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Abstract

We examine the structural stability of Gaussian shadow rate term structure models in a

sample of Treasury yields that includes the “effective lower bound” (ELB) period from

2008 to 2015. After highlighting the challenges of testing for structural breaks in a

latent-factor model, we proceed to document various robust pieces of empirical evidence

for a structural break. As one of several practical implications, the expected policy

rate paths during ELB years are notably shallower in our model that accommodates a

structural break compared with a model that imposes structurally stability.
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I. Introduction

From 2008 to 2015, the U.S. policy rate was set at its effective lower bound (ELB) for the first

time in recent history.1 This experience has provided an impetus for studying yield dynamics using

term structure models that respect the ELB constraint. Much of that effort has been through the

use of shadow rate term structure models, which have risen in popularity in recent years, e.g., Kim

and Singleton (2012), Krippner (2013), Bauer and Rudebusch (2016), Christensen and Rudebusch

(2014), Wu and Xia (2016). These models can capture, in a natural way, some of the key qualitative

features of the ELB yield dynamics, such as the shape of the yield curve near the ELB and the

compression of yield volatilities for short maturities. Another part of the attraction of these models

is conceptual: It has a parallel with macroeconomic models incorporating an ELB in which the

policy rate is analogously described in a censored form as max{st, r}, where r is the ELB and st

follows some variant of a Taylor rule.2

Intuitively, many properties of yields can be expected to change once the short rate is at or

near the ELB. Indeed, as further discussed later in the paper, principal component analysis (PCA)

of yields has substantially different results for the ELB period vs. the pre-ELB period. This is

obviously problematic for standard affine-Gaussian models, in particular those that use observed

principal components as state variables (e.g., Joslin, Priebsch, and Singleton (2014)). However, one

might still hope that the nonlinearity of the ELB regime that gives rise to structural break patterns

in affine-Gaussian models and PCA can be captured with a structurally stable shadow rate term

structure model. In this case, the same set of shadow rate model parameters describes the yield

dynamics in the non-ELB and ELB periods, and therefore the parameters of a shadow rate model

that have been estimated with a pre-ELB sample can be used for analyzing the ELB sample. This is

1The Federal Open Market Committee (FOMC) specified a target range for the federal funds rate of 0 to 0.25

percent. Our sample ends before the most recent ELB episode in response to the COVID-19 outbreak.

2See, for example, Reifschneider and Williams (2000), Eggertsson and Woodford (2003), Nakata and Tanaka

(2016), and Johannsen and Mertens (2016).
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particularly convenient, as the shadow rate model can be well approximated by a (more tractable)

affine model in the pre-ELB regime.

However, there are several reasons to believe that even shadow rate models might not be

structurally stable: First, economic intuition suggests that the dynamics of key variables such as

inflation and output gap may change once the economy enters the ELB regime, as conventional

monetary policy can no longer provide policy accommodation. In turn, state variables in term

structure models, even in latent-factor models where they are not explicitly equated to macro

variables, are thought to have macroeconomic underpinnings. Second, even if the data-generating

(P-measure) state vector dynamics were stable, their market price of risk may not necessarily remain

stable across the non-ELB/ELB regimes. Third, while the Federal Reserve provided accommodation

during the ELB years in the form of unconventional monetary policy (specifically, forward guidance

and asset purchases), it is not clear that the effects of these unconventional tools are well captured

by the same dynamics of the shadow rate and market price of risk that described the pre-ELB

years. Lastly, it is possible that the financial crisis which led to the ELB regime was so severe

that the structure of the economy has changed in a substantial way since the pre-ELB years, with

consequential implications for yield curve dynamics.

In this paper, we empirically examine the potential presence of a structural break in shadow

rate models of the U.S. Treasury yield curve. An investigation of structural breaks in shadow rate

models, and more generally latent-factor term structure models—including Dai and Singleton

(2000), Duffee (2002), and Ahn, Dittmar, and Gallant (2002)—, raises new challenges that have

not been encountered in the existing literature on structural break tests. In latent-factor models, the

state variables do not have unique, well-defined meaning; a given set of factors can be “rotated” to

another set of factors, with corresponding changes in the model parameters, in a way that keeps the

model’s empirical content the same.3 Therefore, investigating the change in a specific parameter

of the model may not shed much helpful light on the structural stability question. Furthermore,

Wald-type tests (e.g., Andrews and Fair (1988)), in which the parameter vector θ1 estimated from

3Dai and Singleton (2000) contains an extensive discussion of such invariant transformations.
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one subsample is compared to the parameter vector θ2 estimated from another subsample (i.e., a test

of the hypothesis θ1 = θ2) run into further difficulties: Even with normalization restrictions that

are put in place to guarantee econometric identification, there are multiple vectors in the parameter

space (with the same empirical contents) linked by discrete transformations (such as a reordering of

factors).

In testing for a structural break in shadow rate term structural models, we address the issues aris-

ing from the latent nature of the factors with several complementary approaches. One is to construct

rotation-invariant test statistics, i.e., test statistics that are unaffected by invariant transformations.

Another is to rotate the factors so that they can be given empirical meaning; specifically, we can

transform the factors such that the transformed factors have interpretation as principal components

(level, slope, and curvature). We also extensively utilize GMM techniques with likelihood scores

based on the estimation with either the pre-break subsample (“predictive” tests) or the full sample

(Lagrange multiplier tests). These tests do not run into the problem of multiple equivalent parameter

vectors, as they involve only local changes in the parameter space surrounding an optimum. They

also have the attraction of avoiding estimation based on the post-break subsample alone, which is

relatively short, and entails greater estimation uncertainties. With these estimation difficulties as

caveat, we do also perform an estimation with the post-break subsample, to further characterize the

properties of a potential structural break. In this context, a helpful feature of the shadow rate models

in this paper that facilitates the examination of a structural break is that, while the model-implied

observed yields follow nonlinear processes, the so-called “shadow yields” follow structurally stable

Gaussian processes under the null hypothesis of no structural break.

To preview our results, we find extensive evidence pointing to structural instability, and this

instability does not appear to be confined to any readily identifiable subset of parameters. For

example, the innovation vectors for the ELB period implied by pre-ELB subsample parameter

estimates, which should be approximately i.i.d. under the null hypothesis of structural stability,

display not only contemporaneous correlations but also serial correlations. Likelihood score–based

tests soundly reject the hypothesis of structural stability. Our empirical findings indicate a change
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not only in the P-dynamics of the model, but also in the Q-dynamics and in risk pricing. This

has important practical implications; for example, ignoring the structural change (i.e., using a

structurally stable shadow rate model) leads to implied policy rate paths during the ELB years that

are notably steeper than those implied by a model that allows for a structural break.

This paper complements several recent and contemporaneous studies that have analyzed the

behavior of U.S. interest rates over samples including the ELB period, and found evidence suggestive

of structural change. Andreasen and Meldrum (2019) note that, unlike an affine-Gaussian model

estimated on pre-ELB data, a shadow rate model estimated on a sample of yields that includes

the ELB period no longer matches standard empirical patterns of excess bond return predictability

regression coefficients, even when yields are away from the lower bound. They attribute this finding

to a change in the time-series dynamics of the pricing factors after 2008. Similarly, Andreasen,

Jørgensen, and Meldrum (2019) document changing patterns of excess bond return predictability

regressions and long-horizon short rate expectations in the ELB period. They find that a model

featuring both regime switching in the P parameters and a permanent structural break in the level of

the pricing factors is able to replicate the documented empirical patterns, whereas a single-regime

shadow rate model is not. While this finding strongly points to the presence of structural change,

Andreasen et al. (2019) do not conduct an explicit structural break test. Of note, because their excess

bond return predictability regressions are based on actual yields (as opposed to shadow yields),

the regression coefficients would be expected to change near the ELB even within a single-regime

shadow rate model. In our framework of analyzing shadow yields, we are to able to quantitatively

distinguish the changes in excess return predictability patterns due to ELB effects from those due

to structural change, and to formally test the null hypothesis of structural stability. Hördahl and

Tristani (2019) analyze U.S. term structure dynamics using a regime-switching model, motivated by

their observation that the speed of policy rate normalization after liftoff in 2015 was much slower

than in prior tightening episodes. However, in light of the flexibility of latent-factor shadow rate

term structure models, it is not a priori obvious that the behavior of the yield curve in the post-ELB

period, including the slower pace of policy rate normalization, cannot be captured by some set
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of latent factors in a structurally stable shadow rate model. Our work, in which the structurally

stable shadow rate model is a special case of the structurally broken model, allows us to formally

gauge the improvement in the statistical goodness of fit when the structural stability restriction

is relaxed. Indeed, a key feature of our structurally broken model is that it produces less steep

paths of the expected short rate (under both the P and Q measures) than the nested structurally

stable model, which lends support to Hördahl and Tristani’s (2019) motivation. There are also a

number of empirical studies outside the no-arbitrage framework suggesting significant changes in

the dynamics of the yield curve and its relation to macro variables around the ELB period (e.g., Liu,

Theodoridis, Mumtaz, and Zanetti (2019) and Swanson and Williams (2014)). Such changes might

be be consistent with either a structural break in model parameters or a single-regime shadow rate

model in which relationships change near the ELB. Our results below provide statistical evidence of

the former.

