L))

Check for
updates

Proceedings of the Royal Society of Edinburgh, 154, 33-59, 2024
DOI:10.1017/prm.2022.86

On a quasilinear elliptic problem involving the
1-Laplacian operator and a discontinuous
nonlinearity

Marcos T. O. Pimenta

Departamento de Matemética e Computagao, Universidade Estadual
Paulista - Unesp, CEP: 19060-900, Presidente Prudente - SP, Brazil
(marcos.pimenta@unesp.br)

Gelson Conceigao G. dos Santos and

Joao R. Santos Junior

Faculdade de Matematica, Universidade Federal do Para, CEP:
66075-110, Belém - PA, Brazil (gelsonsantos@ufpa.br,
joaojunior@ufpa.br)

(Received 23 August 2022; accepted 24 November 2022)

In this work, we study a quasilinear elliptic problem involving the 1-Laplacian
operator, with a discontinuous, superlinear and subcritical nonlinearity involving the
Heaviside function H(- — ). Our approach is based on an analysis of the associated
p-Laplacian problem, followed by a thorough analysis of the asymptotic behaviour or
such solutions as p — 17. We study also the asymptotic behaviour of the solutions,
as 3 — 07 and we prove that it converges to a solution of the original problem,
without the discontinuity in the nonlinearity.
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1. Introduction
In this work we study the following quasilinear elliptic equation

—Au=H(u—B3)u/T%u in Q

1.1
u=>0 on 0f), (L1.1)

where the 1-Laplacian operator is formally defined as Aju = div(Du/|Dul|), ©Q C
RY is a bounded domain with a Lipschitz boundary, N > 2, 1 < ¢ < N/(N — 1),
(> 0 is a real parameter and H : R — R is the Heaviside function H(t) = 1if¢t > 0
and H(t) = 0 otherwise.

In recent decades, the study of nonlinear partial differential equations with dis-
continuous nonlinearities has attracted the attention of several researchers. One of
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the reasons to study such equations is due to many free boundary problems arising
in mathematical physics which can be stated in this form. Among these prob-
lems, we have the obstacle problem, the seepage surface problem, and the Elenbaas
equation, see [15-17]. For more applications see [4]. Several techniques have been
developed or applied to study this kind of problem, such as variational methods for
nondifferentiable functionals, lower and upper solutions, dual variational principle,
global branching, Palais principle of symmetric criticality for locally Lipschitz func-
tional and the theory of multivalued mappings. See for instance, Alves, Yuan and
Huang [1], Alves, Santos and Nemer [2], Ambrosetti and Badiale [3], Ambrosetti,
Calahorrano and Dobarro [4], Ambrosetti and Turner [5], Anmin and Chang
[11], Arcoya and Calahorrano [13], Cerami [14], Chang [15-17], Clarke [20, 21],
Gazzola and Réadulescu [24], Krawcewicz and Marzantowicz [28], Molica Bisci and
Repovs [30], Radulescu [34], dos Santos and Figueiredo [23] and their references.

As far as problems involving the 1-Laplacian operator are concerned, there are
at least two approaches one can follow. The first one is based on the study of the
energy functional associated to the problem, which is defined in BV (€2), whenever
one can write it as the difference of a convex and locally Lipschitz functional and a
C! one. Then, one can use the tools of nonsmooth nonlinear analysis (see [17, 21,
33]) to find critical points of such energy functional. Note that, in studying (1.1),
this is far from being an option for us, since the energy functional associated to
(1.1) would be defined in BV (), and given by

Iy (u) = [Jullpv (o) — Fp(u),

where Fg(u) = [, Fr(u) da, with fg(s)=H(s — 3)]s|9?s and F (t) = fot fu(s)dz.
Hence, since Fj is not a C! functional defined on BV (€2), it would be tricky to show
that a critical point of Iy satisfies (1.1) in some sense, since in this case, we could
not use variational inequalities to follow the standard approach, which is based on
that one proposed by [33].

Fortunately, there is another approach which is based on the study of (1.1), with
the 1-Laplacian substituted by the p-Laplacian operator, for p > 1. Then, one can
use standard arguments to solve the associated problem and then studying the
family of such solutions as p — 1%. To the best of our knowledge, the pioneering
works involving this operator were written by F. Andreu, C. Ballesteler, V. Caselles
and J.M. Mazén in a series of papers (among them [7-9]), which gave rise to the
monograph [10]. Among the very first works on this issue we should also cite the
works of Kawohl [27] and Demengel [22].

Before to state our main result, let us define what we mean by a solution of the
problem (1.1). Inspired by locally Lipschitz continuous functionals [17, 20, 21, 26|
and Anzellotti-Frid—Chen’s Pairing Theory [12, 19] (see subsections 2.2 and 2.1
for more details), we say that v € BV(Q) is a bounded variation solution of (1.1),
if there exist p € L77(Q) and z € X () with [|z]ls < 1, such that

—divz = p inD'(Q),

(z,Du) = |Du| in M(9), (1.2)
[z,v] € sign(—u) HN"la.e. on 09,
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and it holds that, for almost every x € €,

{0}, if u(z) < 3,
plz) € 410,877, ifu(z) =73 (1.3)
{u(x)=t},  if u(z) > 6.

It is important to point out here that if the set {x € 2 : u(x) = S} has zero Lebesgue
measure, then p(z) = H(u(z) — B)|u(z)|??u(z) for almost every z € (2.

Motivated by the works previously mentioned, our first main result is the
following.

THEOREM 1.1. Suppose that N > 2 and 1 < ¢ < N/(N —1). Then, for each (3 > 0,
(1.1) admits at least one nonnegative and nontrivial solution ug € BV (£2) N L>(Q),
in the sense of (1.2).

In the scope of the last theorem, a question which naturally arises is about
the behaviour of the solutions ug, as 3 — 0. In fact, one should expect that ug
converges in some sense, as  — 07, to a solution of the following problem

(1.4)

—Aju=|ul"?u in Q
u=0 on Of.

In the next theorem, we prove that this in fact occurs.

