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Abstract. We prove that a finite set of natural numbers J satisfies that J ∪ {0} is not Sidon
if and only if for any operator T, the disjoint hypercyclicity of {T j : j ∈ J } implies that
T is weakly mixing. As an application we show the existence of a non-weakly mixing
operator T such that T ⊕ T 2 ⊕ · · · ⊕ T n is hypercyclic for every n.

Key words: Sidon sets, disjoint hypercyclicity, non-weakly mixing operators
2020 Mathematics subject classification: 47A16, 37B99 (Primary); 11B99 (Secondary)

1. Introduction
Let X be a Banach space. An operator T : X → X is said to be hypercyclic if there is
a vector x ∈ X such that its orbit OrbT (x) := {T n(x) : n ∈ N} is dense in X. Then x is
said to be a hypercyclic vector for T. The study of hypercyclic operators has seen lively
development in recent decades. See, for example, the books [2, 21] on the subject.

A linear operator is called weakly mixing if T ⊕ T : X ⊕ X → X ⊕ X is hypercyclic.
In the topological setting, it is simple to show examples of hypercyclic maps that are not
weakly mixing, for instance, any irrational rotation of the torus. However, in the linear
setting, things get more interesting as weak mixing is equivalent to the hypercyclicity
criterion, which is the simplest way to prove that a given operator is hypercyclic. Despite its
intricate form it is very simple to use. A linear operator is said to satisfy the hypercyclicity
criterion if there are dense sets D1, D2 ⊆ X, a sequence (nk)k and applications Snk

:
D2 → X such that:
(1) T nk (x) → 0 for every x ∈ D1;
(2) Snk

(y) → 0 and T nkSnk
(y) for every y ∈ D2.

Most common notions in linear dynamics imply or are equivalent to the hypercyclicity
criterion. For example, hypercyclic operators having a dense set of vectors with bounded
orbits, chaotic operators, and frequently hypercyclic operators are weakly mixing. The
existence of a non-weakly mixing but hypercyclic operator was an open question for many
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years. It was posed by Herrero in the T ⊕ T form in 1992 [22] and solved affirmatively by
De La Rosa and Read in 2006 [15]. Later on, Bayart and Matheron constructed other
examples in spaces such as H(C) or �p [1, 3]. A ‘natural’ example of a hypercyclic
operator that does not satisfy the hypercyclicity criterion is still unknown.

A natural question that arises is whether the hypercyclicity of T ⊕ T 2 ⊕ · · · ⊕ T n for
every n implies that T is weakly mixing.

Question A. Let T be an operator such that T ⊕ T 2 ⊕ · · · ⊕ T n is hypercyclic for every
n. Does T satisfy the hypercyclicity criterion?

Bayart and Matheron’s construction of a non-weakly mixing but hypercyclic operator
invites consideration of disjoint hypercyclic operators. A finite set of operators {Tj :
j ∈ J } is called disjoint hypercyclic if there is a vector x ∈ X such that

⊕
j∈J x

is a hypercyclic vector for
⊕

j∈J Tj and it is called disjoint transitive if for every
non-empty set U and every family of non-empty open sets {Vj : j ∈ J }, there is n
such that U ∩ ⋂

j∈J T −n(V ) �= ∅. The first to study disjoint hypercyclic operators were
Bernal-González [4] and Bés and Peris [9]. Since then, the theory of disjoint hypercyclicity
has had a huge impact. We now know that there are disjoint hypercyclic operators that are
not disjoint transitive [25], there are disjoint weakly mixing operators that fail to satisfy
the disjoint hypercyclicity criterion [25], there are disjoint hypercyclic operators in every
infinite-dimensional and separable Banach space [26], there are mixing operators that are
not disjoint mixing [5], etc.

Thus, the following question is a related Question A.

Question B. Let T be an operator such that {T j : 1 ≤ j ≤ n} is disjoint hypercyclic for
every n. Does T satisfy the hypercyclicity criterion? More generally, for which subsets of
the natural numbers does it follow that if {T j : j ∈ J } is disjoint hypercyclic then T is
weakly mixing?

The study of these questions leads to a surprising connection with the family of Sidon
sets of the natural numbers. In Theorem 3.2 we will give a complete answer to Question A
by proving that J ∪ {0} is Sidon if and only if there is a non-weakly mixing operator T
such that {T j : j ∈ J } is disjoint hypercyclic. As a corollary, we answer Question A by
exhibiting a non-weakly mixing operator T such that T ⊕ T 2 ⊕ · · · ⊕ T n is hypercyclic
for every n (Theorem 4.3).

