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Abstract

The dominating set reconfiguration problem is defined as determining, for a given dominating
set problem and two among its feasible solutions, whether one is reachable from the other
via a sequence of feasible solutions subject to a certain adjacency relation. This problem is
PSPACE-complete in general. The concept of the dominating set is known to be quite useful
for analyzing wireless networks, social networks, and sensor networks. We develop an approach
to solve the dominating set reconfiguration problem based on answer set programming (ASP).
Our declarative approach relies on a high-level ASP encoding, and both the grounding and
solving tasks are delegated to an ASP-based combinatorial reconfiguration solver. To evaluate
the effectiveness of our approach, we conduct experiments on a newly created benchmark set.

KEYWORDS: answer set programming, dominating set reconfiguration, combinatorial recon-
figuration

1 Introduction

Combinatorial reconfiguration (Ito et al., 2011; van den Heuvel, 2013; Nishimura, 2018)

is a relatively young research field of increasing interest in an international community,

as witnessed by the international series of CoRe workshops. The aim of combinatorial

reconfiguration is to analyze the structure and properties of the solution spaces of com-

binatorial problems. The typical topics of this field include the reachability, optimality,
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diameter, and connectivity of the solution spaces. Each solution space has a graph struc-

ture, in which each node represents an individual feasible solution, and edges represent a

certain adjacency relation. The reachability problem of combinatorial reconfiguration is

defined as the task of determining, for a given combinatorial problem and two of its fea-

sible solutions, whether there exists a sequence of adjacent feasible solutions from one to

another. We refer to this problem as the Combinatorial Reconfiguration Problem (CRP).

The study of combinatorial reconfiguration problems draws its motivation from a vari-

ety of fields such as statistical physics (Mohar and Salas, 2009), combinatorics (Knuth,

2011), puzzles (Hearn and Demaine, 2009), industrial applications (Inoue et al., 2014),

and many others. For illustration, the Potts model in physics is closely related to graph

coloring reconfiguration under an adjacency relation called Kempe change. One moti-

vation for combinatorial reconfiguration research is of theoretical nature. Combinatorial

reconfiguration plays an important role in proving the (parameterized) computational

complexity of reconfiguration counterparts of many central combinatorial problems.

Another motivation is very practical. Reconfigurations are needed in many mission-

critical applications. For instance, in power distribution networks (Inoue et al., 2014),

we need to find a sequence of feasible switch configurations from one to another without

causing any blackout. Regarding adjacency relations, in many cases on graph problems,

the simplest relations (e.g., token jumping and token sliding) have been studied in the

literature. But, in general, adjacency relations originate from applications.

A solid theoretical foundation for combinatorial reconfiguration problems has been

established over the last decade. Particularly, for many NP-complete problems, their

reconfiguration counterparts have been proven to be PSPACE-complete (Ito et al.,

2011). Examples include SAT reconfiguration (Gopalan et al., 2009; Mouawad et al.,

2017), independent set reconfiguration (Ito et al., 2011; Kaminski et al., 2012), graph

coloring reconfiguration (Bonsma and Cereceda, 2009; Cereceda et al., 2011; Brewster

et al., 2016), clique reconfiguration (Ito et al., 2015), Hamiltonian cycle reconfigura-

tion (Takaoka, 2018), set cover reconfiguration (Ito et al., 2011), and many others. Very

recently, starting with a series of international competitions (CoRe challenge 2022 and

2023 (Soh et al., 2024)),1 there has been a growing interest in the practical aspects

of combinatorial reconfiguration problems (Christen et al., 2023; Ito et al., 2023; Toda

et al., 2023).