THEOREM 1.2. For each 3 > 0, let ug be the solution given in theorem 1.1. Then

there exists a nontrivial and nonnegative solution of (1.4), ug € BV (), such that,
as 3 — 0T,

ug —ug i L"(Q), foralll <r < N/(N —1) and also a.e. in Q.
Moreover, there exist positive constants p and By, such that

He € Q:ug(x) > B} = p, forall §e(0,0), (1.5)

where |A| denotes the measure of a measurable set A C RV,

Note that the last part of the theorem guarantees that the set {ug > (} does not
shrink as # — 0, that is, [|ug|| (o) > B, for § small enough. Such an information is
quite relevante because it ensures that, at least for 3 small, ug is in fact a solution
of a problem involving a discontinuous nonlinearity.

The existence of positive solution for (1.1) with 8 =0 (i.e., (1.4)) was recently
studied by Molino-Segura in [32]. Due to the discontinuity in (1.1), caused by
the Heaviside function (with 8> 0), we cannot use the classical critical point
theory for C! functionals as in [32]. For this reason, motivated by [5, 13, 17,
18, 20, 21], we combine variational methods for nondifferentiable functionals with
the approximation argument of [32].

In theorem 1.1, to prove the boundedness of the solutions, we use Moser’s itera-
tion method (see [31]) and a careful analysis of some constants to obtain a uniform
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estimate in the L°°(Q2)—norm of the solutions of the approximate problem. These
estimates were essential in our arguments to ensure that the solution of problem
(1.1) is nontrivial.

This paper is organized as follows. In § 2 we present some definitions and basic
results about functions of bounded variation and the nonlinear analysis involving
nonsmooth functionals. In § 3 and 4, we present the proofs of theorem 1.1 and 1.2,
respectively.

2. Preliminaries

2.1. Main properties of BV (Q2) space

First of all let us introduce the space of functions of bounded variation, BV (2),
where 0 C R is a domain. We say that u € BV (), or is a function of bounded
variation, if u € L'(Q), and its distributional derivative Du is a vectorial Radon
measure, i.e.,

BV(Q) = {u e L'(Q); Due M(Q,RY)}.
It can be proved that u € BV (Q) if and only if u € L*(Q) and

/ |Du| := sup{/ udivedr; ¢ € CHQ,RY), [9]loe < 1} < +o0.
Q Q

The space BV (2) is a Banach space when endowed with the norm

lullsy = / |Dul + / ju] da,
Q Q

which is continuously embedded into L"(Q) for all re[l, 1*], where
1* = N/(N —1). Since the domain € is bounded, it holds also the compactness
of the embeddings of BV () into L"(2) for all r € [1, 1%).

The space C*°(Q) is not dense in BV (£2) with respect to the strong convergence.
However, with respect to the strict convergence, it does. We say that (u,) C BV ()
converges to v € BV () in the sense of the strict convergence, if

U, — u, in L'(Q)

/|Dun|~/ \Dul,
Q Q

as n — o0. In [6] one can see also that it is well defined a trace operator BV () —
L'(09), in such a way that

fuli= [ (Dal+ [ pular,
Q o0

is a norm equivalent to || - || pv-

and
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Given u € BV (), we can decompose its distributional derivative as
Du = D% + D*u,

where D% is absolutely continuous with respect to the Lebesgue measure £V,
while D%u is singular with respect to the same measure. Moreover, we denote the
total variation of Du, as |Dul.

In several arguments we use in this work, it is mandatory to have a sort of Green’s
Formula to expressions like w div(z), where z € L>(Q, RY), div(z) € L™ (Q2) and
w € BV(Q). For this we have to somehow deal with the product between z and
Dw, which we denote by (z, Dw). This can be done through the pairings theory,
developed by Anzellotti in [12] and independently by Frid and Chen in [19]. Below,
we describe the main results of this theory.

Let us denote

Xn(Q) = {z € L™(Q,RY); div(z) € LN (Q)}.
For z € Xy () and w € BV (Q), we define the distribution (z, Dw) € D'(Q2) as
((z, Dw), ) := —/ we div(z) de — / wz - Vpdz,
Q Q

for every ¢ € D(2). With this definition, it can be proved that (z, Dw) is in fact a
Radon measure such that

[ 0w < el [ 1Dl 1
B B
for every Borel set B C Q.

In order to define an analogue of the Green’s Formula, it is also necessary to

describe a weak trace theory for z. In fact, there exists a trace operator [-, V] :
Xn () — L>(09) such that

Iz ]| o= 90) < [2lloo (2.2)
and, if z € C1(Qs, RY),
[z,v] () = z(x) - v(z) on Qs,

where by 5 we denote a d-neighbourhood of 9Q2. With these definitions, it can

be proved that the following Green’s Formula holds for every z € Xn(Q2) and w €
BV(9),

/deiv(z) dx—i—/Q(z,Dw) :/BQ[Z,V]wdHN_l. (2.3)

2.2. Nonlinear analysis on nondifferentiable functionals

In this subsection, for the reader’s convenience, we recall some definitions and
basic results on the critical point theory of locally Lipschitz continuous functionals
(that is based on the subdifferential theory of Clarke [20, 21]) as developed by
Chang [17], Clarke [20, 21] and Grossinho and Tersian [26].
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Let E be a real Banach space. A functional I : E — R is locally Lipschitz con-
tinuous, I € Lip;.(E, R) for short, if given « € E there is an open neighbourhood
V .=V, C E and some constant M = My > 0 such that

|I(1}2)—I(U1> |< MH’UQ—UlH, v, €V, i=1,2.
The directional derivative of I at u in the direction of v € E is defined by

1 -1 h
I°(u;v) = limsup (uthtov) = I{u+t )
h—0, o0 (<)

Hence I°(u;.) is continuous, convex and its subdifferential at z € E is given by
I (u;z) == {p € E*; I°(u;v) > I°(u;2) + (u,v — 2), v € E},

where (., .) is the duality pairing between E* and E. The generalized gradient of I
at u is the set

OI(u) = {p € E*;(u,v) < I°(u;v), v € E}.

