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Abstract
We investigate the impact of relativistic SZ corrections on Planck measurements of massive galaxy clusters, finding that they have a sig-
nificant impact at the ≈5–15% and up to ≈ 3σ level. We investigate the possibility of constraining temperature directly from these SZ
measurements but find that only weak constraints are possible for the most significant detections; for most clusters, an external temperature
measurement is required to correctly measure integrated Compton-y. We also investigate the impact of profile shape assumptions and find
that these have a small but non-negligible impact on measured Compton-y, at the≈ 5% level. Informed by the results of these investigations,
we recalibrate the Planck SZ observable-mass scaling relation, using the updated NPIPE data release and a larger sample of X-ray mass esti-
mates. Along with the expected change in the high-mass end of the scaling relation, which does not impact Planckmass estimation, we also
find hints of a low-mass deviation, but this requires better understanding of the selection function in order to confirm.
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1. Introduction

Clusters of galaxies appear to delineate the upper end of the
mass scale of objects in the Universe and are powerful probes
of astrophysics and cosmology. In particular, given a sample of
galaxy clusters with both well-enough calibrated masses and a
well-enough understood selection function, cosmological param-
eters such as the matter density (�m) and the matter fluctua-
tion amplitude (σ8) can be constrained in an independent and
complementary way to other cosmological probes such as the
primordial cosmic microwave background (CMB) anisotropies
and Type Ia supernova surveys (e.g. Allen, Evrard, & Mantz
2011; Planck Collaboration XXIV 2016). Further, while it is in
principle possible to use hydrostatic masses for cosmology (e.g.
Schellenberger & Reiprich 2017) studies based on intracluster
medium (ICM) observables typically use a mass-observable scal-
ing relation, calibrated on a subsample of well-studied objects,
to translate from the observable to the mass for the bulk of the
sample. The problem of robustly calibrating the mass-observable
scaling relation and understanding its intrinsic scatter has become
one of the biggest challenges in cluster cosmology (e.g. Pratt et al.
2019).

One main ICM observable is the Sunyaev-Zel’dovich (SZ)
effect signal (Zeldovich & Sunyaev 1969), where CMB photons
passing through the cluster are inverse-Compton scattered by the
energetic electrons in the plasma. This results in an overall shift in
the CMB spectrum in the direction of the cluster. The strength of
the shift is typically parameterised by the Compton-y parameter,
defined as
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y= σT

mec2

∫
Pedl, (1)

where σT is the Thomson cross-section, me is the electron mass,
c is the speed of light, Pe is the electron pressure, and l is the line
of sight. For a thermal distribution of electrons where the tem-
perature is low enough that relativistic effects are negligible, the
intensity change as a function of frequency can then be written as

�Iν ∝ y
x4 exp (x)(
exp (x)− 1

)2
(
x
exp (x)+ 1
exp (x)− 1

− 4
)
, (2)

where x≡ hν/kBTCMB (ν is observation frequency; h is Planck’s
constant; kB is the Boltzmann constant; TCMB is the temperature
of the CMB today), and y is the Compton-y parameter.

The largest all-sky cluster catalogue selected via the Sunyaev-
Zel’dovich (SZ) effect to date was produced by the Planck satellite
(PSZ2; Planck Collaboration XXVII 2016). Planck surveyed the
sky at six high-frequency bands between 100 and 857 GHz, with
angular resolution between ≈5 - 10 arcmin and used the non-
relativistic thermal SZ (tSZ) effect spectrum defined above to
detect clusters and constrain the integrated Compton-y parameter.
X-ray-determined masses (using XMM-Newton) for a subsample
of clusters were used to constrain the mass-observable scaling
relation and hence produce a catalogue of SZ masses (alongside
weak lensing masses for a more limited subsample and stacked
CMB lensing constraints for the cosmological analysis; Planck
Collaboration XXIV 2016).

In this non-relativistic limit, the tSZ spectrum does not
depend on temperature. However, when electrons move at
non-negligible fractions of the speed of light, higher-order,
temperature-dependent corrections become necessary (Challinor
& Lasenby 1998; Itoh et al. 1998, Sazonov & Sunyaev 1998). This
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Figure 1. Orange solid line shows the SZ signal as a function of frequency assuming
the non-relativistic tSZ spectrum; blue dashed and green dot-dashed show the rela-
tivistically correct rSZ spectrum with increasing temperature. All three curves assume
Compton-y= 10−4. The grey bands show the Planck frequency bands.

is known as the relativistic SZ (rSZ) effect and becomes impor-
tant at temperatures�5 keV (typical for massive clusters). The rSZ
frequency spectrum is temperature-dependent (see Fig. 1): at fre-
quencies less than ≈500 GHz, the main change is a decrease in
(absolute) amplitude of the signal with temperature, meaning that
without strong constraints from higher frequency bands, there is
a degeneracy between temperature and signal strength. When the
non-relativistic approximation is assumed, the effect is an under-
estimate of the overall cluster signal, which we refer to as the rSZ
bias. Erler et al. (2018) detected the relativistic correction to the SZ
spectrum in a stacked sample of Planck clusters at ≈ 2σ level and
predicted an rSZ bias of up to 14% in the integrated Compton-y
parameter for the most massive clusters; Remazeilles et al. (2019)
considered the effect of the rSZ spectrum on the power spectrum
of the Compton parameter and concluded it could shift the con-
straint on σ8 by ≈ 1σ , partially alleviating the tension with σ8
measurements from the Planck primary CMB anisotropy data.a
rSZ corrections are therefore clearly becoming a non-negligible
effect at the sensitivity of Planck.

The rSZ effect is not only a source of bias: if measurable, it
provides a new way to measure ICM temperatures independently
to X-ray measurements. This could shed light on the discrep-
ancy between cluster temperatures measured with different X-ray
instruments (e.g. Schellenberger et al. 2015; Migkas et al. 2024).
In addition, observations of temperature reconstructed from the
SZ effect will be weighted by the SZ signal strength and therefore
pressure-weighted. In contrast, X-ray temperature measurements
are density-squared-weighted due to the well-known n2e depen-
dence of Bremsstrahlung. SZ temperatures will therefore be less
subject to biases due to clumping and substructure (e.g. Kay et al.
2008, 2024; Simionescu et al. 2011). Comparison of SZ and X-ray
measurements would therefore be a useful tool for investigating
cluster thermodynamic properties and substructure.

In this paper, we investigate two main questions: (i) are Planck
cluster measurements significantly biased by ignoring the rSZ
effect, and (ii) if so, is it possible to constrain cluster temperatures
using Planck data? We also investigate the issue of pressure profile

aWe note that this applies when constraining cosmology directly from the Compton-y
power spectrum, rather than going through a mass-observable calibration as described in
this paper.

shape and how varying the profile impacts on Planck Compton-y
constraints. Finally, we produce an updated Planck scaling relation
taking into account both of these effects.

The paper is organized as follows. In Section 2,we outline our
data and analysis methods. In Section 3, we compare our updated
analysis to the published Planck results. In Section 4, we explore
the implications of realistic rSZ corrections to simulated Planck
data and in Section 5 we explore the effect of pressure profile shape
variation. In Section 6, we recalibrate the Planck mass-observable
scaling relation. Throughout the paper, unless stated otherwise we
assume a flat�CDM cosmology with h= 0.7,�m = 0.3.

2. Methods and data

In this section, we outline the common methods and data that we
will use throughout the paper.

2.1. Cluster models

2.1.1 Observational GNFWmodel

We follow the original Planck methodology in using a general-
ized Navarro-Frenk-White (GNFW, Nagai, Kravtsov, & Vikhlinin
2007) model for the pressure profile of the cluster gas, i.e.

Pe(r)= Pei(
r
rp

)γ [
1+

(
r
r p

)α](β−γ )/α , (3)

where Pei is an overall pressure normalisation factor and rp is
a characteristic radius. In the Planck analysis, the GNFW shape
parameters, γ , α and β describing the profile shape at radii r � rp,
r ≈ rp and r � rp, respectively, are set to the ‘universal’ values
derived in Arnaud et al. (2010). An extra parameter c500 is also
required to convert from the characteristic radius to the physically
meaningful radius r500b, i.e. c500 = r500/rp. c500 was also set to the
universal value from Arnaud et al. (2010) in the Planck analysis,
so that (γ , α, β , c500) = (0.3081, 1.0510, 5.4905, 1.177). We will
refer to a GNFWprofile with this set of parameters as the universal
pressure profile (UPP).

The spherically integrated Compton-y parameter (measured in
arcmin2) in this model has an analytic solution when the integral
is taken to infinity:

Ytot = 4πσT
mec2

PeiDAθ
3
s
�

( 3−γ
α

)
�

(
β−3
α

)
α�

(
β−γ
α

) , (4)

where σT is the Thomson scattering cross-section, me is the elec-
tron rest mass, c is the speed of light, DA is the angular diameter
distance, and θs = rp/DA is the angular characteristic scale and �
is the gamma function. In practice, a model cluster must be cut-off
at some point and in Planck standard analysis the cut-off point is
chosen to be at 5θ500.With the UPP profile values, this corresponds
to the radius containing 96% of Ytot, for a spherical integral.

In the context of this model, a cluster is defined by the six
parameters (θs, Ytot, γ , α, β , c500) plus two positional parame-
ters (x0, y0), which we define as the offset in arcsec between the
detected position and the PSZ2 catalogue position. We assume
spherical symmetry. We refer to this model as the ‘observational
GNFW’ model since it relies entirely on observational parameters,
which can be constrained without knowing the cluster redshift.

br� is defined as the radius at which the enclosed mean density is � times the critical
density at the cluster redshift.
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Figure 2. Example temperature (top) and pressure (bottom) profiles generated using
the physical NFW-GNFW model. In each plot, the colours indicate the M200 mass of
the simulated cluster, as given in the legend of the temperature plot. The line styles
indicate the redshift as given in the legend of the pressure plot.

2.1.2 Physical NFW-GNFWmodel

To generate simulations incorporating the rSZ spectrum, we
will also use a physically motivated model (Olamaie, Hobson, &
Grainge 2012; Olamaie, Hobson, & Grainge 2013). This model
consists of a Navarro-Frenk-White (NFW; Navarro, Frenk, &
White 1997) density profile for the dark matter component of the
cluster, i.e.

ρDM(r)= ρs(
r
Rs

) (
1+ r

Rs
)2 , (5)

where ρs is a normalization coefficient and Rs is the scale radius
at which d ln ρ(r)/d ln r = −2. The halo concentration parame-
ter, c200 = r200/Rs then defines r200. We use the Neto et al. (2007)
model for c200. As in the observational GNFW model, the elec-
tron pressure profile is defined by equation (3) and we assume
the UPP profile parameters. Assuming hydrostatic equilibrium,
spherical symmetry and a gas mas fraction at r200, the pressure
normalization factor Pei can be derived and therefore profiles of
all thermodynamic quantities can be generated. We use the itera-
tive approach described in Javid et al. (2019) to refine the model
and ensure it is fully self-consistent. Some example temperature
and pressure profiles generated using this model are shown in
Fig. 2.

2.1.3 Physical overdensity model

Finally, to analyze Planck data, we will also use a model based
on the relationship between M500 (total mass within r500) and
Y500 (spherical integrated Compton-y parameter within r500).
From M500 we can calculate r500 given their definitions: M500 ≡
500ρc(z) 43πr

3
500. Assuming a GNFW profile for the gas and given

values for the parameters (γ , α, β , c500), the parameters θs and
Ytot may then be calculated and the GNFWmodel implemented as
usual. This model can be used in two ways in a Bayesian analysis
context:

1. Use an external prior on M500 (i.e. from X-ray or lensing;
in this paper we will focus on X-ray following the origi-
nal Planckmethodology). Use a non-informative priorc on
Y500 to constrain the integrated Compton-y value within
the r500 radius defined from M500. In this case, we are not
imposing a scaling relation between M500 and Y500, but
results obtained in this way will be used for constraining
this scaling relation.