Dominating set reconfiguration problems (DSRP; (Haas and Seyffarth, 2014; Haddadan

et al., 2016; Suzuki et al., 2016; Bonamy et al., 2021)) is one of most theoretically stud-

ied combinatorial reconfiguration problems. This problem is based on the well-known

Dominating Set Problem (DSP). For a graph G= (V, E), a subset of nodes S ⊆ V is

called a dominating set of G when the union of S and the set of adjacent nodes to S

equals V . In other words, any v ∈ V \S is adjacent to at least one node in S. The task

of DSP is to decide, for a given graph G and a positive integer k, whether there exists

a dominating set of size k. In general, DSP is NP-complete, and its reconfiguration (i.e.,

DSRP) is PSPACE-complete. From a practical viewpoint, the DSP has been well explored

since the concept of the dominating set is quite useful for analyzing wireless networks,

social networks, and sensor networks (Blum et al., 2005). However, little attention has

been paid so far to the practical aspects of dominating set reconfiguration.

1 https://core-challenge.github.io/2022/ and https://core-challenge.github.io/2023/
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In this paper, we present an approach to solve the dominating set reconfiguration

problem based on answer set programming (ASP; (Lifschitz, 2019)). In our approach,

a DSRP instance is first converted into ASP facts. Then, these facts are combined with a

collection of ASP encodings for DSRP solving, which are afterwards solved by the ASP-

based CRP solver recongo.2 Clearly, our declarative approach based on ASP has several

advantages. The basic language of ASP is expressive enough for modeling a wide range

of combinatorial (optimization) problems. Recent advances in ASP indicate a promising

direction to extend ASP to be more applicable to dynamic problems. In particular, multi-

shot ASP solving allows for incremental grounding and solving for logic programs in an

operative way. The language constructs of multi-shot ASP solving (e.g., #program) allow

for an easy extension to their reconfiguration problems. The recongo solver, utilizing

clingo’s Python API for multi-shot ASP solving, provides efficient reachability checking

for combinatorial reconfiguration problems.

The contributions and results of this paper are summarized as follows:

1. For the first step toward efficient DSRP solving, we compare two traditional ASP

encodings for solving the minimum DSP, an optimization variant of DSP that finds

a dominating set of the minimum size. We observed that one encoding used in

ASP competition 2009 (Denecker et al., 2009) performs well compared to another

(Huynh, 2020).

2. We present an ASP encoding for DSRP solving under an adjacency relation called

token jumping . We also present a hint constraint on token destination to boost the

performance of DSRP solving. Furthermore, we extend our encoding to dominating

set reconfiguration under token addition-removal .

3. We create, to our best knowledge, the first benchmark set of the dominating set

reconfiguration problem under token jumping. The benchmark set consists of 442

instances in which 310 are reachable and 132 are unreachable. The number of nodes

and edges ranges from 11 to 1,000 and from 20 to 449,449, respectively.

4. Our ASP encoding manages to decide the reachability of 363 out of 442 instances.

Particularly, our hint constraint can be highly effective in deciding unreachabil-

ity. Furthermore, we establish the competitiveness of our declarative approach by

empirically contrasting it to a more algorithmic ZDD-based approach (Ito et al.,

2023).

Overall, our declarative approach can make a significant contribution not only to the

state-of-the-art of dominating set reconfiguration, but also ASP application to combina-

torial reconfiguration. This paper assumes some familiarity with ASP and its semantics

as well as multi-shot ASP solving (Gebser et al., 2019). ASP encodings are written in

the language of clingo (Gebser et al., 2019).

2 Background

The dominating set reconfiguration problem is defined as the task of deciding, for a given

DSP instance and two among its feasible solutions Xs and Xg, whether there exists a

2 https://github.com/banbaralab/recongo

https://doi.org/10.1017/S1471068424000292 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000292


M. Kato et al.758

Fig. 1. An example of dominating set reconfiguration problem under token jumping.

1 { in(X) : node(X) }.

2 dominated(X) :- in(X).

3 dominated(Y) :- in(X), edge(X,Y). dominated(Y) :- in(X), edge(Y,X).

4 :- not dominated(X), node(X).

5 #minimize { 1,X: in(X) }.