II. Model and Data

II.A. Shadow Rate Term Structure Model and Implementation

We begin with a discussion of the shadow rate term structure model used in this paper. The

observed short rate is specified as

(1) rt = max {st, r} ,

where r is the ELB, and the shadow rate st is an affine function of the N -dimensional vector of

latent variables xt:

(2) st = ρ0 + ρ′1xt.
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Let W P
t be N -dimensional standard Brownian motion under the real-world probability measure

P. Assume there is a pricing measure Q, equivalent to P, and denote by WQ
t Brownian motion

under Q. The P-measure and Q-measure dynamics of the state vector xt are specified as stationary

multivariate Ornstein-Uhlenbeck processes:

(3) dxt = (kµ
0 +Kµ

1 xt)dt+ ΣdW µ
t

where µ ∈ {P,Q}. Equation equation (3) implies that the market price of risk vector λt takes the

affine form

(4) λt = λ0 + Λ1xt.

The P-measure parameters kP
0 , KP

1 and the Q-measure parameters kQ
0 , KQ

1 are linked via market

price of risk parameters λ0, Λ1 as

kQ
0 = kP

0 − Σλ0,(5)

KQ
1 = KP

1 − ΣΛ1.(6)

The arbitrage-free time t price of a zero-coupon bond with time to maturity τ is then given by

the Q-measure expectation

(7) Pt,τ = EQ
t

[
exp

(
−
∫ t+τ

t

rs ds

)]
,

with associated zero-coupon bond yield

(8) yt,τ = −1

τ
logPt,τ .

The bond yields yt,τ in the model will, in general, be nonlinear functions of xt. We approximate this

function using the second-order method proposed in Priebsch (2013).
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Shadow bond prices and yields are defined analogously, with the shadow short rate st in place

of the observed short rate rt in equation (7). The shadow yields yst,τ correspond to the arbitrage-free

yields in the underlying Gaussian model not constrained by the ELB, and take the affine form

(9) yst,τ = a(τ) + b(τ)′xt,

where a and b are given by the usual recursive formulas (Duffie and Kan (1996)).4 As the lower bound

becomes less binding, yields in the shadow rate model will approach their Gaussian counterpart.5 In

this sense, away from the lower bound, the shadow rate model is approximated by the underlying

Gaussian model.

On the other hand, as the lower bound becomes more binding, yields and P-expectations of

average future short rates will both converge to r: If the short rate is currently constrained by the

lower bound and is expected with high probability to remain at the lower bound for an extended

period, there is little uncertainty about the path of the short rate going forward, and therefore

forward rates and P-expected future short rates will trivially be close to r. By implication, term

premiums—the difference between observed yields and P-expected average future short rates—will

be close to zero. In this way, the shadow rate model is able to capture periods of forward guidance

during which policymakers commit to keeping rates at the ELB for an extended period. Conversely,

in the Gaussian model, the term structure of uncertainty about the future short rate is time-invariant

(under both P and Q).

To estimate the model, we proceed analogously to Kalman filter–based maximum-likelihood

estimation in studies such as Kim and Wright (2005), Duffee (2011), and Christensen, Diebold, and

Rudebusch (2011), except that our observation equation is nonlinear in the state vector; therefore,

we use the unscented Kalman filter (see, e.g., Wan and van der Merwe (2001)). While the model can

4See Bauer and Rudebusch (2016) for an extensive analysis based on shadow yields.

5Formally, this follows from an application of the Monotone Convergence Theorem to equation (7), taking

r ↓ −∞.
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in principle be estimated with yield data alone, the well-known small sample problem associated

with persistent time series such as bond yields presents significant challenges. To ameliorate this

problem, we follow the approach of Kim and Orphanides (2012) and augment our estimation sample

with survey forecasts of the 3-month Treasury bill rate.6 Therefore, our observation equation takes

the form

(10)

ỹt

z̃t

 = h(xt) +

ey,t

ez,t


where ỹt and z̃t are vectors of observed Treasury yields and survey forecasts, respectively, h(xt) is

a vector of model-implied counterparts of [ỹt, z̃t]′ (generally nonlinear functions of xt), and ey,t and

ez,t are measurement errors for Treasury yields and survey forecasts, respectively. For the survey

forecasts, we use a couple of near-term horizons—6 months and 12 months—as well as a longer

horizon (5 to 10 years).

We set the number of factors (the dimension of xt) to N = 3. Measurement errors are assumed to

be mutually independent and independent across time. For yields, we assume that the measurement

error variance δ2y is the same for all maturities. For surveys, we allow different measurement error

variances δ2z,6m, δ2z,12m, and δ2z,5−10y for the different forecast horizons. The measurement error

variances are treated as estimated parameters. For the 5-to-10-year survey horizon, we impose a

lower bound of 50 bps on δz,5−10y which is binding in all our estimated models.7

6See also Li, Meldrum, and Rodriguez (2017) for the use of survey forecast data for addressing the small-sample

problem. Other approaches include adjusting the estimation procedure (Bauer, Rudebusch, and Wu (2012)), and

imposing parameter restrictions (Christensen et al. (2011), Joslin et al. (2014), Bauer (2018)); see also Bauer and

Rudebusch (2020) for a related discussion.

7See Kim and Orphanides (2012) for a discussion of the rationale for imposing a conservative lower bound on the

error variance for long-term surveys.
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II.B. Data, Sample Period, and Break Point

As sample period, we take the beginning of 1990 to the middle of 2019. Where applicable, we

assume that the FOMC’s announcement on December 16, 2008, that it would establish a target range

for the federal funds rate of zero to a quarter percent represents an unanticipated structural break

point. We will somewhat loosely label the first period (observations from 1990 to mid-December

2008) as “pre-ELB” and the second period (observations from mid-December 2008 to June 2019)

as “(post-)ELB.” Below, we discuss the sensitivity of our findings to this choice of break date. Our

empirical designs in this paper focus on structural change with a single break point at a known

time; the cases of a break at an unknown time or multiple breaks would be even more challenging

empirically, in part because of the limited amount of data.

We use continuously compounded zero-coupon Treasury yield data for maturities of 3 months,

6 months, 1, 2, 4, 7, and 10 years, sampled weekly on Wednesdays (or the prior trading day if

Wednesday is a holiday), from January 3, 1990, to June 26, 2019. For the 3- and 6-month maturities,

we use secondary market Treasury bill rates from the Federal Reserve’s H.15 release (transformed

to zero-coupon-equivalent yields). For maturities of 1 year and longer, we use the updated zero

coupon yields based on Gürkaynak, Sack, and Wright (2007).

For the survey forecast data, we use the 3-month Treasury bill rate from Blue Chip Financial

Forecasts, linearly interpolated to constant horizons of 6 months, 12 months, and 5 to 10 years.8

Short-range forecasts are available monthly and long-range forecasts are available semiannually.

Each survey is lined up with the sample date closest to the actual date on which the survey was likely

conducted. For weeks with no matched survey data, we treat surveys as missing observations.9

8At or near the ELB, the distribution of the future short rate is arguably skewed (in the shadow rate model, it is

simply a censored Gaussian distribution), so that its mean, median, and mode will not necessarily coincide. We treat the

survey consensus as a noisy observation of the model-implied modal expectation.

9The addition of the survey data occurs at the estimation stage and leaves the theoretical shadow rate model setup

in Section II.A unaffected.
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III. Empirical Strategies

III.A. Challenges in Dealing with Latent-Factor Models

We start this section with a discussion of the challenges posed by the latent nature of the factors

in the study of structural stability. Let us consider the possibility that a latent-factor term structure

model is described collectively by parameter vector θ1 in period 1 (t = 1, . . . , T1), and by another

parameter vector θ2 in period 2 (t = T1 + 1, . . . , T1 + T2(≡ T )); for later use, define π = T1/T .

The null hypothesis of structural stability is θ1 = θ2.

