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Abstract. Planets and stars have liquid layers that can support internal gravity waves and inertial
waves respectively restored by the buoyancy and Coriolis forces. Both types of waves are excited
by tides, leading to resonantly amplified dissipation. We review the theoretical formalism to
compute these resonances and present some challenges and methods to overcome them.
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1. Introduction

The long-term orbital evolution of stars, planets and moons around a central object is
directly affected by energy dissipation in both the orbiting object and the central body.
This mechanism is mediated by tidal gravitational forces as they deform periodically the
rigid layers of the given body, generating heat in the process. Fluid layers, if present,
respond differently to periodic tidal forces since they can support inertial waves, i.e.
waves whose main restoring force is the Coriolis force, as well as internal gravity waves,
i.e. whose main restoring force is buoyancy. Whenever the tidal forcing frequency is close
to one of the normal mode frequencies associated with inertial or internal gravity modes of
the fluid layer, resonant amplification might occur. This amplified fluid motion is usually
accompanied by comparatively large energy dissipation rates, ultimately impacting the
long-term evolution of the orbit. Thus it is crucial to determine the resonant mode
frequencies in these fluid layers as well as their damping rates. Together with observations,
this knowledge also allows us to better characterize the internal structure of the fluid
layers in the same way as done in asteroseismology, helioseismology or planetary ring
seismology. Computing the normal modes of a rotating fluid body can be challenging.
The use of a spherical geometry, together with the anelastic or Boussinesq approximation
to eliminate acoustic waves (which due to their much higher frequency are unlikely to
be involved in tidally forced systems), leads a numerically tractable problem. In the
following we present in some detail the formalism needed to obtain a set of differential
equations suitable for numerical studies.

2. Mathematical formalism

2.1. Momentum equation and hydrostatic equilibrium

The momentum equation governing the motion in the rotating fluid layers reads:

ρ (∂tv+ (v · ∇)v+ 2Ω× v+Ω× (Ω× r)) =−∇P − ρ∇Φ+ f , (2.1)

© The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical

Union.

https://doi.org/10.1017/S174392132300385X Published online by Cambridge University Press

https://doi.org/10.1017/S174392132300385X
https://orcid.org/0000-0003-3151-6969
mailto:jeremy.rekier@observatory.be
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S174392132300385X&domain=pdf
https://doi.org/10.1017/S174392132300385X


168 J. Rekier & S. A. Triana

where r and v are the position vector and flow velocity measured in the frame rotating at
constant angular velocity Ω (henceforth planetary frame), ρ is the fluid’s mass density, P
is the isotropic pressure, and f represents the sum of additional forces (viscosity, Lorentz,
etc.). The gravitational potential Φ must satisfy Poisson equation:

∇2Φ=−4πGρ. (2.2)

This may be written as the sum of an equilibrium and a time-varying contributions (see
eq. (2.26) below). The equilibrium potential satisfies the hydrostatic condition obtained
by setting v= 0 (and assuming f = 0) into eq. (2.1):

∇P0 = ρ0g0, (2.3)

with, g0 =∇
(
Φ0 +

1

2
|Ω× r|

)
, (2.4)

where g0 is the equilibrium gravity acceleration in which we include the centrifugal
potential. Taking the curl of eq. (2.3) we see that the equipotentials of ρ0 and P0 coincide
(baroclinic fluid) and are everywhere perpendicular to g0.