Since I°(u;0) = 0, I (u) is the subdifferential of I°(u;.) in 0.
It is also known that 9I(u) C E* is convex, nonempty and weak*-compact and
it is well defined

Ar(u) == min {|| p || g«;p € OI(u)}. (2.4)

A critical point of I is an element ug € E such that 0 € 0I(ug) and a critical
value of I is a real number ¢ such that I(ug) = ¢ for some critical point ug € E.

We say that I € Lipj,.(E, R) satisfies the nonsmooth Palais-Smale condition at
level ¢ € R (nonsmooth (PS).-condition for short), if the following holds: every
sequence (uy,) C E, such that I(u,) — ¢ and Ar(uy,) — 0 has a strongly convergent
subsequence.

PROPOSITION 2.1 See [20, 21, 26]. Let Iy, I : E — R be locally Lipschitz functions,
then:

(i) Iy + Iz € Lipioc(E, R) and 011 + I2)(u) C 0I1(u) + 0Iz(u), for allu € E.
(ii) O(N1)(u) = NOI1(u) for each N € R, u € E.

(iii) Suppose that for each point v in a neighbourhood of u, I, admits a Gateauz
deriwative I{(v) and that I] : E — E* is continuous, then 011 (u) = {I{(u)}.

THEOREM 2.2 See [20, 21, 26]. Let E be a Banach space and let I € Lip;,.(E, R)
with I(0) = 0. Suppose there are numbers a, r > 0 and e € E, such that

(i) I(u) = «, for all u € E;|ul| =,

(ii) I(e) <0 and |e|| > r.
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Let

c= ;rgﬂ tren[(éa’)i] I(v(t)) and T ={y € C([0,1], E) : v(0) =0 and v(1) =e}. (2.5)

Then ¢ > « and there is a sequence (u,) C E satisfying
I(u,) — ¢ and Ar(u,)— 0.

If, in addition, I satisfies the nonsmooth (PS).-condition, then ¢ is a critical value

of I.

3. Proof of theorem 1.1

In this section, to prove our main result, we will consider a family of auxiliary
problems involving the p-Laplacian operator and discontinuous nonlinearity. We
will use an approximation technique and variational methods for nondifferentiable
functionals inspired by Molino-Segura de Ledn [32], Anzellotti-Frid-Chen [12, 19],
Arcoya-Calahorrano [13], Ambrosetti-Turner [5], Clarke [20] and Chang [17].

In order to get such solutions of (1.1), the first step is to consider the problem

(3.1)

—div (|[VulP7*Vu) = H(u — B)[u|"?u in Q,
u=0 on 0Q.

We say that u, s € Wy () is a weak solution of (3.1), if there exists p, s €
L7 (Q), such that

/Q|Vup7g|p_2Vup73V<pdx = /Qpp,ﬁgodx, for all € WyP(Q), (3.2)

and it holds that, for almost every x € €,

{0}, if up,p(z) < B,
ppﬁ(x) € [07 ﬂqil]v if up7ﬁ($) = ﬂv (33)
{up,s(x)?71},  if upp(z) > 6.

Inspired by Arcoya and Calahorrano [13], which proved the existence of solution
for a sublinear version of (3.1) (see also Ambrosetti and Turner [5]), we will use the
nonsmooth critical point theory to prove that problem (3.1) has at least one solution
uy 5 € Wy (), which will be obtained by the nonsmooth version of the Mountain
pass theorem (see theorem 2.2). Furthermore, we will prove some properties of this
solution that will be useful to prove the existence of a solution to problem (1.1).
To achieve this goal, first note that by Chang’s results [17, theorem 2.1 and
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theorem 2.3], the functional Fg : L4(Q2) — R given by

Fp(u) = /QFg(u) dz, with fs(s) = H(s — ()|s|7%s and Fj(t) = /0 fa(s)dz,

is locally Lipschitz and

0Fs(u) = [iﬂ(u),fﬂ(u)] a.e. in €, (3.4)
where

fﬁ(t) = H%l+ ess inf{ fg(s) : |t —s| <r} and

fat) = lir(r)l+ ess sup{fs(s) : [t — s| <7}

It is clear that

{0}, ift <p3,
[f,(0). Fs®)] = { (0,897, ift=4, (3.5)
{ta=1}, if t > .

The associated functional for (3.1) is J, 5 : Wy ?(Q) — R, given by

Ip,a(u) = Qp(u) — .7-'[3|W01,p (u), where Qp(u) = ;17/9 [Vul? dz. (3.6)

Due to the presence of the Heaviside function H, the functional J, 3 is not Fréchet
differentiable, but is locally Lipschitz on WD1 (). Moreover, by [17, theorem 2.2]
we have 8(.7-"H‘W1,p)(u) = 8Fs(u), for all u € W, *(2). Hence, by proposition 2.1,

0

0Jp5(u) = {Q)(u)} — 0Fs(u) for all u € WyP(Q), (3.7)

and therefore, by (3.4), (3.5) and (3.7), critical points of J, g, in the sense of the
nonsmooth critical point theory, will give rise to solutions of (3.1).

Since we want to find a nontrivial solution of (1.1) by using the solutions u, g of
(3.1) by passing to the limit as p — 17, in what follows, we will consider p € (1, p)
for some p € (1, q) fixed.

LEMMA 3.1. For each pe (1,p) and (>0, the functional J, 3 satisfies the
geometric conditions of the Mountain pass theorem. More precisely,

(i) There exist v, « >0, which are independent of B, such that J,z(u) > «
for all we Wy (Q) with ||u||W01,p(Q) = r. Moreover, a can be chosen also
independent of p.

