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Abstract. Kepler observations show that starspots and superflares are present in A stars. An
analysis of Kepler short-cadence data shows that the relative number of A/F flare stars is only
a factor of four smaller than K/M flare stars, which can be explained as a selection effect.
The average maximum flare amplitude does not depend much on spectral type, which is to be
expected if the size of the active region scales in proportion to the stellar radius. The presence of
starspots and superflares in A stars suggests that these stars have magnetic fields. However, X-
ray observations show that A stars do not possess coronae. I therefore conclude that convection
in the stellar envelope is a necessary condition for the formation of the corona. A magnetic field
may be necessary to enable coronal heating.
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1. Introduction
Ground-based optical observations show that stellar flares occur mostly in M dwarfs

and are typically 10–1000 times more energetic than solar flares (Güdel & Nazé 2009).
Optical flares are also seen in some RS CVn variables, which are detached binaries
typically composed of a chromospherically active G or K star. Observations indicate
that the spectrum of a stellar flare has a continuum resembling that of an A- or B-type
star (Kowalski et al. 2012, Melikian 2014). The closest solar counterparts to stellar flares
are the rare white-light solar flares.

For our purposes we define a “flare star” as a star in which at least one flare has been
observed. Optical observations from the Kepler spacecraft have shown that flare energies
are 102–106 higher than large solar flares. Because of their very high energies, they have
been called “superflares”. A large solar flare has an amplitude of only around 200 ppm
in whole-disk white light observations, so that the Sun would not be recognized as a flare
star even in the most precise photometric observations from space.

The Kepler data consists of practically continuous photometry of over 100 000 stars
over a four-year period. Each observation has an exposure time of 30 min (long-cadence
mode: LC). The long exposure time prohibits detection of short-lived flares and greatly
lowers the amplitude of flares lasting for less than an hour or two. Short-cadence (SC)
exposures, which are of 1-min duration, are more suitable for the study of stellar flares.
However, SC data are available for only about 5000 stars and the time coverage is usually
limited to only a few months.

Walkowicz et al. (2011) identified 373 flare stars from about 23 000 cool dwarfs in the
Kepler field. Balona (2012) discovered superflares in 52 solar-type stars and, surprisingly,
in 19 A stars as well. The number of B stars in the Kepler field is too small to allow
the possible detection of B-star flares. The search for superflares in the Kepler data was
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extended to 148 solar-type stars by Maehara et al. (2012). Superflares were found on
a further 279 G stars by Shibayama et al. (2013). All these searches employed, almost
entirely, LC mode. Balona (2015) examined the light curves of stars in the Kepler field
for which SC data are available and found 209 flare stars. These observations provide
a unique set of flare data of micro-magnitude precision and good time resolution which
is unlikely to be repeated for many years to come. A surprising result from this study
is that the relative number of flare stars is probably similar for all spectral types. The
fact that most known flare stars are cool stars with K/M spectral types seems to be a
selection effect.

The detection of superflares on A stars (Balona 2012, 2013, 2015) is of particular sig-
nificance because these stars have radiative envelopes and are not expected to possess
magnetic fields and associated activity. It is natural to assume that flares on A stars
occur not on the A star itself, but on a presumed cool companion. However, this possi-
bility is easy to refute (see below). Starspots also seem to be present in A stars (Balona
2013) as well as B stars (Balona, Baran,Daszyńska-Daszkiewicz & De Cat 2015), further
undermining the generally held opinion that B and A stars are not active.

In this paper we summarize the generally accepted understanding of the occurrence of
starspots and flare stars among various spectral types. We suggest that this paradigm
may need to be modified as a result of the Kepler data. In particular, these findings seem
to imply that convection in the outer layers is a necessary condition for the formation of
stellar coronae.

2. Spots on A and B stars
Among the greatest surprise in the Kepler data was the fact that A and B stars appear

to have co-rotating features which we call “starspots” by analogy with sunspots. Evidence
for starspots in A and B stars comes directly from periodic variability of the light curve.
In most A stars observed by Kepler, the periodogram shows a distinctive peak at a low
frequency. In 875 A stars observed by Kepler (about 40 percent of the total number of A
stars), the harmonic of this frequency is also present. Examples are shown in Fig. 1 for
a sample of hot A stars. The light curve thus shows almost sinusoidal, low-amplitude,
variability which is most simply interpreted as a rotational effect.