2.2. First order perturbations

In the limit of small velocities, the advection term can be omitted from eq. (2.1). In
general, the fluid motion will cause variations in the pressure and density fields:

P = P0 + δP, ρ= ρ0 + δρ, (2.5)

where δP and δρ denote the Eulerian increments of pressure and density, respec-
tively. Those are related to their Lagrangian counterparts, ΔP and δρ, via (e.g.
Dahlen and Tromp 1998):

ΔP = δP + x · ∇P0, Δρ= δρ+ x · ∇ρ0, (2.6)

where x is the displacement vector related to the velocity via v= ∂tx (different to the
position vector r). To first order in the perturbations and in the displacement, the
momentum eq. (2.1) reduces to:

∂tv+ 2Ω× v=− 1

ρ0
∇δP +

δρ

ρ0
g0 −∇δΦ+

1

ρ0
f . (2.7)

The increment of gravitational potential is the sum of internal and external perturbations
and satisfies:

∇2δΦ= 4πGδρ. (2.8)

The Eulerian increment of density, δρ, must also satisfy the continuity equation expressing
mass conservation (e.g. Dahlen and Tromp 1998):

δρ=−∇ · (ρ0x) . (2.9)

In principle eq. (2.9) can be used into eqs. (2.7) and (2.8) to solve for x and δΦ. This
method however proves challenging and additional simplifications are desirable.

2.3. Anelastic approximation

The anelastic approximation assumes that the Eulerian increments of density and
pressure are negligible in eq. (2.6):

ΔP ≈ x · ∇P0, Δρ≈ x · ∇ρ0. (2.10)
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Moreover, from eqs. (2.6) and (2.9), we find Δρ/ρ0 =−(∇ · x), and the continuity
equation reduces to:

∇ · (ρ0x) = 0. (2.11)

This equation effectively filters out the rapid oscillations in density and pressure typically
associated with acoustic waves of frequencies much higher than typical tidal frequencies
(Dintrans and Rieutord 2001). After some rearrangements, we can rewrite the momentum
equation as:

∂2t x+ 2Ω× ∂tx=−∇
(
δP

ρ0
+ δΦ

)
−N2 g0

|g0|2 (g0 · x) + 1

ρ0
f , (2.12)

where the second term on the right-hand side is the buoyancy force per unit mass, where
N is the Brunt-Väisälä frequency defined as:

N2 =−g0 ·
(
g0

c2
− ∇ρ0

ρ0

)
, (2.13)

and where we have introduced the isentropic speed of sound (squared): c2 ≡ΔP/Δρ.
Dintrans and Rieutord (2001) observed that the pressure and gravity increments can
be eliminated by taking the curl of eq. (2.12). The resulting equation coupled with the
constraint eq. (2.11) form a complete system in the displacement x. Once solved, the
gravity increment can be recovered from Poisson eq. (2.8) which reduces to:

∇2δΦ= 4πGρ0
N2

|g0|2 (g0 · x) . (2.14)

2.4. Incompressible fluid limit

When the fluid is taken as incompressible, we have Δρ= 0, corresponding to the limit
of c→∞. From eqs. (2.10) and (2.11) we then find:

∇ · x= 0, (2.15)

while the Brunt-Väisälä frequency reduces to:

N2 = g0 · ∇ρ0
ρ0

. (2.16)

Notice that eq. (2.15) combined with eq. (2.9), and compared to eq. (2.10) gives:

δρ= x · ∇ρ0 ≈ 0. (2.17)

Imposing eq. (2.17) exactly would make the buoyancy force vanish entirely. This force
is proportional to δρ/ρ0 which, though small, is multiplied by g0 which might be large.
This is the physical reason behind the common prescription known as the Boussinesq
approximation according to which one should neglect density gradient and retain the
Eulerian increment of density in the momentum equation only where it is multiplied by
gravity acceleration. By the same token, Poisson eq. (2.14) reduces to a Laplace equation
in the perturbation:

∇2δΦ≈ 0. (2.18)

In this limit, the gravity potential increment inside the fluid therefore reduces to a
harmonic function of the coordinates, related to the external potential by boundary
conditions (see eqs. (2.21 and (2.22) below).
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2.5. Viscous dissipation

Dissipation in the fluid layers can have many origins (viscous, ohmic, etc.). For sim-
plicity, we focus on the effect of viscosity, introduced into eq. (2.12) as an additional
force: f =∇ · τ , where the deviatoric stress tensor, τ writes:

τ = ζ(∇ · v)1+ μ

[
∇v+∇vT − 2

3
(∇ · v)1

]
, (2.19)

with ζ and μ respectively denoting the bulk and dynamic viscosities (1 is the identity).
ζ conveniently disappears from the curl of the momentum equation, leaving only μ as a
parameter. The power dissipated by viscous forces can then be shown equal to:

Dvisc. = 2ν

∫
V
∇̂v : ∇̂v, (2.20)

where ∇̂v= 1
2 (∇v+∇vT), and : denotes the double tensor contraction. ν = μ/ρ0 is the

kinematic viscosity. The value of this parameter is typically not well known. Its molecular
value can safely be assumed as very small–of the order of that of water 10−6m2/s–in
planetary and stellar interior where it is generally treated as a constant.

2.6. Boundary conditions

The gravity potential must satisfy the following constraints at the equilibrium surface
(Dahlen and Tromp 1998):

[δΦ]+− = 0 (2.21)

[n̂ · (∇δΦ+ 4πGρ0x)]
+
− = 0, (2.22)

where n̂ is the unit normal vector and the notation [·]+− denotes the difference in the
values of the enclosed quantity across the boundary. The remaining conditions on the
displacement field depend on the nature of the boundary. A free boundary will move so
as to minimise stresses at its surface. To first order in the perturbations, this condition
applies to the equilibrium surface and writes:

[n̂ ·Δσ]+− = 0 (2.23)

with, Δσ= δσ+ x · ∇σ0,

where Δσ and δσ are the Lagrangian and Eulerian increments of stress, respectively. The
latter is equal to the sum of the isotropic increment of pressure and deviatoric tensor in
the fluid, δσ=−δP1+ τ , while the equilibrium stress tensor is purely isotropic: σ0 =
−P01. The two components of eq. (2.23) tangential to the boundary vanish identically
in the absence of viscosity. At the interface with a solid boundary, eq. (2.23) is replaced
by the simpler ‘no-slip’ condition:

[x]+− = 0. (2.24)

In the absence of viscosity, this constraint is too strong and must be replaced by the
weaker ‘no-penetration’ condition:

[n̂ · x]+− = 0. (2.25)

2.7. Tidal perturbations

Tidal forcing enters the picture via the gravity potential:

Φ =Φ0 + δΦ(t), (2.26)
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where δΦ(t) = δΦ(t)ext + δΦ(t)int is the sum of the external time-varying part of the tidal
potential plus the internal contribution from deformation and must satisfy eq. (2.14).
The external forcing induced by a single object can be decomposed in terms of spherical
harmonics and Fourier modes (e.g. Ogilvie 2014):

δΦ(t)ext =
∑
n

∞∑
�=2

�∑
m=−�

δΦext
�,m,nY

m
� (θ, ϕ)einΩot, (2.27)

where θ and ϕ are the colatitude and azimutal coordinates, and Ωo is the mean orbital
frequency. Tides with angular frequency nΩo, and azimutal number m are perceived as
oscillations at frequency ω= nΩo −mΩ in the planetary frame. ω corresponds to the
response frequency of the fluid to the orbital forcing.