(i) There exists e = e(f) € C§°(R2) such that J, g(e) <0 and ||e||W01,p(Q) > 7.
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Proof. By Holder’s inequality,

1 .
Ipp(u) > ISHV“”ip(Q) - (/ |u|? ) |Q| 7, for all u € WyP(Q).
Q
Since, by [25, proof of theorem 7.10], for each u € WOI”’(Q),

p
[l 2o () 7”VU”LT’ (@), Where 0 = (3.8)

ﬂ

we have,

1 P —q p(N—l) )
J 2 Ivull?, (BT ) v,
) > LIVl )~ 1905 ) Il
1

];||Vu||Lp(Q) — C|Vull, g, for all w e WyP(Q),

where C = (B(N — 1)/VN(N —ﬁ))qmax{l, [}

Note that

1

" oras " i and only if 0 L\
_— T — 1I and on 1 <7’ .
p Y (p0+1)

bS]

q—p

Then, by choosing r = ( and o = r?/p, we conclude that (i) holds.

ﬁclﬂ
Now, let ¢ € C§°(2) be such that [{¢ > 8}| > 0, where {¢ > 8} denotes the set
{z € Q:p(x) > G}. For each ¢t > 1, we get

Jyplte) = —Hsonwlp - [ Fattoras

<ol -2 [ gt Ziel
S —lelypreg — = phdr + —[34,
p Tt g Jipapy q

which implies in the existence of e satisfying (ii). O

LEMMA 3.2. For each pe (1,p) and B >0, Jps satisfies the nonsmooth
Palais—Smale condition.

Proof. Let (u,) C WyP(Q) be a (PS), sequence for J, 5, that is, J, g(u,) — ¢ and
Ay, 5(un) — 0, where A , is defined in (2.4). Hence, it follows from (2.4) and (3.7)
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that there exists (u,) C 9J, 5(uy,) such that

il = A, 0 (t0n) = 0n(1) and gt = Q) (tin) = p,
where p,, € 0F3(uy). Then,

1
c+1+ ||Un||W01’P(Q) 2 Jpp(un) — 5 (K, tn) + 0n(1)
1
= Jp,ﬁ(un) - 6 <Q;(un) — Pns un> + On(l)
1 1 1
—— p Z _
<p q> ||un||W01,p(Q) +/Q (qpnun Fg(un)> dz + o, (1).
(3.9)
Moreover, note that by (3.3) and (3.4), we have
1 B p?
—pntun — Fg(uy) | do == pndz + —[{u, > 8} = 0. (3.10)
o \4 4 J{un=p} q
Hence,
1 > L P 1 3.11
e 1+ lunllugorey > (5= ) Tenllyage, + on(D), (3.11)

which implies that the sequence (uy) is bounded in Wy*(€). Thus, by Sobolev
embedding theorems, passing to a subsequence if necessary, we obtain
Uy — uin WP (Q), up — u in L5(Q),
Up(z) — u(z) a.ein Q, (3.12)
|un ()| < h(xz) for some h e L°(Q),s € [1,p":= NN—_’;).
Using a similar argument than [13, pg. 1071], we conclude that J, 5 satisfies the
nonsmooth Palais—Smale condition. O
Let us define the functional I, 5 : Wy ?(Q) — R, given by

&wo:pﬂm+@§3mL

Note that, by lemma 3.1, lemma 3.2 and theorem 2.2, I, 3 has a critical point
up. 3 € Wy (Q) at the level

op,p = Inf max I 5(7(t)) with

I = {y € C([0,1], Wy () : 7(0) = 0 and (1) = e},
that is,
0e (’)Ip,@(upﬁ) and Ip’g(up”@) =Cpg3- (3.13)

Hence, there exists p, g € L77(€2) such that up 3 and p, g satisfy (3.2) and (3.3).
Moreover, testing (3.2) with ¢ =u, 5 :=min{u, s, 0} and using (3.3) we have

||u;ﬁ||1;V17p(Q) = 0, which implies that u, g(z) > 0 a.e. in .
’ 0
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LEMMA 3.3. Let u, g be given in (3.13). Then the family (up g)1<p<p is bounded in
BV (Q).

Proof. By Young’s inequality, we have

/ IVulP' do < &/ (VulP? d + 2L for all 1 < py < pa,u € WEP(Q).
Q P2 Ja P2

Hence, I, g is nondecreasing with respect to p and arguing as in [32], we conclude
that (I, 5(up,3))1<p<p is increasing. Hence,

< ¢py (3.14)

Cpl

for all 1 < p; < p2. Note also that, by (3.13),

1
cp,8 = Ipp(upp) — 6 <Q;(UP7B) ~ Pp,Bs upﬂ>

11 1
= ( - )/ |Vuy, glP dw+/ (Ppﬁ“p,ﬁ - F,B(up,ﬁ)) dz.
p q Q o \4

From (3.10) and (3.14), it follows that

/ |Vu, P de < C, for all 1 < p <P, (3.15)
Q

where C := %c@ 3 > 0 is a constant independent of p € (1, p).
Applying once more Young’s inequality, we obtain

linsll < 3 [ [V d+ 2210
<C+19,
for some constant C' > 0, independent of p. (]
LEMMA 3.4. For each > 0, the function u, g given in (3.13) satisfies
l[tp,ll Lo 0y < C, (3.16)
for some constant C' > 0 independent of p € (1, p).

Proof. Here to simplify the notation we put u = u, g and p, g = p. To obtain the
L*>°-estimate we will use the Moser’s iteration [31] and a careful analysis of some
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constants. For each L > 0, we define

Ju(z), if wu(z)<L
u(z) '_{ L, if wu(z)>L,

znn(x) == (ui(’y_l)u)(x) and w(z) := (uu] )(z),

with v > 1 to be determined later. Choosing ¢ = 2z, ,, in (3.2), we get

/Qui('y_l)|Vu|p dz = —p(y—1) /

WP | VP2V Vuy, de +/ puut Y da.
Q

Q

Since

p(y — 1)/ u? P | VP2 VuVug de = p(y — 1)/ ui(771)|Vu\p dz >0
Q {u<L}

and 0 < p(z) < Ju(x)|?7! for almost every z € Q, see (3.3), we obtain
/ WPV |l de < / w7 dg. (3.17)
Q Q

