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Precision psychiatry: thinking beyond
simple prediction models – enhancing
causal predictions
Rajeev Krishnadas, Samuel P. Leighton and Peter B. Jones

Making informed clinical decisions based on individualised out-
come predictions is the cornerstone of precision psychiatry.
Prediction models currently employed in psychiatry rely on
algorithms that map a statistical relationship between clinical
features (predictors/risk factors) and subsequent clinical out-
comes. They rely on associations that overlook the underlying
causal structures within the data, including the presence of
latent variables, and the evolution of predictors and outcomes
over time. As a result, predictions from sparse associative
models from routinely collected data are rarely actionable at an
individual level. To be actionable, prediction models should
address these shortcomings. We provide a brief overview of a
general framework for the rationale for implementing causal and
actionable predictions using counterfactual explanations to
advance predictive modelling studies, which has translational
implications. We have included an extensive glossary of

terminology used in this paper and the literature (Supplementary
Box 1) and provide a concrete example to demonstrate this
conceptually, and a reading list for those interested in this field
(Supplementary Box 2).
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Illustrative case vignette

Mr A, a 35-year-old individual, was recently diagnosed with a first
episode of psychosis. He had a normal body mass index (BMI)
despite a family history of diabetes. Dr B initially prescribed risper-
idone. However, within 12 weeks Mr A was found to be overweight,
prompting Dr B to recommend physical activity and switch the
antipsychotic to a weight-neutral one as per existing evidence. Mr
A experienced rapid weight loss over the next few months, attribut-
ing this to the success of the new treatment strategy/intervention. At
6 months, Mr A was found to be emaciated and was diagnosed with
ketoacidosis – an unforeseen consequence. His weight loss was a
result of undiagnosed/untreated diabetes, rather than the
intervention.

While this is not a typical scenario, the vignette underscores the
limitation of applying group-level evidence-based guidelines at an
individual level. The psychiatrist’s interventions for weight gain
were based on current available evidence.1 Nevertheless, the
outcome proved counter-intuitive. Similar scenarios are not
uncommon in clinical practice. For example, despite the recognised
effectiveness of antidepressants, they are not equally effective for
everyone. In fact, only a third of the antidepressant-treated popula-
tion will experience a genuine antidepressant response with the
initial treatment.2 Predicting individualised outcomes is therefore
crucial for early and effective clinical decision-making.
Considerable funding has been directed towards precision psych-
iatry methods that have the potential to tailor treatments to an indi-
vidual’s needs, thereby improving outcomes.3–5

What is precision psychiatry? Precision psychiatry departs from
the conventional, ‘one size fits all’ approach to treatment decisions.
In conventional evidence-based psychiatry, group-level/average
treatment effects (ATEs) guide treatment decisions and everyone
with a specific condition receives the same treatment. In contrast,
precision psychiatry utilises individual patient characteristics to
obtain individualised6–8 treatment effects to predict and thereby
maximise individualised treatment benefits. The implicit

assumption of outcome prediction is that providing enough fore-
warning would allow the patient and clinician to make treatment
decisions based on individual needs to effect change. This approach
can hence help stratify individuals more accurately to existing treat-
ments. The purpose and ultimate goal of predictions and hence the
crux of precision psychiatry is to improve individual patient out-
comes (decision-making).9

Most precision psychiatry approaches use some form of predict-
ive modelling/machine learning techniques to predict individualised
outcomes. They use statistical algorithms that learn some relationship
(a function) between a predictor and an outcome, from large data-sets
(training set). The learned relationship (model) is then evaluated by
testing how well it does the prediction task on unseen data (test
set).3,10 This is like asking a child to learn to differentiate cats from
dogs using pictures. One would initially show them some example
pictures of cats and pictures of dogs. One might even teach them
some basic rules to differentiate (supervised learning). Once one
thinks the child has learned to differentiate them, one gives them a
final test on a brand-new set of pictures. This final test shows how
well they perform on examples they have never seen before – gener-
alisation. The statistical algorithm’s performance on unseen data
(test/validation set) is evaluated using metrics such as ‘classification
or prediction accuracy’ (or some variations).