With the model given in equation (1), equation (2), and equation (3), note that we can obtain an

observationally equivalent model by transforming the N -dimensional state vector xt to

(11) x†
t = l + Lxt

(where l is a constant N -vector and L is an invertible N ×N constant matrix), and transforming the

model parameters θ = (KP
1 , K

Q
1 , k

P
0 , k

Q
0 ,Σ, ρ0, ρ1) to θ† = (KP†

1 , KQ†
1 , kP†

0 , kQ†
0 ,Σ†, ρ†0, ρ

†
1), where

Kµ†
1 = LKµ

1L
−1, kµ†

0 = Lkµ
0 − LKµ

1L
−1l,(12)

Σ† = (LΣΣ′L′)1/2, ρ†0 = ρ0 − ρ′1L
−1l, ρ†1 = L−1′ρ1.

Because the most general model has an infinite number of equivalent parameters linked by such

invariant transformations, to estimate these models by maximizing a log likelihood function (or

some analogous GMM criterion) logL, a set of normalization restrictions is imposed to identify the

parameters and thus ensure that the Hessian matrix ∂2 logL/∂θ∂θ′ is not singular. In the present

paper, the normalization restrictions we impose for estimation purposes are

(13) kP
0 = 0, KP

1 = lower triangularmatrix, Σ = cI,

where I is an identity matrix, and c = 0.01.
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In a model with typical normalization (such as the one just mentioned), factors do not have clear

empirical meaning; therefore, examining the change in a specific parameter, e.g., [KP
1 ]11, across

subsamples may not be very meaningful. Nonetheless, one may still hope that the Wald test10

(14) λT = T (θ̂1 − θ̂2)
′(π−1V̂1 + (1− π)−1V̂2)

−1(θ̂1 − θ̂2)

provides a valid statistic for the test of structural stability. However, even after imposing normaliza-

tion restrictions that guarantee a nonsingular Hessian of the likelihood function around an estimate

(such as equation (13)), discrete invariant transformations (such as permutation and reflection) still

remain, which creates multiple equivalent parameter vectors.

Discrete transformations can make it difficult to determine how close a parameter estimate θ1

for one subsample is from a parameter estimate θ2 for the other subsample. For example, even

when the Euclidean distance θ2 − θ1 in equation equation (14) is large, it could be that θ1 and θ2

have quite similar empirical contents, which would be the case if θ2 is close to one of the permuted

versions of θ1. One might consider eliminating discrete transformation degrees of freedom such as

permutation by imposing a specific ordering of certain parameters, e.g., [KP
1 ]11 > [KP

1 ]22 > [KP
1 ]33.

However, there is no guarantee that such ordering is preserved in small-sample estimates when the

true parameters are close. One could also entertain the idea of

(15) λT = miniT (θ̂1 − θ̂
(i)
2 )′(π−1V̂1 + (1− π)−1V̂

(i)
2 )−1(θ̂1 − θ̂

(i)
2 ),

where the θ̂
(i)
2 s denote all possible discrete invariant transformations of θ̂2, and V̂

(i)
2 denotes the

corresponding covariance matrix, i.e., pick the θ̂(i)2 that produces the smallest test statistic. However,

besides being cumbersome both in implementation and statistical evaluation, such a procedure can

be unsatisfactory unless one of the θ
(i)
2 s stands out sufficiently low in terms of the test statistic

value.11

10See, for example, Andrews and Fair (1988).

11As an illustration, consider a 2-factor model whose Q-measure dynamics are given by r = ρ0 + ρ′1[x1t, x2t]
′,
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Below we consider various diagnostics and test statistics that overcome the problems associated

with the latent nature of the factors in the model.

III.B. Tests for Structural Change

Aside from the issue of latent factors, our structural break test problem is “classical” in the sense

that we consider a single potential break at a known time (around the onset of the ELB), rather than

searching for potentially multiple breaks at unknown times. In this setting, the available tests for the

kinds of nonlinear estimation problems such as ours can be summarized as follows:

1. Predictive tests: These types of tests are based on the estimation of the pre-ELB subsample,

and examine the properties of objects in the post-ELB subsample implied by the pre-ELB

parameter estimates.

2. Lagrange multiplier (LM) tests: These types of tests are based on the estimation of the full

sample, and examine moment restrictions across the two subsamples.

3. Wald tests: These types of tests involve separate estimations with pre-ELB and post-ELB

subsamples, and analyze potential differences between the two estimates.

In addition to the identification issue discussed above, Wald-type tests can be expected to have

low power in our application, as they involve a separate estimation of the post-ELB subsample. A

sample of about ten years (late 2008 to mid-2019) may not be long enough to precisely estimate

the parameters of the model, in view of the well-known small-sample problems with term structure

dxit = (kQ0i + kQi xit)dt+ dWQ
it (i = 1, 2). Suppose that (kQ11, k

Q
12) in the first subsample is estimated to be (0.1, 0.5),

and (kQ11, k
Q
12) in the second subsample is estimated to be (0.45, 0.15). Then it would be reasonable to view that the

appropriate version of the second subsample estimate to compare is (0.15, 0.45), i.e., the permuted version

(x1t, x2t) → (x2t, x1t). However, if we obtained (0.1, 0.5) for the first subsample and (0.3, 0.32) for the second

subsample, it would be less clear. Note that we have not spelled out the estimates of other parameters, which can lessen

or increase the ambiguity.
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model estimation. Moreover, this particular sample period contains only one tightening cycle (near

the end of the period) and limited variability in short rate movements. While Kim and Orphanides

(2012) found that the use of survey forecasts for Treasury bill yields helps ameliorate some of these

concerns, the near-horizon survey forecast data may be less informative in this subsample, as a

substantial portion of this period had fairly flat forecasts due to the FOMC’s forward guidance;

furthermore, the asymmetric distribution of the short rate process for horizons beyond the predicted

liftoff date (see footnote 8) means that the measurement of survey forecasts would likely be less

reliable than usual. Lastly, we do not wish to rely on survey data to such a degree as to confound the

questions of whether the structural break occurred in yields or in survey forecasts.12

For evidence regarding structural instability, we therefore focus on predictive tests and LM tests.

Predictive tests are particularly attractive in our context, as we only need to estimate a model based

on pre-ELB data, where the shadow rate model is adequately approximated by the affine-Gaussian

model. Under the null hypothesis that there is no structural break, the parameters thus estimated

should produce a shadow rate model fitting the post-ELB period adequately. That said, in Section V

we also estimate a model based on the post-ELB subsample, as this estimation may cast helpful

light on how the model structure might have changed.

III.C. Diagnostics Based on Fitting Errors or Innovation Vectors

A well-known example of predictive tests for structural breaks in a classical regression is the

Chow (1960) test that examines the residuals from the second subsample computed with regression

coefficients from the first subsample. Though an exact analog of regression residuals does not exist

in our a latent-factor term structure model setup, we can consider the following:

Fitting errors. While it may be tempting to regard yield fitting error (ey,t in equation (10)) as an

analog, yield fitting errors are generally not a sufficient diagnostic, especially in the case of flexibly

specified latent-factor models such as ours. Indeed, a small overall fitting error may not necessarily

12We examine the robustness of our findings to the omission of surveys below.
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indicate a well-specified model, as it could be a consequence of the fact that a model with N latent

factors can fit N yields exactly and that yield curves tend to be smooth. Nonetheless, a meaningful

change in the pattern of fitting errors could be indicating a structural change in Q dynamics; we

shall therefore examine fitting errors as part of our structural break diagnostics.

Innovation vectors. If the shadow rate model is structurally stable, the state variables will

follow a standard VAR(1) process. One way to examine this is to look at the innovation vector

εt based on the discretized transition equation under P derived from equation (3) implied by the

θpre estimate, which would be a closer yet still-imperfect analog of Chow’s regression residuals. A

normalized innovation vector ηt ≡ Ω−1/2εt (where Ω denotes the covariance matrix of εt) has the

theoretical property

(16) ηt ∼ N(0N , IN×N).

Furthermore, these innovation vectors are serially uncorrelated, i.e.,

(17) E(ηtη
′
t+j) = 0N×N , j ̸= 0.

The innovation vectors implied by the pre-ELB parameter estimate should satisfy these conditions

well in the post-ELB sample (provided, of course, that the model is reasonably well specified).

But if there is a structural change, they may not satisfy these conditions in the post-ELB sample;

therefore, they could provide another useful diagnostic check for structural change.