Recall that a subset A = {ai : i ∈ N} of the natural numbers is Sidon if all the sums
ai + aj for i ≤ j are different. The study of Sidon sets has seen considerable development
on the last century and is a central task in number theory and additive combinatorics.
For instance, in 1941, Erdős and Turán [18] proved that a result of Singer [27] implies
that if S(n) denotes the maximal cardinal of a Sidon set contained in {1, . . . , n}, then
the asymptotic behavior of S(n) is n1/2. They also showed that S(n) ≤ n1/2 + O(n1/4). In
1969, Lindström [23] proved that for all n, S(n) < n1/2 + n1/4 + 1, and in 2010, Cilleruelo
[14] slightly improved this result by showing that S(n) < n1/2 + n1/4 + 1/2. The question
whether S(n) < n1/2 + o(nε) for every ε > 0 is still an open problem posed by Erdős [17].
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The paper is organized as follows. In §2 we fix notation and recall some facts about
weakly mixing operators and disjoint hypercyclic operators. In §3 we answer Question A,
by proving that a finite subset J ⊆ N satisfies that J ∪ {0} is not Sidon if and only
if for every linear operator T such that {T j : j ∈ J } is disjoint hypercyclic we have
that T is weakly mixing (Theorem 3.2). Moreover, we construct a non-weakly mixing
operator T such that {T j : j ∈ J } is disjoint hypercyclic for every finite set J such that
J ∪ {0} is Sidon (Theorem 3.4). In §4 we answer Question A, and exhibit a non-weakly
mixing operator for which T ⊕ T 2 ⊕ · · · ⊕ T n is hypercyclic for every n. In §5 we study
syndetically transitive operators. We prove that a linear operator T is syndetically transitive
if and only if T ⊕ S is hypercyclic for every weakly mixing operator S (Theorem 5.3) and
that a linear operator is piecewise syndetically transitive if and only if T ⊕ S is hypercyclic
for every syndetically transitive operator S (Theorem 5.4). Finally, we show the existence
of a frequently transitive but non-weakly mixing operator (Theorem 5.5), which answers a
question of [7, Question 5.12].

2. Preliminaries
Throughout the paper X will denote an infinite-dimensional and separable Fréchet space
and T : X → X will be a linear operator.

Given a linear operator T, x ∈ X and U , V non-empty open sets, the sets of hitting times
NT (x, U) and NT (U , V ) are defined as

NT (x, U) : = {n ∈ N : T n(x) ∈ U},
NT (U , V ) : = {n ∈ N : T n(U) ∩ V }.

A linear operator is said to be hypercyclic if there is x ∈ X such that NT (x, U) �= ∅ for
every non-empty open set U and transitive if NT (U , V ) �= ∅ for every pair of non-empty
open sets U , V . Given a hypercyclic vector x and non-empty open sets U , V , then we can
write NT (U , V ) as

NT (U , V ) = NT (x, V ) − NT (x, U):={m − n : m ∈ NT (x, V ), n ∈ NT (x, U) and m ≥ n}.
See [2, Lemma 4.5] for a proof of this fact.

A linear operator T is said to be weakly mixing if T ⊕ T is hypercyclic. The weak
mixing property admits several well-known equivalent formulations. For instance, a nice
result due to Bès and Peris [8] shows that T is weakly mixing if and only if T satisfies
the hypercyclicity criterion if and only if T is hereditarily hypercyclic. The following
characterization [21, Proposition 1.53] of weakly mixing operators will be used repeatedly.

PROPOSITION 2.1. A linear operator is weakly mixing if and only if for every pair of
non-empty sets U , V then NT (U , U) ∩ NT (U , V ) �= ∅.

Definition 2.2. A set of operators {Ti : X → X : i ∈ I } is said to be disjoint hypercyclic
(or d-hypercyclic) if there is x ∈ X such that for every family of non-empty open sets
{Ui : i ∈ I }, there is n such that T n

i (x) ∈ Ui for every i ∈ I . In that case we will say that x
is a disjoint hypercyclic vector (or d-hypercyclic vector) for {Ti : X → X : i ∈ I }.

Similarly, there is a notion of d-transitivity.
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Definition 2.3. A set of operators {Ti : i ∈ I } is said to be disjoint transitive (or
d-transitive) if for every non-empty open set U and every family of non-empty open
sets {Ui : i ∈ I } there is n such that U ∩ ⋂

i∈I T −1
i Ui is non-empty.

It is not difficult to prove that a set of disjoint transitive operators is a set of disjoint
hypercyclic operators with a dense set of d-hypercyclic vectors [9, Proposition 2.3].
However, the converse is false and there are d-hypercyclic operators without a dense set of
d-hypercyclic vectors [25, Corollary 3.5].

The next proposition seems to be original. It establishes the equivalence between
disjoint hypercyclicity and disjoint transitivity for commuting operators.

PROPOSITION 2.4. Let {Ti : 1 ≤ i ≤ N} be a set of operators such that T1 commutes with
Ti for every 2 ≤ i ≤ N . Then {Ti : 1 ≤ i ≤ N} is disjoint hypercyclic if and only if it is
disjoint transitive.

Proof. If {Ti : 1 ≤ i ≤ N} is disjoint transitive then it is disjoint hypercyclic by [9,
Proposition 2.3].

Suppose that {Ti : 1 ≤ i ≤ N} is disjoint hypercyclic and let x ∈ X be a disjoint
hypercyclic vector for {Ti : 1 ≤ i ≤ N}. We will prove that, for every n ∈ N, T n

1 (x) is
a disjoint hypercyclic vector for {Ti : 1 ≤ i ≤ N}. Let n ∈ N.

As the operators commute, it follows that

OrbT1⊕···⊕TN

( N⊕
i=1

T n
1 (x)

)
=

N⊕
i=1

T n
1

(
OrbT1⊕···⊕TN

( N⊕
i=1

x

))
.

The operator T1 is hypercyclic and hence T n
1 is also hypercyclic [21, Theorem

6.2]. This implies that Im(
⊕N

i=1 T n
1 ) is dense in

⊕N
i=1 X. On the other hand,⊕N

i=1 OrbT1⊕···⊕TN
(
⊕N

i=1 x) is also dense in
⊕N

i=1 X. We conclude that T n
1 (x) is a

disjoint hypercyclic vector.
Now consider non-empty open sets U and V1, . . . VN . Since x is a hypercyclic vector

for T1, there is n1 such that y = T
n1
1 (x) ∈ U . We have just proved that y is a d-hypercyclic

vector for {Ti : 1 ≤ i ≤ N}. Thus, there is n such that T n
i (y) ∈ Vi for every 1 ≤ i ≤ N . It

follows that y ∈ U ∩ ⋂N
i=1 T −n

i Vi .