While research in this field has grown significantly, the practical
application of these models in psychiatric decision-making remains
limited. This is in part because current statistical models, whichmap
a statistical relationship between predictors and outcomes, often
rely on methods that identify correlations (associations) rather
than causal relations. Without understanding the underlying
causal structure between predictors and outcomes, these models
are not actionable and have limited clinical decision-making
utility. For instance, consider an ‘antipsychotic-induced weight
gain’ prediction model. Given certain risk factors, the model pre-
dicts an 80% probability of weight gain in an individual. Knowing
this prediction probability alone does not guide treatment decisions.
For example, should the clinician recommend healthy lifestyle, or
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change the antipsychotic? Unfortunately, associationmodels cannot
provide true individualised treatment recommendations, as they fail
to identify the causal structure between risk factors, and weight gain
for the individual. Ultimately, even after getting the prediction
probability, the clinician is forced to resort to group-level evidence
to make treatment choices.

In the following sections, we will provide a brief overview of
causal prediction models. As psychiatrists, we recognise that our
expertise lies not in the algorithms or mathematics used in the pre-
dictions, but rather in our clinical domain knowledge. An intuitive
understanding of causal inference principles and prediction algo-
rithms, and their limitations, can significantly improve our ability
to apply our domain knowledge to ensure that such models are
actionable.

Causal inferences are essential for actionable
predictions

One of the main limitations of current psychiatric prediction
models is their failure to capture causal relationships between pre-
dictors and outcomes. Shmueli11 contests that the problems
addressed by ‘explanatory/causal’ and ‘prediction’models are essen-
tially different. Briefly, given two variables, x and y, explanatory/
causal models aim to find the nature of the relationship between
the two variables – why is x related to y (or when mechanisms are
concerned – how). Meanwhile, prediction models aim to find the
most accurate y (outcome), given a particular value of x (predictor).
Prediction models focus on ‘associations’ (identifying statistical
dependencies – is there a relationship between x and y?) between
variables. They are not modelled to find the ‘nature of the relation-
ship’ between the variables and hence do not distinguish between
causes (potentially modifiable risk factors) and effects. As a result,
prediction models remain at the lowest rung of Pearl’s causal
explanation ladder – ‘association’ (Supplementary Box 1 available
at https://doi.org/10.1192/bjp.2024.258). In addition, we know
that association does not mean causation. From here on, we refer
to such prediction models as ‘association’ models (see
Supplementary Box 1).12

This, of course, leads to some fundamental problems. First, in
medicine, actionable predictions are essential for translational pur-
poses. While associative models may reveal a strong association
between a risk factor and the disease, without establishing causation,
it is unclear whether targeting that risk factor would effectively
change outcomes at an individual level. As a concrete and rather
hyperbolic example, a predictive algorithm may identify yellow
stains on fingers as a strong predictor of lung cancer. However, pre-
scribing a manicure is unlikely to prevent lung cancer because
smoking – the ‘confounder’ – is the cause for both yellow fingers
and lung cancer. In other words, to make informed treatment deci-
sions, the predictions should be informed by the underlying causal
structure within the data. Second, if a prediction results in a generic
intervention recommendation, it misses the point of personalised
medicine. For example, if an algorithm predicts an 80% probability
of antipsychotic-induced weight gain, should the physician recom-
mend physical activity without knowing if lack of physical activity is
causally linked to the person’s weight gain? What if the predicted
probability is 20%? Considering that one in five people in the popu-
lation have some cardio-metabolic illness, is it ethical to not recom-
mend physical activity to anyone?

In medicine, randomised controlled trials (RCTs) are tradition-
ally used to address causality by estimating the ATE, which repre-
sents the effect of a treatment across a population. By
randomising treatment assignment, RCTs eliminate confounding,
allowing for reliable causal inference at the population level.

However, individual decisions based on RCTs do not guarantee
treatment response, because RCTs do not provide insights into indi-
vidualised treatment effects (ITEs) (for individual treatment effects,
see Supplementary Box 1). The ITE reflects the difference in
outcome for a specific individual if they received the treatment
versus if they did not.13 Precision medicine focuses on these ITEs,
aiming to tailor treatments to individuals based on their unique
characteristics. While the ATE is essentially the average of all
ITEs, it does not capture the variability in individual responses,
known as heterogeneous treatment effect (HTE). In homogeneous
populations where individuals share similar characteristics, the
ATE may serve as a good proxy for the ITE. However, in most
real-world settings, populations are heterogeneous, meaning that
treatment effects vary across individuals. This variation highlights
the limitation of relying solely on the ATE to predict treatment
response, as it does not reveal how much a particular individual
will benefit from a given treatment. Returning to the opening clin-
ical vignette, trials assume thatMr Awill beMr Average and that the
ATE will suffice; in fact, he was Mr Atypical and assuming the ATE
would be relevant was near fatal. Dr B needed an estimate of his ITE.
External validation and generalisation tests are often touted as a
panacea for all shortcomings of associative prediction models.
They, however, do not mitigate the problem of HTEs. While poor
generalisation may indicate HTEs, it does not solve the problem.
Further investigation and model improvements are necessary to
address HTEs. Generalisation procedures do not explain why the
model fails to generalise in the presence of HTEs. Specialised
approaches are needed to fully understand treatment effects hetero-
geneity. Lastly, generalisation is not a substitute for causal modelling
as the association between yellow fingers and risk of cancer may
generalise across all populations, but still does not imply causality.14