Statistics can be constructed that test the conditions in equation (16) and equation (17). A

complication in our setting, discussed above in Section III.A, is that state variables and their

innovation vectors in a generically normalized model (such as the normalization conditions in

equation (13)) do not have specific economic meaning, as they can be invariantly transformed so that

the model’s content remains the same. Therefore, departures from these conditions for individual

elements of the innovation vector, e.g., corr(η1t, η2t) ̸= 0, are difficult to interpret. We address this

problem in two ways.

14

https://doi.org/10.1017/S0022109023000984 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0022109023000984


First, we construct aggregate test statistics whose values are unchanged if the model is re-written

with different (transformed) state vectors. In particular, in Supplementary Material Appendix IA.I,

we show that the objects ∥ T−1
∑

t ηtη
′
t−u ∥F and ∥ T−1

∑
t ηtη

′
t − I ∥F remain unchanged under

invariant transformations and have the following asymptotic distributions:13,14

T
1

2
∥ T−1

∑
t

ηtη
′
t − I ∥2F ∼ χ2

(N2+N)/2,(18)

T ∥ T−1
∑
t

ηtη
′
t−u ∥2F ∼ χ2

N2 , u ̸= 0.(19)

Moreover, since the innovation vectors in different subsamples are independent, the ratio of χ2

statistics for different periods follows an F -distribution under the null hypothesis and may give an

indication of the relative degree to which implied innovation vectors deviate from their theoretical

distribution.

While these statistics provide useful summary diagnostics regarding structural stability, in the

event they point to a structural change in the post-ELB period, more granular statistics that shed light

on the nature of structural change would be useful. Therefore, we also examine more disaggregated

test statistics based on state vectors that have an intuitive interpretation. To this end, we transform

the state vectors in our original normalization to a new set of state variables which can be viewed as

level, slope, and curvature factors. More precisely, we rotate the model to create the state vector x†
t ,

with the property that the instantaneous changes dx†
t are mutually independent (i.e., dx†

tdx
†′
t is a

diagonal matrix), and correspond to instantaneous change in the level, slope, and curvature of the

shadow yield curve.15 In discrete time, the one-period innovation ε†t has variance-covariance matrix

Ω† which is not exactly diagonal but almost diagonal if a single period is sufficiently short, as in our

13The notation ∥ A ∥F denotes the Frobenius norm of the matrix A.

14An example of a test statistic that is not unchanged under invariant transformations is 1
2 (T

−1
∑

t η
2
1t − 1)2 (which

is made up of only the first element of the ηt vector). It can be shown that if η†t is the innovation vector corresponding

to an invariant transformation, in general we do not have 1
2 (T

−1
∑

t η
2
1t − 1)2 = 1

2 (T
−1

∑
t η

†2
1t − 1)2.

15This procedure is described in greater detail in Sections V.A and V.B.
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case (one period being one week). Therefore, the innovation vector η†t (≡ Ω†−1/2ε†t) can still be well

interpreted as changes in level, slope, and curvature factors. We examine whether the individual

elements of η†t have the contemporaneous correlation and serial correlation properties in equation

(16) and equation (17).

III.D. Tests Based on Likelihood Scores

We can also explore the parameter stability of the model directly by testing the moment condition

(20) E(∂ logL/∂θ) = 0

within a GMM framework, either with a predictive approach or with the LM approach. The idea is

that, if there is no change in parameters (θpre = θpost), the first-order condition in equation (20) will

hold in each subsample.

The predictive approach—testing the condition in equation (20) in the post-ELB sample using

the parameter estimates from the pre-ELB sample—corresponds to the technique of Ghysels and

Hall (1990), who showed that, asymptotically,

(21)
1√
T2

T1+T2∑
t=T1+1

∂ℓt(θ̂1)

∂θ′
V̂ −1
2

1√
T2

T1+T2∑
t=T1+1

∂ℓt(θ̂1)

∂θ
∼ χ2

dim(θ)

where V̂2 is a consistent estimator of plimT→∞Var(T
−1/2
2

∑T1+T2

t=T1+1 ∂ℓt(θ̂1)/∂θ).
16

The LM approach—testing the condition in equation (20) with parameter estimates θ̂ based

on the full sample—can be viewed as an analogue of likelihood score–based LM tests of Nyblom

(1989), Hansen (1990), and Hansen (1992). The relevant testing statistic is given by17

(22) LM =
1√
T1

T1∑
t=1

∂ℓt(θ̂)

∂θ′
V̂ −1 1√

T1

T1∑
t=1

∂ℓt(θ̂)

∂θ

16Ghysels and Hall (1990) discuss several easily computable candidates for the variance estimator.

17See Hansen (1990) and Andrews (1993).
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where V̂ is a consistent estimate of plimT→∞ Var(T
−1/2
1

∑T1

t=1 ∂ℓt(θ̂)/∂θ).

These likelihood score–based approaches do not face the problems discussed in connection with

a Wald test of the hypothesis θ1 = θ2 using the statistic in equation (14), as the score-based tests only

look at local changes around an optimum in the parameter space. This is analogous to the presence

of discrete invariant transformations not causing any difficulties in computing derivative-based

asymptotic standard errors of a parameter estimate.

IV. Empirical Evidence Regarding Structural Instability

IV.A. Yield Fitting Errors and Innovation Vectors

To build intuition and get a preliminary sense of the existence and possible nature of a regime

change, we first evaluate how well a model with pre-ELB parameters is able to fit the cross-sectional

and time-series properties of yields in the post-ELB period once the lower bound constraint is

imposed. For this purpose, we analyze yield fitting errors and implied innovation vectors from a

model whose parameters are those of an affine-Gaussian model estimated on pre-ELB data, extended

to the post-ELB period as a shadow rate model (i.e., with state variables filtered from post-ELB

data using pre-ELB parameters).18

18We have confirmed that it makes little difference to the estimated parameters whether we estimate an

affine-Gaussian model or shadow rate model for the pre-ELB subsample, as long as the lower bound r is set to a

plausible value near zero. Because r is poorly identified by pre-ELB data, unless otherwise noted, we set r to

approximately 7.3 basis points in these predictive exercises. This is the estimate we obtain when estimating a

single-regime shadow rate model on the full sample. We find that other sensible choices of r lead to broadly similar

results.

17

https://doi.org/10.1017/S0022109023000984 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0022109023000984


IV.A.1. Yield Fitting Errors

Figure 1 plots a time series of root-mean-squared yield fitting errors (the difference between

observed and model-implied yields, averaged across maturities on a given date). Fitting errors

vary somewhat over time and tend to spike during periods of financial stress, most notably the

Financial Crisis.19 However, in the later years of the post-ELB period, beginning in early 2014, there

is a more persistent level shift in fitting errors—the model appears to have more difficulty fitting

the yield curve based on pre-ELB risk-neutral parameters (which determine the model-implied

cross-sectional relationships between yields), even with state variables filtered through the shadow

rate model structure. This could be indicative of a structural change in the Q parameters of the

model.

[Place Figure 1 about here.]

IV.A.2. Innovation Vectors

Using the same model as in the previous subsection, we can compute empirical implied inno-

vation vectors η̂t as defined in Section III.C. Recall from the discussion there that these vectors

theoretically have a contemporaneous covariance matrix equal to the identity matrix, and no au-

tocorrelation. Since the empirical innovation covariance matrices depend on the chosen model

rotation, we rotate the model as proposed by Duffee (2011) and discussed in detail Section V.B

below, such that the factors can be interpreted as level, slope, and curvature of shadow yields.

Table 1 displays the contemporaneous empirical innovation covariance matrices after this rotation,

separately for the pre-ELB and post-ELB subsample periods. While the covariance matrix for

the pre-ELB period shows some deviation from the identity matrix—most notably in the third

diagonal entry (low variance for the implied innovations in curvature)—, the covariance matrix

for the post-ELB period displays a number of more notable departures: All three elements of the

19Hu, Pan, and Wang (2013) find that errors in fitting flexible functional forms to Treasury yields carry meaningful

information about liquidity conditions in the market.
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innovation vector have contemporaneous variances well below 1, and the off-diagonal elements of

the covariance matrix are non-negligible, with particularly pronounced positive association between

level and slope innovations (whose contemporaneous correlation evaluates to about 0.6).20

[Place Table 1 about here.]

Figure 2 shows autocorrelograms of the rotated innovation vectors up to lags of 52 weeks. In

the pre-ELB period, autocorrelations are generally insignificant or at most marginally significant,

with no clear pattern across lags; the most notable excursions are visible in curvature innovations.

Conversely, in the post-ELB subsample, the implied innovations to the slope factor (and to a lesser

extent the curvature factor) display significant and prolonged positive temporal dependency. In other

words, the model persistently mispredicts the slope and curvature factors.

