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Abstract

Most infections with pandemic Vibrio cholerae are thought to result in subclinical disease and
are not captured by surveillance. Previous estimates of the ratio of infections to clinical cases
have varied widely (2 to 100 infections per case). Understanding cholera epidemiology and
immunity relies on the ability to translate between numbers of clinical cases and the underlying
number of infections in the population. We estimated the infection incidence during the first
months of an outbreak in a cholera-naive population using a Bayesian vibriocidal antibody titer
decay model combining measurements from a representative serosurvey and clinical surveil-
lance data. 3,880 suspected cases were reported inGrande Saline, Haiti, between 20October 2010
and 6 April 2011 (clinical attack rate 18.4%). We found that more than 52.6% (95% Credible
Interval (CrI) 49.4-55.7) of the population ≥2 years showed serologic evidence of infection, with
a lower infection rate among children aged 2-4 years (35.5%; 95%CrI 24.2-51.6) compared with
people ≥5 years (53.1%; 95%CrI 49.4-56.4). This estimated infection rate, nearly three times the
clinical attack rate, with underdetection mainly seen in those ≥5 years, has likely impacted
subsequent outbreak dynamics. Our findings show how seroincidence estimates improve
understanding of links between cholera burden, transmission dynamics and immunity.

Key Results
• We combine serological and clinical cholera incidence in an outbreak in a naive popu-

lation in Grande Saline, Haiti.
• The rate of infection with Vibrio cholerae was several times the clinical attack rate.
• Half of the population ≥2 years showed serological evidence of infection.
• For every reported clinical case ≥5 years old, 3.2 (95% CrI 3.0-3.4) people were infected.
• Children 2-4 years old had a lower infection rate, which was not significantly different

from the clinical attack rate.

Introduction

In its global roadmap to eliminate cholera as a public health threat by 2030, the Global Task Force
for Cholera Control (GTFCC) considers at least 47 countries as cholera affected [1], where 2.86
million cases (uncertainty range 1.3m to 4.0m) and 95,000 deaths (uncertainty range
21,000-143,000) occur each year [2]. In addition to endemic cholera, small and large-scale cholera
outbreaks are common [3]. However, the true number of pandemic V. cholerae infections and
cases are greatly obscured by the nature of cholera surveillance systems, care-seeking behavior and
the natural history of pandemic V. cholerae.

In most cholera-affected countries, surveillance is primarily passive, health facility-based and
reliant on a suspected case definition that has low specificity [4,5]. Laboratory confirmation of
cholera requires shipping stool samples to central laboratories for culture or PCR, and is typically
done only for a subset of cases during outbreaks [6,7]. Rapid Diagnostic Tests (RDT) have
become available in recent years, but the scale-up of their routine use has only just started [6].
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Biases in estimates of the clinical burden of cholera can result from
non-systematic use of diagnostic testing and variability in the
proportion of people with symptomatic cholera who seek care
outside of facilities under surveillance [5,8,9].

Most cholera infections are thought to be asymptomatic or
subclinical [10–12]. They may not be of clinical relevance but the
infected may still transmit the bacteria and acquire immunity,
which can have important impacts on the epidemiological dynam-
ics of the current or future outbreaks [13–16]. Importantly, the
proportion of the population with full or partial immunity can thus
not be determined from clinical surveillance alone but is of crucial
importance to gauge the future course of an outbreak or to plan
vaccination campaigns.

There is growing interest in complementing clinical surveillance
with serological data to provide amore complete picture of infections
and burden [17–19]. Recent work has shown that cross-sectional
serologic data contain sufficient information to estimate the inci-
dence of recent infections [10,18,20]. This quantity is referred to as
seroincidence.However, the relationship betweenmedically attended
clinical incidence and seroincidence, which is shaped by host, patho-
gen and surveillance systems, remains unclear. Furthermore, most
evidence comes from hyperendemic settings like Bangladesh, where
exposure to cholera is extremely common. Despite the scientific
consensus that the number of asymptomatic or mild infections is
many times higher than the number of clinically relevant infections,
estimates have varied widely (factor 2 to 100), likely as a result of
variable case definitions, individual infection histories, different V
cholerae strains and host factors (Supplementary Material)
[13,15,21–28]. Being able to translate between the number of cases
observed at health facilities and the true number of infections in the
community, or vice-versa, could help improve the public health
utility of serosurveillance data and strengthen our understanding
of cholera epidemiology and immunity.