Listing 1. The base1 encoding: a simplified version of one used in ASP competition 2009.

sequence of transitions: Xs =X0 →X1 →X2 → · · ·→X� =Xg. Each state Xi represents

a feasible solution (viz., dominating set). We refer to Xs and Xg as the start and the

goal states, respectively. We write X →X ′ if state X at step t is followed by state X ′ at
step t+ 1 under a certain adjacency relation. We refer to the sequence from Xs to Xg as

a reconfiguration sequence. The length of the reconfiguration sequence, denoted by �, is

the number of transitions.

In the literature, three kinds of adjacency relations have been well studied in com-

binatorial reconfiguration (Hearn and Demaine, 2005; Ito et al., 2011; Kaminski et al.,

2012). Suppose that a token is placed on each node in a dominating set. The token jump-

ing of X →X ′ means that a single token jumps from the single node in X \X ′ to the

one in X ′ \X. The token sliding is a limited version of token jumping in which a token

slides along an edge. The token addition-removal means that a single token is added or

removed in each X →X ′ as long as the total number of tokens in Xi does not exceed a

given threshold. In this paper, we mainly focus on token jumping.

An example of the dominating set reconfiguration problem under token jumping is

shown in Figure 1. This example consists of a graph having 6 nodes and 8 edges, and

the size of dominating sets is k= 2. The dominating sets (i.e., tokens) are highlighted in

yellow. We can see that the goal state is reached from the start state via a sequence of

length �= 2. Each state Xi satisfies the constraints of DSP. In each transition, a single

token moves under token jumping. For example, in the transition from X0 to X1, a token

jumps from node 2 in X0 to node 4 in X1.

3 Comparison of traditional ASP encodings for minimum DSP finding

The DSRP is based on the DSP. Therefore, for the first step toward efficient DSRP

solving, we compare two traditional ASP encodings for solving the minimum DSP. The

task of this problem is to find, for a given graph, a dominating set of the minimum size.
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1 { in(X) : node(X) }.

2 :- not 1 { in(Y):edge(X,Y) ; in(Y):edge(Y,X) }, not in(X), node(X).

3 #minimize { 1,X: in(X) }.

Listing 2. The base2 encoding (Huynh, 2020).

The base1 encoding is shown in Listing 1. This encoding is a simplified version of one

used in ASP competition 2009.3 Suppose that the nodes and edges are represented by

the predicates node/1 and edge/2, respectively. The atom in(X) (cf., Line 1) is intended

to represent that the node X is in a dominating set, and characterizes a solution. The

auxiliary atom dominated(X), introduced in Lines 2–3, represents that the node X is

either in a dominating set or adjacent to at least one node in it. The rule in Line 4

enforces that dominated(X) holds for every node X. Finally, the number of nodes in a

dominating set is minimized in Line 5. The base2 encoding (Huynh, 2020) is shown in

Listing 2. The difference from the base1 encoding lies in the rule in Line 2. That rule

enforces that every node X not in a dominating set is adjacent to at least one node

in it.

We carry out experiments to compare the performance of the base1 and base2 encod-

ings. Our empirical analysis considers all 167 graph instances used in CoRe Challenge

2022, which are publicly available from the web.4 The number of nodes ranges from 11 to

40,000, and its average is 980. We use the ASP solver clingo-5.5.0 (default configuration)

with two optimization strategies: branch-and-bound (bb) and unsatisfiable core (usc).

The time-limit is 20 minutes for each instance. We run our experiments on a Mac OS

with a 3.2GHz Intel Core i7 processor and 64GB memory.

Comparison results are shown in Table 1. The columns display the number of optimal

and “unique” solutions for each encoding. A solution for an encoding is called unique if

there is no other encoding which has a better objective value or proves optimality for

the same value. The base1 encoding with the usc optimization solved the most, namely

136 = 124 + 12 instances in which 124 are optimal and 12 are unique. It is followed

by 127 = 123 + 4 of the base2 encoding with usc. The optima obtained by the base1

encoding with usc contain the ones by the others. Only one optimum obtained by the

base1 encoding with usc but not by the others is for the myciel7 instance, which has

191 nodes and 2,360 edges. We can observe that the usc optimization performs well

compared to bb for both encodings. In terms of CPU time of finding optima, the base1

encoding with usc was able to find 124 optima in 21.2 s on average.