Detection of low-frequency monoperiodic variability certainly suggests rotational mod-
ulation, but to prove that rotation is responsible requires that the photometric period be
the same as the rotational period. The distribution of equatorial rotational velocities for
main sequence A stars can be obtained from spectroscopic line-broadening measurements
of the projected rotational velocity, v sin i. Here v is the equatorial velocity and i the incli-
nation of the rotational axis to the line of sight. Values of v sin i for large numbers of field
main-sequence A stars have been catalogued by Glebocki & Stawikowski (2000). Hence
the distribution of v sin i can be determined. The distribution of true equatorial velocities
can be found on the assumption that the axes of rotation are randomly distributed.

Since the presumed rotation periods are known from the Kepler light curves, the equa-
torial rotational velocities can be estimated from the stellar radii. It turns out that the
stellar radius is one of the quantities derived from ground-based multicolour photometry
of stars in the Kepler field and is listed in the Kepler Input Catalogue (KIC, Brown et al.
2011). Although the error in the radius is large, this is compensated by the large number
of A stars with known periods. As a result, the distribution of equatorial rotational veloc-
ities, v, can be found with good accuracy. If the hypothesis that the photometric period
is the rotation period is correct, the distribution of v found from the Kepler photometric
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Figure 1. Examples of a periodograms of hot A-type stars showing the low-frequency peak
and its harmonic. The KIC number of each star is shown.
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Figure 2. Distribution of equatorial rotational velocities, v, derived from stars with a low-fre-
quency peak and harmonics (histogram). The curve is the distribution of equatorial rotational
velocities for A-type field stars derived from v sin i assuming random orientation of the rotational
axes.

period should agree with the distribution of v from spectroscopic v sin i measurements of
field A stars.

Fig. 2 shows a comparison of the two distributions. It is evident that they agree, in
spite of the difference in the way they were obtained. It is clear that the photometric
variation of the Kepler light curves is due to rotation. We can therefore claim that the
presence of spots on A stars has been established beyond reasonable doubt. Spots on B
stars have been suspected for a long time (Degroote et al. 2011). The number of B stars
in the Kepler data is too small to perform a similar analysis, but rotational modulation
is suggested by the appearance of harmonics (Balona, Baran, Daszyńska-Daszkiewicz &
De Cat 2015).

Confirmation of the existence of starspots on the A star Vega was recently obtained
by Böhm et al. (2015) using high-dispersion spectroscopic observations. Very recently,
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Figure 3. Examples of flares in A stars observed in short-cadence mode. KIC numbers are
indicated.

the discovery of a magnetic field and starspots on an A-type pulsating δ Scuti star was
announced (Neiner & Lampens 2015).

3. Flares on A stars
Examples of flares detected in the short-cadence Kepler observations of A stars are

shown in Fig. 3. Out of the 424 A stars observed in SC mode, flares can be seen in 10
stars (2.4 per cent). Many more flare stars have been detected in LC mode (51 stars out
of 1833), though the reality of some of these flares is questionable because of the poor
time resolution. Nevertheless, the presence of flares in A stars is undeniable, though they
could possibly be attributed to a cool companion rather than the A star itself.

The problem with attributing the flares on A stars to a cool companion is that a K or
M dwarf companion would be about 100 times less luminous than the A-star primary. A
flare on the supposed companion would thus be reduced in intensity by a factor of about
100 compared to the flare intensity on an isolated cool star. The average flare amplitude
of the largest flares on isolated K/M stars observed by Kepler is about 3000 ppm. Taking
this amplitude to be typical of the largest flares on a K/M companion, we expect the
observed amplitude in the presence of the A star primary to be about 30 ppm. This
is below the noise level for most Kepler stars. In other words, a large flare on a cool
companion to an A star will be undetectable in the Kepler data.