3. Disjoint hypercyclicity of powers of an operator and weakly mixing operators
In this section, we prove the main theorem of the paper. It involves a surprising connection
between disjoint hypercyclicity, weakly mixing operators and Sidon sets of the natural
numbers. We prove that a finite set of natural numbers J satisfies that J ∪ {0} is not Sidon
if and only if for any operator T, the disjoint hypercyclicity of {T j : j ∈ J } implies that
T is weakly mixing (Theorem 3.2). Moreover, we construct a non-weakly mixing operator
T : �1 → �1 such that {T j : j ∈ J } is disjoint hypercyclic for every finite set J such that
J ∪ {0} is Sidon (Theorem 3.4). This allows us to generalize Theorem 3.2 to infinite sets:
an infinite set S ⊆ N satisfies that S ∪ {0} is Sidon if and only if there is a non-weakly
mixing operator T : �1 → �1 such that for every finite subset J ⊆ S we have that {T j :
j ∈ J } is disjoint hypercyclic (Theorem 3.5).
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Definition 3.1. A sequence of integers numbers (jk) (or a set J = {jk : k ∈ N}) is said to
be Sidon, if all the sums jk + jk′ with k ≤ k′ are different.

In this paper we will only consider Sidon subsets of the non-negative numbers that
contain 0. Thus, for example, {2, 4} is Sidon but {0, 2, 4} is not Sidon.

THEOREM 3.2. Let J ⊆ N be a finite set. Then J ∪ {0} is Sidon if and only if there exists
a non-weakly mixing operator T : �1 → �1 such that {T j : j ∈ J } is disjoint hypercyclic.

The proof is an immediate consequence of Theorems 3.3 and 3.4 below.

THEOREM 3.3. Let X be a Banach space, J ⊆ N such that J ∪ {0} is not Sidon and T :
X → X be a linear operator such that {T j : j ∈ J } is disjoint hypercyclic. Then T is
weakly mixing.

THEOREM 3.4. There exists a non-weakly mixing operator T : �1 → �1 such that {T j :
j ∈ J } is disjoint hypercyclic for every finite set J ⊆ N such that J ∪ {0} is Sidon.

We see in particular that the disjoint hypercyclicity of {T , T j } in �1 implies that T is
weakly mixing if and only if either j = 1 or j = 2. (But of course {T , T } is never disjoint
hypercyclic.)

Since a set S is Sidon if and only if every finite subset of S is Sidon, Theorems 3.3 and
3.4 also give a characterization for infinite subsets of the natural numbers.

THEOREM 3.5. Let S ⊆ N. Then S ∪ {0} is Sidon if and only if there is a non-weakly
mixing operator T : �1 → �1 such that for every finite subset J ⊆ S we have that {T j :
j ∈ J } is disjoint hypercyclic.

Proof of Theorem 3.3. Suppose that there are j1, j2, j3, j4 ∈ J ∪ {0}, 0 ≤ j1 ≤ j2 ≤
j3 ≤ j4 such that j1 + j4 = j2 + j3.

Let U , V be non-empty open sets. We will prove that NT (U , U) ∩ NT (U , V ) �= ∅. By
Proposition 2.1 this implies that T is weakly mixing.

We will divide the proof into three cases.
First case. Suppose that j1 �= 0 and that j2 < j3. Let x ∈ X be a disjoint hypercyclic

vector for {T ji : 1 ≤ i ≤ 4}. Hence, there is n ∈ N such that T jin(x) ∈ U for i ≤ 3 and
T j4n(x) ∈ V . Therefore, j4n − j2n ∈ NT (x, V ) − NT (x, U) = NT (U , V ) and, on the
other hand, j4n − j2n = j3n − j1n ∈ NT (x, U) − NT (x, U) = NT (U , U).

If j1 �= 0 and j2 = j3 the proof is the same by considering x ∈ X a disjoint hypercyclic
vector for {T j1 , T j2 , T j4} and n ∈ N such that T jin(x) ∈ U for i ≤ 3 and T j4n(x) ∈ V .

Second case. Suppose that j1 = 0 and that j2 �= j3. By Proposition 2.4, the set of
disjoint hypercyclic vectors is dense and hence there is a disjoint hypercyclic vector x ∈ U

for {T j2 , T j3 , T j4}.
Let n ∈ N such that T j2n(x) ∈ U , T j3n(x) ∈ U and T j4n(x) ∈ V . Therefore,

j4n − j3n ∈ NT (x, V ) − NT (x, U) = NT (U , V ). On the other hand, j4n − j3n = j2n ∈
NT (U , U), because x ∈ U and T j2n(x) ∈ U .

Final case. Suppose that j1 = 0, j2 = j3 = j and j4 = 2j . By Proposition 2.4 there is a
disjoint hypercyclic vector x ∈ U for {T j , T 2j }. Let n ∈ N such that T jn(x) ∈ U and such
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that T 2jn(x) ∈ V . It follows that 2jn − jn = jn ∈ NT (x, V ) − NT (x, U) = NT (U , V ).
On the other hand, jn ∈ NT (U , U), because x ∈ U and T jn(x) ∈ U .