Data collected from a representative serosurvey in Grand Saline,
Haiti, between March 22 and April 4, 2011, six months after the
start of the first cholera outbreak ever reported there, provide a rare
opportunity to gain new insights into the relationship between
infections with pandemic Vibrio cholerae O1 and clinical disease
in a population with no previous exposures to the bacterium
[17]. In this study we aim to estimate the true incidence of infec-
tions with V cholerae O1 and the infection to case ratio during the
first 6 months of this unprecedented cholera epidemic by combin-
ing information from serological and clinical surveillance.

Methods

Data and study population

Serologic data were obtained from a previously published represen-
tative serosurvey conducted in the municipality of Grande Saline
(population 21,131) between 22 March and 6 April 2011, roughly
6 months after the beginning of the outbreak [17,29]. This study
included 2,622 participants aged between 2 and 90 years from 1,240
households, with 2,527 (93%) participants providing serum sam-
ples. Vibriocidal antibody titers were measured using an initial
10-fold dilution followed by serial 2-fold dilutions and expressed
as 1:20, 1:40, 1:80, 1:160,…, 1:40960. Reported titer values represent
the highest dilution with a ≥50% reduction in turbidity compared
with a bacteria-only control, indicating inhibition of bacterial
growth. The true titer thus lies in the interval between the indicated
and the next higher dilution on the scale (interval censoring).
The sampling and laboratory analyses have been described

previously in Jackson et al. (2013). We log2-transformed the recip-
rocal titer values (a dilution of 1:20was transformed to log2(20) = 4.32,
1:40 to 5.32, 1:80 to 6.32,…) and assigned 0 to titer values below the
limit of detection (<1:20). While the only known V. cholerae strain
circulating in Haiti before the serosurvey was of serotype Ogawa
[30], vibriocidal titers to serotypes Inaba and Ogawa were detected.
Due to known cross reactivity, we use the maximummeasured titer
across both serotypes (Figure 1A).

In addition to collecting data on individual demographics and
home location, study staff asked each participant about episodes of
watery diarrhoea occurring since the beginning of the epidemic, if
they had sought treatment at a health facility, if they had been
hospitalized overnight and if they had been diagnosed with cholera
by a health care worker.

We also used the daily incidence of suspected cholera in the
commune of Grande Saline reported between 20 October 2010,
when the commune reported its first case, and the end of the
serosurvey (6 April 2011) from the national surveillance system
(Figure 2A) [17,31]. The case definition for suspected cholera used
in Haiti at the time was “acute watery diarrhoea, with or without
vomiting, in persons of all ages residing in an area in which at least
one case of Vibrio cholerae O1 infection had been confirmed by
culture”. The cases were reported in two age groups: children less
than 5 years old and individuals aged 5 years and older. In order to
compare reported cases to the target population of the serosurvey,
which excluded those less than 2 years old, we multiplied the
number of reported cases under 5 years by 0.74, the fraction of
2-4 year olds in under 5 year old cases obtained from unpublished
age distributions of cases in Haiti in 2010. We estimated the popu-
lation of 2-4 year olds and of >= 5 year olds from the national age
distribution [32] and performed our analysis for the entire
population 2 years and older and separately for 2-4 year olds and
for 5 year olds and older.

Logistic regression analysis

In the survey, participants were asked if they had had cholera
symptoms since the start of the epidemic in Haiti. These types of
self-reports can be insensitive and non-specific proxies of having
true cholera. To understand the relationship between vibriocidal
titers (a known marker of recent infection) and self-reported chol-
era symptoms, we used logistic regression models. Specifically, we
used either self-reported cholera diagnosis or self-reported watery
diarrhoea as dependent variable, and vibriocidal antibody titer
(log2-transformed) as predictor, adjusting for covariates in a step-
wise procedure. Full details on the logistic regression models can be
found in the Supplementary Materials. Regression analyses were
performed with R statistical software [33].