2. Use a non-informative or mass-function-based prior on
M500; use a scaling relation between Y500 andM500 to sam-
ple self-consistent Y500 and θ500 values. This is a similar
idea to the posterior-slicing methodology used by Planck
to post-process their θs-Ytot constraints, but encoding it
as a prior rather than a post-processing step means that
uncertainties and degeneracies in all parameters can be
accurately incorporated.

We will not use (2) in this work but note its potential for future
use in constraining masses from SZ data given a scaling relation.

2.1.4 GNFW profile shape parameters

The GNFW gas pressure profile is a common feature of all of these
models. It is common in the SZ literature to fix the profile shape
parameters to the UPP values, which were derived from X-ray
observations of an X-ray-selected sample of local clusters (z< 0.2),
combined with numerical simulations to constrain the outer pro-
file parameter (β), which the X-ray observations did not probe.
Since the Arnaud et al. (2010) study, more progress has been made
in understanding the average cluster pressure profile shape, using
SZ data in combination with X-ray to probe into the outskirts, and
investigations have also been made into its intrinsic scatter.

For example, Sayers et al. (2023) performed a detailed anal-
ysis of Planck and Bolocam SZ effect data, in combination with
Chandra and ROSAT X-ray data, to measure the average pres-
sure profile for a sample of clusters with redshifts ranging from
0.054 to 0.589 and masses ranging from (3.7 – 22.1)× 1014 M�.
Dividing their sample into high-z, low-z, and relaxed subsamples,
they found systematic differences between the average profiles
of all three. The intrinsic scatter was in reasonable agreement
between the high-z and low-z samples, and lower (at low signif-
icance) for the relaxed sample in the core. In all three subsamples,
intrinsic scatter was minimum at ≈ 0.4 r500 and increased to a
maximum in the outskirts at 5r500. These results were found to
be in reasonable agreement with numerical simulations as well as
observational studies at similar redshifts redshifts (Arnaud et al.

cWe use the term ‘non-informative prior’ to refer to a prior that imposes minimal
assumptions on the distribution of the parameter. This is usually either a uniform or
log-uniform prior, if the order of magnitude of the parameter value is unknown.
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2010 (within the observed region), Bourdin et al. 2017, Ghirardini
et al. 2019 at low-z; McDonald et al. 2014, Ghirardini et al. 2017,
Bourdin et al. 2017 at high-z), with the mean profiles estimated by
the other studies typically lying within the dispersion estimated by
Sayers et al. (2023), especially for the low-z subsample. This indi-
cates that disagreement between studies of the average profile may
just be caused by the specific sample used for analysis, and a sin-
gle, fixed profile shape may not be appropriate for all the clusters
in the Planck sample.

We will use the profile shape parameters derived by Ghirardini
et al. (2019) in their joint X-ray (XMM-Newton) and SZ (Planck)
analysis of clusters in the XMM Clusters Outskirts Project (X-
COP) sample as a comparison profile to the UPP. These clusters
were selected from the first Planck SZ catalogue and therefore
should be representative of massive clusters observed by Planck.
They are necessarily at low redshift (z< 0.1) to allow them to
be resolved by Planck. Their best-fit GNFW parameters fit to the
stacked pressure profile are (γ , α, β , c500)= (0.43± 0.10, 1.33, 4.40
± 0.41, 1.49± 0.30) (α was kept fixed to alleviate parameter degen-
eracies); note that β is significantly lower than the UPP value. We
will refer to a GNFW profile with shape parameters fixed to these
best-fit values as the XCOP profile and use it to demonstrate the
effect of a change in β and c500 in particular.

Given the intrinsic scatter now being measured in the aver-
age pressure profile, we would like to allow for variation in the
profile on an individual cluster level. We therefore use uniform
priors with ranges based on previous experimentation, taking into
account the severe degeneracies between the parameters (Perrott
et al. 2019) for our main scaling relation analysis. The ranges
chosen for these priors will be further justified in Section 5.2.
When varying the pressure profile shape parameters, we will fol-
low Perrott et al. (2019) in defining the cluster cut-off radius as
the radius at which a spherical integral contains 0.95× Ytot, rather
than depending on c500.

2.2. POWELLSNAKES

We use the POWELLSNAKES software (PWS; Carvalho et al. 2009
and 2012) to analyze Planck data in this paper. PWS is a Bayesian
analysis framework developed for detecting galaxy clusters in
Planck data and is one of the three methods used to construct the
Planck cluster catalogue.We choose to use it over the other, Multi-
frequencymatched filter (frequentist) methods as it fits in with our
Bayesian analysis framework. PWS assumes that the signal due to
a cluster can be written as

s(x;�)=Af (φ)τ (x− x; a), (6)

where the vector � contains the cluster model parameters; the
vector τ (x− x; a) denotes the beam-convolved spatial template
of the cluster at each frequency centred at the position x and
characterised by the shape parameter vector a; the vector f con-
tains the emission coefficients at each frequency, which depend
on the emission law parameter vector φ of the source, and A
is an overall amplitude for the source at some chosen reference
frequency.

PWS treats astronomical backgrounds as part of a generalized
noise term and works on sky patches small enough to assume sta-
tistical homogeneity. Assuming also that the background emission
and instrumental noise are Gaussian random fields, there are no
correlations between Fourier modes of the generalized noise and

it is convenient to work in Fourier space. Under these assump-
tions, it can be shown that the likelihood ratio for a single cluster
can be expressed as

ln
[LHs (�)
LH0 (�)

]
=AF−1 [P(η)̃τ (− η; a)]x

− 1
2A

2
∑

η

Q(η)|̃τ (η; a)|2, (7)

where LHs (LH0 ) is the likelihood of the hypothesis that the field
contains (does not contain) a cluster; tildes denote Fourier trans-
forms; F−1[ . . . ]x denotes the inverse Fourier transform of the
quantity in brackets, evaluated at the point x; and the usual mode
wavenumber k= 2πη. The quantities P and Q are defined as

P(η)≡ d̃t(η)N−1(η)ψ(η) (8)

Q(η)≡ ψ̃
t(η)N−1(η)ψ(η),

in which d is the data vector, N (η) contains the generalized
noise cross-power spectra, and the vector ψ(η) has the compo-
nents (ψ)ν = B̃ν(η)(f )ν , with ν labelling frequency channels and
B̃ν denoting the Fourier transform of the beam in each frequency
channel. For the non-relativistic spectrum, this is extremely com-
putationally efficient since P and Q depend only on the char-
acteristics of the data and the signal spectrum and only need
to be calculated once. When considering the rSZ correction, f
becomes a function of temperature and these quantities need to
be recalculated at each likelihood calculation, introducing a small
computational overhead which is acceptable when running PWS
in targetted (rather than survey) mode.

We note that treating the astronomical backgrounds as a gen-
eralized noise term implies that we do not need a specific model
to describe them, instead they are included in the cross-power
spectrum which is estimated empirically from the data. The effec-
tiveness of this approach in separating the cluster signal from a
spatially correlated dust signal is tested in Section 4.2.3.

In targetted mode, we utilize MULTINEST (Feroz, Hobson, &
Bridges 2009) to sample parameter posteriors, i.e. from Bayes’
Theorem

Pr (�|d,Hs)= Pr (d| �,Hs) Pr (�|Hs)
Pr (d|Hs)

, (9)

where Pr (�|d,Hs) is the posterior probability distribution of
the model parameters � given the data d and model Hs;
Pr (d| �,Hs)=LHs (�) is the likelihood of the data given the
model and its parameters, Pr (�|Hs) is the prior knowledge of the
parameters, and Pr (d|Hs) is the Bayesian evidence. From equation
(7) we see that PWS calculates ln

(LHs (�)/LH0 (�)
)
rather than

LHs (�), however this merely introduces a constant offset and does
not affect posterior or evidence evaluation.

2.3. Posterior validation

We use the posterior validation technique from Harrison et al.
(2015) to test the accuracy of the posterior parameter constraints
produced by PWS throughout the paper. In this framework, the
accuracy of a set of posterior distributions can be tested by calcu-
lating the cumulative distribution function (CDF) of the probabil-
ity mass ζ contained within the highest probability density (HPD)
region having the true value x on its boundary. If the posterior
accurately describes the uncertainty in the parameter measure-
ment, the CDF should follow the CDF of a uniform distribution.
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Figure 3. Posterior validation results for a high-SNR cluster simulation set, for the posi-
tional offset parameters x0 and y0. The CDF of both the 2D and 1D probability mass ζ
conform closely to the CDF of a uniformdistribution. This shows that the posteriors are
accurate, i.e. the true value is contained within the 68% contour 68% of the time, etc.

This is equivalent to stating that the true value should be contained
within the 95% contour 95% of the time; the 68% contour 68% of
the time; and so on. This test can be performed for any subset of
the N dimensions of the posterior. Fig. 3 shows a posterior valida-
tion plot for the positional parameters in the cluster model, for a
high-SNR cluster simulation providing a strict test of PWS’s posi-
tional accuracy. The positional posteriors are very accurate; this
result is consistent for all simulations and we will not show any
further positional results in this paper.

2.4. Planck data and preprocessing

We use Planck data from the NPIPE release (Planck Collaboration
Int. LVII 2020), incorporating the most up-to-date calibration
procedures and including extra data from pointing manoeu-
vres, to give the best possible signal-to-noise. We follow Planck
Collaboration IX (2014) in calculating conversions between KCMB,
MJy sr−1, and SZ signal taking into account the Planck bandpasses
given in the NPIPE Reduced Instrument MOdel (RIMO), publicly
available from the Planck Legacy archive,d i.e.

dXi

dXj
=

∫
dν τ (ν)

(
dIν
dXj

)
∫
dν τ (ν)

(
dIν
dXi

) , (10)

where ν is frequency, τ (ν) is the spectral transmission, Iν is inten-
sity and Xi/j are the units of interest. We give the conversions
between KCMB, MJy sr−1, and non-relativistic SZ signal in Table 1;
they are consistent with the 2018 values given in the Planck
explanatory supplement.e We assume Gaussian beams with the
full-width at half maximum (FHWM) values given in the RIMO,
which are also listed in Table 1.

The rSZ conversion factors are functions of temperature. We
calculate them for each frequency band using SZPACK and equa-
tion (10) on a grid of temperatures ranging from 0 to 40 keV.
For computational convenience, we fit polynomial functions to the
results. We show the calculated conversion factors with their fitted
polynomials in Fig. 4 and give the fitted polynomial coefficients in
Table 2. We note that we fit to KCMB/yrSZ rather than yrSZ/KCMB as

dhttps://pla.esac.esa.int/.
ehttps://wiki.cosmos.esa.int/planck-legacy-archive/index.php/UC_CC_Tables.

Table 1.Unit conversions derived using the NPIPE RIMO, and effective beam full-
width at half maximum (FWHM) values.

Band/GHz MJy sr−1/KCMB ytSZ/KCMB Beam FWHM/arcmin

100 243.8722 −0.2480 9.88

143 371.7354 −0.3595 7.18

217 483.4597 4.9487 4.87

353 287.8358 0.1614 4.65

545 58.1687 0.06921 4.72

857 2.2673 0.03822 4.39

Figure 4. rSZ unit conversions as a function of temperature. Continuous lines display
conversions calculatedby integrating SZPACK calculations over thePlanck bandpasses,
while dots display polynomial fits. The y-axis is displayed on a ‘symmetric log’ scale.

displayed in Table 1 in the non-relativistic limit to avoid numeri-
cal instabilities near the signal null. The polynomial fits reproduce
the conversion factors to better than 0.1%, except for the 217 GHz
frequency channel near the null (the absolute deviation is very
small).

We cut square patches of side 14.7◦ from the NPIPE frequency
maps, using DRIZZLIB (Paradis et al. 2012) to accurately project
fromHEALpix to aWCS tangent projection.While analyzing sim-
ulated clusters, we noted that for large clusters (θs � 20 arcmin)
the patch size was slightly too small, producing an ≈5% bias in
the recovered Ytot value with respect to the input value. For these
clusters, we reanalyse using double the patch side length, which
eliminates the bias as long as the enlarged patch does not con-
tain very different background characteristics such as the Galactic
plane cutting through one part.