[Place Figure 2 about here.]

The rotation-invariant χ2 statistics introduced in Section III.C and more rigorously justified in

Supplementary Material Appendix IA.I allow us to quantify the overall magnitude and significance

of the deviations of the implied innovation vectors from their theoretical properties more formally.

As shown in Table 2, these statistics indicate significant misspecification in both periods at the lags

considered. The overall ratio of post-ELB and pre-ELB statistics is significantly larger than 1 at the

1% level—suggesting a greater relative degree of misspecification in the post-ELB period—, but

20This would not be surprising if we tried to fit an affine-Gaussian model to the post-ELB subsample: With the short

end of the empirical yield curve constrained at the ELB, any shocks to longer-term yields could only be captured by

that model with offsetting movements in level and curvature (contrary to their model-implied co-movement), so as to

keep the model-implied short rate unchanged. More generally, in the affine-Gaussian model, the short rate is an affine

function of the factors (rt = ρ0 + ρ′1xt); therefore, the short rate being stuck at the ELB would imply that a linear

combination of innovation vectors have to sum up to zero, i.e., the implied innovation vectors have to be

contemporaneously correlated during the ELB period. Our results here suggest that simply imposing a shadow rate

model structure does not fix this manifestation of model misspecification.
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the ratios computed separately for lags 0, 1, and 2–12 are not individually significant. In particular,

despite the patterns shown in Table 1 and the noticeably larger χ2 statistic at lag 0 in the post-ELB

period, the evidence based on the empirical instantaneous covariance matrix of implied innovation

vectors alone is not significantly indicative of misspecification.

[Place Table 2 about here.]

IV.A.3. Innovation Vectors in Post-ELB Sub-Samples

In light of the somewhat mixed evidence emerging from the post-ELB implied innovation

vectors, and the pattern of yield fitting errors in Figure 1 that is not uniform over our post-ELB

sample, it might be natural to ask how sensitive our results are to our assumption about the timing

of the candidate structural break in late 2008. Indeed, regarding the U.S. experience, some have

suggested that the first calendar-based forward guidance announcement by the FOMC in August

2011 may have had a more significant impact on yield curve dynamics than the arrival at the ELB

in late 2008.21 Our own Figure 1 shows a deterioration in yield curve fit from early 2014 onward.

Therefore, in Tables 3 and 4, we also examine the empirical innovation vector covariances as well

as the statistics in equation (18) and equation (19) based on segments of the post-ELB sample, in

particular December 2008 to mid-August 2011 (before date-based forward guidance, segment I),

mid-August 2011 to May 2013 (before the “taper tantrum,” segment II), June 2013 to December

2015 (before liftoff, segment III), and January 2016 to June 2019 (segment IV).

This more granular analysis indicates that the evidence for a structural break, at least according

to this metric, varies in strength over the different subperiods and reveals different facets of the

misspecification of the structurally stable model. For example, the December 2008 to August 2011

and January 2016 to June 2019 subperiods show the most notable signs of misspecification in the

contemporaneous (lag 0) properties of innovation vectors. We can glean from Table 3 that shocks in

21Swanson and Williams (2014), for example, note that one-year and two-year Treasury yields appeared to be

“unconstrained” from 2008 to 2010, and only became more constrained from late 2011 onward.
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period I—the immediate aftermath of the Financial Crisis—were highly positively correlated, while

in period IV, after liftoff in 2015, shocks had unusually small variances as the Fed raised rates at

a much more measured pace than in previous tightening cycles. Meanwhile, in the June 2013 to

December 2015 period III, the serial correlation of innovation vectors shows prominent signs of

misspecification. During this period, the Fed tapered and eventually ended its purchases of Treasury

and mortgage-backed securities—thus reducing policy accommodation at the long end of the yield

curve—while keeping the federal funds rate at the ELB. The structurally stable model appears to

have difficulty capturing this process, and indeed the autocorrelations in the post-ELB period shown

in Figure 2 are particularly prominent for the shocks to the slope factor.22

[Place Table 3 about here.]

[Place Table 4 about here.]

IV.B. Likelihood Score–Based Tests

While our findings in Section IV.A point to some signs of greater model misspecification in the

post-ELB period than the pre-ELB period, the results are arguably not clear-cut and uniform across

the considered metrics. Therefore, in this section, we test for a structural break explicitly, using

variants of the moment restriction in equation (20) based on both the pre-ELB parameter estimate

(the predictive framework) and the full-sample, single-regime estimate (the LM framework). For

this purpose, in addition to the model introduced in Section IV.A, we estimate a single-regime,

full-sample shadow rate model.

Consider first the predictive framework. For a model estimated on pre-ELB data, the pre-ELB-

subsample average of empirical scores will be zero, as a first-order optimality condition of estimation.

Intuitively, if there is no structural break, the post-ELB sample average of empirical scores (based

on pre-ELB parameters) should be close to zero, with known asymptotic distribution (Ghysels and

22We are grateful to an anonymous referee for suggesting possible linkages between the misspecification we

document and concurrent monetary policy decisions.
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Hall (1990)). This exercise requires an assumption on the level of the lower bound r, since this is

not identified from pre-ELB data (see footnote 18). The left panel of Table 5 displays χ2 statistics

for a joint test of all moment restrictions, for different values of the lower bound r.23 The statistics

have 25 degrees of freedom—corresponding to the number of estimated model parameters—, with

a 5 percent cutoff of 37.65 and a 1 percent cutoff of 44.31. The null hypothesis of structural stability

is thus firmly rejected, with a p-value of virtually zero, and with only modest sensitivity to the exact

chosen value of r. Therefore, for the remaining tests, we use r = 7.3. The middle panel of the table

shows statistics for the various segments of the post-ELB subsample separately. Using the same four

subdivisions as in Section IV.A.3, the null hypothesis that a model based on pre-ELB parameters

captures the behavior of post-ELB yields is solidly rejected for each of the segments separately.

Lastly, when computing the post-ELB scores, we can include both yield and survey data in equation

(10), or yield data alone. Indeed, one natural question is whether poor forecasting performance by

the survey respondents drives the rejection of the null hypothesis. This does not appear to be the

case, as the rightmost panel of the table shows. When we compute post-ELB scores using only yield

data, the statistic changes little. We thus conclude that the statistical behavior of post-ELB yield

data is sufficient to reject the null hypothesis of structural stability.

[Place Table 5 about here.]

Next, we perform LM tests based on the full-sample, single-regime shadow rate model parameter

estimate. For such a model, the full-sample average of empirical scores will be identically equal

to zero as a first-order condition. Without a structural break, the pre- and post-ELB-subsample

averages of empirical scores based on full-sample parameters should individually be close to zero,

again with known asymptotic distribution.24 Since this statistic is based on a single-regime model

23A lower bound of 12.5 basis points corresponds to the mid-point of the federal funds target range during the ELB

years. Lower bounds of approximately 7.3 and 5.5 basis points are suggested by our estimations below that include

post-ELB data.

24The pre- and post-ELB subsample averages are linked, as
∑Tpre

t=1 ∂ℓt(θ̂)/∂θ = −
∑T

t=Tpre+1 ∂ℓt(θ̂)/∂θ.

22

https://doi.org/10.1017/S0022109023000984 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0022109023000984


estimated on the entire sample, it is computationally cheap to evaluate the statistic for a range of

candidate structural break times around our assumed break point. As shown in Figure 3, there is

strong evidence of a structural break at our assumed break time, and the statistic is relatively flat in

the years before and after, suggesting that our finding is not locally sensitive to the exact choice of

break point date.25 We show in Supplementary Material Appendix IA.III that this finding is again

robust to the omission of survey data.

[Place Figure 3 about here.]

V. Shadow Rate Model with a Structural Break

The evidence for structural instability discussed in the previous section naturally raises the

question how the structure of the model has changed in the post-ELB period. While some of the

diagnostics already shed light on this issue, we further investigate by estimating a model in which

the yield dynamics in the pre-ELB and post-ELB periods are both described by the shadow rate

model, but with different parameters, θpre and θpost. Practically, this amounts to separate estimations

of the model with pre-ELB and post-ELB subsamples.

Our strategy allows us to analyze the characteristics of the structural break in the greatest possible

generality within the shadow rate model framework. However, this flexibility comes at the cost of

doubling the number of free parameters, and therefore we do not intend to propose the structurally

broken model in this section as a general-purpose term structure model. In Supplementary Material

Appendix IA.IV, we consider a shadow rate model with a structural break restricted to a subset of

25In this paper, we do not attempt to estimate the time of structural break empirically. One straightforward such

estimator is the date on which the LM test statistic is largest (the “sup LM” statistic described by Andrews (1993)).