On the other hand, by (3.8) it follows that
00l 0y < 6 [ [V e = [ [V} )P,
where ¢, 5 = (p(N —1)/(N — p))”. Thus,
|wLl} e gy < 2pcp,ﬁ/ WOVl da + 2% e, 5(y — 1)p/ WP |V P d,
Q Q
hence, we get
WLl ) < 2p0p,mp/9u§(%l)\vu|p da. (3.18)
Combining (3.17) and (3.18), we obtain
|wL‘ip*(Q) S 2pcpﬂfyp/ﬂuqip(uuzil)p dz,
and so,
0Ll ) < Pepn” [ w7 da,
Q

Now we use the Holder’s inequality (with exponents p*/(q — p) and p*/(p* — (¢ —
p)) to get that

ity <[ )

pp” *
where p < e (a=p) <P

a=p p*—(a—p)
*

P* pp* P
p*—(q—p)
/ wyp dx ,
Q
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The previous inequality, (3.8) and (3.15) imply that

P

[ [fe ) < (26,) (/ w%*dx) , (3.19)
Q

" pp* (N—-1) >g a=p
o =———— and 0, :=|(p—-+F) C 7 | 3.20
p*—(a—p) ! ( (N —p) (320
with the constant C' given in (3 15).
Using that 0 < wy, = (uu] ") < u” on the right-hand side of (3.19) and then
letting L — oo on the left-hand side, as a consequence of Fatou’s Lemma on the
variable L, we have

where

p

E3

(/ up*’y dz) < (29]))?7? </ u"ya* dx) ’
Q Q

from which we get that

|ul Lo ) < (20p) 777 [l pros @) (3.21)

Let us define o :=p*/a*. When v =0 in (3.21), since ya* = p* we have u €
LP"7(Q) and

[uloro () < (20p)7 07 [uf Lox (@) (3.22)
Now, choosing v = o2 in (3.21), since ya* = p*o and p*y = p*o?, we obtain
1 2
\u|L,)*(,z(Q) (20 )Ujaﬁ‘u|Lp*u(Q)7 (323)

by using (3.22) and (3.23), we have

L 1 2,1
[l ooz (g < (20,) 7717077 [l 11 (-

For n > 1, we define o, inductively so that o, = 0™. Then, from (3.21), it follows
that

|U|Lp*a”(Q) < (Qgp)ﬁ-s—-- +toz +000n+ + e +1 |U|Lp @- (3_24)
Note that

1 1
oi o—1 " ZJZ 0'71)

Thus, since o > 1, passing to the limit as n — oo in (3.24) we conclude that u €
L () and

i=1

[ul L () < (260,)7T 0T [u] e . (3.25)

NL_p+1and1<p<q<1*<p using once more (3.8), the

Finally, since o0 = "
expression of 0, (see (3.20)) and (3.25) we conclude the proof of the lemma. O
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As a consequence of lemma 3.3 and the compactness of the embedding BV () —
L"(2), for r € [1, 1*) (where 1* := N/(N — 1)), it follows that there exists ug €
BV () such that, as p — 17,

Upg — ug in L"(Q) (3.26)
and
up g(x) — ug(x) a.e. in Q. (3.27)

Hence, according to lemma 3.4 we have ug € L*°(Q2) and ug(x) > 0 for almost
every x € Q.

In what follows, we will prove that ug is a solution of (1.1), in the sense of
definition (1.2). Furthermore, we will prove that ug # 0.

We start with the following result:

LEMMA 3.5. Let u, 3 € WP (Q), pps € L71(Q) and ug € BV (Q) satisfying (3.2),
(3.3) and (3.26). Then, there exists pg € LT (Q), such that

ppg — pp in LT1(Q), asp — 17, (3.28)

Moreover, pg satisfies, for almost every x € Q,

{0}, if up(x) < B,
pp(x) € {0,577, if ug(x) =1, (3.29)
{ug(x)?™'},  if ug(z) > 5.

Proof. By lemma 3.4, it follows that (pp 3)1<p<p is bounded in Lﬁ(Q) Hence,

there exists pg € L71(Q), such that (3.28) holds. Moreover, if ECQ is a
measurable set, then

/ppﬁgdx:/pp’g.Xdeﬁ/pg.Xde:/ ppdz, asp — 1T, (3.30)
E Q Q E

Now, let us show that pg satisfies (3.29). First of all, note that

0 < pg(x), ae. in . (3.31)
Indeed, otherwise, a measurable set E C € would exist, such that pg(z) <0, in E.
Then,
/ pgdxr < 0.
E
Hence, from (3.30), we have a contradiction with the fact that p, g(z) > 0, for all
p> 1.
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Now let us show that
pp(x) =0, ifug(x)<p. (3.32)
Let E = [ug < ] and note that

Og/ppﬂdx (3.33)
E

:/ pp,s dz

EN[up,p20]

< a1

< U, dx
EN[up,53p]

Claim 1: / ug;; dz = 0,(1).
EN[up,p20]

Assuming for a while that claim 1 holds true, then from (3.30), (3.31) and (3.33),
it follows that (3.32) holds.
Now, let us show that the claim holds. First of all, let us show that

Xfuppzp) — 0, ae. in E, asp— 17 (3.34)

Indeed, let us suppose by contradiction that there exists E* C F with positive
measure such that, for every fixed © € E*, there exists (pp,»)nen, such that p, , —
1*, as n — 400 and

X(tpr, ».5>6] (z) =1, forallneN.
This, in turn, is equivalent to
Up, () =3, forallneN. (3.35)
By doing n — 400 in (3.35), since p, , — 11, we have that
ug(x) > B, forall z € E*.

But this contradicts the fact that E* C E. Hence (3.34) holds.

Therefore, from (3.34) and the Lebesgue Convergence Theorem, it follows that
claim 1 holds.