We inpaint point sources using the technique from Gruetjen et
al. (2017). We carry out the inpainting on all frequency channel
maps if a source is detected at >7σ in any one. Source detections
are taken from the Second Planck Catalogue of Compact Sources
(PCCS2; Planck Collaboration XXVI 2016) for frequency chan-
nels <353GHz and the extension to the PCCS2 using the Bayesian
Extraction and Estimation Package (BeeP; Planck Collaboration
Int. LV 2020) for frequency channels ≥353 GHz. Sources from
the PCCS2E subcatalogue, from regions of the sky containing
significant diffuse emission, are only selected at 100 GHz. We
find empirically that this selection criterion includes any strong
radio sources while excluding ‘sources’ in the subcatalogue which
visually appear to be knotty parts of filamentary dust emission.
True compact dusty sources from the PCCS2E appear in the BeeP
catalogue at higher frequency.
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Table 2. Fitted polynomial coefficients for the rSZ conversion factors as a function of temperature, derived
using the NPIPE RIMO. For a given frequency channel i, the conversion factor at a given temperature Te may
be calculated as [KCMB/yrSZ]i = p0,i + p1,iTe + p2,iT2e + p3,iT3e + p4,iT4e + p5,iT5e .

Band/GHz p0 p1 p2 p3 p4 p5

100 −3.99 0.0201 0 0 0 0

143 −2.74 0.0134 0 0 0 0

217 0.202 −0.0239 0.000394 −4.95× 10−6 4.33× 10−8 −1.86× 10−10

353 6.19 −0.0921 0.000966 −6× 10−6 0 0

545 14.5 0.287 −0.0106 0.000172 −1.21× 10−6 0

857 26.1 3.07 0.0958 −0.00435 7.18× 10−5 −4.73× 10−7

PWS carries out an iterative background estimation pre-
processing step before MULTINEST is run, searching for a signif-
icant cluster detection near the centre of the map and subtracting
it to iteratively improve the generalized noise power spectrum
estimation. We found while analyzing simulations that this step
tended to underestimate the angular size of the cluster which led
to a small (≈5%) underestimate in Ytot for high-SNR clusters.
In our updated pipeline, we alleviate this problem by running
parameter estimation on the whole catalogue iteratively, at each
iteration supplying an updated catalogue of cluster parameter
estimates based on the previous iteration, until the parameter
estimation converges. In the background estimation step, all clus-
ters in the field of view are subtracted based on the supplied
parameters, and in the parameter estimation step all clusters
except the object of interest are subtracted. As well as remov-
ing the small Ytot bias for high-SNR clusters, this improved
parameter estimation for clusters close to another cluster on the
map.

2.5. X-ray data and sample

We use the X-ray hydrostatic mass estimates from Lovisari et
al. (2020, hereafter L20) to constrain our scaling relations. The
L20 sample were selected fromthe Planck Early SZ (ESZ; Planck
Collaboration VIII 2011) catalogue and observed with XMM-
Newton. We choose this sample because it is, to our knowl-
edge, the largest currently available sample of X-ray masses based
on a Planck-selected sample and observed with XMM-Newton
(as in the original Planck analysis). We note that due to the
well-known discrepancy between temperaturemeasurements with
different X-ray instruments, masses calibrated with other instru-
ments may be systematically different (e.g. Schellenberger et al.
2015).

The total L20 sample consists of 113 clusters selected from
the Planck ESZ catalogue, and further selected to have mea-
sured r500 < 30 arcmin in order to fit within the XMM-Newton
field of view. We choose to further restrict the sample to the
103 which belong to the PSZ2 cosmological sample, which has
been carefully selected to be clean of Galactic dust and point
source contamination and has a well-understood selection func-
tion.We discard twomore clusters with discrepant redshifts: PSZ2
G157.43+30.34, which has a photometric redshift of z = 0.45 in
PSZ2 and L20, but now has an updated spectroscopic redshift of
z = 0.402 (Amodeo et al. 2018); and PSZ2 G055.95-34.89, with

Figure 5. Comparison between Y5R500 values from PSZ2 and this work, derived using
the updatedNPIPEdata andpreprocessing steps. Representative error bars are shown.
The observational GNFW model with fixed UPP is assumed in both cases. The values
are compatible with no obvious biases, although some individual cluster values are
offset from the one-to-one relationship.

an erroneous redshift of z = 0.124 in L20f (Wen & Han 2015
give a spectroscopic redshift of z = 0.2301) leaving a total sample
of 101.

3. Initial comparison to PSZ2 cosmology catalogue

As an initial comparison, we analysed all the clusters in the PSZ2
cosmology catalogue using the same methodology as the origi-
nal Planck analysis, i.e. assuming the observational GNFW model
with the UPP, but with our updated data and pre-processing
steps. We show a comparison between the derived Y5R500 values in
Fig. 5; they are compatible with no obvious systematic differences,
although some individual cluster values are offset.

We also tested the positional accuracy by matching the PSZ2
catalogue positions to the higher-angular-resolution ACT DR5
catalogue (Hilton et al. 2021) within 7 arcmin, resulting in 178

fThis is possibly a transcription error; no redshifts close to this are listed for this cluster
in the NASA/IPAC Extragalactic Database.
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Figure 6. Offsets between matched ACT and Planck clusters, comparing PSZ2 posi-
tions to our updated positions. The left-hand plot shows offsets in arcmin while the
right-hand plot shows offsets normalised by their error estimates, which are consistent
with the Rayleigh distribution shown in black.

matches. The positional offsets are displayed in Fig. 6. The com-
parison shows that the positions derived using our updated data
and analysis method are in general closer to the ACT positions
than the original PSZ2 catalogue, and therefore likely more accu-
rate. We also display the position offsets normalized by their
errorsg; both are reasonably consistent with a Rayleigh distribu-
tion showing that the errors are appropriately estimated. PSZ2
positional errors are around 40% higher than our updated esti-
mates on average.

There are two clusters with positional offsets >5σ between
ACT and our new Planck analysis. The first is ACO 3112 (PSZ2
G252.99-56.09/ACT-CL J0317.9-4420), which has an offset of 5.6
arcmin or 7.3σ . The Planck position actually matches the X-ray
position to within ≈1.5 arcmin (e.g. Lovisari et al. 2020) so we
suspect a systematic error in the ACT position. The second is ACO
2893 (PSZ2 G293.01-65.78/ACT-CL J0116.6-5046) with an offset
of 7.3 arcmin or 6.7σ . The e-ROSITA All Sky Survey catalogue
(Bulbul et al. 2024) contains two separate clusters with positional
offsets, respectively, of 1.8 arcmin from the Planck position and
0.7 arcmin from the ACT position; the redshifts are also different
at z ≈ 0.2 (Planck positional match) and z ≈ 0.4 (ACT positional
match) so we conclude this is actually a spurious match.

4. Effects of rSZ corrections to simulated Planck data

Before implementing amethod to analyse Planck data with the rSZ
spectrum, we explored how significant the effect is and whether a
resolved temperature model is necessary at Planck angular reso-
lution and sensitivity or whether an isothermal approximation is
sufficient.

To do this, we created simulations based on some represen-
tative clusters in the PSZ2 cosmological sample. We took the
redshift and mass from the catalogue, and simulated an analogue
of each cluster using the physical NFW-GNFW model described
in Section 2.1.2, using the UPP GNFW shape parameters. The
model gives us radial profiles of electron pressure, density and
temperature.

The rSZ correction is most likely to be significant for clus-
ters that have very high signal-to-noise and/or are very hot; the
isothermal approximation is most likely to be inadequate for clus-
ters.which, in addition, are very extended compared to the Planck
beam. We chose clusters showing extremes in these properties

gPSZ2 errors are 95% confidence intervals; we divide them by 2 to approximate the
68% confidence interval. Note also that the PSZ2 catalogue estimates are inhomogeneous,
being drawn fromMMF1, MMF3 and PWS analysis.

Figure 7. Illustration of the properties of the PSZ2 cosmology sample, assuming our
physical model to translate from the M500 values given in the catalogue to the proper-
ties shown. Highlighted with boxes and labelled are the clusters we chose to simulate
to test the effects of the rSZ correction.

as well as one which represents the median population to form
the basis for our simulations. We show these properties of the
catalogue in Fig. 7 and indicate the selected representative clusters.

4.1. Cluster simulations

For each of the clusters selected, we simulated relativistic cluster
signal maps at each Planck frequency using the temperature-
moment method implemented in SZPACK to take into account the
varying temperature both on the plane of the sky and over the line
of sight, as outlined in Chluba et al. (2013). For these simulations
we simply used the central frequency in each band, rather than
taking into account the bandpass. We approximated the Planck
beam as a Gaussian and convolved the simulated maps with a
Gaussian of the appropriate width for each channel. For compar-
ison, we also created an isothermal cluster simulation using the
pressure-weighted average temperature TSZ, i.e.

TSZ =
∫
Pe(r)Te(r)dV∫

Pe(r)dV
, (11)

where Pe(r), Te(r) are the radial profiles produced by the model
and the volume integral dV is taken over the entire cluster volume
out to infinity.

This is the same quantity referred to as the y-weighted temper-
ature in, e.g. Remazeilles et al. (2019) and Lee et al. (2020), how-
ever we prefer the term pressure-weighted since the Compton-
y parameter is defined as a line-of-sight-integrated quantity,
whereas this is a 3-dimensional integral.

In Fig. 8 we show a comparison between the resulting sim-
ulated flux as a function of angular distance from the centre
of the cluster (i.e. line-of-sight averaged and beam-convolved)
for Coma, the most extended of our simulated clusters, when
assuming (i) the non-relativistic approximation; (ii) isother-
mal rSZ using the pressure-weighted average temperature; and
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Table 3. Priors on parameters, used for analysis of both simulated and real data. U [xmin, xmax] denotes a uniform prior between xmin and xmax;N (μ, σ ) denotes
a Gaussian prior with mean μ and standard deviation σ and δ(x) denotes a δ-function prior fixed at x. The second option for D2AY500 assumes a scaling relation
with M500, and the corresponding scatter σSR which includes both uncertainty in the mean scaling relation and intrinsic scatter. The three options for the GNFW
shape parameters are the UPP values (left), XCOP values (centre) and non-informative priors (right). The two Gaussian options for the temperature have means
corresponding to some external measurement of the temperature T̂ (middle) and a scaling relation with some quantity X which can be either mass or integrated
Compton-y (right), both with a fixed width of 2 keV.

Parameter Prior(s) Model

x0 U [− 600, 600] arcsec all

y0 U [− 600, 600] arcsec all

θs U [1.3, 60] arcmin Obs. GNFW

log (Ytot/arcmin2) U [
log (5× 10−4), log (5× 10−1)

]
Obs. GNFW

M500 N ( ˆM500, σM500 ) M� log (M500/M�)∼U [14, 15.3] Physical overdensity

D2AY500 log (D2AY500/Mpc
2)∼U [− 7,−3] N (AE(z)CMB500, σSR) Mpc

2 Physical overdensity

γ δ(0.3081) δ(0.43) δ(0.43) all

α δ(1.0510) δ(1.33) U [0.1, 3.5] all

β δ(5.4905) δ(4.40) U [3.5, 7.5] all

c500 δ(1.177) δ(1.49) U [0.6, 2.4] all

TSZ U [0, 40] keV N (T̂, 2) keV N (AE(z)CXB, 2) keV all

Figure 8. Map-plane signal calculated for a simulated cluster similar to Coma in
each Planck frequency channel as indicated by the colours, after line-of-sight integra-
tion and beam convolution. The solid lines show the non-relativistic approximation;
the dashed lines show the full relativistic calculation using the temperature-moment
method; and the dotted lines (indistinguishable from dashed in most cases) show
the relativistic calculation assuming isothermality, with the temperature equal to the
pressure-weighted average over the cluster volume.

(iii) the full temperature-moment rSZ method. It is clear that
the isothermal approximation is very close to the full rSZ
calculation.