Seroincidence estimation using a Bayesian vibriocidal titer
decay model

Our primary estimates of seroincidence and infection rate are based
on modeling the vibriocidal titer decay in the blood of participants
enrolled in the study. Vibriocidal titer values correlate with recent
V. cholerae infection and have been shown to be a non-mechanistic
correlate of protection when paired samples are available
[10,34]. They rise to their maximal value within 1–2 weeks after
infection and then start decaying toward pre-infection levels
[34]. We developed a hierarchical, Bayesian statistical model of
the decay of the vibriocidal titer of participants, from the inferred
date of infection to the date the serum sample was taken. As
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described below, by modeling each individual’s probability of being
infected, time of infection, titer decay and titer measurement
process, we were able infer the infection rate
(i.e., seroincidence) of cholera in Grande Saline from a snapshot
of sampled vibriocidal titer values. We assumed that a constant
proportion of infections was reported throughout the study
period, equal incubation periods and equal reporting delays for
all individuals, equal infection risk for all individuals (ignoring
e.g. household structure or geography) and that infection led to
seroconversion in all individuals. For each age group, we fitted
the model to the number of individuals at each vibriocidal titer
obtained from Jackson et al. [17]. As a comparison, two simpler
methods to determine infection rate by classifying measured titer
values according to fixed threshold or a mixture distribution are
described in the Supplementary Material.

Modeling infection
Ourmodel assumes that the true number of infections each day was
proportional to the reported clinical incidence (Figure 2A) lagged
by themedian incubation period and reporting delay (Table 1). The
estimated number of individuals infected on day t, denoted I tð Þ is
thus:

I tð Þ= 1
ρ
C t� τI!Cð Þ

where C tð Þ is the number of reported cases on day t (Figure 2A), ρ
is the proportion of infections that are reported (a combination of
the proportion of infections that are clinically apparent and of the
proportion of clinically apparent infections that seek care at

reporting facilities) and τI!C is the delay from infection to report-
ing. For each individual i , we modeled an infection indicator
variable δi , which takes the value 1 if individual i was infected
between the beginning of the outbreak and the time of sampling and
0 otherwise, as a Bernoulli process with probability of success equal
to the infection rate:

δi �Bernoulli

P
tC tð Þ
ρN

� �

where N is the population size.
The time of infection Ti

I for each infected individual i is drawn
from a distribution with the shape of the estimated infection
incidence:

P Ti
I = t

� �
=

I tð ÞP
τI τð Þ :

Modeling vibriocidal titer dynamics
Following previous studies, we modeled the vibriocidal titer
dynamics of infected individuals by assuming an initial increase
in titer d days after the presumed infection followed by an expo-
nential decay [10,35]. Titers of non-infected individuals were
assumed to remain at their baseline level. The modeled true titer
value of individual i at the time of sampling Ts is thus:

�Ai
Ts
=

�ωi if δi = 0

�ωi + λi � exp½�r � ðTs�ðTi
I + dÞÞ� if δi = 1 and ðTs�dÞ >Ti

IÞ

(

Figure 1. Measured titer values in the sample population (A), inferred individual probability of infection (with 90% prediction intervals) (B) by measured titer value (log2-
transformed). Note that no estimates of the infection probability for the three highest titer classes for children <5 are shown because no children included in the study had these
titers.
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Figure 2. Reported daily clinical incidence of suspected cholera (A) and inferred median incidence of infections with 95% prediction intervals (B).

Table 1. Key parameters and priors of the vibriocidal titer decay model

Name Description Calibrated Prior / Value

Npop population size No 21,131 [29]

N2�4 population size 2–4 years old No 1,588= N �0:1253 �3=5ð Þ (estimated from 12.53% under 5s in the 2010 national age
distribution and assuming uniform age distribution in the population under 5 [29,32]

N5 + population size, 5 years and older No 19,403 (estimated from 2010 national age distribution: 87.47% of the population of over 5
[29,32]

N2 + population size, 5 years and older No N2�4 +N5+ = 20,991

p2�4 proportion of reported cases under 5
that are between 2 and 4 years old

No 73.94% derived from unpublished age structure of cases in Nov and Dec 2010

ρ reporting fraction Yes Weakly informative prior ρ∈
P

tC tð Þ=N,1:5� �
σ titer measurement standard deviation Yes N ≥ 0 0,1ð Þ
ω∗ individual baseline titer Yes �ωi

λi

" #
�MVN ≥ 0

5,31

5,45

" #
,

3:96 �4:02

�4:02 8:10

" # !
[10]

λi individual titer rise Yes

r titer decay rate Yes N ≥ 0 0:0056,0:0005ð Þ day�1� �
: mean half-life of 123 days [10]

δi individual infection indicator Yes Bernoulli process with probability of success equal to the infection rate:

δi �Bernoulli

P
t
C tð Þ

ρN

� �

Ti
I individual time of infection for infected

individuals
Yes Drawn from a categorical distribution with the shape of the estimated infection incidence.