A different way of visualizing the problem is shown in Fig. 4. In this figure we show the
average peak flare amplitude for stars of different spectral types (points) together with
error bars. Suppose we take a K star with a large flare of typical amplitude (as observed
by Kepler) and introduce it as a companion to a non-flaring main sequence star. The
flare amplitude of the two components observed as a single star is shown as the solid line.
For A stars, the deviation is two orders of magnitude, and several standard deviations
from what is observed. This shows beyond doubt that the A star must play an active
role in generating the flare.

The Kepler observations are by no means the first time a flare has been detected on
an A star. Schaefer (1989) reported cases of several B and A stars where strong flares
may have been observed. Wang (1993) detected a flare on the A5/8V star BD+47 819
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Figure 4. The average peak flare intensity derived for Kepler stars within a given effective
temperature range (points) compared with the flare intensities calculated for a non-flaring star
with a cool flare companion (line). One standard deviation error bars in flare intensities are
shown.

using photographic techniques. Miura et al. (2008) detected an intense X-ray flare on
the A1 IV/V star HD 161084. The peak X-ray luminosity amounts to 1032 erg s−1 which
is much larger than the X-ray luminosity of an ordinary late-type main-sequence star,
indicating that the flare probably originates in the A-star itself rather than on a hidden
late-type companion. Robrade & Schmitt (2011) detected a large X-ray flare in the A0p
star IQ Aur with temperatures up to ≈ 108 K and a peak X-ray luminosity of ≈ 3 ×
1031 erg s−1 . The flare has a decay time of less than half an hour, originates from a
rather compact structure and is accompanied by a significant metallicity increase. The
X-ray properties of IQ Aur cannot be described by wind shocks only and require the
presence of magnetic reconnection. Bhatt et al. (2014) found X-ray flares in two late-B
stars belonging to the young open cluster NGC 869. Pye et al. (2015) found an X-ray
flare in HD 31305 (A0) from the XMM-Newton serendipitous source catalogue.

4. The relative numbers of flare stars of different spectral types
The vast majority of flare stars observed from the ground are M dwarfs. The white

light continuum during M dwarf flares has long been known to resemble that of an A or
B star (Kowalski et al. 2012, Melikian 2014). Flares are therefore easily detectable using
U or B band optical filters which greatly enhance the contrast between the flare and the
M star continuum. The contrast decreases for stars of earlier spectral type. Moreover,
a flare of the same energy is more easily visible in a cool dwarf than in a hotter star
because the luminosities of cool dwarfs are so much lower. These effects tend to reduce
the visibility of flares on K, G, F and A stars making them very difficult or impossible
to detect them from the ground.

Because the Kepler passband is very broad, it offers no particular advantage for detec-
tion of flares in M dwarfs. Nevertheless, in order to be detected with similar amplitudes,
flares in hotter, more luminous, main sequence stars need to have larger energies. Fig. 4
shows that, in fact, the typical maximum flare amplitude does not change much with
spectral type. This means that either we are detecting only the rarer, most energetic,
flares on these hotter stars or that flare energies increase with increasing stellar luminos-
ity.
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Table 1. The total number of stars, N , and the number of flare stars, Nflare within a given
effective temperature or spectral type range as determined from short-cadence Kepler data. The
last column is the percentage of flare stars within the given range.

Type Teff N Nflare Percent

K+M 3000–5000 561 57 10.16
G 5000–6100 2018 99 4.91
F 6100–7600 1617 41 2.54
A 7600–10000 424 10 2.36
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Figure 5. Theoretical H-R diagram for Kepler flare stars (large filled circles) observed in short-
-cadence mode using stellar parameters in the Kepler Input Catalogue. The small dots are stars
which were examined but no flares detected.

It is interesting to investigate how the relative number of flare stars varies with spectral
type. For this purpose, Balona (2015) searched for flares in 4758 stars observed by Kepler
in SC mode. These data are unbiased in terms of target selection and should offer a good
indication of the relative number of flare stars as a function of spectral type. In Fig. 5
the 209 flare stars observed in SC mode are shown as large filled circles in the theoretical
H-R diagram. It is evident that while there is certainly a trend for most flare stars to be
cool dwarfs, the number of hotter flare stars is not very much lower.