We then injected the simulated clusters in real Planck data
from the NPIPE release (PlanckCollaboration Int. LVII 2020).
We chose 100 injection positions which are at least 5 degrees
away from any real cluster in the PSZ2 catalogue to avoid con-
tamination, and at least 5 degrees away from another injec-
tion position to ensure approximate independence of the fore-
grounds. Positions are also constrained to lie outside the Planck
20 per cent Galactic plane mask. This gave us 100 indepen-
dent realizations of each cluster with realistic foreground con-
tamination and thermal noise properties. These 100 positions
provide a fairly complete sampling of sky positions outside the
Galactic mask and avoiding real clusters (it is difficult to find
more than 100 positions satisfying the given conditions) but

is not necessarily intended to be a truly representative set of
positions such as would be required to derive a completeness
function.

4.2. Analysis of simulations

We analysed each cluster using the observational GNFW model
defined in Section 2.1.1. We used the non-informative priors on
x0, y0, θs and Ytot defined in Table 3 encompassing the population
shown in Fig. 7, and fixed the GNFW shape parameters to their
UPP values.

We analysed the rSZ simulations first with the non-relativistic
SZ calculation, and secondly with an isothermal rSZ model,
adding another parameter TSZ on which we trial 3 priors: (i) a
uniform prior from 0 to 40 keV, (ii) a Gaussian prior centred
on the true pressure-weighted average temperature, and (iii) a
Gaussian prior linked to Ytot via a scaling relation. For the latter,
we generated temperature and pressure profiles using the physical
NFW-GNFW model (as demonstrated in Fig. 2) for clusters with
a range of masses and redshifts, and integrated the profiles to cal-
culate the pressure-weighted TSZ. We fit a scaling relation to the
results of form TSZ =AE(z)C(YtotD2

A)B, and obtained (A, B, C)=
(156.65, 0.39, 0.26) for TSZ measured in keV and YtotD2

A measured
in Mpc2.

The resulting posterior constraints on θs and Ytot are shown in
Fig. 9 for each simulated cluster and each TSZ prior, for a selec-
tion of 10 out of the 100 realizations. We also show the mean bias
with respect to the true value in the 1D marginal Ytot constraint
as a percentage and a σ level, averaged over all 100 realizations.
It is clear that the relativistic correction does have a significant
effect, with Ytot biased down by≈5–15% when the non-relativistic
approximation is used for analysis. In the higher SNR cases, it is
also significant at the ≈2–3σ level. In lower SNR cases, the bias is
not significant at the individual cluster level but will be significant
over the whole Planck sample.

In the higher SNR cases, the Ytot measurements are unbiased
when the uniform prior on TSZ is used. However, for most clusters,
using the uniform prior introduces a bias in the opposite direction
(Ytot is over-estimated). This can be explained by the posterior
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Figure 9. Posterior constraints on the cluster θs and Ytot model parameters derived from analysing the full relativistic simulations with the non-relativistic approximation to the
SZ signal (top row) and isothermal relativistic signal (other rows; prior on TSZ given on axis). For a given cluster, all plots have the same axis ranges and the true value is marked
with a black star. The simulation set for each cluster consists of 100 realizations where the same cluster model is input into different regions in the real Planck sky maps. In these
plots, a random selection of ten realizations has been chosen for each cluster and their 68% posterior probability contours shownwith different colours/line styles in each plot, to
display the variation due to thermal and foreground noise. Average 1D Ytot bias values for all 100 realizations in each simulation set are given on the top left-hand corner of each
figure, where a negative bias value indicates that the recovered Ytot is biased down with respect to the input value.

distributions for Ytot and TSZ shown in Fig. 10. There is a strong
degeneracy between these two parameters since the effect of the
relativistic correction over the Planck band is mostly to dimin-
ish the signal; there is also a small change in spectral slope and
the position of the signal null but these effects are small given
the Planck noise levels and the change is not enough to break
the degeneracy between Ytot and TSZ. Marginalizing over the large
range of TSZ therefore induces a positive bias in the Ytot marginal
constraint. In contrast, the two different informative priors on TSZ
produce unbiased Ytot constraints at the <3.5% and < 0.5σ level
in all cases.

Since there is a degeneracy between θs and Ytot parameter con-
straints in the context of the GNFWmodel, external information is
often used to break the degeneracy and obtain tighter constraints
on Ytot (and derived parameters such as Y500). For example, an
X-ray measurement of θ500 can be used as an external prior on

θs (in combination with an estimate of c500), or a scaling rela-
tion between θ500 and Y500 (via the relationship of both withM500)
can be used to ‘slice’ the 2D θs-Ytot posterior (again requiring an
estimate of c500, plus an estimate of the scaling relation param-
eters). For this reason, it is important to ensure the accuracy of
the 2D θs-Ytot posterior as well as the 1D marginalized posteriors
on the individual parameters. We show posterior validation plots
(see Section 2.3) for the cluster parameters in Fig. 11. It can be
seen that only θs is measured correctly when the non-relativistic
approximation is used. When the relativistic spectrum is used, for
all three prior options the 2D and 1D posteriors on θs and Ytot
are measured correctly by this metric. It seems somewhat coun-
terintuitive that the low-significance average downward bias in
Ytot in the tSZ case has a large effect on the posterior validation
curves, whereas the (similarly) low-significance average upward
bias in Ytot in the rSZ case with uniform prior does not. This is
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Figure 10. Posterior constraints on the cluster Ytot and TSZ model parameters derived from analysing the full relativistic simulations. The bottom and second-to-bottom rows
show two- and one-dimensional constraints when the cluster temperature is given a uniform prior, while the two top rows show the one-dimensional constraints when the cluster
temperature is given an informative prior, either centred on the true temperature or on a scaling-relation-derived value (see text for more details). Black vertical lines show true
Ytot values; other colours, markers and text are as in Fig. 9.

because including the marginalization over temperature enlarges
the posteriors sufficiently to ‘hide’ the bias.

The posterior validation curves for TSZ in the uniform-prior
case show that it is measured correctly (although weakly) in
the case of the high-SNR clusters; going to lower-SNR it is not
constrained so deviates from the expected behaviour since the
posteriors encompass almost all values of TSZ. In the case of the
informative priors, we do not expect the temperature posteriors to
be measured correctly (they are driven by the priors), so we do not
show the validation curve for temperature for these cases.

4.2.1 Isothermality assumption

We tested the impact of the isothermality assumption by making
two different versions of the relativistic simulations for each clus-
ter: one with a radially varying temperature profile, and another
with a single average temperature. We analysed each simulation
set in the same way and compared the results, finding that the

evidence values were systematically higher for the isothermal sim-
ulations, particularly for the higher-evidence detections. This is
shown on the left-hand side of Fig. 12. This indicates that the
isothermal simulations are better-fitted by the isothermal model,
even given the limitations of the Planck data.

However, the overall results for Ytot and θs did not change sig-
nificantly, as illustrated in the right-hand plot in Fig. 12. This
shows the same ten noise realizations as Fig. 9 for the Coma-like
cluster, analysed with the Gaussian prior on temperature centred
on the true value. The posteriors are visually slightly more cen-
tred on the true values of Ytot and θs, however overall the bias
in Ytot with respect to the true value is not significantly different,
even though the log-evidence difference between simulation types
is very large for this cluster. We therefore conclude that although
a non-isothermal model may be a better fit to the data, it will not
improve the integrated Compton-y estimate andwe do not explore
this idea further in this paper.
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Figure 11. Posterior validation plots for the simulated clusters, assuming the non-relativistic approximation (top row), and an isothermal rSZ model with priors given in the axis
labels (other rows). All axis ranges are from 0 to 1. Themore closely the coloured posterior validation curves follow the black solid line, themore accurately the posterior describes
the uncertainty on the parameter(s) of interest. TSZ validation curves are only shown for the uniform prior case, since with the informative priors the posterior is driven by the
prior.

4.2.2 Temperature systematics

A related question is, what level of systematic error is introduced
when the temperature estimate used for the informative prior is
biased in some way? For example, if an X-ray temperature esti-
mate is used, it is likely to be a cylindrically-averaged estimate
within ∼r500, whereas our TSZ is averaged within ≈5r500. We used
the Vikhlinin (2006) method for estimating X-ray temperatures in
conjunction with our physical model for the electron density and
temperature to predict the ratio between the X-ray and SZ tem-
peratures for a range of masses and redshifts, both for Chandra
and XMM-Newton. We found that the X-ray temperature within
r500 is biased upward by a maximum of ≈40% compared to TSZ if
the core is excised, for a Chandrameasurement. This difference is
mainly due to the decrease in the temperature profile outside of
r500. We tested the effect of this by rerunning the analysis on our
set of simulated clusters, with the Gaussian prior on temperature
centred on 1.4× TSZ. The effect of the biased temperature is most
pronounced for the hottest cluster, G286.98, where a 40% increase
in temperature results in a 5% increase in Ytot on average. In con-
trast, for the A2319-like cluster, a 40% increase in temperature
results in only a 3% average increase in Ytot.

On the other hand, the best currently available TSZ scaling
relations are those of Lee et al. (2020) and (2022), which give
relationships between mass and pressure-weighted average tem-
perature within r500 and r200, respectively, based on numerical
simulations. We compared the spherical averages to our total
pressure-weighted temperatures using our model, finding that
these temperatures are biased high by a maximum of ≈30% (T500)
and ≈ 20% (T200). We again tested these biases on our simulation
set and found that for G286.98, a 30% (20%) increase in tem-
perature results in a 4% (2.5%) increase in Ytot on average. The
M200/T200 scaling relation should therefore be the safest to use in
lieu of any real temperature measurements sensitive to the out-
skirts of the cluster; we note also that our simple model is not
necessarily a good representation of the real physics in the out-
skirts of clusters, where complexities occur due to accretion etc.
We will return to this issue in Section 6.4 where we use X-ray and
simulation-based temperatures for our scaling relation calibration.

4.2.3 Correlated dust emission

A dust component has been detected covering a similar spa-
tial extent to the ICM, thought to originate either from
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Figure 12. Left: comparison between log-evidence values for rSZ simulations created using an isothermal cluster model and a radially varying temperature profile, but both
analysed using an isothermal model. The x-axis shows the log-evidence, indicating the detection significance of the cluster, when the cluster is simulated and analysed using an
isothermal model. The y-axis shows the difference in log-evidence, for each realization in each simulation set, between the x-axis value and the log-evidence obtained when the
cluster is simulated with a radially varying temperature profile but analysed with an isothermal model; ie the log-evidence values are higher by up to≈100 when the isothermal
model is used both to create and analyse the simulations. In both cases, the prior on temperature is centred on the true, pressure-weighted average value. Right: posteriors for 10
simulation realisations for the Coma-like cluster, where the isothermal model has been used both to create and analyse the simulations. The realizations are the same as those
shown in Fig. 9.

the galaxies in the clusters or from a diffuse intracluster dust com-
ponent (e.g. Giard et al. 2008; Planck Collaboration XXIII 2016;
Planck Collaboration Int. XLIII 2016; Erler et al. 2018). We tested
the effect of this by inserting a Gaussian dust component with
σ = θ500 on top of the cluster signal in each simulated frequency
map. The spectrum and amplitude of the dust component follow
the average constraint from Erler et al. (2018) Then, we repeated
the same analysis as in the no-dust simulations. The results show
negligible change to the recovered parameter values and only a
small decrease in evidence overall when the dust component is
present, even in the case of the non-informative prior on temper-
ature. This indicates that the PWS methodology is able to robustly
separate out the dust component and include it in the generalized
noise estimate based on its different spectrum, even when the SZ
spectrum is changing due to temperature.

4.2.4 Summary of simulation analysis

In summary, based on the analysis of the simulations we con-
clude that neglecting the rSZ corrections results in an integrated
Compton-y estimate that is biased down with respect to the true
value by an amount ranging from ≈5% to 15% depending on the
mass (and therefore temperature) of the cluster. While the bias is
only significant at≈3σ for the highest-SNR clusters, when averag-
ing over a sample of clusters to constrain a scaling relation there
will be a global mass-dependent bias.