This implies that NT (U , U) ∩ NT (U , V ) �= ∅ and thus T is weakly mixing.

To prove Theorem 3.4 we will use the construction by Bayart and Matheron [3] of a
non-weakly mixing and hypercyclic operator. Let us briefly recall their construction.

Bayart and Matheron’s operator is an upper triangular perturbation of a weighted
forward shift in �1. For a sparse sequence (bn), a sequence an → ∞, weights wn and a
dense sequence of polynomials (Pn) with deg(Pn) < bn to be specified, they consider⎧⎪⎨

⎪⎩
T (ei) = wiei+1 if bk−1 ≤ i < bk − 1;

T bk (e1) = Pk(T )(e1) + ebk

ak

.

Since deg(Pn) < bn for every n, it follows that T is an upper triangular operator. In
particular, e1 is a cyclic vector for T and hence {P(T )(e1) : P is a polynomial} is dense
in �1. Therefore, if 1/(an) → 0 and (Pn) is a dense family of polynomials, it follows that
e1 is a hypercyclic vector for T. We notice also that span(OrbT (e1)) = c00. The following
definition is useful.

Definition 3.6. Let (Pn) be a sequence of polynomials and (un) an increasing sequence of
positive real numbers. We will say that (Pn) is controlled by (un) if for every n, deg(Pn)

and |Pn|1 are both less than un.

Definition 3.7. Let (�l) be a sequence of natural numbers. An increasing sequence of
natural numbers (bn) is said to be a (�l)-Sidon sequence if the sets of natural numbers

Jl := [bl , bl + �l] ∪
⋃
k≤l

[bl + bk , bl + bk + �l]

are pairwise disjoint.

The following theorem is deduced from the proof of [3, Theorem 1.6].

THEOREM 3.8. Let �l → ∞ and (bn) be a (�l)-Sidon sequence. Then there are
parameters wn, an → ∞ and un → ∞ such that whenever (Pn) is controlled by (un),
that is deg(Pn) < un and |Pn|1 < un for every n, then the operator T is continuous and
not weakly mixing.

Proof of Theorem 3.4. Let (Fn)n be a collection of finite sets, with |Fn| = n, such that
Fn ∪ {0} is a Sidon set and such that any finite set F ⊂ N such that F ∪ {0} is Sidon,
F is contained in Fn ∪ {0} for some n. We consider (jn,k)0≤k≤n,n∈N such that for every
n, (jn,k)0≤k≤n forms an increasing enumeration of Fn ∪ {0}. Thus, it suffices to show
the existence of a Bayart–Matheron operator such that for each n, the set of operators
{T jn,1 , . . . , T jn,n} is disjoint hypercyclic.

For a sequence ml,n such that l ≥ n (to be defined), we will consider bl,n,k , 1≤k≤n≤l,
such that bl,n,k = ml,njn,k . Note that bl,n,k is not defined if k = 0.
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The order considered for the tuples (l, n) is lexicographic, that is, (l, n) ≤ (l′, n′) if
l < l′ or if l = l′ and n ≤ n′. The tuples (l, n, k) will also be ordered lexicographically.

We will construct ml,n by induction in (l, n) so that the sets

Jl,n,k :=
[
bl,n,k , bl,n,k + ml,n

2

]

∪
( ⋃

(l′,n′,k′)≤(l,n,k)

[
bl,n,k + bl′,n′,k′ , bl,n,k + bl′,n′,k′ + ml,n

2

])

with 1 ≤ k ≤ n ≤ l are pairwise disjoint. If so, it will follow by definition that (bl,n,k)

is a �l,n,k-Sidon sequence for �l,n,k = (ml,n)/2. At each inductive step (L, N) we will
construct sets JL,N ,k , 1 ≤ k ≤ N so that:
(i) for 1 ≤ k ≤ N , the JL,N ,k are pairwise disjoint; and

(ii) for every 1 ≤ k ≤ N , 1 ≤ k′ ≤ N ′ and (L′, N ′) < (L, N), JL,N ,k is disjoint from
JL′,N ′,k′ .

The first step is straightforward because there is a single set. We put m1,1 = 1.
Suppose now that we have constructed m1,1, . . . mL,N such all the sets Jl,n,k with

(l, n, k) ≤ (L, N , N) are pairwise disjoint. If (L̃, Ñ) denotes the immediate successor
of (L, N) we have to choose m

L̃,Ñ such that the Jl,n,k are pairwise disjoint for every
(l, n, k) ≤ (L̃, Ñ , Ñ). To do that, we will choose m

L̃,Ñ big enough so that for k ≤ Ñ the
minimum of J

L̃,Ñ ,k is greater than the maximum of
⋃

(l,n,k)≤(L,N ,N) Jl,n,k . Then we will
use that (jn,k)k is Sidon to show that, for k ≤ Ñ , the J

L̃,Ñ ,k are pairwise disjoint.
Let m

L̃,Ñ such that for every (l′, n′) ≤ (L, N),

m
L̃,Ñ > 2ml′,n′jn′,n′ + ml′,n′

2
. (1)

We claim that for every k ≤ Ñ , the set J
L̃,Ñ ,k is disjoint from Jl′,n′,k′ for every (l′, n′, k′) ≤

(L, N , N). Indeed,

min J
L̃,Ñ ,k = b

L̃,Ñ ,k = m
L̃,Ñ j

Ñ ,k ≥ m
L̃,Ñ j

Ñ ,1

> 2ml′,n′jn′,k′ + ml′,n′

2
= max Jl′,n′,k′ .