This then leads on to the fundamental problem of causal estima-
tion.15 Given that the ITE is the difference in outcome for an indi-
vidual if they received the treatment compared to if they did not,
estimating ITEs inherently involves estimating the ‘counterfactual’
outcome, in other words, a ‘what if’ scenario. We can never truly
know what an individual’s outcome would have been if they had
received no treatment or the opposite treatment. This is because
once a person receives a particular treatment, we are restricted to
observing the outcome (factual) associated with that particular
treatment. We do not have the option of giving the person the alter-
nate treatment, and we do not know the potential outcome asso-
ciated with the alternate treatment (counterfactual). Therefore, in
practice, estimating ITEs often relies on strong assumptions and
additional data beyond what conventional studies provide. In the
absence of homogeneous populations, estimating ITEs often
requires advanced statistical methods and additional data on indi-
vidual characteristics to model the heterogeneity.15 Recently,
advanced statistical models have been used to estimate ITEs from
ATEs by combining them within regression models, along with
other relevant covariates/interactions. Other examples are causal
forests, doubly robust estimation (which uses an outcome regres-
sion model and propensity score weighting as predictors) and tar-
geted maximum likelihood estimation (TMLE).8,15,16

Where RCTs are not plausible, or do not represent real-world
situations, causal estimates can also be estimated from observational
studies. In observational studies, confounders are particularly prob-
lematic because treatments or exposures are not randomly assigned.
In particular, unmeasured confounders – for example, in an obser-
vational study investigating antipsychotic-induced weight gain –
genetic factors that influence drug metabolism or appetite
regulation are not routinely measured in clinic. They also require
several key assumptions that are crucial for valid causal inference,
including exchangeability, positivity, consistency and no interfer-
ence (see Supplementary Box 1). ATEs could then be estimated
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using techniques such as propensity score matching, inverse prob-
ability weighting (IPW) and Mendelian randomisation methods
(instrumental variables).15 More recently, advanced counterfactual
machine learning approaches such as generative adversarial net-
works (GANs) have provided a potential solution to estimating
ITEs from observational studies. These approaches estimate
causal effects by simulating ‘what would have happened’ under dif-
ferent conditions. This requires additional generation of counterfac-
tual outcomes: the potential outcomes under the treatment patients
did not receive using simulations.8,15,16 By simulating ‘what if’ scen-
arios, they enable counterfactual estimation, helping validate ITEs.
Simulation methods such as Monte Carlo simulation can robustly
estimate ITEs where the true potential outcomes are unknown
and provide a flexible and intuitive way to account for HTEs, allow-
ing predictions based on their covariates. Target trial emulation
(TTE) is another powerful technique for simulating the results of
a hypothetical RCT based on observational data15 (see
Supplementary Box 1). All methods have their limitations, and
one way to achieve a reasonable estimate of the true causal inference
is by triangulating across the different methods.

Within a causal prediction framework, the parameters esti-
mated from the above ITE estimation methods (a representation
of the causal model) can then be used to predict outcomes in indi-
viduals, helping decision-making processes (see Supplementary Box
2 for a simple example). Such causal prediction models provide
actionable insights, allowing us to answer critical questions such
as, ‘What predictors should we manipulate to bring about a
desired change in this individual?’. Or ‘What is the minimum
change that should be made in a particular risk factor that would
bring about the desired change in this individual?’. They enable per-
sonalised recommendations and a true precision medicine
approach.8 Unfortunately, this field is still in its infancy and
causal machine learning research has primarily focused on evaluat-
ing methods through simulations on synthetic data-sets, ignoring
the complexity of real-world disease dynamics. Application of
innovative causal machine learning techniques in clinical contexts
can be an important first step towards generating valuable
insights.16,17

Statistical models with few predictors that ignore
domain knowledge can affect causal inference