We can weakly constrain TSZ for the highest-SNR clusters;
however, for the bulk of the sample an informative prior is
required to correct the rSZ bias and produce a correct posterior
constraint on θs and Ytot. The isothermal assumption is accurate
enough for this analysis; systematic differences in external tem-
perature estimates may be an issue and will be considered further
when analysing real data; and correlated dust emission produces a
negligible effect.

5. Pressure profile shapes

A secondary effect we wish to explore is the effect of varying pres-
sure profile shapes on the integrated Compton-y estimates from
Planck. We used the X-ray constraints from the L20 sample to
investigate this issue.

Firstly, using the high-significance cluster Abell 3266 (PSZ2
G272.08-40.16) as an example, we illustrate the effect of varying
c500 in Fig. 13. We fit the real Planck data using the observational
GNFW model with the uninformative priors on x0, y0, θs and Ytot
given in Table 3. We firstly fixed all shape parameters (including
c500) to the UPP values; then left γ , α, β fixed to the UPP val-
ues but gave c500 a Gaussian prior based on the XCOP value and
error. When c500 is fixed to its UPP value, the SZ constraints are
significantly inconsistent with the X-ray value for θ500, while the
uncertainty allowed by the XCOP prior brings them within (bet-
ter) consistency. We note that there is no information on c500 in
the Planck data in the context of the observational model, so c500 is
just an externally-imposed factor which translates from θs to θ500
(and from Ytot to Y500).

Similarly, we illustrate the effect of changing the prior on β
from the fixed UPP value to a Gaussian prior based on the XCOP
estimate and error in Fig. 14. The change in β also brings the SZ
θ500 estimate into much better agreement with the X-ray value. In
this case, there is information in the Planck data on the β value as
shown by the movement away from the prior.

Since there is clearly information on the profile shape in the
Planck data, we also tried a uniform prior on each of α, β ,
c500, leaving γ fixed to the XCOP mean since the relatively low-
resolution Planck data is less sensitive to this parameter. The
uniform prior limits are shown in Table 3. There are too many
degeneracies present in the model to fit all parameters simulta-
neously; however, switching to the physical overdensity model
and using an X-ray prior on M500 (which translates to a prior
on θ500; see Section 2.1.3) the degeneracies are reduced suffi-
ciently to achieve a good Y500 measurement. Fig. 15 shows a
comparison between Y500 as measured from the Planck data using
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Figure 13. Comparison between posterior constraints on θ500 and Y500 for the high-
significance cluster Abell 3266 using the (fixed) UPP value of c500 compared to the XCOP
value with error. The black solid lines show the X-ray measured value of θ500 from L20
and the orange dashed line shows the UPP value of c500.

Figure 14. Comparison between posterior constraints on θ500 and Y500 for the high-
significance cluster Abell 3266 using the (fixed) UPP value of β compared to the XCOP
value with error. The black lines show the X-ray measured value of θ500 from L20, and
the orange dashed line shows the UPP value of β. The blue dashed line shows the
Gaussian XCOP prior on β.

(i) the observational GNFW model with a fixed UPP profile; (ii)
the observational GNFW model with a fixed XCOP profile; and
(iii) the physical overdensity model, varying profile shape param-
eters with an L20 prior on M500. In the case of both (ii) and (iii),
there is an overall shift down in Y500 by ≈4% when compared to
results with the fixed UPP profile. While this is a small change and

Figure 15. Comparison between Y500 measurements obtained using a fixed UPP pro-
file; a fixed XCOP profile; and varying pressure profile parameters with a prior on θ500
based on the L20 X-ray mass. The x-axis shows log-evidence values from the UPP anal-
ysis; the y-axis shows the ratio between Y500 measurements using the XCOP profile and
UPP profile with yellow circles, and the corresponding ratio when varying the pressure
profile with blue triangles. Points have been slightly displaced horizontally for clarity.
The overall mean ratios are shownwith yellow dashed and blue dotted horizontal lines
and are barely distinguishable at≈4%.

not significant on the individual cluster level, similarly to the rSZ
effect it is a source of systematic error that should be taken into
consideration in the quest for precision cluster measurements.

For most clusters in the L20 sample, the constraints on the pro-
file shape parameters are consistent with the XCOP profile and
the corresponding Y500 measurements are also consistent (with
larger error bars when the profile shape is varied). However, in
a few high-significance cases, the results do change. This is illus-
trated for the most extreme case (PSZ2 G262.27-35.38 or Abell S
520) in Fig. 16, where the profile shape parameter constraints are
strongly discrepant with the XCOP (and UPP) values. In this case,
we interpret this to mean that in fact the mass estimate from L20,
and therefore the prior constraint on θ500, is too low; by adjusting
c500 and β , the profile can be adjusted to fit the Planck data better
while still matching the θ500 prior. This is the desired behaviour
for calibrating a scaling relation; in contrast, when the profile
shape is fixed the θ500 posterior is forced to depart from the X-ray
prior. This interpretationmay be supported by other literature val-
ues for the mass (e.g. MX,500 = 7.7× 1014M� from Piffaretti et al.
2011, compared to 6.59× 1014 M� from L20 (although note that
the Piffaretti et al. 2011 mass is derived from an LX −M scaling
relation and no uncertainties are given). In the case of other, high-
significance clusters such as Abell 3266, the opposite is true: the
θ500 value does not change, but the profile shape parameter con-
straints fall in slightly different regions to the XCOP or UPP values
and therefore the recovered Y500 value does change significantly.

We have verified with simulations based on the L20 clusters
that Y500 is recovered correctly when we allow the profile shape
parameters to vary with the uniform priors. We note that the PWS
initial background subtraction step requires a fixed profile shape,
which we set to XCOP. In the cases we tested, we generated the
simulations with a UPP profile to verify that the mismatch in the
profile in the background subtraction step did not affect the final
constraints; since there are large degeneracies in all the parame-
ters, it is generally possible to find a sufficiently good fit to the data
even with the wrong profile, although the θs and Ytot estimates (in
the background subtraction step only) will be incorrect.
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Figure 16. Comparison between posterior constraints on Y500 and the GNFW profile
parameters for the high-significance cluster Abell S 520, using an X-ray prior on θ500.
XCOP values and errors are illustratedwith dashedblue lines, bands and stars, andUPP
values with dashed orange lines and stars. The X-ray constraint on θ500 is shown with a
black solid line (L20) and dashed line (Piffaretti et al. 2011). The strong departure from
the average profile parameters appears, in this case, to be adjusting the profile shape
to accommodate the low θ500 estimate from L20.

5.1 Effect of γ

Planck data is generally thought to be of too low resolution to
be impacted by the γ parameter which describes the innermost
part of the cluster pressure profile, and we do not vary it in our
analysis. However, for clusters such as Abell 3266 with θ500 ≈18
arcmin, the cluster is large compared to the ≈5 arcmin resolu-
tion of the higher-frequency Planck channels. We tested whether
γ has a significant impact on the Y500 constraints by perform-
ing separate analyses with the uniform priors on α, β and c500
and the X-ray-based prior on θ500, fixing γ to extreme values of
0 and 0.9, ≈ 4σ from the XCOP mean. The resulting posteri-
ors are shown in Fig. 17. It is clear that the Y500 constraint is
not significantly impacted (it shifts by <1%), although there is
information in the data on the γ parameter with shape param-
eter constraints shifting and the γ = 0.0 model being preferred
with respect to the γ = (0.43, 0.9) models with log-evidence dif-
ferences of �Z = (0.5, 5.1). Since we are mostly concerned with
integrated Y , we do not explore this any further and leave γ fixed
to the XCOP mean of 0.43 for further analysis.

5.2 Choice of parameter prior limits

It should be noted that Figs. 16 and 17 show that some of the pos-
teriors for the GNFW shape parameters hit the prior limits. This is
due to the severe parameter degeneracies inherent in the GNFW
model, particularly when only a limited range of angular scales
are constrained in the profile. Experimentation with widening the
prior limits beyond the ranges given in Table 3 has shown that
the N-dimensional posterior shapes become complex and diffi-
cult to interpret. The limits used here restrict the parameter values
to ranges which are sensible based on our prior knowledge of the

Figure 17. Comparison between posterior constraints on Y500 and the GNFW profile
parameters for the high-significance cluster Abell 3266, using an X-ray prior on θ500,
and three different fixed values of γ as indicated in the legend. The change in γ has
an insignificant impact on the Y500 constraint despite the changes in the profile shape
parameter posteriors. XCOP values and priors are illustrated with dashed blue lines
and UPP values with dashed orange lines and stars.

average pressure profile shape and its dispersion (eg from stud-
ies such as Sayers et al. 2023 and Ghirardini et al. 2019) while not
including the parameter ranges where the posterior shape becomes
complex. As noted above, we have verified with a simulation set
based on the L20 cluster sample that Y500 is recovered correctly
when we allow the profile shape parameters to vary with uniform
priors with these ranges, even though the posterior constraints hit
the prior boundaries. These simulations were created with UPP
profiles, analyzed with XCOP profiles in the background estima-
tion step, and then analyzed with the uniform priors for parameter
estimation. In this test, recovered Y500 mean values were unbi-
ased to within < 3%, and the posterior validation test showed the
errors on Y500 were also accurate. The θ500 posteriors were entirely
driven by the external prior and so mean θ500 is also recovered cor-
rectly. In contrast, when analyzing these cluster simulations with
an (incorrect) fixed XCOP profile, mean Y500 values were biased
down by ≈10%. We can therefore be confident that the restriction
on the prior ranges is not producing a bias in Y500, for reasonable
true pressure profile shapes.

5.3 Summary of pressure profile investigation

Based on the investigation here, we conclude that accurate con-
straints on integrated Y from Planck data require either accurate
external constraints on the profile shape, or external informa-
tion on a characteristic scale such as θ500. This could be from an
external measurement or via a scaling relation which imposes an
expected relationship between θ500 and Y500. For the remaining
analysis in this paper, we will allow the pressure profile parame-
ters to vary using the uniform priors shown in Table 3 since we
have external measurements of θ500 from L20.
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6. Mass scaling relation calibration

We follow Planck analysis in calibrating the relationship between
MX,500 as measured from X-ray data assuming hydrostatic equi-
librium, and Y500 as measured from Planck data. We fit a scaling
relation of the same form used in the Planck collaboration analy-
sis:

E−B(z)
[

D2
AY500

10−4Mpc2

]
= Y∗

[
h
0.7

]−2+A [
MX,500

6× 1014M�

]A

, (12)

where MX,500 is the X-ray-derived hydrostatic equilibrium mass
whichmay be biased compared to the true mass. In the self-similar
model, B= 2/3 and A= 5/3.

We focus first on the non-relativistic case, and validate our
updated Planck measurements against the results from Planck
Collaboration XX (2014, hereafter P13) to check for any global
calibration offsets. We then extend the sample to lower mass,
using the hydrostatic masses measured by L20, and recalibrate the
relationship.

For our SZ measurements, we carry out the analysis of the
NPIPE Planck data with the physical overdensity model, using an
asymmetric Gaussian prior on MX,500 derived from the L20 esti-
mate and upper and lower errorbars. As noted in Section 5, as long
as the profile shape is allowed to vary this means that the poste-
rior on θ500 does not depart from the prior, so we are measuring
integrated Y inside the radius defined by the X-ray mass, taking
into account its uncertainty. We use uniform priors on the GNFW
parameters and a non-informative log-uniform prior on Y500 as
described in Table 3.

We use the LInear Regression in Astronomy inAstronomy
(LIRA; Sereno 2016) package to perform the scaling relation fits.
This method can take into account errors (possibly correlated) in
both measured parameters as well as intrinsic scatter in both.

6.1 Comparison with P13

P13 used a subset of 71 high-SNR clusters from the PSZ1 cata-
logue which had good-qualityXMM-Newton observations. The SZ
signal was re-extracted from the 15.5 month Planck survey data,
centred on the position of the X-ray peak andwithin the r500 radius
determined from X-ray data. A matched multi-filter method was
used, assuming the UPP, and the resulting Y500 were corrected for
Malmquist bias. The scaling relation was fit using the orthogo-
nal BCES method (Akritas & Bershady 1996), taking into account
uncertainties in both variables and (a single value of) intrinsic
scatter.