So, it only remains to prove that J
L̃,Ñ ,k , with 1 ≤ k ≤ Ñ , are pairwise disjoint.

Suppose otherwise and let t ∈ J
L̃,Ñ ,k1

∩ J
L̃,Ñ ,k2

. Hence, there are (L′
i , N ′

i , k′
i ) ≤

(L̃, Ñ , ki) such that for i = 1 and i = 2 we have that

m
L̃,Ñ j

Ñ ,ki
+ mL′

i ,N
′
i
jN ′

i ,k′
i
≤ t ≤ m

L̃,Ñ j
Ñ ,ki

+ mL′
i ,N

′
i
jN ′

i ,k′
i
+ m

L̃,Ñ

2
.

Note that k′
i may be equal to 0 here. This is the case if t ∈ [b

L̃,Ñ ,ki
, b

L̃,Ñ ,ki
+ (m

L̃,Ñ )/2].
Therefore j

Ñ ,ki
+(mL′

i ,N
′
i
)/(m

L̃,Ñ )j
Ñ ,k′

i
≤ t/(m

L̃,Ñ )≤ j
Ñ ,ki

+ (mL′
i ,N

′
i
)/(m

L̃,Ñ )j
Ñ ,k′

i
+ 1

2 ,

i = 1, 2. Applying (1), we obtain that if (L′
i , N ′

i ) < (L̃, Ñ),

j
Ñ ,ki

≤ t

m
L̃,Ñ

< j
Ñ ,ki

+ 1.
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Otherwise, if (L′
i , N ′

i ) = (L̃, Ñ), we obtain

j
Ñ ,ki

+ j
Ñ ,k′

i
≤ t

m
L̃,Ñ

≤ j
Ñ ,ki

+ j
Ñ ,k′

i
+ 1

2
.

Thus, for example, if (L′
1, N ′

1) < (L̃, Ñ) and (L′
2, N ′

2) = (L̃, Ñ), the above inequal-
ities show that j

Ñ ,k1
= �t/(m

L̃,Ñ )� = j
Ñ ,k2

+ j
Ñ ,k′

2
. This is a contradiction because

{0, j
Ñ ,1, . . . , j

Ñ ,Ñ } is Sidon, k1 �= k2 and k′
2 ≤ k2.

The other cases,
• (L′

1, N ′
1) < (L̃, Ñ) and (L′

2, N ′
2) < (L̃, Ñ),

• (L′
1, N ′

1) = (L̃, Ñ) and (L′
2, N ′

2) < (L̃, Ñ),
• (L′

1, N ′
1) = (L′

2, N ′
2) = (L̃, Ñ),

are similar.
We have proved that the sets Jl,n,k , 1 ≤ k ≤ n ≤ l, are pairwise disjoint and thus bl,n,k

is a �l,n,k-Sidon sequence for some �l,n,k → ∞. Therefore, by Theorem 3.8, there are
parameters wl,n,k , 1/(al,n,k) → 0 and ul,n,k → ∞ such that if Pl,n,k is controlled by ul,n,k

then T is continuous and not weakly mixing.
We consider a family of polynomials Pl,n,k = Pl,k controlled by ul,n,k such that

for every n, (Pl,1 ⊕ Pl,2 ⊕ · · · ⊕ Pl,n)l≥n is dense in
⊕

k≤n C([x]). To construct this
sequence of polynomials just consider vl,k = minn∈[k,l]{ul,n,k} and a dense sequence
(Ql)l ⊂ ⊕

k∈N C[x], where Ql = ([Ql]1, [Ql]2, . . .), with the additional property that
each [Ql]k is controlled by vl,k whenever l ≥ k.

The polynomials Pl,k = [Ql]k satisfy the desired property.
It remains to show that for every n and k, e1 ⊕ e1 ⊕ · · · ⊕ e1 is a hypercyclic vector for

T jn,1 ⊕ T jn,2 ⊕ · · · ⊕ T jn,n . Indeed,

(T jn,1 ⊕ T jn,2 ⊕ · · · ⊕ T jn,n)ml,n(e1 ⊕ · · · ⊕ e1)

= (T bl,n,1 ⊕ T bl,n,2 ⊕ · · · ⊕ T bl,n,n)(e1 ⊕ · · · ⊕ e1)

= Pl,1(T )(e1) + ebl,n,1/al,n,1 ⊕ · · · ⊕ Pl,n(T )(e1) + ebl,n,n/al,n,n.

Thus ((T jn,1 ⊕ T jn,2 ⊕ · · · ⊕ T jn,n)ml,n(e1 ⊕ · · · ⊕ e1))l≥n is dense in
⊕

1≤k≤n �1.

Remark 3.9. Our definition of �l-Sidon set is slightly different from the originally
proposed by Bayart and Matheron in [3]. The reason is that their condition is not strong
enough to prove Theorem 3.8. Indeed, otherwise, we could, using the same techniques
that we used to prove Theorem 3.4, construct a non-weakly mixing operator such that T
and T 2 are disjoint hypercyclic. These conditions are incompatible since {T , T 2} disjoint
hypercyclic implies that T is weakly mixing.

4. A non-weakly mixing operator such that T ⊕ T2 ⊕ · · · ⊕ Tn is hypercyclic for every n
In this section, we exhibit a non-weakly mixing operator such that T ⊕ T 2 ⊕ · · · ⊕ T n is
hypercyclic for every n (Theorem 4.3). The operator is the one defined in Theorem 3.4.