Causal predictions require expert domain knowledge, with a suffi-
cient number of variables that can account for the causal relation-
ship. Association models with sparse predictors – derived from
routinely collected data – avoid potential over-fitting in the
context of small sample size and offer parsimony of explainability
and implementation efficiency.9,10 However, such sparse models
may struggle to learn reliable associations between predictors and
outcomes, resulting in unstable outcomes with minor distribution
changes in unseen data (like a child trying to differentiate a cat
from a dog just by looking at its eyes and ears).12,13,18,19 Sparse
models might learn by ‘memorisation’ of noise and irrelevant pat-
terns and miss the underlying true relationship.14,20 They overlook
component heterogeneity, are more susceptible to the influence of
confounders and preclude ITE estimation. In practical terms, inclu-
sion of predictors should be guided by theoretical knowledge of the
underlying causal structure. Dahabreh and Hernán21 propose
including a sufficient number of predictors for the expected
outcome to avoid model misspecification. However, adding non-
treatment modifier covariates that differ between two populations
can lead to variance inflation.22 Bias in variable selection can be
minimised through automated confounder adjustment, causal dis-
covery algorithms (including directed acyclic graphs) and

regularisation. Ignoring domain knowledge for want of sparsity
results in models that fail to account for the intricate relationships
between predictors.23 For instance, predicting a patient’s cardiovas-
cular risk based solely on their serum cholesterol, BMI and age,
ignoring their complex interactions (mediation/confounding/mod-
eration – causal effects), may result in inaccurate prediction (see
Fig. 1). This prevents us frommaking any causal inferences, limiting
actionability. Finally, causal models should account for the emer-
gence of newly identified risk factors. For instance, the introduction
of second-generation antipsychotics led to the emphasis on cardio-
metabolic side-effects, which has a direct effect on physical
morbidity.

Causal relationships between predictors and outcomes
evolve temporally – neglecting this temporal evolution

can lead to suboptimal predictions

Many prediction problems involve predictors and outcomes whose
causal relationships change over time. The evolution of an illness
over time can reflect its natural course, any emergent risk factors,
the volatility and seasonality, as well as the effect of any interven-
tions. To make accurate predictions, models must consider the tem-
poral dependencies and dynamics within the data. Here, it is crucial
to consider the impact of past epochs on the current presentation
(different layer/unit of analysis) and future predictions. In addition,
there is often what is considered a circular argument – where the
outcome at one point in time may be the best predictor of the
outcome at another point in time. For instance, premorbid function
is often the best predictor of functioning a year after a psychotic
episode. The simple aphorism that the past is the best predictor of
future behaviour is often lost within the sophistication provided
by algorithms (L. Palaniyappan, personal communication, 2023).

Current prediction models are often ‘victims of their own
success’. The more effective the model and interventions are at
improving outcomes, the faster a model’s performance will
degrade. This is because interventions based on the model predic-
tions disrupt the underlying association between the predictors
and the outcome. For example, with QRISK version 3 (University
of Nottingham and EMIS; https://www.qrisk.org/), a specific com-
bination of predictors will be associated with a lower 10-year cardio-
vascular risk if the patient has been prescribed a statin. In addition,
over time, population demographics, prevalence of disease and clin-
ical practice and provisions change. Consequently, predictions that
ignore dynamics of causal relations become outdated and inaccur-
ate – they undergo ‘concept drift’ or ‘artificial intelligence
ageing’.24 Another concern is ‘calibration drift’. In any particular
model, calibration – that is, the level of agreement between the pre-
dicted outcome and the actual observed outcome – deteriorates over
time.14,23–25 Since treatment decisions are recommended based on
specific probability thresholds, calibration drift can lead to over-
or under-treatment over time, requiring model updating and reca-
libration.25,26 As well as being costly and cumbersome, model
updating leads to sudden changes in risk, which does not actually
reflect any actual change in the underlying distribution of outcomes.
Further, a refitted model may identify different groups of patients
(with different risk factors) as high risk, leading to inconsistent
treatment decisions and potentially denying care to the original
high-risk patients. This would lead to an iterative cycle of different
groups of patients not receiving treatment. Dynamic causal predic-
tion models could capture temporal dependencies and evolutions of
predictors and outcomes, leading to more accurate predictions.
Techniques such as marginal structural models (MSMs) with
inverse probability of treatment weighting (IPTW) and G-computa-
tion handle time-varying confounders by adjusting for their
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evolving impact on treatments and outcomes.15 Temporal causal
forests and dynamic Bayesian networks (DBNs) provide flexible
approaches to estimating treatment effects by incorporating
time-series dependencies.16 Linkage of electronic health records
across diverse sources enables mapping patient journeys longitudin-
ally with repeated measures of care in larger populations than would
be feasible in traditional studies.