We can count the number of flare stars within a given range of effective temperature
and divide by the total number of stars within the same Teff range to obtain the fractional
number of flare stars for each spectral type. The small number of B stars in the Kepler
field does not allow detection of flares on these stars. Table 1 shows the result. The drop
in relative numbers of flare stars from 10.2 per cent for K/M stars to 2.4 per cent for
A stars is not unexpected given the severe selection effects described above. Allowing
for selection effects, would imply that the true fraction of flare stars probably does not
change very much with spectral type.

5. Magnetic fields in radiative envelopes
It is well-known that the rotation rate of a star plays an important role in inducing

flares. For example, Notsu et al. (2013) and Shibayama et al. (2013) find that the average
flare frequency increases with rotation among solar-type stars. This effect is usually
attributed to age. Rapidly-rotating stars are younger, have more effective dynamos and
are therefore more active. In fact, age and rotation are strongly correlated and it is not
possible to separate the two effects. Moreover, it is not really clear whether the same
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Figure 6. The median flare energy, (E, in ergs) as a function of stellar radius, R. The straight
line is log E = 3 log R/R� + 34.14, indicating that the flare energy is proportional to R3 .

reasoning can be applied to A stars which have no convective dynamo action according
to current ideas.

To understand the role of rotation in inducing flares, it is necessary to understand how
magnetic fields can be generated in stars with radiative envelopes. A theory of dynamo
action in radiative envelopes which requires rotation has been developed by Spruit (1999,
2002) and Maeder & Meynet (2004). In this theory a magnetic instability in the toroidal
field wound up by differential rotation replaces the role of convection in closing the field
amplification loop in conventional dynamo theory.

The widths of the rotation peak in periodograms of Kepler A stars are broader than
they should be, which suggests different rotation rates for spots at different latitudes
(Balona 2013). The implied differential rotation is similar to that seen on the Sun. It is
therefore possible that a radiative dynamo could power magnetic fields in A stars. At the
same time, twisting of field lines in differentially-rotating layers could replace convection
as the source of magnetic reconnection.

There are three very well observed rapidly-oscillating Ap stars in the Kepler field. In
spite of the fact that these roAp stars were observed for almost four years in SC mode,
no flares were detected. No flares were detected in any other known Ap star in the Kepler
field either. Ap stars, in general, have very strong kilogauss dipolar magnetic fields. Their
rotational light curves show no sign of differential rotation. While this by no means proves
that differential rotation is a key factor in generating flares in A stars, it at least offers
some support for the idea.

6. Energetics of stellar flares
The energy stored in a magnetic field of magnitude B is approximately E = L3B2/8π

where L is the size of the magnetically active region. If stellar flares are a result of mag-
netic reconnection, then the flare energy release should be closely related to the magnetic
field strength and some characteristic length, L. If one supposes that the magnetic field
strength, B, is much the same for all stars, one expects the flare energy, E, to be pro-
portional to the volume of the active region, L3 .

Fig. 6 shows log E as a function of the stellar radius, log R/R�. The slope has a value
close to 3, suggesting that the loop length, L, is proportional to the stellar radius. In other
words, the larger the star, the larger the size of the active region or loop length and the
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larger the flare energy. This may explain why the average maximum flare amplitude does
not change much with spectral type (Fig. 4). Suppose that L = αR, where α is a constant
of proportionality. Then we may write log E = 3 log R/R�+log C with C = α3R3

�B2/8π.
The straight line in Fig. 6 is log E = 3 log R/R� + 34.14. This leads to B ≈ 32α− 3

2 G.
Since the value of α is of the order unity, the implied field strength is some tens of gauss,
which seems a reasonable value.

We may therefore conclude that the magnetic reconnection model could account for
the increase of flare energy with luminosity if the size of the active region also increases
in proportion to the stellar radius. The required magnetic field strength is consistent
with typical field strengths found in main sequence stars. The fact that the observed
global magnetic fields in normal A stars are typically less than 1 G (Lignières et al. 2009,
Petit et al. 2011) probably implies that the magnetic fields on these stars are of complex
topology with mixed polarities, as in the Sun.