Overall, as can be seen in Table 1, the base1 encoding performed well compared to the

base2 encoding. Although both encodings can be used, because of its efficiency, we will

extend the base1 encoding to dominating set reconfiguration in next section.

3 https://dtai.cs.kuleuven.be/events/ASP-competition/encodings.shtml
4 https://core-challenge.github.io/2022/
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Table 1. Comparison results of the base1 and base2 encodings

Base1 encoding Base2 encoding

bb usc bb usc

#Optimal solutions 46 124 47 123
#Unique solutions 32 12 15 4

Total 78 136 62 127

Fig. 2. The architecture of our approach.

node(1). node(2). node(3). node(4). node(5). node(6).

edge(1,2). edge(1,4). edge(2,3). edge(2,5).

edge(3,5). edge(3,6). edge(4,5). edge(5,6).

k(2). start(2). start(5). goal(3). goal(4).

Listing 3. ASP facts of a DSRP instance in Figure 1.

4 ASP-based approach to dominating set reconfiguration

We now present an approach to solve the DSRP based on ASP. The architecture of

our approach is shown in Figure 2. The resulting solver accepts a DSRP instance in

DIMACS format and converts it into ASP facts. And then, these facts are combined

with a collection of ASP encodings for DSRP solving, which are afterwards solved by the

recongo solver. recongo is an ASP-based CRP solver powered by clingo’s multi-shot ASP

solving.

The input of DSRP consists of a DSP instance and two among its feasible solutions (the

start and goal states). ASP facts of the example in Figure 1 are shown in Listing 3. The

predicates node/1 and edge/2 represent the nodes and edges, respectively. The size of

dominating sets is represented by the predicate k/1. The predicates start/1 and goal/1

represent the start and goal states, respectively. In this example, the dominating set of

the start state is {2,5} since start(2) and start(5) are given.

4.1 First-order encoding

Our ASP encoding for DSRP solving under token jumping is shown in Listing 4.

This encoding consists of three subprograms indicated by #program statements: base,

step(t), and check(t). The parameter t is a symbolic constant that represents a step
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1 #program base.

2 % Constraints of the start state

3 :- not in(X,0), start(X).

4
5 #program step(t).

6 % Constraints of the dominating set problem

7 K { in(X,t) : node(X) } K :- k(K).

8 dominated(X,t) :- in(X,t).

9 dominated(Y,t) :- in(X,t), edge(X,Y).

10 dominated(Y,t) :- in(X,t), edge(Y,X).

11 :- not dominated(X,t), node(X).

12
13 % Constraints of the token jumping

14 token_removed(X,t) :- in(X,t-1), not in(X,t), t > 0.

15 :- not 1 { token_removed(X,t) } 1, t > 0.

16
17 #program check(t).

18 % Constraints of the goal state

19 :- not in(X,t), goal(X), query(t).

Listing 4. ASP encoding for DSRP solving under token jumping.

in reconfiguration sequences. base is a default subprogram and includes all rules that

are not preceded by any other #program statements. The atom in(X,t) (cf., Line 7)

represents that the node X is in a dominating set at step t, and characterizes a solution

of DSRP. The base subprogram specifies constraints to be satisfied in the start state.

The rule in Line 3 enforces that the node X is in a dominating set at step 0 if start(X)

holds. The step(t) subprogram specifies constraints to be satisfied at each step t. The

rules in Lines 7–11 represent the constraints of the DSP. The rule in Line 14 introduces

the auxiliary atom token removed(X,t), which represents that a token is removed from

node X at step t. The rule in Line 15 enforces that single token jumps (i.e., is removed)

from the single node in each step. The check(t) subprogram represents constraints to

be satisfied in the goal state. The rule in Line 19 checks whether or not the goal state is

reached at step t. The activation or deactivation of this rule is controlled by the external

atom query(t), whose truth value can be changed later.