Based on the window considered in Figure 3, this estimator would place the sample break a few months before our

assumed break in December 2008. However, this estimator depends on the chosen window, with reliance on asymptotic

properties becoming increasingly dubious as we expand the range of candidate break points towards the beginning and

end of the sample.

23

https://doi.org/10.1017/S0022109023000984 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0022109023000984


parameters, and we are also cognizant of the possibility that a different class of nonlinear models

(e.g., regime-switching models) might ultimately turn out to be more promising as a description of

U.S. yield dynamics in the post-ELB era.

V.A. Comparison of PCs

We begin with a discussion of PCA decomposition. To motivate this analysis, the upper panel of

Table 6 shows the PCA loadings for the first three principal components of weekly yield changes, for

the pre-ELB sample (left side) and the post-ELB sample (right side). The pre-ELB sample loadings

show typical behaviors, consistent with the frequent “level,” “slope,” and “curvature” designations

of PC1, PC2, and PC3: For example, the PC1 loadings are roughly flat (at least in the 1-year

to 10-year range), while PC2 loadings monotonically increase with maturity. In the case of the

post-ELB sample, however, the loadings do not display these typical patterns: The PC1 loadings

increase with maturity for short and intermediate maturities, while the PC2 loadings are no longer

monotonically increasing in maturity. The presence of the ELB likely explains much of this atypical

behavior. In particular, the ELB compresses the volatility of short-maturity yields, and the usual

notions of “level” and “slope” get intermingled, as any rise in the level of the yield curve during the

ELB would likely also be associated with an increase in the slope of the yield curve.

But is the ELB the whole story behind the qualitative difference between the pre-ELB and

post-ELB PCs? Structurally stable shadow rate models, including those that have been estimated in

the literature, would imply so, i.e., the PCA decomposition of the changes in shadow yields (which

are unaffected by the ELB) should be the same in the pre-ELB and post-ELB periods.

[Place Table 6 about here.]

The lower panel of Table 6 shows the loadings for the first three components of changes in

shadow yields, implied by the first subsample estimate θ̂pre and by the second subsample estimate

θ̂post. Although shadow yields are unobserved, the PC loadings based on instantaneous changes in

shadow yields implied by the model parameters can be tractably evaluated. Recall from equation (9)
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that shadow yields are affine in the state vector. Denoting the vector of shadow yields at time t for a

given set of m maturities (τ1, τ2, ..., τm) as yst , we have, schematically,

(23) yst = a+Bxt,

where a is an m-dimensional vector, and B is an m×N matrix. This, together with equation (3),

gives

(24) (dystdy
s′

t )/dt = BΣΣ′B′.

Therefore, the singular value decomposition of this matrix

(25) BΣΣ′B′ = PΨP ′,

where Ψ is a diagonal matrix, gives the PC1, PC2, PC3 loadings implied by the estimated model

parameters (the first three columns of the P matrix).26 The lower panel of Table 6 also provides stan-

dard errors based on the delta method formula. As Duffee (2011) notes, this decomposition depends

only on the parameters determining the risk-neutral dynamics of the model (KQ
1 , k

Q
0 ,Σ, ρ0, ρ1),

which are generally more precisely estimated than the P-measure parameters. Therefore, even in the

second subsample where the estimates are more uncertain than the first subsample, the standard

errors associated with these loadings are of modest sizes.

Not surprisingly, the pre-ELB period PC decompositions based on θ̂pre, shown on the left side

of the lower panel of Table 6, are quite similar to those on the left side of the upper panel, as θ̂pre

fits the pre-ELB period data reasonably well. On the other hand, the post-ELB period shadow yield

PCs based on θ̂post do show differences compared to the loadings on the right hand side of the upper

panel; notably, the PC2 loadings are now monotonic in maturities. However, the post-ELB period

26Note, therefore, that the bottom panel of Table 6 shows model-implied population loadings (which allows us to

compute standard errors), whereas the top panel shows sample loadings derived from observed yields.
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shadow yield PCs still do not match the pre-ELB period shadow yield PCs well. In particular, the

post-ELB period shadow yield PC1 loadings have notable slope, i.e., increase with maturity. In other

words, PC1 in the post-ELB periods does not look like a standard “level shock.” The qualitative

difference between shadow yield PC loadings in the pre-ELB and post-ELB periods documented

here adds to our evidence that yield curve dynamics have changed materially. Specifically, this

evidence points to a change in the risk-neutral (Q) parameters, because, as noted by Duffee (2011),

this construction of PCs involves only risk-neutral parameters.

V.B. PC-Rotated Parameters

As discussed in Section III.A, the examination of how much θ̂2 differs from θ̂1 is complicated

by the fact that there are multiple images of θ̂2 with identical empirical content (discrete invariant

transformations). Rotating the state variables based on the PCA decomposition of shadow yield

changes discussed above provides a natural means to surmount this problem, as shocks to the

transformed state vector x†
t now have a specific meaning as “level,” “slope,” and “curvature” shocks,

thus allowing for an “apples-to-apples” comparison.

Specifically, we perform the transformation in equation (11), with L given by27

(26) L = P ′B,

with the P and B matrices in equation (25). The transformed parameters (θ† in equation (12)) from

the first subsample estimation and from the second subsample estimation (i.e., θ̂†pre and θ̂†post) can

then be compared on an equal footing. One caveat is that the PCs are defined only up to their sign.

For example, if the x†
2t is a slope factor, −x†

2t is also a slope factor. To eliminate this ambiguity,

we define the factors such that the “level factor” loadings are generally positive (as opposed to

generally negative), the “slope factor” loadings increase with maturity (as opposed to decreasing

27Here, we follow Duffee (2011), who considered the PCs of instantaneous changes in yields in affine-Gaussian

models.
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with maturity), and the “curvature factor” loadings are a U-shaped function of maturity (instead of an

inverted U-shape). Implicitly, this imposes an ordering based on principal components, and assumes

that the ordering is preserved in a structural change, e.g., the level factor in the first subsample does

not become the slope factor in the second subsample. We argue this is a weaker assumption than

imposing a more artificial ordering (based on parameters that are less intuitive).

[Place Table 7 about here.]

Table 7 shows the PCA-rotated parameters, θ̂†pre for the pre-ELB sample and θ̂†post for post-ELB

sample, which were originally estimated based on a generic normalization given by equation (13);

the standard errors are computed with the delta method.28 Note that the table shows more parameters

than are necessary to estimate the model, as some of these are linked to each other; for example,

knowing two of KP
1 , KQ

1 , and Λ1 determines the third (recall equation (6)).

It can be seen that pre-ELB period parameters are often more precisely estimated than the

post-ELB period parameters, i.e., θ†pre tends to have smaller standard errors than θ†post. In addition,

the Q-measure parameters tend to be estimated with smaller standard errors than the P-measure

counterparts, reflecting the fact that Q-measure parameters are determined in large part from cross-

sectional information. Indeed, the standard errors for most elements of the KQ†
1 matrices for both

θ̂pre and θ̂post are small enough to indicate statistically significant changes in Q-measure dynamics.

This adds to the indication from the fitting errors (Section IV.A.1) and PC loadings (Section V.A)

that the Q-measure dynamics have changed.

The P-measure parameter estimates KP†
1 also indicate substantial change between the pre-ELB

and post-ELB periods. The standard errors are quite sizable, especially for the post-ELB period

estimate, but some of the elements of KP†
1 still show statistically significant change. Similarly, the

matrix Λ†
1 shows substantial changes, with some of the elements even flipping signs (although

the standard errors here are also fairly large). This suggests significant changes in the structure

of market price of risk, in addition to the changes in P and Q dynamics. Below, we examine how

28The original parameter estimates are given in Supplementary Material Appendix IA.II.
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these changes in market price of risk translate to different implications for expectations hypothesis

regressions.

Finally, note that the estimate of the long-run mean of the shadow rate (ρ†0) is somewhat lower

in θ†post than in θ†pre, adding further credence to the view that the natural rate “r-star” has declined

since Financial Crisis, albeit with large estimation uncertainty.

V.C. EH Regressions for Shadow Yields

Additional insights into how the model has changed can be gleaned from model-implied

expectations hypothesis (EH) regression coefficients.29

[Place Table 8 about here.]