Capitalising on latent constructs that represent causal
mechanisms

In psychiatry, causal relationships are rarely simple. and often
involves latent constructs. Most current predictive models do not
accommodate for the presence of potential latent constructs.
Latent constructs are hidden variables (that may potentially be
used as causal predictors) that cannot be overtly measured, but
only inferred. Quantifying these constructs (and their relationships)
calls for applying advanced theoretical, statistical and sophisticated
feature engineering techniques. These include methods that utilise
computational approaches that ultimately unveil new features that
represent latent constructs. A recent example of such an effort is
the Research Domain Criteria (RDoC) framework for mental ill-
nesses that seeks to establish cognitive and behavioural domains
that furnish reliable and valid predictors.27 Techniques such as gen-
erative embedding have emerged within the cognitive neuroscience
framework to address such issues. Such techniques bridge the
gap between traditional machine learning and mechanistic under-
standing of mental illness.28 Generative embedding uses generative
models (see Supplementary Box 1) that mimic the brain’s
neuro-computational signature of the disorder within predictive
modelsa. For example, Queirazza et al30 employed a computational
model that captures the cognitive and neural mechanisms of deci-
sion-making to predict response to cognitive–behavioural therapy
(CBT) in depression. They found that the functional magnetic res-
onance imaging (fMRI) signals representing these mechanisms in
the brain predicted an individual’s response to CBT. Such techni-
ques can help identify future personalised treatment options and
bespoke treatment allocation. By analysing the extracted features
and their response to simulated therapy, researchers could predict
which intervention best addresses a patient’s unique cognitive
bias. In theory, generative embedding can enable the model to
make more accurate actionable predictions by capturing

mechanistically1 relevant hidden variables that simpler models
might overlook.

In conclusion, simple, associative models that fail to capture the
causal relationship between predictors and outcomes may be futile
at best and actively harmful at worse. We often impose model sim-
plicity because of the challenge of collecting relevant predictors,
risking unrealistic and unactionable solutions to the problem at
hand (idealisation)b. While parsimony can be elegant, even the
most complex model is a simpler representation of the actual rela-
tionship – akin to the most sophisticated map of a city that still lacks
the intricate details of the actual landscape (abstraction). Variable
selection using exhaustive domain knowledge involving clinicians
is crucial in developing and improving causal prediction that
helps actionable decisions. In addition to being actionable, causal
models that are explicitly modelled to estimate and use ITEs
ensure explainability. Data/decision transparency and data protec-
tion rules warrant that the decision processes are laid out for the
patient. Black box models often avoid such explanations, and
cannot help decision-making about an intervention at an individual
level. As a result, there is now an emphasis on ethical and explain-
able machine learning within the medical field (see Lane and
Broome31 and Joyce et al32 for a detailed exposition). The growing
availability of clinical data from electronic healthcare records
affords exciting new opportunities for pragmatic, cost-effective
research to be conducted in an entirely naturalistic clinical setting.
Incorporating causal and actionable predictive models using coun-
terfactual explanations within such a framework can enable us to
make informed decisions about interventions at an individual
level, helping us truly implement evidence-based precision psych-
iatry (and medicine) as it was meant to be.

Rajeev Krishnadas , Department of Psychiatry, University of Cambridge, Cambridge,
UK; Samuel P. Leighton , School of Health and Wellbeing, University of Glasgow,
Glasgow, UK; Peter B. Jones , Department of Psychiatry, University of Cambridge,
Cambridge, UK

Correspondence: Rajeev Krishnadas. Email: rk758@cam.ac.uk

First received 3 Apr 2024, revised 9 Oct 2024, accepted 31 Oct 2024

Supplementary material

Supplementary material is available online at https://doi.org/10.1192/bjp.2024.258.

BMI

Age
Cardio-metabolic

risk

Cholesterol

BMI

Age
Cardio-metabolic

risk

Cholesterol

(a) (b)

Fig. 1 (a) Conventional model, which does not take into consideration causal interactions. (b) Potential causal structure between the variables.
BMI, body mass index.

a See Chirimuuta29 for a critique on computations as mechanisms.

b Like the physicist who developed a solution to increase milk prod-
uctivity that only worked on spherical cows in a vacuum.
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