4.2 Reachability checking with recongo

For a given DSRP instance I in fact format, recongo constructs a logic program ϕ� =

I ∪ base∪⋃�
t=0 step(t)∪ check(�). Here, base, step(t ), check(�) correspond to the

three subprograms given in Listing 4, respectively. We note that ϕ� represents the DSRP

of a bounded length �. For solving ϕ�, recongo delegates the grounding and solving tasks

to the clingo solver. If ϕ� is satisfiable, there exists a reconfiguration sequence. Otherwise,

recongo keeps on reconstructing a successor (e.g., ϕ�+1) and checking its satisfiability until

a reconfiguration sequence is found. Of course, it is quite inefficient to fully reconstruct ϕ�

at each step due to the expensive grounding. To resolve this issue, recongo incrementally

constructs ϕ� from its predecessor ϕ�−1 by adding all rules of step(�) and check(�),

https://doi.org/10.1017/S1471068424000292 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000292


M. Kato et al.762

#program step(t).

:- not 1 { in(Y,t):edge(X,Y) ; in(Y,t):edge(Y,X) } 1,

{ in(Y,t-1):edge(X,Y) ; in(Y,t-1):edge(Y,X) } 0,

token_removed(X,t), t>0.

Listing 5. Token destination: a hint constraint for DSRP solving.

Fig. 3. Example of invalid move forbidden by the hint on token destination.

and by deactivating check (�− 1) by setting the external atom query(�− 1) to false.

This procedure can be elegantly implemented by utilizing clingo’s API for multi-shot

ASP solving (Gebser et al., 2019).

4.3 Hint constraints

We develop a hint constraint, called token destination, to boost the performance of DSRP

solving. This domain-specific hint is intended to forbid invalid token moves. Our ASP

encoding for the token destination is shown in Listing 5. The rule enforces that a token

moves from the node X to one among its neighbors if the token is removed from the node

X at step t and no token is placed on all its neighbors at step t1. For illustration, an

invalid move forbidden by this hint is shown in Figure 3. Indeed, node 1 is neither in a

dominating set nor adjacent to any node in it if a token jumps from node 1 in Xt−1 to

5 in Xt.

4.4 Extension

Finally, we extend our encoding to DSRP solving under token addition-removal. In the

token addition-removal, a single token is added or removed in each transition as long as

the total number of tokens in each state does not exceed a given threshold. An extended

encoding is shown in Listing 6. The major difference from token jumping in Listing 4

is that the auxiliary atom token added(X,t) is newly introduced in Line 16. The atom

token added(X,t) represents that a token is added to node X at step t. The rule in Line

17 enforces that a single token is either added or removed in each transition. For minor

changes, we add a threshold th in Line 8 to bind the number of tokens (viz., the size

of dominating sets). Since there is no lower bound, the constraints of the start and goal

states are adjusted.
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1 #program base.

2 % Constraints of the start state

3 :- not in(X,0), start(X).

4 :- in(X,0), not start(X).

5
6 #program step(t).

7 % Constraints of the dominating set problem

8 { in(X,t) : node(X) } K + th :- k(K).

9 dominated(X,t) :- in(X,t).

10 dominated(Y,t) :- in(X,t), edge(X,Y).

11 dominated(Y,t) :- in(X,t), edge(Y,X).

12 :- not dominated(X,t), node(X).

13
14 % Constraints of the token addition-removal

15 token_removed(X,t) :- in(X,t-1), not in(X,t), t > 0.

16 token_added(X,t) :- not in(X,t-1), in(X,t), t > 0.

17 :- not 1 { token_removed(X,t) ; token_added(X,t) } 1, t > 0.

18
19 #program check(t).

20 % Constraints regarding of goal state

21 :- not in(X,t), goal(X), query(t).

22 :- in(X,t), not goal(X), query(t).

Listing 6. ASP encoding for DSRP solving under token addition-removal.