We consider two such regressions, namely the Campbell and Shiller (1991) regression

(27) yst+1,n−1 − yst,n = α + β
1

n− 1
(yst,n − yst,1) + et+1,n,

and the Fama (1984) regression,

(28) yst+n,1 − yst,1 = α + β(f s
t,n − yst,1) + et+n,n,

where yst,n is the n-period shadow yield at time t, and f s
t,n is n-period ahead shadow forward rate

at time t, i.e., f s
t,n = log(P s

t,n/P
s
t,n+1).

30 We are defining these regressions in terms of shadow

29Studies like Backus, Foresi, Mozumdar, and Wu (2001) and Dai and Singleton (2002) have examined term

structure model–implied beta coefficients in EH regressions as a part of model evaluation, while our interest with these

model-implied coefficients is in characterizing the change between the two sample periods (pre-ELB and post-ELB).

30It can be shown that for n = 2, the Campbell-Shiller and Fama regressions contain the same information.

However, for n > 2, the two regressions probe somewhat different aspects of the departures from the expectations

hypothesis.

28

https://doi.org/10.1017/S0022109023000984 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0022109023000984


yields/forward rates, rather than true yields and forward rates, to facilitate the investigation of

potential differences between the pre-ELB and post-ELB periods: Because shadow yields/forward

rates are unaffected by the ELB if the model is structurally stable, the β’s from the pre-ELB period

should equal the β’s from the post-ELB period in these regressions.

Table 8 shows model-implied population EH regression coefficients along with their standard

errors (calculated with the delta method) for both the pre- and post-ELB parameters.31 The existing

literature on expectations hypothesis tests has found that the Campbell-Shiller regression coefficient

is often negative, while the Fama regression coefficient is typically less than 1 but larger than 0. The

implied regression coefficients for the pre-ELB sample are consistent with these patterns. Meanwhile,

the implied coefficients in the post-ELB period display interesting qualitative differences from the

pre-ELB sample. In particular, both with βCS
n and with βF

n , for low n, the coefficients are close to

1; in other words, shadow yield/forward rate dynamics are close to the EH for short maturities in

the post-ELB sample. But as n gets larger, the departures from EH based on the post-ELB sample

estimation get even more pronounced than those based on the pre-ELB sample estimation, with

βCS
n and βF

n for the post-ELB sample taking lower values than those for the pre-ELB sample. The

Campbell-Shiller beta for larger n’s (such as n = 120 months) taking a more negative value in the

post-ELB period than in the pre-ELB period is reminiscent of Andreasen et al. (2019), who obtain

similar results with actual yields instead of shadow yields.

Somewhat unsurprisingly, with limited amount of post-ELB period data, the standard errors

for that period are fairly large. While these results therefore might not constitute a sufficient body

of evidence by themselves, they are suggestive of a change in the pricing of interest rate risk, and

31The model-implied regression coefficients are straightforward to compute. For example, in the case of the

Campbell-Shiller coefficient, it is given by

βCS
n = (n− 1)Cov(yst+1,n−1 − yst,n, y

s
t,n − yst,1)/Var(y

s
t,n − yst,1) = (n− 1)

(b′n−1e
(1/12)KP

1−bn)Vx(bn−b1)

(b′n−b′1)Vx(bn−b1)
for n

measured in months, where Vx is the unconditional variance-covariance matrix of the state variables (implied by the

model parameters).
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further add to the finding in the previous section (Section V.B) that the parameters that describe the

market price of risk (Λ†) have changed meaningfully between the two periods.

V.D. Expectations and Term Premiums

Here we compare some of the predictive outputs from our various models to illustrate their

differences concretely in terms of quantities of economic interest.

We start with implied time series of the shadow rate st. The shadow rate is not a quantity

of economic interest per se. It is an unobserved variable, and its value does not have a simple

relationship with quantities of economic interest such as actual bond yields, interest rate expectations,

and term premiums. Still, as a central ingredient in the model, the estimates of shadow rates are worth

taking a look at. Figure 4 shows the estimates of the shadow rate over the post-ELB period based

on the pre-ELB sample parameter estimate (structural stability assumption) as well as post-ELB

sample parameter estimate (structural break assumption). Interestingly, the shadow rate assuming

a structural break is generally less negative than the shadow rate assuming structural stability. In

particular, the structurally stable model produces a notably more negative shadow rate during the

2014–16 period.

[Place Figure 4 about here.]

Figure 5 shows the time series of 2-year and 10-year yield term premiums implied by both

models. An especially notable feature in the upper panel is that the 2-year term premium implied

by the structurally broken model is generally closer to zero than that implied by the structurally

stable model; in other words, the structurally broken model is closer to the expectations hypothesis,

consistent with the finding in Section V.C that the implied Fama regression coefficients based

on θ̂post are closer to 1 (as would be implied by the EH) for short horizons, relative to θ̂pre. For

most of the post-ELB period, the 2-year term premium implied by the structurally stable model is

substantially more negative, implying that the near-term expected path of the short rate implied by
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the structurally stable model is steeper than the structurally broken model counterpart.32 On the

other hand, as shown in the right panel of Figure 5, the 10-year term premiums based on the models

with and without structural break are qualitatively more similar to each other. The 10-year term

premium based on the model with structural break is somewhat lower than that from the structurally

stable model in the 2011–2016 period and somewhat higher in the period since 2018.

Due to space constraints, additional results comparing the outputs from the structurally stable

and broken models are provided in Supplementary Material Appendix IA.V.

[Place Figure 5 about here.]

VI. Economic Interpretations of Structural Break Evidence

The results presented in Section IV and Section V indicate that the evidence for a structural break

is broad and covers multiple facets of yield curve dynamics, including the P-measure dynamics of

factors, risk premiums, and the Q-measure dynamics. We now discuss these aspects in turn.

1. Changes in P-measure dynamics: The comparison of PC-rotated parameters in Table 7

indicates significant changes in the P-measure dynamics of the state vector. In addition, the

innovation vector statistics presented in Section IV.A.2 also point to a change in P-measure

dynamics. This change in P-measure dynamics is consistent with the economic intuition that

32Because the sum of term premium and short rate expectation equals forward rate, and because fitting errors for

forward rates and yields are relatively small in latent-factor models, more negative term premiums translate to higher

(i.e., more positive) short rate expectations. Interestingly, the more negative level of shadow rate does not necessarily

translate to a lower level of the near-term expected short rate path. For example, during 2014–16, the shadow rate

implied by the structurally stable model was lower than that of the structurally broken model, but (as can be seen in

Figure 5) the 2-year term premium implied by the structurally stable model was less negative than that of the

structurally broken model. The reason is that the short rate expectations depend not only on the current (spot) shadow

rate but also on other factors that affect expectations.
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the evolution and interplay of key macro variables will change once the economy arrives

at the ELB, since conventional monetary policy can no longer respond to macroeconomic

developments and provide monetary stimulus in the ELB regime.33 This structural instability

issue could be especially concerning for those shadow rate term structure models that have

macro variables—such as inflation and GDP gap—as part of the state vector.34 However,

even pure latent-factor models, in which all of the state variables are latent, may not be free

from these concerns, as latent variables are typically thought to embody macroeconomic

risks. One potentially alleviating consideration is that unconventional monetary policy tools

may have helped to soften the blow of the ELB constraint to the real economy. But to what

extent they have done so is still an actively debated topic. Chung, Laforte, Reifschneider,

and Williams (2012), for example, find that the Federal Reserve’s asset purchases, while

materially improving macroeconomic conditions, did not prevent the ELB constraint from

having first-order adverse effects on real activity and inflation.

It is possible also that the Financial Crisis and the Great Recession resulted in significant

structural changes in the economy, which would be (partly) reflected through changes in P-

measure parameters. Persistent “headwinds” have been often mentioned in policy discussions

in the post-ELB period.

2. Changes in risk premiums: Table 7 also indicates a significant change in risk premium

behavior in the ELB regime; the market price of risk parameters (λ0,Λ) in the pre- and

post-ELB subsamples differ notably, some even have different signs. Results in Section V,

33This idea is reflected in simple stylized models like Reifschneider and Williams (2000). Studies of ELB dynamics

within a new-Keynesian framework, including Eggertsson and Woodford (2003), Nakata and Tanaka (2016), and Gust,

Herbst, López-Salido, and Smith (2017), also indicate the macro variables behave differently in ELB vs. non-ELB

periods.

34Ang and Piazzesi (2003) and Joslin et al. (2014) are examples of term structure models with macro factors. ELB

term structure models with macro factors include Bauer and Rudebusch (2016) and Wu and Xia (2016).
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including the EH regression coefficients and term premiums implied by pre- and post-ELB

subsample estimates, further add to the evidence of a change in the behavior of risk premiums.