2.8. Simplification: Spherical symmetry

In principle the fluid configuration should satisfy the hydrostatic condition eqs. (2.3)
and (2.4). If Ω = 0, the equilibrium shape is an ellipsoid of revolution around that axis
(taken along the z-axis). If the equilibrium potential Φ0 is not axisymmetric–as it is the
case for objects tidally locked in low orbit around their parent body–the equilibrium
ellipsoid is triaxial. Such ellipsoidal shapes do not readily lend themselves to spherical
harmonics discretization. It may be tempting to resort to ellipsoidal harmonics. However,
in addition to the practical difficulties associated with their use, they can only accom-
modate exact ellipsoids, i.e. those whose sections along their principal axes are true
ellipses, and this precise type of figure can only exist for an object of homogeneous den-
sity (Chandrasekhar 1987). This situation does not lend itself well to the exploration
of internal structures of differentiated objects, which typically starts with the adoption
of a radial density profile. Theoretically, it is possible to approximate the equilibrium
figure of such a body by means of a series expansion in flattening (Clairaut’s method).
Axisymmetric bodies can also be represented by a series of concentric Maclaurin ellipsoids
(Hubbard 2013). These methods all rely on the use of complicated coordinate systems,
making it all the more difficult to achieve the high numerical resolution required for
viscous fluids. Moreoever, many partially fluid bodies such as terrestrial planets or icy
moons have shapes far removed from hydrostatic equilibrium.
For all the above reasons, it is often valuable to stick to the simple spherical shape

as a first order approximation. This assumption alone simplifies eq. (2.12) immensely by
making g0 =−g0r̂, where r̂ is the unit radial vector, thus making the buoyancy force
radial and equal to −N2(x · r̂)r̂, while the Brunt-Viäsälä frequency reduces to its more
common expression (De Boeck et al. 1992):

N2 =−g
2
0

c2
− g0
ρ0

dρ0
dr

. (2.28)

As we can see, two inputs are needed to calculate the fluid motion: a radial density
profile, ρ0, and another profile giving the evolution of the speed of sound, c with depth.
As always, one recovers the incompressible limit by letting c→∞.

3. Free solutions

A detailed resolution of eq. (2.12) is beyond the scope of this short communication,
we present only a general outline. For definiteness, we focus on the case where the fluid
fills the whole sphere. Since we expect the tidal dissipation to be amplified by gravito-
inertial modes, an important first step is to compute these modes. This is done by setting
x= x̃eλt, and solving the resulting differential eigenvalue problem in x̂ and λ with the
external forcing δΦext set to zero.
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(a) (b)

Figure 1. Example of free solutions to eq. (2.12) for two different buoyancy profiles (m =
2). (a) Inertial mode. (b) gravito-inertial mode. The arrows represent the displacement in the
meridional plane. They scale from blue to red based on the value of the displacement’s norm. The
background color represents the azimutal displacement with blue and red corresponding to a flow
coming out and in the page, respectively. The left parts of each figure show the equipotentials
of the function N2(r).

When buoyancy is set to zero, the spectrum is populated by inertial modes with fre-
quencies ω= Im(λ) satisfying |ω|< 2Ω. Solutions to the momentum equation can then
be arrived at analytically (Greenspan 1968) based on the boundary condition eq. (2.25).
Alternatively, one may discretise the domain and solve the resulting algebraic eigenvalue
problem numerically (Rekier et al. 2019). The second option can be readily adapted to
more complex boundary conditions and to the case where N(r) = 0. In such a case, iner-
tial modes get mixed with gravity modes. These mixed modes can be classified depending
on the relative values of ω, Ω, and the maximum value of N(r) (Triana et al. 2021). Figure
1a shows an example of inertial mode with azimutal wave numberm= 2. Figure 1b shows
its gravito-inertial mode counterpart when the Brunt-Väisälä frequency grows linearly
from the centre.

4. Outlook

The shapes and frequencies of the solutions to eq. (2.12) strongly depend on the internal
fluid structure. While on the one hand, this makes their computations more challenging,
on the other hand it opens up the possibility of using these to probe planets and stars
interior. Although viscous forces are expected to affect the frequencies of the modes
very weakly due to their typical weakness compared to the dominant Coriolis force,
taking viscosity into account is not only crucial in order to estimate tidal dissipation,
it also contributes to regularize modes that are otherwise singular, by turning surfaces
of singularities across the inviscid fluid into thin internal shear layers contributing to
resonantly enhance tidal dissipation. The aim of the present work was to present the
mathematical formalism governing the problem of tidal dissipation in some details. A
more detailed account of its solution will be presented in a future work.
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