We first tested that we could recover consistent scaling rela-
tion parameter fits using LIRA and the original bias-corrected P13
data.h The fits are shown in Table 4, along with the fitting results
reported by P13. The results are extremely consistent showing that
any differences in scaling relation calibration are not due to the
fitting methodology used.

We next compared the P13 Y500 values to our updated values.
We discarded cluster PSZ1 G282.45+65.18 which was not found
in the PSZ2 cosmological sample, leaving a comparison sample of
70. The Y500 comparison is shown in Fig. 18; the measurements
are extremely consistent over most of the Y500 range, showing that
there is no global offset introduced by the change of Planck dataset
and/or fitting methodology. Our updated values at small D2

AY500

hData obtained from http://szcluster-db.ias.u-psud.fr.

Figure 18. Comparison between our posterior constraints on Y500 using P13 X-raymass
priors, and the Y500 values used by P13. The blue crosses (small yellow dots) show data
points with (without) the Malmquist bias correction applied by P13. In the lower axis,
the large blue diamonds (large yellow circles) show the corresponding average ratios
in bins in D2AY500.

do appear to be systematically higher than the P13 values, although
there are few clusters in this range.

6.2 Updated calibration

We use the hydrostatic masses measured by L20 for our subsam-
ple of 101 clusters, as described in Section 2.5. We use LIRA to
perform the fit, and report the results of all scaling relation fits
in Table 4. As a baseline fit, we fix B to its self-similar value and
allow intrinsic scatter in both parameters. Fig. 19 shows this base-
line scaling relation fit in comparison to the Planck Collaboration
XX (2014) result (which did not change in subsequent Planck anal-
ysis); the fits are extremely consistent at the high-mass end, and
only deviate by slightly more than 1σ at the low-mass end. There
are several differences between our analysis methodologies: (i) we
use a larger sample of clusters (with some overlap); (ii) we use
hydrostatic equilibrium X-ray masses instead of masses derived
using a YX −MX,500 scaling relation; (iii) we use PWS rather than
a matched filtering method to constrain Y500; (iv) we allow for
variation in the cluster pressure profile shape; (v) we use the
updated NPIPE reduction of the Planck data with greater depth.
This consistency therefore serves to highlight the robustness of
this particular mass-observable scaling relation. Table 4 also shows
that our fit is extremely consistent with the Planck result, with both
the slope and normalisation consistent at ≈ 1σ .

From this baseline fit, we experiment with variations in the
fitting methodology and use a Monte-Carlo simulation in order
to determine which of the variations that make a significant
difference we should use to fit the data in the most robust way.

6.2.1 Intrinsic scatter constraints

In our baseline fit, we used LIRA to estimate the intrinsic scatter in
both coordinates, assuming a log-normal distribution for the scat-
ter. However, we find from inspecting the posterior distributions
that the two scatter estimates are correlated, as shown in Fig. 20,
where we show the LIRA posterior distributions for the intrinsic
scatter parameters both for the real data, and for a simulation (see
Section 6.3). The simulation was created using input values of the
intrinsic scatter based on the posteriormeans from the real data fit,
and similar measurement errors to the real data. It is clear that a
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Table 4. Scaling relation fitting results, using symbols as defined in equation (12). Parameters with errorbars of 0.0 are fixed to the given value.
‘P13 corr.’ refers to the Malmquist-bias-corrected scaling relation result from Planck Collaboration XX (2014) (using BCES) and the LIRA fit is our
own fit to the P13 data. ‘tSZ’ and ‘rSZ’ refer to results from this work for the non-relativistic and relativistic SZ spectra, respectively.

Type A �A B �B log Y∗ � log Y∗ σlogM �σlogM σlog Y �σlog Y

P13 corr. (BCES) 1.790 0.060 0.667 0.000 −0.190 0.010 – – < 0.074 –

P13 corr. (LIRA) 1.783 0.067 0.667 0.000 −0.182 0.011 0.036 0.006 <0.024 –

tSZ (baseline) 1.682 0.087 0.667 0.000 −0.168 0.013 0.054 0.008 <0.046 –

tSZ, no Y500 scatter 1.728 0.080 0.667 0.000 −0.167 0.013 0.060 0.006 0.000 0.000

tSZ, iterated mass 1.705 0.119 0.667 0.000 −0.168 0.015 >0.057 – <0.069 –

tSZ, SNR> 10 1.633 0.091 0.667 0.000 −0.161 0.013 0.057 0.008 <0.038 –

tSZ, completeness> 0.9 1.663 0.108 0.667 0.000 −0.164 0.015 0.063 0.008 <0.042 –

tSZ, free B 1.730 0.127 0.331 0.639 −0.139 0.013 0.055 0.008 <0.041 –

rSZ,M200 − Ty , no Y500 scatter 1.765 0.081 0.667 0.000 −0.130 0.013 0.058 0.006 0.000 0.000

rSZ,M500 − Ty , no Y500 scatter 1.769 0.080 0.667 0.000 −0.127 0.013 0.058 0.006 0.000 0.000

rSZ, TX , no Y500 scatter 1.773 0.081 0.667 0.000 −0.125 0.013 0.059 0.006 0.000 0.000

Figure 19. Baseline calibration of the mass-observable scaling relation assuming the
non-relativistic SZ spectrum. Our calibration (orange line, shaded area showing uncer-
tainty) is consistent within ≈1σ with the result from P13 (blue dotted line) over most
of the mass range, deviating slightly at the low-mass end. The dashed light blue line
shows the fit when only allowing for scatter in the mass observable, and the green
dot-dashed line shows the fit when a bootstrapped mass consistent with the scaling
relation is used to define θ500 for the SZ signal extraction.

simple 1Dmean is inadequate to describe the posterior in the sim-
ulation case. In the real data case, the posterior converges towards
the lower edge of the inverse χ 2 prior in σlog Y and gives an upper
68% confidence limit of 0.05. This corresponds to a percentage
error of ≈10% which is consistent with the mean uncertainty in
Y500 of around 10%; it is clearly difficult to constrain an intrinsic
scatter level of less than the measurement error.

6.2.2 Intrinsic scatter in mass only

Since the scatter in Y500 may be below the detection threshold, we
considered only fitting for intrinsic scatter inMX,500. This results in
the fit parameters shown in Table 4, with an increase in the slope

Figure 20. Posterior distributions of the intrinsic scatter parameters returned by LIRA,
for our real sample data and a simulation, created as described in Section 6.3. The
simulationwas created using themean posterior values of the scatter parameters from
the real data fit, marked with the black star.

parameter A of ≈0.5σ , a negligible change to the normalization
Y∗ and a slight increase in the intrinsic mass scatter of ≈0.7σ . We
will show in Section 6.3 that this fit is slightly more robust than
the original fit for the situation where scatter in Y500 is at or below
the detection threshold, so we adopt this as our fiducial fit even
though it is not significantly different to the baseline fit.

6.2.3 Correlated errors

The errors in our MX,500 and Y500 measurements are correlated,
sinceMX,500 is used to define the integration boundary θ500 within
which Y500 is calculated. However, this is a small effect since θ500 ∝
M1/3

500. We verified that incorporating the covariance as estimated
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from our Y500 posteriors has a negligible effect on the scaling
relation fit.

We also tested the importance of the effect by re-analysing
the Planck data with an updated mass prior, where the new mass
is fixed to the value minimizing the offset between the origi-
nal (MX,500, Y500) point and the baseline scaling relation, taking
into account the errors and fitted intrinsic scatter in both quan-
tities. The updated Y500 values generally differ by < 5% from
the original ones, with a few outliers with differences of up to
≈15%. Fitting the scaling relation again with original MX,500 val-
ues and updated Y500 values gives results entirely consistent with
the original results (<0.1σ difference in normalization and< 0.2σ
difference in slope) as shown in Table 4 and Fig. 19 and so we con-
clude that the correlations are negligible for the purposes of the
scaling relation fit.

6.2.4 Asymmetric mass errors

L20 give independent upper and lower error estimates for their
mass measurements, which for some clusters are significantly dif-
ferent. In our baseline analysis we took the mean of the upper and
lower errors as the input for LIRA, since it does not allow the input
of asymmetric error bars. We tested the effect of instead taking
the maximum or minimum out of the asymmetric error bars as
the input for LIRA, with negligible change to the scaling relation
parameters.

6.2.5 Malmquist bias

Planck Collaboration XX (2014) correct their individual Y500 mea-
surements for Malmquist bias, following Vikhlinin et al. (2009)
and Pratt et al. (2009), before fitting the mean scaling relation.
However, Andrade-Santos et al. (2021 show with simulations that
the Malmquist bias is negligible for the ESZ sample when the
deeper full-mission maps are used to derive SZ properties. We
tested for the presence of Malmquist bias in two ways: firstly by
excluding clusters with PWS signal-to-noise ratio (SNR; derived
from the maximum log-likelihood value, see Carvalho et al. 2012)
<10 at which value the bias as calculated by Planck Collaboration
XX (2014) becomes negligible (1%). This excludes a total of 12 out
of 101 clusters of low-to-medium mass in our sample. Fitting the
scaling relation with the high-SNR sample results in only < 0.7σ
changes in the scaling relation parameters, and in the opposite
direction to that expected due to the Malmquist bias. If Y500 mea-
surements at the low end of the mass range are biased high due
to the Malmquist bias, the full-sample scaling relation should be
biased high at low mass; however, we find the opposite as shown
in Fig. 21.

Secondly, we considered the completeness expected for the
cluster masses and redshift in the sample. The PSZ2 catalogue
included a completeness estimation as a function of (θ500, Y500).
For each cluster in the scaling relation sample, we estimated (a
better approximation to) the true (MX,500, Y500) by minimizing the
offset between the measured point and the fitted scaling relation,
then used this value to obtain the completeness in the PSZ2 cata-
logue, as illustrated in Fig. 22. Although we are using NPIPE data,
we verified by running our analysis pipeline on the PR2 data that
the SNR is highly correlated and similar (≈10% higher in NPIPE
than PR2 on average), so the PSZ2 completeness is indicative of the
NPIPE completeness. If a cluster’s true mass and redshift put it at
a low completeness, this will mean that the estimated Y500 is more
likely to be biased upward for it to be included in the sample, and
the SNR will also be biased upward so it may not be caught by the

Figure 21. Testing for the presence of Malmquist bias. The orange line and band
shows the calibration of the mass-observable scaling relation using the full sample
and allowing for scatter in both variables. The blue dashed line is fitted in the same
way, but restricting the sample to clusters with PWS SNR> 10 (points highlighted with
red squares); it is consistent within ≈1σ with the full-sample fit over the whole mass
range. The dot-dashed green line shows the fit when selecting clusters with complete-
ness >0.9 in the PSZ2 catalogue (points highlighted with black diamonds); it is fully
consistent with the full-sample fit over the whole mass range.

Figure 22. Completeness function for the PSZ2 catalogue (at SNR=6, used to select
the cosmology sample), with the scaling relation sample shown by the open points.
The black contour shows the completeness cut-off of 0.9 used to test for Malmquist
bias.

high-SNR selection test. We selected a subsample with complete-
ness >0.9 (68 out of 101 clusters) and fitted the scaling relation
to this sample; the difference to the full-sample fit is negligible
as shown in Fig. 21. Based on the results of these two tests we
agree with Andrade-Santos et al. (2021) that the Malmquist bias
is negligible.