Now let us show that

pa(z) = u%fl(:c), if ug(z) > B. (3.36)
For this, let us define E = [ug > (3]. Note that
/ pp,pde = / pp.pde + / ug? da. (3.37)
E EN[uy 5=0] EN[up >8]

As in (3.34), we can prove that

Xfups=0 — 0, ae in B, asp— 1+. (3.38)
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Then, from (3.38) and Lebesgue Convergence Theorem,

/ pppde < BT / Xfup o= — 0, asp—17, (3.39)
Eﬁ[upyg:ﬁ] E

On the other hand, since

-1 -1
u dr = / u X - daj7
/Em[up,5>ﬂ] p’ﬁ B p7ﬁ [uP,B B]

we have from (3.26) and the fact that x(,, ,~5 — 1, a.e. in E, as p — 17, that

g—1 g—1
U dx—>/u dx. 3.40
/Em[up,pﬁ] Pl g " (3.40)

Then, from (3.37), (3.39) and (3.40), it follows that

/Epp’ﬁdxﬁ/Eugfldx, asp — 17, (3.41)

Hence, from (3.30) and (3.41), we have that

/pgdzZ/ u%_ldx (3.42)
B B

Claim 2: pg(z) < uqﬁfl(z) in [ug > 3.
Assuming that claim 2 holds, it follows from (3.42) that

pa(a) = ufH(2), inE
and

pplx) € [0,377'], in [ug = f]

and we are done.
In order to prove claim 2, let us assume by contradiction that there exists E, C
[ug = f], with positive measure and such that

pg > u%fl, in E,.
Then,

/ ppdx >/ u%_ldx. (3.43)
E. E.

Then, from (3.26) and (3.30), there exists p,, — 11, as n — 400, such that

g—1
Pp,,8dxr > / u, 5dz,
/E* p g P B

which contradicts the fact that p, g(z) < ugy_ﬂl (z), a.e. in Q.
Then claim 2 holds and this finishes the proof. O
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LEMMA 3.6. For each (3 > 0, there exists a vector field zg € L™ (1, RN) such that
l|z5]lco <1 and

—divzg = pg, in D'(Q), (3.44)
with pg satisfying (3.29).

Proof. The inequality (3.15) implies that (see [8, proposition 3] or [29, theorem
3.3]) there exists zg € L°°(Q, RY), such that ||zs]l < 1 and

\Vauy, 5|72V, 5 — zg weakly in L"(Q,RY), asp — 1T, (3.45)
for all 1 < r < oco. In particular, as p — 17,
|V, 5P~ 2Vu, 5 — divzg  in D'(Q). (3.46)

Therefore, by using (3.2), (3.28) and (3.46) and the Lebesgue dominated
convergence theorem, we conclude that

—divzg = pg, in D'(Q),
which proves the lemma. O

LEMMA 3.7. The function ug and the vector field zg satisfy the following equality
in the sense of measures in ),

(23, Dug) = [Dug|.

Proof. First of all, since ||z3|leo < 1, it follows that, (zg, Dug) < |Dug| in M().
In fact, for any Borel set B, by (2.1),

/B(ZﬁaD“B) < I/B(ZmDuﬁ)‘

< sl [ 1Dus
B

B

Hence, it is enough to show the opposite inequality, i.e., that for all p € C}(Q),
¢ =20,

(23, Dug), 0) > / | Dus|. (3.47)

In order to do so, let us consider u, g € WHP(Q2) as a test function in (3.1). Thus
we obtain,

/@|Vup,ﬁ|p dx+/ Uy, 8| Vp PV, g - Vo da = / Pppp de. (3.48)
Q Q Q

Now we shall calculate the lower limit as p — 17 in both sides of (3.48). Before it,

note that, Young’s inequality and the lower semicontinuity of the map v — [ ¢|Dv|
Q
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with respect to the L"(€2) convergence, imply that

/<p|Du5| éliminf/ o|Vuy, gl dz
Q =1t Ja

1 p—1
< lim inf 7/ Vu, g|? dx + 7/ dx)
i in <p |, PVl P
zliminf/ o|Vuy, g|P da.
Q

p—1t

Moreover, by (3.46), it follows that

lim /up’g|Vup,g\p*2Vup,gV<pdx:/uﬁzﬁ'Vgodx. (3.49)
p—1t Jo [¢)

Finally, Lebesgue’s dominated convergence theorem and (3.26) imply that

p—)l+

lim ppﬂcpdx:/pﬁcpdm. (3.50)
Q Q

Then, from (3.44), (3.48), (3.49) and (3.50), it follows that
(2. Dug). ) =~ [ ouadivas — [ wsmy- Viodo
Q Q
= / pugpdr — / ugzg - Veodx
Q Q

= lim (/ ppyﬁupﬂcpdx/upﬁ|Vup’ﬁ|pQVupﬁ~chdm>
Q Q

p—1t

=liminf [ ¢|Vu,g|? dz
p~>1+ Q

>/ﬂmm
Q

Then, (3.47) holds and this finishes the proof. O
LEMMA 3.8. The function ug satisfies [z3, v] € sign(—ug) on 0.

Proof. To check that [zg, V] € sign(—ug) it is enough to show that

/Q(|ug\ +uglzg, v))dHN Tt = 0. (3.51)

Indeed, since

—uglzp,v] < |28 L~ () lus|
<

|
|U[3|7

the integrand in (4.18) is nonnegative. Then, (4.18) holds if and only if
25, V](—up) = |ug| HN "a.e. on 9Q.
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In order to verify (4.18), let us consider (u, 3 — ) € W, P(Q) as test function in
(3.1) with ¢ € C4(£2). Then we get

/Q|Vup7ﬁ‘pdz:/Q|Vup7/3|p72vupﬁv90dx+/Qpp,ﬂ(upﬂ*Sﬁ) dz. (3.52)

From Young’s inequality, Green’s Formula, (3.44), (3.46), lemma 3.7 and (3.52), we
have that, as p — 17T,

p [ Vsl < [ [Vupslr do+ 0= Dj0)
:/Q\Vup75|p72Vup,ngodm—|—/Qpp,g(up_ﬂ—go)dm+(p—1)|Q|
:/Zﬂ'de:H/pﬁ(ﬂﬁ*@)dw+0p(1)

Q Q
:—/ @diVZg—/pggodx—I—/p5u5dx+op(1)
Q Q Q
Z/Pﬂuﬁd$+0p(1)
Q
:—/ updivzg + 0p(1)
Q

:/@mmmf/[%wmwﬂ*+%m
Q o0

_ / | Dug| — / (25, 1] usdHN " + 0,(1). (3.53)
Q a0
Hence, from (3.53) and the lower semicontinuity of the norm in BV (2), it follows
that
/ (Jug| + 25, 7] ug) dHY 1 < 0. (3.54)
OB
But the last inequality implies in (4.18) and we are done. O

Now, let us prove that the function ug € BV (2) N L>°() is a nonnegative and
nontrivial solution of (1.1), in the sense of the definition (1.2).