To show that the operator satisfies the desired property, we will study a nice relation-
ship between the disjointness hypercyclicity of {T j : j ∈ J } and the hypercyclicity of⊕

k∈K T k for some subsets K ⊆ J − J .
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The next proposition characterizes the hypercyclicity of
⊕n

j=1 Tj for an n-tuple of
hypercyclic operators.

PROPOSITION 4.1. Let T1, . . . TN be hypercyclic operators such that for every
(N + 1)-tuple of non-empty open sets U , V1, . . . VN we have that

⋂N
i=1 NTi

(U , Vi) �= ∅.
Then

⊕N
i=1 Ti is hypercyclic.

Proof. Let U1, V1, U2, V2 . . . UN , VN be non-empty open sets.
Put W1 = U1 and n1 = 0. By an inductive argument we construct non-empty open

sets WN ⊆ WN−1 . . . ⊆ W1 ⊆ U1 and numbers n1, . . . nN such that for every i, ni ∈
NTi

(Wi−1, Ui) and Wi = Wi−1 ∩ T
−ni

i (Ui).
Since each Ti is hypercyclic we have that each T −ni (Vi) is a non-empty open set.

Let m ∈ ⋂N
i=1 NTi

(WN , T −ni (Vi)). We will show that m ∈ ⋂N
i=1 NTi

(Ui , Vi). For i = 1
it is clear because WN ⊆ U1 and T −n1(V1) = V1. If i > 1, there is xi ∈ WN such that
T m

i (xi) ∈ T
−ni

i (Vi). Hence T
m+ni

i (xi) ∈ Vi . Using that WN ⊆ Wi ⊆ T
−ni

i (Ui), we see
that T

ni

i (xi) ∈ Ui . Therefore, m ∈ NTi
(Ui , Vi).

In the same way that {T j : j ∈ J } being disjoint hypercyclic implies that T ⊕ T

is hypercyclic for J ∪ {0} not Sidon, there are nice relationships between the disjoint
hypercyclicity of {T j : j ∈ J } and the hypercyclicity of

⊕
k∈K T k for some subsets

K ⊆ J − J .

PROPOSITION 4.2. Let J ⊆ N be a finite set and {T j : j ∈ J } be disjoint hypercyclic. Let
(j l

2)1≤l≤n ⊆ J and (j l
1)1≤l≤n ⊆ J ∪ {0} such that:

(i) j l
2 �= j l′

1 for every 1 ≤ l, l′ ≤ n;
(ii) j l

2 �= j l′
2 for every 1 ≤ l < l′ ≤ n; and

(iii) j l
1 < jl

2 for every 1 ≤ l ≤ n.

Then
⊕n

l=1 T jl
2−j l

1 is hypercyclic.

Proof. Let U be a non-empty open set and Vl : 1 ≤ l ≤ n be non-empty open sets. We
will prove that

⋂
l≤n N

T
jl
2−j l

1
(U , Vl) is non-empty.

By Proposition 2.4 there is a disjoint hypercyclic vector x ∈ U . Let m ∈ N such that for
every 1 ≤ l ≤ n, T jl

2m(x) ∈ Vl and T jl
1m(x) ∈ U . Therefore, j l

2m − j l
1m ∈ NT (x, Vl) −

NT (x, U) = NT (U , Vl). We conclude that m ∈ N
T

jl
2−j l

1
(U , Vl) for every 1 ≤ l ≤ n.

As an application of the above theorems, we now exhibit a non-weakly mixing operator
T such that T ⊕ T 2 . . . ⊕ T n is hypercyclic for every n.

THEOREM 4.3. There exists a non-weakly mixing operator T such that T ⊕ T 2 ⊕ · · · ⊕
T n is hypercyclic for every n.

Proof. Let T be the operator constructed in Theorem 3.4. Then T is not weakly mixing
and {T j : j ∈ J } is disjoint hypercyclic for every finite J such that J ∪ {0} is Sidon.

Suppose that Jn = {k1, k1 + 1, k2, k2 + 2, . . . , kn, kn + n} is a Sidon set. Then
Proposition 4.2 implies that T ⊕ T 2 ⊕ · · · ⊕ T n is hypercyclic. Indeed, we may just
take j l

2 = kl + l and j l
1 = kl for l = 1, . . . , n.
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If we take k1 = n + 1 and kj+1 = 2(kj + j) + 1 then it is simple to show that
Jn ∪ {0} is Sidon. Indeed, suppose that 0 ≤ a1 ≤ a2 ≤ a3 < a4 are elements in
Jn ∪ {0} such that a1 + a4 = a2 + a3. Notice that, by construction, if l1 ≤ l2 < l3 then
kl1 + l1 + kl2 + l2 < kl3 . This implies that there is l ≤ n such that a4 = kl + l and a3 = kl .
Hence, l = a2 − a1. It follows that there must be l′ such that a2 = kl′ + l′ and a1 = kl′ ,
because otherwise a2 − a1 > n + 1 > l. Thus, l = a2 − a1 = l′, which is a contradiction
because a2 < a4.

5. Syndetically and frequently transitive operators
In this section we study syndetically and frequently transitive operators. The motivation
comes from the facts that syndetically transitive operators satisfy that T ⊕ T 2 ⊕ · · · ⊕ T n

is hypercyclic for every n while frequently hypercyclic operators are syndetically transitive.
In Theorem 5.3 we prove that a linear operator T is syndetically transitive if and only
if T ⊕ S is hypercyclic for every weakly mixing operator S. Analogously, we prove that
a linear operator is piecewise syndetically transitive if and only if T ⊕ S is hypercyclic
for every syndetically transitive operator S. In Theorem 5.5 we show an example of a
frequently transitive operator that is not weakly mixing. This answers a question of [7,
Question 5.12].

