d2 − |〈Uk, U�〉|2),

so that the value of the potential function lies in [0, 1], regardless of the dimension or the number of
particles. We choose N = 20 and κ = 1 and then observe Ṽ for different values of dimension d in Figure 1.

We observe that regardless of the dimension, the rescaled potential decays to 0 exponentially fast,
implying that the system converges to the equilibrium {U∞

j }, where the relation Ui = αijUj with |αij| = 1
holds.

Second, we also present the values αj defined as U∞
j = αjU∞

1 in Figure 2. As we showed theoretically,
αj are on the unit circle of the complex plane, which also implies that the system reached the minimiser
of the potential.

We also conduct numerical simulations for the time-delayed model (1.7) and report the dynamics of
rescaled potential Ṽ and illustrate the results in Figure 3. The numerical simulation results show that
although the time delay effect slows down the decay of the potential, and in particular, the larger time
delay implies slower convergence, the system eventually reaches equilibrium. Through the simulation,
we numerically observe that the conditions in Theorems 3.1 and 4.1 are technical assumptions for prov-
ing the quantum synchronisation, and the quantum synchronisation is indeed observed for a generic
initial data, as we proved for the case of N = 2.
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Figure 1. The evolution of rescaled potential Ṽ with original scale (left) and log scale (right). The
potential exponentially decays to 0.

Figure 2. The values of αj. Each blue dot represents a single value of αj, while the red line denotes the
unit circle.

6. Conclusion

In the present paper, we introduce a modified synchronisation model on the unitary group, which shows
a qualitatively different asymptotic behaviour compared to the previous standard synchronisation model
on the unitary group. To illustrate the new asymptotic behaviour, we introduce the notion of quantum
synchronisation and prove that our model exhibits quantum synchronisation under sufficient conditions
on the initial data and model parameters. We also extend the quantum synchronisation analysis to the
model with time-delayed interactions and verify the theoretical results by numerical simulations, show-
ing that the quantum synchronisation indeed emerges for generic initial data. Recently, a mean-field limit
and kinetic description of the synchronisation models have been widely investigated [16, 18]. Therefore,
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Figure 3. The evolution of rescaled potential Ṽ with different dimension with τ = 1 (left) and different
time delay with d = 5 (right).

one may extend the quantum synchronisation model to the kinetic level, and this will be one of the
possible future perspectives.
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A. Proof of Lemma 3.1

In this appendix, we present the proof of Lemma 3.1. Recall the dynamics of Uj in (1.3):

U̇j = κ

N

N∑
k=1

(
〈Uj, Uk〉Uk − 〈Uk, Uj〉UjU

†
k Uj

)
.

Then, Gij = UiU
†
j satisfies

Ġij = U̇iU
†
j + UiU̇

†
j

= κ

N

N∑
k=1

(
〈Ui, Uk〉UkU

†
j − 〈Uk, Ui〉UiU

†
k UiU

†
j

+ 〈Uk, Uj〉UiU
†
k − 〈Uj, Uk〉UiU

†
j UkU

†
j

)
= κ

N

N∑
k=1

(
hikGkj − hkiGikGij + hkjGik − hjkGijGkj

)
.

(A.1)

Taking the trace to (A.1), we also obtain the dynamics of hij as:

ḣij = κ

N

N∑
k=1

(
hikhkj − hkitr(GikGij) + hkjhik − hjktr(GijGkj)

)
. (A.2)

We use the relation Fij = hijId − dGij and the equations (A.1) and (A.2) to obtain the governing equation
for Fij:

Ḟij = ḣijId − dĠij

= κ

N

N∑
k=1

(
hikhkj − hkitr(GikGij) + hkjhik − hjktr(GijGkj)

)
Id

− dκ

N

N∑
k=1

(
hikGkj − hkiGikGij + hkjGik − hjkGijGkj

)
=: I1 + I2.

Since dGij = −Fij + hijId, we rewrite I2 as:

I2 = − κ

N

N∑
k=1

(hik( − Fkj + hkjId) + hkj( − Fik + hikId))

+ κ

dN

N∑
k=1

(
hki( − Fik + hikId)

(−Fij + hijId

)+ hjk

(−Fij + hijId

)
( − Fkj + hkjId)

)
.
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Thus, we calculate I1 + I2 as:

I1 + I2 = − κ

N

N∑
k=1

(
hkitr(GikGij) + hjktr(GijGkj)

)
Id + κ

N

N∑
k=1

(hikFkj + hkjFik)

+ κ

dN

N∑
k=1

(|hki|2Id − hkiFik)
(−Fij + hijId

)+ (−Fij + hijId

)
(|hkj|2Id − hjkFkj)

= −2κdFij − κ

N

N∑
k=1

(
hkitr(GikGij) + hjktr(GijGkj)

)
Id + κ

N

N∑
k=1

(hikFkj + hkjFik)

+ κ

dN

N∑
k=1

((d2 − |hki|2)Fij + (d2 − |hkj|2)Fij + hkiFikFij + hjkFijFkj)

+ κ

dN

N∑
k=1

(|hki|2Id + |hkj|2Id − hkiFik − hjkFkj)hij.

On the other hand, we note that

‖Fij‖2 = Re
[
tr(F†

ijFij)
]
= Re

[
tr
((

hijId − dG†
ij

) (
hijId − dGij

))]
= Re

[
tr
(|hij|2Id − dhijG

†
ij − dhijGij + d2Id

)]
= d3 − d|hij|2,

and

tr(GikGij) = 1

d2

(
tr(FikFij) − hiktr(Fij) − hijtr(Fik) + dhikhij

)= 1

d2
tr(FikFij) + 1

d
hikhij,

where we used tr(Fij) = 0. Thus, we substitute the above two relations into the estimate of I1 + I2 to
obtain the desired equation for Fij:

Ḟij = I1 + I2 = −2κdFij − κ

d2N

N∑
k=1

(
hkitr(FikFij) + hjktr(FijFkj)

)
Id

+ κ

N

N∑
k=1

(
hikFkj + hkjFik

)
+ κ

dN

N∑
k=1

(
1

d
‖Fki‖2Fij + 1

d
‖Fkj‖2Fij + hkiFikFij + hjkFijFkj

)

− κ

dN

N∑
k=1

(hkiFik + hjkFkj)hij.
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