6.2.6 Redshift evolution

We also consider allowing the redshift evolution to deviate from
the self-similar expectation. In this case, the scaling relation fit by
LIRA is a little different:[

D2
AY500

10−4Mpc2

]
= Y∗

[
h
0.7

]−2+A [
MX,500

6× 1014M�

]A [
E(z)
E(zref)

]B

,

(13)
where zref = 0.2 is chosen to be near the median of the sample
redshift distribution. Y∗ in this case is therefore not directly com-
parable with the self-similar evolution case since it is modified
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Figure 23. Completeness of the ESZ cluster sample relative to the PSZ2 sample. The
background colour-scale shows our parametric fit to the completeness. Orange dots
overplotted show the PSZ2 sample, while small black dots show clusters also present
in the ESZ sample. The inset shows the calculation for a small redshift slice. The orange
histogram shows themass distribution of clusters in the PSZ2 in this redshift bin, while
the blue hatched histogram shows the same for the overlapping ESZ and PSZ2 sam-
ples. Open dots show the predicted numbers in each bin based on our parametric fit to
the completeness.

by an extra factor E(zref)−B. The fit in this case is reported in
Table 4; the redshift evolution parameter B is consistent with the
self-similar value of 2/3, B= 0.3± 0.7, although the large error-
bar clearly shows there is not enough redshift leverage to constrain
this parameter. We therefore restrict the redshift evolution to the
self-similar case from here on.

6.3 Monte-Carlo simulations

We tested the accuracy of our fitting methodology and the impact
of themass-redshift selection function of our sample usingMonte-
Carlo simulations. The Planck ESZ sample did not have a well-
defined selection function; however, the selection function for the
PSZ2 cosmological sample was robustly investigated in Planck
Collaboration XXIV (2016) and publicly released in the form of
the completeness function, χ(θ500, Y500, SNR). We can therefore
bootstrap a completeness function for the overlapping ESZ and
PSZ2 samples, i.e. the completeness of ESZ relative to PSZ2. We
calculated a parametric fit to the completeness as a function of
mass and redshift, by fitting an error-function to the complete-
ness as a function of mass in redshift slices, then fitting a quadratic
function to the fitted error function parameters as a function of
redshift. This produces a reasonable fit (shown in Fig. 23 along
with the real PSZ2 and ESZ detections), which we consider good
enough to generate realistic simulated samples and therefore eval-
uate the impact of the mass-redshift selection function on the
scaling relation fit.

Our Monte-Carlo simulations then proceed as follows:

1. Draw an expected population of clusters between the mass
and redshift limits of the sample, using the Tinker et al.
(2008) mass function as implemented in the COLOSSUS
toolkit (Diemer 2018) and apply a random 65% sky cut to
match the PSZ2 cosmological sample selection.

2. Bias the mass values by a mean hydrostatic mass bias of
(1− b)= 0.7 (empirically, this roughly matches the mass
distribution to the observed PSZ2 distribution; we note we
are using a concordance cosmology so we do not neces-
sarily expect this bias to match the Planck cosmological
results).

3. Convert themass and redshift values to θ500, Y500 assuming
the P13 scaling relation parameters.

4. Apply an intrinsic log-normal scatter contamination to the
Y500 values, using the mean estimate of σlog Y = 0.03 from
our fit to the real data.

5. Contaminate the scattered Y500 values with random noise
using the average 10% measurement errors from our sam-
ple.

6. Filter the sample using the PSZ2 selection function, with
SNR cutoff of 6, to emulate the PSZ2 cosmological sample
with Malmquist bias.

7. Filter the sample again using the bootstrapped ESZ selec-
tion function to emulate the ESZ sample.

8. Contaminate mass values with intrinsic log-normal scatter
(σlogM = 0.06) and random noise, using the average 10%
measurement errors from our sample.

9. Discard clusters with (scattered, noisy) θ500 > 30 arcmin to
satisfy the XMM-Newton FoV cut.

10. Fit the final contaminated values with the same LIRA
command as we use to fit the real data.
We repeated the simulation 500 times, fitting in three
different ways:

1. With B fixed to the input value of 2/3, fitting for intrinsic
scatter in both parameters;

2. B free, fitting for scatter in both parameters;
3. B fixed to the input value, no scatter fitted in Y500.

We then compared all the resulting scaling relation fit param-
eters to check for any biases with respect to the input parameter
values caused by the selection function. Fig. 24 (top row) shows the
results. The scaling relation parameters A, B and log Y∗ are gener-
ally fit well with all three fitting methods. The mean fit parameters
are all <0.8σ from the true values, where σ is the mean error
reported by LIRA. The standard deviations of the distributions are
also very consistent with the errors reported by LIRA. When B is
not fixed, the recovered values of log Y∗ are inconsistent with the
input value, but this is due to the slightly different definition of
log Y∗ as shown in equation (13) rather than an error in the fit. B
is constrained correctly but with very large scatter, confirming that
there is not enough redshift leverage in this sample to constrain
the redshift evolution. The fit with no intrinsic scatter in Y500 gives
a slightly better result for A with the mean fit parameter <0.3σ
from the true value. There is some hint of a bias toward lower
A values, which is probably due to the combination of the clus-
ter mass function and the ESZ selection function, but we do not
attempt to correct for this given the uncertainty in the selection
function.

The performance of the intrinsic scatter fitting is more difficult
to test given the degeneracies in the posteriors of these param-
eters, as discussed in Section 6.2.1. Fig. 24 (top row) shows the
distribution of the mean values of the posteriors, in the case where
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Figure 24. Results of Monte-Carlo simulations to test the robustness of the LIRA fit results given the selection effects, as described in the text. Solid yellow histograms show
results of LIRA fits to 500 random realisations of the sample, fixing B to its input value of 2/3. Blue solid histograms show results of fits to the same realisations, also fitting B, and
green hatched histograms show results of fits to the same realisations, not fitting for B or scatter in Y500. Black vertical lines show input values of the scaling relation and scatter
parameters. We note that the log Y∗ discrepancy when fitting B is due to a slightly different definition (see equation 13) rather than an error in the fit. In the top (bottom) row, the
input intrinsic scatter in Y500 was set to 0.03 (0.01).

σlog Y = 0.03 as fit to the real data. Since there are indications
that the posterior may really be showing an upper limit, we also
tested a much lower input value of σlog Y = 0.01 (bottom row).
In both cases, when fitting with scatter in both observables, the
mean values of σlogM tend to be underestimated by ≈1σ , and the
mean values of σlog Y are consistently overestimated with a very
non-Gaussian distribution. We also tested the robustness of the
maximum a-posteriori (MAP) values rather than the means (see
Fig. 25). There are a small number of cases where the MAP posi-
tion occurs at the wrong end of the ‘elbow’ shaped posterior shown
in Fig. 20, i.e. the MAP position is at a high value of σlog Y and a
low value of σlogM . Excluding those, the MAP values recover the
true value of σlogM well. On the other hand, the MAP values of
σlog Y are consistently at the bottom of the prior range irrespec-
tive of the input value of 0.03 or 0.01, as in the case of the real
data, confirming that intrinsic scatter in Y500 is not constrained.
Where the posterior indicates an upper limit in σlog Y , the true
value is below the 68% upper limit 97% (100%) of the time in the
0.03 (0.01) case, so the upper limit derived from the posterior is
conservative.

Given these results, we choose to take the fit with B fixed
and no scatter in Y500 as our fiducial result. In both the higher-
scatter and lower-scatter cases, the recovered value of A is less
biased than when fitting with scatter (<0.25σ mean offset from

Figure 25. Results of Monte-Carlo simulations to test the robustness of the LIRA fit
results given the selection effects, as described in the text. Colours, markers and rows
are as in Fig. 24 except that these plots display the maximum a-posteriori values for
each simulation rather than the posterior means.

true value rather than<0.7σ ), and the log Y∗ recovery accuracy is
comparable (<0.6σ for the high-scatter and <0.2σ for the low-
scatter case). The scatter in mass is also accurately constrained
using the posterior mean and the difficulty with the correlated
posterior for the two scatters is removed.
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Table 5. Fitting parameters given in Lee et al. (2020) for the scaling relation
betweenM500 and TSZ as defined in equation (14).

z A B C

0.0 4.763 0.581 0.013

0.5 4.353 0.571 0.008

0.0 3.997 0.593 0.009

6.4 Relativistic calibration

6.4.1 Impact of temperature priors

We carry out separate analyses using each of the TSZ priors in
Table 3. We centre the Gaussian prior on the X-ray core-excised
temperaturemeasurement from L20. For the scaling relation prior,
we use the mass-TSZ scaling relations derived by Lee et al. (2020)
and (2022) based on numerical simulations:

E(z)−2/3TSZ =A
(
M500

Mfid

)B+C logx (M500/Mfid)

keV. (14)

We consider two different options for the scaling relations:

1. TheM500 − Ty,500 relationship derived in Lee et al. (2020)
based on theBAHAMAS (McCarthy et al. 2017) andMAC-
SIS (Barnes et al. 2017) hydrodynamical simulations. In
this case, logx is the natural logarithm and Mfid = 3×
1014h−1M�. The fit parameters (A, B, C) are given for
three different redshifts in Table 5; we interpolate between
them to calculate the relationship at a given cluster redshift
(there are no redshifts>1 in the L20 or PSZ2 samples).

2. TheM200 − Ty,200 relationship derived in Lee et al. (2022),
averaged over results from the BAHAMAS and MACSIS,
The Three Hundred Project, Magneticum Pathfinder and
IllustrisTNG. In this case, logx = log10 and Mfid = 1×
1014M�. The parameters (A, B, C)= (1.426, 0.566, 0.024)
at z = 0 and the right hand side is multiplied by an
extra factor A∗, where log10 (A∗)= −0.05 log10 (1+ z)−
0.11

[
log10 (1+ z)

]2. This accounts for the departure from
self-similar redshift evolution.

For both the Gaussian prior and the scaling relation-based
prior, rather than use an error or scatter estimate to define the
prior width we simply use 2 keV. This is larger than the typical
X-ray temperature error (≈0.4 keV in L20) and intrinsic vari-
ance in the numerical simulations (7 per cent for Ty quoted in
Lee et al. 2022), to reflect the fact that there are uncertainties in
the difference between X-ray and SZ temperatures and in the gas
physics used in the numerical simulations from which the scaling
relations are defined. 2 keV is an arbitrary, conservative choice;
however, we note that the error in Y500 is driven more by the pro-
file parameter shape uncertainty than the temperature error. For
a high-significance cluster with temperature ≈10 keV, decreasing
the prior width (with the scaling relation-based prior) from 2 to
1 keV results in a negligible change in the mean Y500 estimate of
0.4% and a negligible change in�Y500/Y500 from 6.7% to 6.6%.

To implement the M200 − Ty,200 scaling relation, we need to
convert from the X-ray MX,500 values to an M200 estimate. We do
this using the concentration-mass relation calibrated in Ishiyama
et al. (2021) for r500, combined with the conversion formula

Figure 26. Comparison between Y500 constraints derived using the non-relativistic
SZ spectrum and the relativistic spectrum, with our three different priors (and two
different scaling relations) on TSZ. All results use X-ray priors onMX,500. Some represen-
tative errorbars are shown (transposed slightly horizontally for clarity) and the black
horizontal line marks a ratio of 1.

from Hu & Kravtsov (2003) (their Appendix C) which allows us
to calculate r200 and hence M200. The MX,500/M200 ratios from
this calculation are consistent with the simulation-based average
M500/M200 ratios in Table B5 of Lee et al. (2022), giving confidence
in the calculation.

Results are reported in Table 6. In Fig. 26, we compare the
D2

AY500 values obtained using the three different priors (and two
different scaling relations) on TSZ to the non-relativistic results. As
expected from the simulation results, the Y500 constraints obtained
using a uniform prior on TSZ are biased upward by unrealistically
large amounts for most clusters, and so we do not use these results
any further. The Y500 constraints obtained using the X-ray tem-
perature measurement as a prior on TSZ are very similar to those
obtained using the mass-TSZ scaling relations.

It is clear that the uniform prior results in unfeasibly large
boosts in Y500 as expected from simulations, while the results using
an X-ray measurement of temperature as a TSZ prior are very
similar to those using the mass-temperature scaling relations.