For each day t: P Ti
I = t

� �
= I tð ÞP

τ
I τð Þ

d time from infection to peak titer No 11 days [10]

TI!C time from infection to reporting No 2 days: 1.5 days incubation [41] + 0.5 days of reporting delay
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where ωi represents the baseline titer value of each individual i, λi is
the individual temporary titer rise after infection and r the expo-
nential decay rate.We do not explicitlymodel the dynamics of post-
infection titer rise, justified by the absence of reported cases in the
days immediately preceding the serosurvey (Figure 2A).

Measurement model
The measured vibriocidal titer Ai

∗ =Ak ∈ 0, log2 20ð Þ, log 2 40ð Þ,�
… log 2 40960ð Þg lies on a discrete scale dictated by serial dilutions of
the measurement process (see Data). Following Salje et al. (2018)
we modeled the probability that the true (log2) vibriocidal titer A

i

for individual i is measured in bin Ak as:

P Ai
∗ =AkjAi

	 

=
Z Ak+ 1

Ak

N ujAi
,σ

	 

du,

where the width of the log2 titer measurement intervals Ak + 1�Ak

is equal to 3.32 if k= 0, corresponding to the initial 10-fold dilution,
and 1 otherwise, corresponding to a 2-fold dilution. Measurement
error was assumed to be normally distributed on the log-scale with
standard deviation σ.

Parameters
We allowed parameters for titer rise upon infection λi and baseline
titer ωi to vary between individuals, whereas the titer decay raterwas
assumed to be the same for the entire population (Table 1).Weused a
weakly informative prior for the fraction of reported infections ρ,
ranging from

P
tC tð Þ=N = 0:17 – if every inhabitant has been

infected – to 1.5, an over-reporting of 50%. Prior distributions on
decay parameters r, λi and ωiwere derived from Jones et al. [10], we
used a multivariate normal distribution for the latter two to account
for correlation. In addition, we also inferred latent variables repre-
senting the infection history of each individual (Ti

Iand δi). Sensitivity
analyses on the prior distributions for the decay rate r and the
baseline titer ωi are presented in the Supplementary Material.

Inference
We implemented the model using the PyMC framework for prob-
abilistic programming [36] and calibrated it with the No-U-Turn
Sampler (NUTS) [37] with 4 chains of 20,000 tuning iterations and
2,000 posterior sampling iterations. Posterior predictive checks,
posterior distributions and diagnostic checks are presented in the
Supplementary Material. We ran separate inference for the entire
population and for the different age groups and report mean and
95% credible intervals (CrI) of the resulting distributions.

Ethics
Participants in the original study provided written informed con-
sent and the study protocol was approved by the Haitian National
Ethics Committee IRB (Protocol #2011-FWD-CHOLERA-01) and
the U.S. Centers for Disease Control and Prevention IRB (CDC
Protocol #6038). This secondary analysis was approved by the
Ministère de la Santé Publique et de la Population de l’Haïti and
deemed to be exempt from human subjects research by the Johns
Hopkins Bloomberg School of Public Health IRB.

Results

In the commune of Grande Saline a total of 3,880 suspected cholera
cases (clinical attack rate 18.4%) were reported from the first
reported case on 20 October 2010 to the end of the serosurvey
on 6 April 2011 through the national cholera surveillance system.

Age specific clinical attack rates were 16.4% in people 5 years and
above 39.5% in children under 5. We estimated the clinical attack
rate to be 39.5% in children 2-4 years old (Table 2).