Given a hereditary upward family F ⊆ P(N) (also called a Furstenberg family) we say
that an operator is F-hypercyclic if there is x ∈ X for which the sets NT (x, U) of return
times belong to F , and we say that an operator is F-transitive if the sets NT (U , V ) belong
to F .

We will consider the following families.
• A is said to have positive lower density (or A ∈ D) if

d(A):lim inf
n

(#{j ≤ n : j ∈ A})/n > 0.

• A is said to be thick, if A contains arbitrary long intervals.
• A is said to be syndetic if A has bounded gaps.
• A is said to be piecewise syndetic if A is the intersection of a thick set with a syndetic

set. Equivalently, there is b such that A contains arbitrarily large sets with gaps bounded
by b.

• A is said to be thickly syndetic if for every k there is a syndetic set S such that
S + {0, . . . k} ⊆ A.

TheD-hypercyclic (transitive) operators are known as frequently hypercyclic (transitive)
operators.

Given a family F , the dual family F∗ is defined as

F∗ = {A ⊆ N : A ∩ F �= ∅ for every F ∈ F}.
The duals of the thick sets (piecewise syndetic sets) are the syndetic sets (thickly

syndetic sets).
It is not difficult to prove that there are no thickly or syndetically hypercyclic operators

(see Propositions 2 and 3 of [6] for proof of these facts). However, operators can be
thickly transitive and syndetically transitive. It is well known that a linear operator is
thickly transitive if and only if it is weakly mixing [2, Theorem 4.6] and that if A has
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positive lower density, then A − A is syndetic [20, Proposition 3.19]. This implies that
frequently hypercyclic operators are syndetically transitive. On the other hand, the proof
of [2, Theorem 6.31] shows that syndetically transitive operators are weakly mixing. Thus,
frequently hypercyclic operators are both syndetically and thickly transitive.

For more on F-hypercyclicity see [6, 7, 10–13, 19].
It was proved independently in [24, Proposition 4] and [16] that whenever T and S are

syndetically and thickly transitive, T ⊕ S is syndetically and thickly transitive. (See also
Exercises 2.5.4 and 2.5.5 in [21].) In particular, the finite product of syndetically transitive
operators is weakly mixing.

THEOREM 5.1. Let f : X → X and g : Y → Y be syndetically and thickly transitive
continuous mappings. Then f ⊕ g is syndetically and thickly transitive.

On the other hand, syndetically and transitive operators are thickly syndetically
transitive. See [7, Lemma 2.3] for a proof of this result.

LEMMA 5.2. Let f : X → X be a syndetically and thickly transitive mapping. Then f is
thickly syndetically transitive.

The intersection of a syndetic set and a thick set is always non-empty. Therefore, if T
is syndetically transitive and S is weakly mixing then T ⊕ S is hypercyclic. This property
characterizes the syndetically transitive operators.

THEOREM 5.3. Let T be a linear operator. The following assertions are equivalent.
(1) T is syndetically transitive.
(2) T ⊕ S is weakly mixing for every weakly mixing operator S.
(3) T ⊕ S is hypercyclic for every weakly mixing operator S.

Proof. (1) ⇒ (2). Since T is a syndetically transitive linear operator, it is thickly
transitive. It follows by the above lemma that T is thickly syndetically transitive.

Let U1, U2, V1, V2 be non-empty open sets. Then NS(U2, V2) is thick while NT (U1, V1)

is thickly syndetic, that is, for every k, there is a syndetic set A such that A + {1, . . . , k} ⊆
NT (U1, V1). Let k ∈ N. Then NS(U2, V2) ∩ A + {1, . . . , k} contains k consecutive
integers.

(2) ⇒ (3). Let S be a weakly mixing operator. Then T ⊕ S is weakly mixing. In
particular, T ⊕ S is hypercyclic.

(3) ⇒ (1). We will prove that if T is not syndetically transitive, then there is a weakly
mixing operator S such that T ⊕ S is not hypercyclic.

Let T be not syndetically transitive. Hence there are non-empty open sets U , V such that
NT (U , V ) is not syndetic. Thus, there is a sequence (nk) for which nk+1 > nk + k and⋃

k

[nk , nk + k] ⊆ NT (U , V )c.

It suffices to show the existence of a weakly mixing operator S and a non-empty open
set W for which

NS(W , W) ⊆
⋃
k

[nk , nk + k].
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Let S be the weighted backward shift on �2 given by the weights

wn =

⎧⎪⎪⎨
⎪⎪⎩

2 if n ∈ [nk , nk + k] for some k,

2−k if n = nk + k + 1,

1 otherwise.

The weights (wn)n are bounded and
∏nk+k

j=1 wj = 2k . These facts imply that Bw is well
defined and that Bw is weakly mixing (see [21, Ch. 4]). On the other hand, we notice that
if n /∈ ⋃

k[nk , nk + k], then
∏n

j=1 wj = 1.
Consider now W = B(e1, ε) with ε < 1

2 and let n ∈ NS(W , W). Hence, there is x such
that ‖x − e1‖ < ε and ‖Sn

w(x) − e1‖ < ε. Therefore,

|xn| < ε and
∣∣∣∣

n∏
j=1

wjxn − 1
∣∣∣∣ = |[Bn

w(x) − e1]1| < ε.