5 Benchmark generation and Experiments

We carry out experiments on a newly created benchmark set to evaluate the effectiveness

of our approach. We compare the combination of our ASP encoding and hint constraints

for DSRP solving under token jumping. We also address the competitiveness of our

approach by empirically contrasting it to a ZDD-based approach (Ito et al., 2023).

5.1 Benchmark generation

No benchmark set of DSRP has been available so far. We therefore create a bench-

mark set of DSRP under token jumping. The resulting benchmark set consists of 442

instances in total, in which 310 are reachable, and 132 are unreachable. The number of

nodes and edges ranges from 11 to 1,000 and from 20 to 449,449, respectively. All bench-

mark instances are in DIMACS format used in a series of international competitions

(CoRe challenge), and can be useful for other approaches and solvers. More precisely,

our benchmark set is generated as follows:

1. We considered all 167 instances (viz., graphs) used in the third benchmark set of

CoRe Challenge 2022. We ran experiments for enumerating the optimal solutions

of the minimum DSP.5 The time-limit is 5 minutes for each instance. clingo was

able to fully enumerate the optimal solutions of 57 instances.

5 This benchmark set is the largest one involving many kinds of graphs. The first set consists of
toy instances. The second set focuses on the grid and queen graphs. See https://core-challenge.
github.io/2022/ for more details.
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2. For each of the 57 instances, we tried to construct its solution space using breadth-

first search. A solution space is a graph in which each node represents a dominating

set, and each edge represents an adjacency relation, in our case, the token jumping.

We obtained the solution spaces of 40 instances.

3. For each solution space of the 40 instances, we tried to produce both at most

10 reachable instances and at most 10 unreachable ones. Finally, we were able to

create 442 instances in a total, of which 310 are reachable and 132 are unreachable.

In step (3), for reachable instances, the start and goal states are selected for which

the length of the shortest sequence becomes maximum (viz., diameter). The lengths

of reachable instances range from 1 to 23. For unreachable instances, the start and goal

states are selected from different connected components of the solution space respectively.

5.2 Overview of experiments

We compare the combination of our ASP encoding in Listing 4 and hint constraints

for DSRP solving under token jumping. In addition to our hint constraint on token

destination (t3) in Listing 5, we consider the following hint constraints.

• Distance from the start and goal states (d1 and d2): The d1 hint represents that

there must be at most t nodes that are in the start state but not in Xt. Let us

consider a reconfiguration sequence of length �. The d2 hint represents that there

must be at most �− t nodes that are in the goal state but not in step Xt.

• Forbidding redundant token moves (t1 and t2): The t1 hint represents that, in two

consecutive states, no token moves back to a node from which a token moved before.

Similarly, the t2 hint represents that no token moves from a node to which a token

moved before.

• Minimal dominating set heuristics (heu): The heu hint is a domain-specific heuristics

that tries to make each state to be a minimal dominating set. This can be easily

done by using clingo’s #heuristic statements.

These hints except for heu can be used for a wide range of CRPs and have been applied

to independent set reconfiguration (Yamada et al., 2024) and Hamiltonian cycle recon-

figuration (Hirate et al., 2023). We use the ASP-based CRP solver recongo-0.3 powered

by clingo-5.6.2 (configuration trendy). The time-limit is 10 minutes for each instance.

We run our experiments on Mac OS with a 3.2GHz Intel Core i7 processor and 64GB

of memory.

5.3 Benchmark results

We first analyze the effectiveness of single hint constraint. The number of solved instances

is shown in Table 2. The columns show in order reachability (reachable, unreachable, or

total) and the number of solved instances by each single hint. nohint indicates our

ASP encoding without any hint. The best results are highlighted in bold. Our t3 hint

solved the most, namely 354 out of 442 instances, which is 23 more than nohint. For

reachable instances, the t2 hint solved the most, but no big difference from the others.
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Table 2. The number of solved instances for dominating set reconfiguration
problem solving with single hint

nohint d1 d2 heu t1 t2 t3

Reachable 293 291 293 288 297 299 296
Unreachable 38 38 38 32 38 48 58

Total 331 329 331 320 335 347 354

Table 3. The number of solved instances for dominating set reconfiguration
problem solving with multiple hints

nohint t1 t2 t3 t1t2 t1t3 t2t3 t1t2t3

Reachable 293 297 299 296 298 297 291 295
Unreachable 38 38 48 58 48 58 69 68

Total 331 335 347 354 346 355 360 363

For unreachable instances, our t3 hint solved the most, namely 58 instances, which is 20

more than nohint.