Fivemonths after the peak of reported cases in the firstwave, 2,622
people 2 years and older were enrolled in a representative serosurvey
[17], 4.7% (124) were 2-4 years of age and 59% (1,553) were female.
20.6% (541) of participants reported watery diarrhoea since the start
of the outbreak in October 2010, and 17.8% (466) reported to have
been diagnosed with cholera by a health care worker. 14.8% (388) of
participants reported to have sought treatment at a health facility with
half of them (50.5%, 196/388) having spent at least one night there
(Table 2).Having a higher vibriocidal log2-titer was a predictor of self-
reported cholera diagnosis (odds ratio (OR) 1.12 (95%CI 1.08 to
1.16)) and self-reported watery diarrhoea (OR 1.10 (95%CI 1.07 to
1.14)) in multivariable logistic regression analysis when adjusting for
age and location (Supplementary Material). Among the 2,526 parti-
cipants with reported vibriocidal titer values, 18.2% had no detectable
vibriocidal antibodies and 38.8% had a titer of ≥320 to either of the
two serotypes.

We combined vibriocidal titers and reported clinical incidence
in a Bayesian vibriocidal titer decay model to infer the infection to
reported case ratio and the infection rate. We found a sigmoidal
dose-response relationship between titer and the probability of
having been infected. People with a titer of 40 had a probability
of 18.5% (95% CrI 13.2-24.1) and those with a titer of 320 a
probability of 85.8% (95% CrI 82.6-88.9) of having been infected.
When stratifying by age, we found that the curves had similar
shapes between children 2-4 years old and those 5 and older
(Figure 1B).

Using the vibriocidal titer decay model, we estimated that 52.6%
(95%CrI 49.4-55.7) of Grande Saline’s population ≥2 years old was
infected during the first 6 months of the cholera epidemic, includ-
ing 35.5% (95%CrI 24.2-51.6) of children 2-4 years old and 53.1%
(95%CrI 50.1-56.4) of those aged 5 and above (Table 2, Figure 2B
and Figure 3A). We find that the implied infection to reported case
ratio (parameter ρ) was far higher in older children and adults than
among those 2-4 years old. On average we estimate that for every
reported clinical case among those ≥5 years old, a total of 3.2 (95%
CrI 3.0-3.4) people were infected. In contrast, for every reported
clinical case among those 2-4 years old there were 0.9 (95% CrI
0.6-1.3) infections (Figure 3B).

Table 2. Clinical attack rate, attack rate of self reported cholera and watery
diarrhoea, and estimates of infection rate with V. cholerae O1

Estimate

Value [95% CI]

All ≥ 2 years 2-4 years ≥5 years

Clinical attack rate
(reported cholera
incidence)a

18.2% 39.5% 16.4%

[17.7–18.8] [37.0–41.9] [15.9–16.9]

Clinical attack rate
(self-reported cholera
diagnosis)a

17.8% 18.5% 17.8%

[16.3–19.3] [12.1–26.5] [16.3–19.3]

Clinical attack rate
(self-reported watery
diarrhoea)a

20.6% 25.0% 20.4%

[19.1–22.2] [17.7–33.6] [18.9–22.1]

Infection rate
(vibriocidal
decay model)b

52.6% 35.5% 53.1%

[49.4–55.7] [24.2–51.6] [49.4–56.4]

aExact binomial confidence intervals (Clopper-Pearson).
bCredible Intervals are given for Bayesian estimates.
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Discussion

We estimated that more than 52.6% (95% CrI 49.4 to 55.7) of the
population in Grand Saline, Haiti was infected by V. cholerae O1
during the first 6 months of the outbreak in 2010, with young
children (2-4 years old) having a 32.5% (95% CrI 2.4 to 54.1) lower
seroincidence than those 5 years and older, despite both age groups
being immunologically naive at the start of the outbreak. Compared
to the reported clinical incidence from the same community, we
found that for every three infections among those five years and
older in the community one clinical case was reported through the
national surveillance system, though this ratio was closer to 1 for
those 2-4 years old. As the global community looks for new ways to
understand the burden and transmission of cholera, these estimates
provide a unique perspective to help interpret clinical and seroin-
cidence especially in immunologically naive populations.

Our estimates of the ratio of infections to reported clinical
cholera cases are at the lower end of those previously reported,
which likely reflects that this population had no previous exposure
to the bacteria, but could also reflect differences in host factors (e.g.,
undernutrition) and exposure routes [13–15,21,22,25–28]. Our
estimated number of infections among young children nearly
matches the numbers of reported suspected cholera cases, although
with wide confidence intervals, possibly arising from the small
sample size limiting power. This result either implies that there
were almost no infections in this age group that did not result in
medically-attended disease, or more realistically that unreported
infections were compensated by poor specificity of the suspected
cholera case definition, especially in young children, where other
etiologies frequently lead to similar symptoms. Given that other
diarrhoeal pathogens may also have distinct seasonality and pat-
terns of immunity (e.g., rotavirus [38]), our infection to reported
case ratio may not be as generalizable across time and geographies
as the estimate for adults.