First of all, note that by lemmas 3.6, 3.7 and 3.8, ug € BV (), pg € L7T(Q)
and zg € L>=(Q, RY) satisfy (1.2) and (1.3). Moreover, since u, g(z) > 0 for almost
every x € , according to (3.27) and lemma 3.4, it follows that ug € L*°(£2) and
ug(z) = 0 for almost every x € .

Now let us show that ug # 0. Invoking lemma 3.1 and (3.13), we have

1
a+op(1) < epp = L p(up,p) < E/Q [V, |” da 4 0p(1). (3.59)
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Hence, since « is independent of p (see lemma 3.1), (3.2), (3.26), (3.28), and
Lebesgue’s dominated convergence theorem, imply that

1
a < lim 7/ [Vup, g|P de = lim 7/ Pp.3Up,3 dx:/pgug dz. (3.56)
Q Q

p—1t D p—1t

Thus, combining (3.44), Green’s Formula (see (2.3)), lemma 3.7, lemma 3.8 and
(3.56), we deduce that

0<a

</(ZQ,DUQ) /8 [z,371/]u,3 dHN T

/|DU[5| / Zﬁ, ]Uﬁ dHN !
:/ |Du5|+/ ug| dHN !
Q oQ

= [lusll;

thus ug # 0. Then theorem 1.1 is proved.

4. Proof of theorem 1.2

Now, let us perform a deep analysis of the behaviour of u, 3, as 3 — 07.
For each 3 > 0, let us define the functional Iz : BV (Q2) — R, given by

:/ |Du|—|—/ |u\dHN71—/Fg(u)dm.
Q o9 Q

Note that, since zg and ug satisfy

—divzg = pg inD'(Q),
(Zg, Du5) = |D’U,g‘ in M(Q), (41)
[zg,v] € sign(—ug) HN"!—a.e on 99,

by taking ug as test function in (4.1) and using Green’s Formula, (3.1) and (3.28),
it follows that

gl = / |Dug| + / fug|dHN !
Q oN

= —/ ugdivzg
Q

:/um)ﬁdw (4.2)
Q
:/Qup,ﬁpp,ﬁdx‘f'op(l)

= /Q [Vuy, gP dz + o, (1).
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Moreover, from (3.26) and (3.27), it follows that

/QF[;(U/(}) dx = \/QF’Q(UP’Q) dx + Op(l). (43)
Hence, from (4.2) and (4.3), we have that

Ig(ug) = Ip,p(up,g) + 0p(1). (4.4)

Since we are interested in the behaviour of ug, as 3 — 07, let us assume from
now on that 0 < 8 < Sy.

LEMMA 4.1. The family (ug)o<p<gs, s bounded in BV ().

Proof. First of all, let us prove that, if 0 < 51 < (2 < S, then

Iﬁl (uﬁl) < Iﬁz (uﬁz)' (45>

In order to do so, let us prove that, for p > 1 fixed,

Ip gy (up,p,) < Ipp, (up,p,)- (4.6)

Note that, for u € Wy (Q), since Fg, (u) > Fs,(u) a.e. in Q, it follows that

Lp,p, (1) < Iy g, (u). (4.7)

Moreover, let us assume that the function e in lemma 3.1, is e(fy), i.e., that satisfies
I, 5,(e) <p/(p—1). Hence, from (4.7), we have that

p

Ipp(e) < Ipg,(e) < b1

for all 0 < 8 < fBy. Hence, in the definition of ¢, g, for 0 < 8 < By, we can assume
without loss of generality that e = e(y) and then the class of paths I' does not
depend on 3. Then, from (4.7), it follows that

L, (up,ﬁ1) = Cp,3

= inf sup I, g, (y(¢
infsup 15, (0(0)

< inf sup 1 6,(v(1))
7€l telo0,1]

= CP7B2

= IpoQ (uPﬂQ)'

This, in turn, proves (4.6).
Hence, from (4.4), passing the limit as p — 1% in (4.6), we have that (4.5) holds.
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Then, for all 0 < 8 < [y,

Ig(ug) < Igy(ug,) =: C.

Note that, by using ug as test function in (4.1), from Green’s Formula, we have
that

Jusll = [ Dusl+ [ Juslar
Q o0

:/(zg,DUg)—i—/ [zg, V]ugdHN
Q o9

:—/ updivzg da (4.8)
Q

= / ugpg dz.
Q

Then, from (3.29), (4.8) and the definition of Fjg, we have that
1
To(ug) = To(ug) = =  Ilusll = | usppde

= <1 - ;) [[ug]| +/Q (;uﬁpﬁ _Fﬁ(uﬁ)> dz

5 (1 - ;) Jusl+ - up > 9

1
> 1——]]|ugl-
( q)n S

Hence, since (I3(ug))o<p<g, is bounded, it follows from the last inequality that
(ug)o<p<p, is also bounded. O

From the last result, there exists ug € BV (£2) such that, for all r € [1, 1*),
ug — ug in L"(Q) (4.9)
and
ug(z) — up(z) a.e. in Q. (4.10)