In Section 4.2.2, we showed that TSZ decreased when averaged
over larger cluster volumes, and that the X-ray temperature (aver-
aged within r500) could be significantly larger than the globally-
averaged TSZ. The higher temperatures could therefore produce
a systematic bias in the Y500 values. We investigate this issue in
Fig. 27 further by comparing the different constraints produced by
the X-ray temperature andM500 − Ty,500 scaling relations to those
produced by the M200 − Ty,200 scaling relation, which should be
closest to the globally-averaged temperature. We see that the Y500
constraints are biased very slightly higher with the higher temper-
atures, but only by a mean of 1 per cent in the case of the X-ray
temperature and 0.7 per cent in the case of the M500 − Ty,500 scal-
ing relation, with no sign of a mass-dependent bias. This gives us
confidence that although we do not have a measurement of the
globally-averaged TSZ currently, as the temperature measurements
converge to a closer approximation to it we obtain Y500 measure-
ments that converge within a very small offset. Our results using
theM200 − Ty,200 scaling relation should therefore be very close to
unbiased.
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Table 6. Y500 constraints from fitting Planck data using X-ray priors on MX,500 from L20 as a prior constraint on θ500 and varying the profile shape
parameters. z is redshift;MX,500 and�MX,500 are the L20 mass measurement and errorbar (the average of the upper and lower limits); kTexc is the
L20 core-excised X-ray temperature measurement. The D2AY500 measurements and corresponding errorbars are, from left to right: tSZ measure-
ment; rSZ withM200 − Ty,200 temperature prior; rSZ with X-ray temperature prior centred on kTexc. The first ten rows of the table are shown here;
the full table is available as supplementary material.

PSZ2 z MX,500 �MX,500 kTexc D2AY500,tSZ �D2AY500,tSZ D2AY500,M−TSZ �D2AY500,M−TSZ D2AY500,TX �D2AY500,TX
/ 1014 M� / keV / 10−5 Mpc2

G000.40-41.86 0.165 5.01 0.52 5.82 4.24 0.55 4.53 0.62 4.61 0.61

G002.77-56.16 0.141 4.96 0.35 5.39 3.49 0.44 3.83 0.49 3.82 0.46

G003.93-59.41 0.151 6.94 0.19 6.46 8.81 0.59 9.69 0.65 9.79 0.67

G006.68-35.55 0.089 2.42 0.04 4.62 2.85 0.24 2.98 0.26 3.01 0.26

G008.47-56.34 0.149 3.61 0.08 4.91 3.37 0.42 3.50 0.42 3.55 0.44

G008.94-81.22 0.307 10.39 0.23 8.43 17.23 1.11 19.51 1.38 19.61 1.34

G021.10+33.24 0.151 6.88 0.19 8.77 9.96 0.72 10.92 0.80 11.33 0.87

G039.85-39.96 0.176 3.77 0.32 5.82 5.88 0.62 6.26 0.68 6.39 0.66

G042.81+56.61 0.072 4.65 0.14 4.79 3.68 0.25 3.96 0.28 3.95 0.29

G046.10+27.18 0.389 6.26 0.54 5.65 10.90 1.60 11.83 1.71 11.83 1.76

Figure 27. Comparison between relativistic Y500 constraints derived using the M200 −
Ty,200 scaling relation (x-axis) and the X-ray andM500 − Ty,500 scaling relation prior (ratio
on y-axis). The blue dashed and green dotted horizontal lines show the mean ratios,
which are very close to one (the black solid line).

6.4.2 RelativisticMX,500 − Y500 scaling relation

Fig. 28 shows the scaling relation fit when the relativistic SZ
spectrum is applied, comparing all three of the informative pri-
ors on TSZ. We use the fiducial method with no scatter in Y500
to perform the fit. As expected from the simulations, there is a
mass-dependent change in the calibration rising to ≈12% at the
high-mass end of the sample. We note that this does not actually
imply that Planck cluster masses are underestimated; in analyzing
Planck data, since the biased MX,500 − Y500 calibration is applied
to similarly biased Y500 measurements of other clusters, the output
mass will not be biased. However, if the scaling relation calibrated
from Planck data is applied to samples of clusters measured by
other instruments with different frequency bands, the output mass
may be biased.

At the high-mass end of the sample (MX,500 > 1015M�), the
ratio between the relativistic and non-relativistic Y500 estimates is
somewhat higher than expected based on the ratio between the rel-
ativistic and non-relativistic scaling relation fits. This may indicate

Figure 28. Toppanel: calibration of themass-observable scaling relation assuming the
relativistic SZ spectrum and M200 − Ty,200 scaling relation on temperature (orange line,
shaded area showing uncertainty) in comparison with the other temperature priors
and the non-relativistic calibration (dark blue dotted line). The bottom panel shows
the ratio between the relativistic and non-relativistic results, with the points showing
the estimates derived with theM200 − Ty,200 prior.

that there is a more complicated relationship between tempera-
ture and mass for these high-mass clusters than is indicated by our
assumed scaling relations. Further investigation of this will require
temperature measurements in the outskirts of these clusters.

7. Discussion

7.1 rSZ effect

It is clear that relativistic effects, often treated as negligible in SZ
literature in the past, must now be taken into account given the
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sensitivity of current instruments. Assuming the non-relativistic
thermal approximation to the SZ spectrum results in a bias in
Compton-y estimates which are used to derive cluster mass esti-
mates and extract pressure profiles. When scaling relations are
calibrated from and applied to SZ observations from the same
instrument, this does not result in a mass bias. However since
the bias is frequency-dependent, when a scaling relation calibrated
from one SZ instrument is applied to observations by another
instrument in different frequency bands (e.g. SZ observations with
NIKA2 at 150 and 260 GHz compared to Planck scaling rela-
tions in Adam et al. 2024) or compared to numerical simulations
(e.g. Gupta et al. 2017) it is important to use unbiased scaling
relations. Similarly, when information from different SZ instru-
ments observing in different bands is combined (for example to
create combined y-maps, e.g. Bleem et al. 2022, or fit combined
scaling relations, e.g. Salvati et al. 2022), the relativistic spec-
trum should be considered to avoid systematic differences between
instruments. Pressure profile constraints, particularly for massive
clusters, will be biased if relativistic corrections are not accounted
for; this is starting to be done in the literature, for Sayers et al.
(2023) applies relativistic corrections to their SZ data based on
X-ray temperature profiles. Although the correction is small, in
the quest for precise cluster mass estimates that can be used for
precision cosmology it is non-negligible.

With current instruments, the rSZ temperature is just at the
limit of detectability/constraint. This is shown here for Planck.
Other attempts to measure the rSZ spectrum on individual clus-
ters include Zemcov et al. (2010) using Herschel-SPIRE data, and
(Butler et al. 2022) using Herschel-SPIRE, Bolocam, and Planck
data. Both of these studies achieve low-significance detections of
the rSZ spectrum, and only Butler et al. (2022) independentlymea-
sures an rSZ temperature, with large errorbars, in common with
the results presented here. Future instruments such as the Fred
Young Submillimeter Telescope (CCAT-Prime Collaboration et al.
2023) and the Atacama Large Aperture Submillimetre Telescope
(Ramasawmy et al. 2022) which have the high-frequency observ-
ing bands necessary to constrain the rSZ corrections, along with
improved angular resolution and sensitivity compared to current
instruments will open up new possibilities in this area.

7.2 Updated scaling relation

Apart from the rSZ correction at the massive end, another notable
aspect of our updated scaling relation is the deviation from the
P13 scaling relation at the low-mass end, by ≈10% (Fig. 19). This
would imply a decrease in the Planck masses at MX,500 � 5× 1014
M�, exacerbating the tension between cosmological parameters
derived from the Planck number counts and from the primordial
CMB anisotropy (Planck Collaboration XX 2014) and requiring an
even larger mass bias to reconcile them. The L20 sample has more
clusters in the low-mass region than the P13 sample, but fitting
a scaling relation to our updated Y500 measurements of the P13
sample gives equivalent results. We investigated possible system-
atics in the X-ray measurements by refitting the scaling relation
with the sample restricted to clusters where the X-ray temperature
measurements extended to >0.9× r500, as shown in Fig. 29. This
had a greater impact on the scaling relation fit than any of the other
changes made previously, and would further exacerbate the mass
bias problem, however also implies another selection function to
be defined and investigated.

Figure 29. Testing the effect of incomplete radial coverage in X-ray. The parameter fT
shown in the colour-scale represents the fraction of r500 that is covered by the X-ray
temperature profile. The orange line and band shows the calibration of the mass-
observable scaling relation using the full sample and allowing for scatter in both
variables. The blue dashed line is fitted in the same way, but restricting the sample
to clusters with fT > 0.9 (points highlighted with red squares). The dot-dashed green
line shows the P13 fit.

The low-mass discrepancies highlight the need for larger cali-
bration samples covering the full mass range of the overall cluster
sample such as the Cluster HEritage project with XMM-Newton
project (CHEX-MATE Collaboration et al. 2021), and with mea-
surements covering the full radial range of interest. This will
minimize systematic errors, narrow down the error in the scal-
ing relation fit and avoid extrapolation in mass. The potential bias
in the slope parameter A shown in our Monte-Carlo simulations
(Fig. 24) also highlights the need for a well-understood selection
function which can be accounted for in the scaling relation fitting
process. If ourA estimate is biased low, increasing it slightly would
bring the scaling relation backmore into line with the P13 relation,
but we are not confident enough in the bootstrapped ESZ selection
function to make this correction.

7.3 Profile shape

A further small correction we havemade here is to allow the profile
shape parameters to vary for each cluster. Even at the resolution of
Planck, this did make a significant difference to some estimates of
Y500, particularly at the high-mass end of the scaling relation where
visually the scatter decreased compared to Y500 values extracted
with a fixed UPP profile. For the less resolved clusters, this change
mostly resulted in increased error bars onY500, better reflecting the
uncertainty in the estimate. This may be one reason for the lack of
scatter detected in Y500 in our scaling relation fit, in contrast with
previous studies.

8. Conclusions

We have investigated the impact of relativistic SZ corrections on
Planck measurements of massive galaxy clusters, along with the
impact on pressure profile variation.We have done so using realis-
tic simulations, in a fully Bayesian framework. We have tested the
impact of prior assumptions, degeneracies in the posteriors, and
assessed the accuracy of the recovered posteriors. In particular, we
find:
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1. Relativistic corrections are non-negligible for Planck clus-
ter analysis, producing biases of ≈5–15% and up to ≈ 3σ
in integrated Compton-y estimates when not accounted
for.

2. Weak temperature constraints are possible based on
Planck data only for some of the highest signal-to-noise-
ratio clusters, however most clusters require external tem-
perature information for accurate Compton-y constraints.

3. Correlated dust emission is well-handled by the analy-
sis framework, and does not cause a bias in recovered
Compton-y or temperature constraints.

4. An isothermal model is accurate enough for Planck anal-
ysis, although there are indications (based on evidence
differences between analysis of simulations with resolved
versus isothermal temperature models) that a resolved
temperature model would be more appropriate.

5. Systematic differences in temperature measurements are
important, and the best current prior information on tem-
perature for rSZ measurements is derived from numerical
simulations rather than X-ray measurements.

6. Profile parameter shape assumptions also have a non-
negligible impact for Compton-y constraints for high
signal-to-noise-ratio clusters. When external constraints
on the mass are available from other measurements or
from a scaling relation, uncertainty in the profile can be
marginalized over.

Informed by the results of this investigation, we have recal-
ibrated the Planck mass-observable scaling relation for galaxy
clusters. We have used the updated NPIPE data and improved
methodology, alongside a larger sample of XMM-Newton hydro-
static masses than were used in the original scaling relation fit. We
find that:

1. The Planck mass-observable scaling relation can be cali-
brated in a robust way using y-weighted temperature scal-
ing relations from simulations toaccount for the relativistic
SZ effect.

2. The relativistic corrections induce an ≈12% change in the
scaling relation at the high-mass end.

3. There is a hint of deviation from the previous Planck
scaling relation at the low-mass end, which would make
Planck masses around 10% lower. However better under-
standing of the selection function is required to confirm
this.

Acknowledgement. The author thanks Richard Saunders for useful discus-
sion on the content of this paper, and an anonymous referee for a careful
review and insightful comments. Computations were performed on the Rāpoi
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