Our study comes with a number of limitations. In reconstruct-
ing the infection incidence, our estimates of vibriocidal baseline
titer, titer rise and decay rate among all infected individuals, across
the spectrum of clinical severity and age, were based on priors
informed from estimates from a cohort of severe, mostly adult,
cholera cases in Bangladesh. In addition, to avoid identifiability
issues, we assumed that the titer decay rate was the same for all
individuals, and assigned fixed values to the delay from infection to
peak titer and reporting delay.Moreover, there is known laboratory
to laboratory variability in the results of the vibriocidal assay which
could further limit the generalizability of the results from
Bangladesh [39]. While to our knowledge there are no detailed
kinetic data available across age and severity, especially among

immunologically naive, it may be that mild infections lead to a
more blunted immune response, as seen with other pathogens [40],
and that young children have different boosts and decay rates from
adults. Our sensitivity analyses show that whereas our results in 2-4
year olds are robust to variations in the prior for decay rate,
decreasing the prior distribution for the baseline titer could result
in higher estimates of infection rate in both age groups
(Supplementary Material). In estimating infection incidence we
only relied on vibriocidal titers, with no other markers considered.
Recent work has shown that inclusion ofmultiple serologicmarkers
(i.e. antibodies against cholera toxin) can improve estimates of
seroincidence from cross-sectional data [10,18], and inclusion of
these in a multivariate decay model could have improved our
precision. However, we decided not to include data on anti-cholera
toxin B antibodies as they were measured using an assay for which
no post-infection dataset to parametrize the kinetic model were
available, in addition to the computational complexity of simultan-
eously modeling the decay of multiple antibodies. We assumed that
the hazard of infection was proportional to the observed epidemic
curve of suspected cholera cases, and that this ratio was constant in
time. Although the agreement of attack rate estimates from clinical
surveillance and self-reported cholera indicates that surveillance
performed well, the surveillance systemmay have changed over the
course of this six month period given the unprecedented context,
and people’s care seeking behaviorsmay have changed as awareness
of cholera increased over the course of the epidemic. Simpler
methods to determine infection by classifying measured titer values
according to fixed thresholds or a mixture distribution exist
(Supplementary Material), but given that they don’t account for
antibody dynamics they may be less accurate to reconstruct recent
infection than the method employed in our main analysis.

Our estimates of the number of infections per reported sus-
pected cholera case during an outbreak in an immunologically
naive population suggests that only one in three infections with
pandemic V cholerae resulted in medically attended clinical disease
that was reported via the surveillance system. More than half of the
population of Grande Saline thus likely acquired at least partial
immunity to cholera with unknown duration, a result which, given
the similar reported clinical attack rates and similar surveillance
system, can likely be generalized to large parts of Haiti. This has
likely impacted the dynamics of the 2011 and subsequent epidemic
waves. Although estimates may not be generalizable to populations
with more frequent historical exposures to V cholerae, this study
shows that population immunity to cholera cannot be understood
based on clinical surveillance data alone. While more work is
needed to grasp the links between infections, immunity and its
duration across different populations, our results highlight the

Figure 3. Distribution of the infection rate (A) and the infection (symptomatic and asymptomatic) to reported case ratio (B) in Grande Saline during the study period inferred from
combining serological and incidence data and modeling vibriocidal decay.
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potential utility of combining clinical and serologic data in assess-
ing cholera risk and making resource allocation decisions for
cholera prevention and control.

Supplementary material. The supplementary material for this article can be
found at http://doi.org/10.1017/S0950268824000888.

Data availability. The code and data are freely available onGithub (github.com/
HopkinsIDD/grande-saline-cholera-serosurvey) and archived on Zenodo (https://
zenodo.org/doi/10.5281/zenodo.10063169). Note that the logistic regression ana-
lysis requires individual level data, which is not included in the repository to protect
the privacy of the survey participants. Interested researchers are invited to contact
the authors of the survey [17].
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