Next, we consider all possible combinations of {t1,t2,t3}, each of which solved more

than nohint in Table 2. The number of solved instances for each combination is shown

in Table 3. The t1t2t3 hints solved the most, namely 363 instances. It is 32 more than

nohint and 9 more than the best single hint t3. For reachable instances, the t2 hint

solved the most as before, but again no big difference from the others. For unreachable

instances, the t2t3 hints solved the most, namely 69 instances. It is 31 more than nohint

and 11 more than the best single hint t3.

We show cactus plots in Figures 4 and 5 to visually summarize our benchmark results.

The graph plots how many instances can be solved in a given time-limit. The horizontal

axis indicates the number of solved instances, and the vertical axis indicates CPU times in

seconds for reachability checking. For unreachable instances, in Figure 5, we can observe

that there is a clear gap between the top four encodings with t3 and the bottom four

without it. That is, this cactus plot illustrates that our t3 hint can significantly enhance

the performance of deciding unreachability.

For a more detailed analysis of this effect, a scatter plot of the comparison on CPU

times between nohint and t1t2t3 is shown in Figure 6. Reachable and unreachable

instances are indicated in blue and red, respectively. The darker the color of each mark,

the larger the “scale” of instance. Here, the scale of instance is calculated by the prod-

uct of the number of nodes in the input graph and the length of the reconfiguration

sequence. The scatter plot shows that the t1t2t3 hints are able to efficiently deter-

mine the unreachability of many large instances colored by dark red in the upper right

part.
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Fig. 4. Cactus plot of reachable instances.

Fig. 5. Cactus plot of unreachable instances.

5.4 Comparison with other approaches

Our comparison considers a state-of-the-art approach to CRP solving based on zero-

suppressed binary decision diagrams (ZDD; (Ito et al., 2023)). We use the ZDD-based

CRP solver ddreconf 6 ranked third in several metrics of the CoRe Challenge 2023. For

6 https://github.com/junkawahara/ddreconf
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Fig. 6. Scatter plot of CPU times comparing nohint and t1t2t3.

a given DSRP instance (i.e., a DSP instance and start and goal states), ddreconf first

constructs a ZDD representing all solutions of DSP. And then, it incrementally constructs

ZDDs Zi representing all dominating sets that are reachable from the start state in

exactly i steps, excluding ones that are reachable in less than i steps. If Zi includes the

goal state, ddreconf returns a reconfiguration sequence. We ran ddreconf on the same

environment as before.

Comparison results are shown in Table 4. The columns display in order the benchmark

family, the number of instances belonging to each family, the number of solved instances

for each approach. The better results of the last two columns are highlighted in bold.

Overall, our declarative approach performed well compared to a ZDD-based approach.

Our ASP encoding with recongo solved 363 out of 442 instances, which is 90 more than

ddreconf . Our encoding with recongo showed good performance for the color04 family

including many kinds of graphs, but less effective for the queen family consisting of only

graphs for queens puzzles. The cactus plot in Figure 7 illustrates a clear difference in

performance between ASP-based and ZDD-based approaches.

5.5 Summary and discussion

Our basic ASP encoding in Listing 4 solved 331 instances without any hint constraints.