It follows that n ∈ ⋃
k[nk , nk + k].

The symmetric problem recovers the piecewise syndetically transitive operators.

THEOREM 5.4. Let T be a linear operator. The following assertions are equivalent.
(1) T is piecewise syndetically transitive.
(2) T ⊕ S is hypercyclic for every syndetically transitive operator.

Proof. (1) �⇒ (2). Suppose that T is piecewise syndetically transitive and let S be a
syndetically transitive operator. Then S is, by Lemma 5.2, thickly syndetically transitive.
By the duality between the piecewise syndetic and the thickly syndetic sets, we obtain that
for every tuple of non-empty open sets U1, U2, V1, V2,

NT (U1, V1) ∩ NS(U2, V2) �= ∅

and hence T ⊕ S is hypercyclic.
(2) �⇒ (1). Suppose that T is not piecewise syndetically transitive. It suffices to show

the existence of a syndetically transitive operator S and non-empty open sets U , V , W such
that NS(W , W) ⊆ NT (U , V )c.

Since T is not piecewise syndetically transitive there are non-empty open sets U , V such
that NT (U , V ) is not piecewise syndetic. By duality, there is a thickly syndetic set A such
that NT (U , V ) ∩ A = ∅. It follows that NT (U , V )c is thickly syndetic. Equivalently, we
have that for every k, {n : [n, n + k] ⊆ NT (U , V )c} is syndetic.

Let S be the weighted backward shift on �2 given by the weights

wn =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2 if n ∈ NT (U , V )c,

2−l if n /∈ NT (U , V )c, n − 1 ∈ NT (U , V )c and

l = max{j ∈ N : [n − j , n − 1] ⊆ NT (U , V )c},
1 otherwise.

The weights wn are bounded and hence S is a well-defined backward shift. Also, for every
k, {n : [n, n + k + 1] ⊆ NT (U , V )c} ⊆ {n :

∏n
j=1 wj > 2k}. This implies that for every M,
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{n :
∏n

j=1 wj > M} is syndetic and hence S is syndetically transitive [7, Corollary 3.4].
On the other hand, we notice that if n /∈ NT (U , V )c, then

∏n
j=1 wj = 1.

Consider now W = B(e1, ε) with ε < 1
2 and let n ∈ NS(W , W). Thus, there is x such

that ‖x − e1‖ < ε and ‖Sn(x) − e1‖ < ε. Therefore,

|xn| < ε and
∣∣∣∣

n∏
j=1

wjxn − 1
∣∣∣∣ = |[Bn

w(x) − e1]1| < ε.

It follows that n ∈ NT (U , V )c.

Every syndetically transitive linear operator is weakly mixing. It is natural to require the
same for the family of sets having positive lower density. The following Theorem answers
a question posed in [7, Question 5.12].

THEOREM 5.5. There exist a non-weakly mixing operator such that T is frequently
transitive.

The proof relies again on the construction of Bayart and Matheron of a non-weakly
mixing but hypercyclic operator. The following theorem was proved in [3].

THEOREM 5.6. (Bayart and Matheron) Let (mk) be a sequence of natural numbers such
that limk(mk)/k = ∞. Then there exist a non-weakly mixing operator T and a vector x
such that for every non-empty open set U, NT (x, U) ∈ O(mk).

We will need the following lemma, which is number-theoretic.

LEMMA 5.7. Let (nk) be an increasing sequence of natural numbers in O(n2). Then the
set {nk − nj : k ≥ j} has positive lower density.

Proof. Let C > 0 such that nk ≤ Ck2. Notice that #{k ≤ K : nk+1 − nk ≥ 8Ck} ≤ K/2.
Indeed, if we suppose otherwise, then we get that

nK − n1 =
K∑

l=1

nl+1 − nl ≥
K/2∑
l=1

8Ck > CK2,

which is a contradiction. Hence, #{k ≤ K : nk+1 − nk ≤ 8Ck} ≥ K/2. This implies that

d{nk − nj : k ≥ j} ≥ 1
16C

.

Proof of Theorem 5.5. Let T be a non-weakly mixing operator and x such that for every
non-empty open set U, NT (x, U) ∈ O(n2). By the above lemma we get that for every
non-empty open set U, NT (U , U) = NT (x, U) − NT (x, U) has positive lower density.

Consider now a pair of non-empty open sets U , V . Since T is hypercyclic, there are
U ′ ⊆ U and n such that T n(U ′) ⊆ V . Hence NT (U ′, U ′) + n ⊆ NT (U , V ) and therefore
NT (U , V ) has positive lower density.
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We would like to end this section with an open question related to Theorems 5.3 and
5.4.

Question. Let T be a piecewise syndetically transitive linear operator. Is T weakly mixing?

Remark 5.8. The techniques used in Theorems 3.4 and 5.5 do not provide non-weakly
mixing but piecewise syndetically transitive operators. Indeed, Bayart and Matheron’s
construction relies on the existence of a �l-Sidon sequence bn such that for every
non-empty open set U, there is (bnk

)k such that bnk
∈ N(e1, U) for every k. However,

the �l-Sidon structure of bn implies that the set of differences {bn − bn′ : n > n′} is not
piecewise syndetic. In fact, from this observation and the proof of Theorem 5.6 it follows
that given a sequence of natural numbers (mk)k with (mk)/k → ∞, there is nk ∈ O(mk)

such that the set of differences {nk − nk′ : k > k′} is not piecewise syndetic.
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