Moreover, note that the boundedness on (ug)o<g<g, and (3.29) implies also that
(p3)o<p<p, is bounded in L7 (Q). Then, as in lemma 3.5, it is possible to show
that there exists po € La1 (), such that

ps — po in L71(Q), as f — 0%, (4.11)
pp(x) — po(w) a.e. in Q, as 3 — 0 (4.12)
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and
0 < po(z) < Jug(z)|7* ae. in Q. (4.13)

Now, let us deal with the family of vector fields (zg)o<s<p,. Note that, since
|Z5/|0o < 1 for all B € (0, Bo), then there exists zg € L>°(2, RY), such that

75 —z9 in L=(Q, RY). (4.14)

This, on the other hand, implies that zg — zo in L'(Q, RY), ie., for all ¢ €
L>(Q, RY),

/Zg-wdxﬂ/zowpdam as B — 0T, (4.15)
Q Q
For every ¢ € C2°(Q), since Vi € L(Q, RY), by (4.15), we have that
/Zg~V¢dx—>/zo~V¢dx, as f— 0T,
Q Q

from where it follows that

divzg — divzg, in D'(Q). (4.16)
Hence, from (4.11) and (4.16), we have that
—divzg =py in D'(Q). (4.17)

LEMMA 4.2. The function ug and the vector field zg satisfy the following equality,
(zo, Dug) = |Dug| in M(Q).

Proof. First of all, note that, from (2.1),
(zo, Dug) < |Dug| in M(Q).

For the inverse inequality, let ¢ € D(Q), ¢ > 0. In (4.1), let us take @ug as test
function in (4.1). Then,

/@(zﬁ,Dug)z/<pu5pgdx—/uﬁz5~V<pdx.
Q Q Q

Taking into account that (zg, Dug) = |Dug| in M(Q),

/g0|Du5|:/goqugdx—/u5z5~Vg0dz.
Q Q Q

Taking the liminf as 3 — 07, from the lower semicontinuity of the norm in BV ()
with respect to the L” convergence, (4.9), (4.11) and (4.16), it follows that

/ | Dug| < lim inf (—/ pugdivzgdr — / ugzg - Vgodx)
Q p—0* Q Q

= —/ pupdivzydx — / upzo - Vo dz
Q

Q
= / (20, Dug).
Q
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This, in turn, proves that |Dug| < (zo, Dug) and this finishes the proof. |

LEMMA 4.3. The function ug satisfies [z, v] € sign(—ug) on OS2.

Proof. As in lemma 3.8, it is enough to show that
/(‘uo\ + ug [z, v])dHN 71 = 0. (4.18)
Q

In order to verify (4.18), let us consider (ug — ) € BV () NL>®(Q) as test
function in (4.1), where ¢ € D(£2). Then, from (2.3) and (4.1), we get

Jpusl+ [ uslart™ = [ (5. Dus) = [ uslaa sl
Q o0 Q o0

=—/ UQdiVZg (4.19)
Q

=/wdiVZﬁ+/uﬁpﬁdx—/<ﬂPﬁ
Q Q Q
:/uﬁpgdz.

Q

Then, calculating the liminf in (4.19), from the lower semicontinuity of the norm
in BV (), (4.17) and lemma 4.2, we have that

/|DU0\/ |ugldH™ ! </uopod$
) o9 0
:7/uOdiVZ0
0

= / (Zo,DU,O) — / () [ZO7 I/]HN_l
Q a0
= [ |Duy| —/ o[z, VJHN L.
Q o0
From the last inequality, it follows that
luo| + uglzo, 7] <O HN ! —a.e. on 0.
Since the inverse inequality is trivial, it follows that (4.18) holds. O

Then, from (4.17) and lemmas 4.2 and 4.3, it follows that ug is a solution of (1.4).
Now, in order to end up the proof of theorem 1.2, let us show that there exist
constants u, By > 0, such that

Hz € Q:ug(x) > B} =, forall e (0,5), (4.20)
From (3.55) it follows that

1
0<a+o,(l) <cpp < 2; Pp,aUp,5 AT + 0p(1),
Q
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where « is independent of 3 and p € (1, p). Since p, g verifies (3.3),

a 1
a < ﬁ—\Q|+f/ ul 5 da + o,(1), (4.21)
b p {up,s>B}

for all 3 > 0 and p € (1, p). To conclude the proof, it is enough to prove that

1imsup/ ul sd < / ufy dz. (4.22)
p—1+ Hup5>py {us=p}

In fact, if (4.22) holds true, then from (3.26), passing to the upper limit as p — 1+
in (4.21), we get

a<6q|9|+/

ufy dz < 2379 +/ ufy, dz, (4.23)
{up=2B}

{ug>p}

for all 5 > 0. Now, suppose by contradiction that there exists a subsequence 3,, — 0
such that

{us > Bn}l — 0, as B, — 0. (4.24)

Since, by (4.23), we have

a < 2619 +/ UEX {up>p,) AT,
Q

it follows from Holder’s inequality that

a < 268219 + (/ uj da:) {ug > Ba}| 7", (4.25)
Q
for some ¢ <r < N/(N —1). Then, (4.24) and (4.25) would lead us to a
contradiction.

Hence, to conclude the proof, it remains us to show (4.22). For this purpose,
observe that

/{ - ugﬁdx:/ﬂugﬁx{%ﬁ>3} dx
Up,B
< /Q Uy 56X {uy,5>B} N {us<p} 4T + /Q Uy sX{upzpy dz.  (4.26)

Moreover, since

X{upﬁ>,3}m{uﬁ<5}(x) —0ae inQ asp—1T, (4.27)

it follows from (3.26), (4.26), (4.27) and Lebesgue’s dominated convergence
theorem, that (4.22) holds true.
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To conclude that ug is nontrivial, note that by (4.23), ug > 0 and Lebesgue’s
dominated convergence theorem,

O<a</ug,
Q

then, up # 0. Finally, since pg(z) € [iﬁ(ug(x)), fs(up(x))], by (3.5), (4.9) and
(4.12), we conclude that po(z) = up(z)9~! a.e. in ©Q and therefore ug is solution
of the continuous problem (1.4).
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