In contrast, our best encoding involving t1t2t3 hints solved 363 instances. The improve-

ment by ASP is therefore 331 instances, and the additional 32 instances are contributed

by our hint constraints. From the perspective of ZDD versus ASP in Figure 7, ddreconf

and recongo(nohint) solved 273 and 331 instances, respectively. This result shows that

our ASP-based method is more effective in DSRP solving than ZDD, even without the

help of hint constraints.
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Table 4. Comparison with a zero-suppressed binary decision
diagram-based approach

benchmark family #instances ZDD (ddreconf ) ASP (t1t2t3)

color04 304 141 245
queen 66 60 46
sp 60 60 60
square 12 12 12

Total 442 273 363

Fig. 7. Cactus plot comparing answer set programming-based and zero-suppressed binary
decision diagram-based approaches.

The most recent competition (CoRe challenge 2023) has six metrics in the single solver

track. The independent set reconfiguration problems under the token jumping have been

used in CoRe challenge 2023. The recongo solver won four gold and two silver medals,

which is followed by two gold and four silver medals of PARIS (Christen et al., 2023),

and by six bronze medals of ddreconf . The gap between recongo and ddreconf at the

competition is very similar to the results on DSRPs in Table 4. We used the ddreconf

solver in our comparison, since, among solvers that participated in a series of CoRe

challenge, only ddreconf can deal with dominating set reconfiguration. In principle, it is

possible for other CRP solvers like PARIS to handle it, but significant efforts of high-level

modeling and/or encoding are needed.
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6 Related work

Recent advances in ASP such as multi-shot ASP solving (Gebser et al., 2019) encourage

researchers to tackle hard problems in combinatorial reconfiguration. The use of multi-

shot ASP for combinatorial reconfiguration was first studied in (Yamada et al., 2023,

2024). They proposed a general approach called bounded combinatorial reconfiguration

for solving combinatorial reconfiguration problems based on ASP, including algorithms,

solver developments, encodings, and empirical analysis. The resulting ASP-based solver

recongo is an award-winning solver of the most recent CoRe challenge 2022 and 2023.

The bounded combinatorial reconfiguration has been applied to some specific reconfig-

uration problems. Yamada et al. (2023, 2024) developed a collection of ASP encodings for

independent set reconfiguration under the token jumping rule, including basic encodings

for problem solving and some hint constraints. Hirate et al. (2023) explored Hamiltonian

cycle reconfiguration under the well-known k-opt rule of the traveling salesperson prob-

lem. They presented new ASP encodings for solving Hamiltonian cycle problems and

extended one of them for Hamiltonian cycle reconfiguration.

This paper tackled the DSRP. The major contribution of this paper is the devel-

opment of ASP encodings and a hint constraint (named token destination) for DSRP

solving under token jumping as well as token addition-removal. Particularly, our best hint

constraint is shown to be highly effective in deciding unreachability. This hint is domain-

specific to DSRP and is different from the ones used in the previous works (Yamada

et al., 2023; Hirate et al., 2023; Hirate et al., 2023). Our approach has a similarity to the

previous works in the sense that both the grounding and solving tasks are delegated to

the recongo solver.

There is a rapidly growing interest in the practical aspects of combinatorial reconfigu-

ration. However, many important problems remain untouched, such as the connectivity,

optimality, and diameter of the solution space. We will investigate the possibility of using

ASP for those challenging problems.

7 Conclusion

We developed an approach to solve the DSRP based on Answer Set Programming (ASP).

Our declarative approach relies on a high-level ASP encoding, and both the grounding

and solving tasks are delegated to the ASP-based combinatorial reconfiguration solver

recongo. We established the competitiveness of our declarative approach by empirically

contrasting it to a more algorithmic ZDD-based approach. All source code and benchmark

problems are available from the web.7

Future work includes benchmark generation for DSRP under token addition-removal,

using real-data of social and sensor networks. From a broader perspective, combinatorial

reconfiguration is related to automated planning, in the sense of transforming a given

state to another state. It would be interesting to study the relationship between them and

investigate the possibility of their synergy. For a synergy, we plan to develop a framework

of cost-optimal combinatorial reconfiguration with multiple adjacency relations.

7 https://github.com/banbaralab/iclp2024
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