7. Convection as a necessary condition for the corona
The solar corona, which has a temperature in excess of 106 K, emits most of its radiative

output at soft X-ray wavelengths. Although the source of coronal heating is not fully
understood, it is thought to be of magnetic nature. The discovery of X-ray emission from
many thousands of solar-type stars is taken as direct evidence for the presence of stellar
coronae.

Berghoefer et al. (1996) lists all O and B stars in the Yale Bright Star Catalogue
(Hoffleit & Jaschek (1964)) which are detected by the ROSAT all-sky X-ray survey.
Similarly, Huensch et al. (1998) lists A, F, G and K stars in the Yale Bright Star Catalogue
detected by ROSAT. We can compare the number of X-ray detections, NX , relative to
the total number of stars, N , of a particular spectral type. The distribution of NX /N is
shown in Fig. 7.

Fig. 7 shows that stars in the spectral range B1–A9, which have radiative envelopes,
are relatively inactive. X-ray activity increases sharply for stars cooler than A9 or hotter
than B1. The X-ray activity for stars cooler than A9 can be attributed to the presence
of convection and dynamo-generated magnetic fields which are responsible for heating
the corona. For stars earlier than B1, the X-ray emission is attributed to shocks in the
radiatively-driven stellar winds. Note that while the X-ray activity for B1–A9 stars is
small, it is not zero. It is generally thought that this residual activity arises from unseen
cool companions. This may well be the case, but the possibility that part of the activity
may be due to stochastic X-ray emission from flares should not be excluded.

The above scenario agrees with the generally-accepted view that only stars with con-
vective envelopes can generate magnetic fields, which explains why the A9–B1 stars do
not have coronae. However, if A stars do have magnetic fields as, as suggested by starspots
and flares, this explanation cannot be complete. The observations indicate that only stars
with convective envelopes possess coronae and the presence or absence of a magnetic field
is not relevant to the existence of coronae. It appears that while a magnetic field may be
necessary for effective heating of the corona, the corona itself cannot be formed unless
convection is present in the outer layers of a star.

8. Conclusions
Analysis of Kepler photometry shows that starspots are present in A and B stars

and that superflares are seen on A stars. The implication is that upper main sequence
stars possess magnetic fields in spite of the fact that they have radiative envelopes.
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Figure 7. Relative numbers of X-ray active stars Nx /N in the Bright star catalogue as a
function of spectral type. Note the x-ray “hole” between B1 and F0.

Presumably, these magnetic fields have complex polarity (tangled field lines) like the
Sun, which means that the overall global field is very weak, as observed. The radiative
dynamo theory (Spruit 1999; Spruit 2002; Maeder & Meynet 2004) may offer a possible
explanation for the existence of magnetic fields in radiative envelopes. In this theory,
differential rotation replaces convection as the energy source for generating magnetic
fields.

The relative number of flare stars is high in K/M dwarfs and drops for hotter stars.
However the total drop is only a factor of four and can be mostly explained as a selection
effect. It is much easier to detect flares of the same energy on a low-luminosity cool
dwarf than on a high-luminosity A star. Moreover, the A-type continuum of a flare is
more easily seen in a cool dwarf than in an A star. The true relative number of flare stars
is probably much the same for all spectral types.

Kepler observations show that the relative flare amplitude does not change much with
spectral type. Since the stellar luminosity along the main sequence increases from M to A
stars, this implies that flare energies increase in about same proportion. The observations
indicate that the flare energy is actually proportional to the stellar volume. This can be
understood if the size of the active region increases with the size of the star.

If magnetic fields are ubiquitous across the main sequence, and if magnetic fields are
responsible for the formation of stellar coronae, then all stars should have coronae. X-ray
observations show that this is not the case: only stars with convective envelopes possess
coronae. This suggests that convection is a necessary condition for the formation of the
corona. However, a magnetic field may be required to transport the mechanical energy
of convection to the upper atmosphere, thereby heating the corona.
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