In terms of economic forces behind the change, the state of being in the ELB regime could

be consequential enough to change risk premium behaviors, e.g., by affecting economic

agents’ risk attitudes and hedging behaviors. But the onset of ELB in the U.S. also roughly

coincided with the start of LSAPs—an unconventional policy tool which likely contributed

substantially to the change in the behavior of risk premiums—and the transition to an “ample

reserves” regime. A stylized model of King (2019)—a simple shadow rate model with supply

factor—indeed implies that the risk premium behavior changes as the economy goes into

the ELB regime.35 More broadly, we can expect LSAPs to significantly alter the behavior

of risk premiums in bond markets, as the asset purchases are also believed to directly affect

longer-term maturities of the yield curve through the suppression of term premiums (as

opposed to conventional policy, which affects longer-term maturities through its effect on

expected short-term rates).36 In addition, forward guidance—the other unconventional policy

tool that the Fed has employed over much of the ELB period—may also have affected risk

premium behavior especially at near- and intermediate-term horizons. Indeed, as the left panel

of Figure 5 shows, short-dated term premiums implied by the structurally broken model are,

on average, smaller in magnitude and less volatile in the ELB period.

3. Changes in Q-measure dynamics The estimated parameters in Table 7 also indicate a change

in Q-measure dynamics. This is consistent with the patterns in fitting errors we saw in Section

IV.A—the pre-ELB parameters imply notably larger yield fitting errors in the post-ELB

period, especially after 2014. The change in Q-measure parameters is also manifested in the

changes in shadow yield PC patterns, as we saw in Section V.A. Recall from Section II that

35In King’s model, the market price of risk vector is an affine function of Gaussian state variables in the normal

regime, but its dynamics become non-Gaussian in the ELB regime.

36For recent reviews, see Bernanke (2020) and Kuttner (2018).
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P-measure parameters kP
0 and KP

1 and Q-measure parameters kQ
0 and KQ

1 are linked by market

price of risk parameters (see equation (6)). As we have noted above, empirical evidence and

economic intuition support changes in both the P-measure dynamics of state variables and

the behavior of risk premiums. Therefore, the Q-measure parameters are naturally expected

to change as well, unless the changes in P-measure parameter K and in market price of risk

Λ1 exactly offset each other. There appears to be no obvious economic argument for such

cancellation.37

VII. Conclusion

In this paper, we examined the structural stability of shadow rate term structure models as

applied to U.S. Treasury yield data. We found various pieces of evidence pointing to structural

instability, including diagnostics based on innovation vectors and yield fitting errors, as well as

likelihood score–based tests. To characterize the changes in yield dynamics as generally as possible,

we estimate a shadow rate model in which the pre-ELB and post-ELB periods are described by

different sets of parameters. Overall, the results presented in this paper point to extensive changes

in the shadow yield dynamics since around the Financial Crisis. The structural change does not

appear to be confined to a single aspect of the model (say, only the P-dynamics), but instead spans

many facets of the model, including P-dynamics, Q-dynamics (and hence the principal components

of shadow yields), and risk pricing. The results also indicate that ignoring structural change can

lead to notable differences in quantities of practical interest, e.g., ignoring structural change implies

37Some related studies, including Andreasen et al. (2019) and Giacoletti, Laursen, and Singleton (2021), have

assumed that the Q-measure dynamics remain structurally stable even as the P-measure parameters are subject to a

structural break. The increased tractability of such a model may justify the assumption of stable Q parameters in some

applications even as our statistical evidence indicates a structural break in them. We discuss this point further in

Supplementary Material Appendix IA.IV.
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generally steeper expected paths of the short rate and generally more negative near-term term

premiums in the post-ELB period.

In sum, we find that the change in yield dynamics in the post-ELB period is not as simple

as suggested by structurally stable shadow rate models, at least in the case of U.S. data, and that

more material changes in the dynamics of Treasury yields took place after the federal funds rate

hit the ELB in 2008. Our paper has examined this issue from the perspective of a shadow rate

model with a structural break, but the empirical results herein may also be consistent with broader

misspecification of shadow rate models. It could be that a fundamentally different model would

yield a more satisfying description and richer insights into the dynamics of yields near the ELB.

35

https://doi.org/10.1017/S0022109023000984 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0022109023000984


References

Ahn, D.-H.; R. F. Dittmar; and A. R. Gallant. “Quadratic Term Structure Models: Theory and

Evidence.” Review of Financial Studies, 15 (2002), 243–288. ISSN 0893-9454.

Andreasen, M. M.; K. Jørgensen; and A. Meldrum. “Bond Risk Premiums at the Zero Lower

Bound.” Board of Governors of the Federal Reserve System, Washington (2019).

Andreasen, M. M., and A. Meldrum. “A Shadow Rate or a Quadratic Policy Rule? The Best Way

to Enforce the Zero Lower Bound in the United States.” Journal of Financial and Quantitative

Analysis, 54 (2019), 2261–2292. 10.1017/S0022109018001576.

Andrews, D. W. K. “Tests for Parameter Instability and Structural Change with Unknown Change

Point.” Econometrica, 61 (1993), 821–856.

Andrews, D. W. K., and R. C. Fair. “Inference in Nonlinear Econometric Models with Structural

Change.” Review of Economic Studies, 55 (1988), 615–639.

Ang, A., and M. Piazzesi. “A No-Arbitrage Vector Autoregression of Term Structure Dynamics with

Macroeconomic and Latent Variables.” Journal of Monetary Economics, 50 (2003), 745–787.

Backus, D.; S. Foresi; A. Mozumdar; and L. Wu. “Predictable Changes in Yields and Forward

Rates.” Journal of Financial Economics, 59 (2001), 281–311.

Bauer, M. D. “Restrictions on Risk Prices in Dynamic Term Structure Models.” Journal of Business

& Economic Statistics, 36 (2018), 196–211.

Bauer, M. D., and G. D. Rudebusch. “Monetary Policy Expectations at the Zero Lower Bound.”

Journal of Money, Credit and Banking, 48 (2016), 1439–1465.

36

https://doi.org/10.1017/S0022109023000984 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0022109023000984


Bauer, M. D., and G. D. Rudebusch. “Interest Rates Under Falling Stars.” American Economic

Review, 110 (2020), 1316–54.

Bauer, M. D.; G. D. Rudebusch; and J. C. Wu. “Correcting Estimation Bias in Dynamic Term

Structure Models.” Journal of Business & Economic Statistics, 30 (2012), 454–467.

Bernanke, B. S. “The New Tools of Monetary Policy.” American Economic Review, 110 (2020),

943–83.

Campbell, J. Y., and R. J. Shiller. “Yield Spreads and Interest Rate Movements: A Bird’s Eye View.”

Review of Economic Studies, 58 (1991), 495–514.

Chow, G. C. “Tests of Equality Between Sets of Coefficients in Two Linear Regressions.” Econo-

metrica, 28 (1960), 591–605.

Christensen, J. H.; F. X. Diebold; and G. D. Rudebusch. “The Affine Arbitrage-Free Class of

Nelson–Siegel Term Structure Models.” Journal of Econometrics, 164 (2011), 4–20.

Christensen, J. H. E., and G. D. Rudebusch. “Estimating Shadow-Rate Term Structure Models with

Near-Zero Yields.” Journal of Financial Econometrics, 13 (2014), 226–259.

Chung, H.; J.-P. Laforte; D. Reifschneider; and J. C. Williams. “Have We Underestimated the

Likelihood and Severity of Zero Lower Bound Events?” Journal of Money, Credit and Banking,

44 (2012), 47–82.

Dai, Q., and K. J. Singleton. “Specification Analysis of Affine Term Structure Models.” Journal of

Finance, 55 (2000), 1943–1978.

37

https://doi.org/10.1017/S0022109023000984 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0022109023000984


Dai, Q., and K. J. Singleton. “Expectation Puzzles, Time-Varying Risk premia, and Affine Models

of the Term Structure.” Journal of Financial Economics, 63 (2002), 415–441.

Duffee, G. R. “Term Premia and Interest Rate Forecasts in Affine Models.” Journal of Finance, 57

(2002), 405–443.

Duffee, G. R. “Information in (and not in) the Term Structure.” Review of Financial Studies, 24

(2011), 2895–2934.

Duffie, D., and R. Kan. “A Yield-Factor Model of Interest Rates.” Mathematical Finance, 6 (1996),

379–406.

Eggertsson, G. B., and M. Woodford. “The Zero Bound on Interest Rates and Optimal Monetary

Policy.” Brookings Papers on Economic Activity, 2003 (2003), 139–211.

Fama, E. F. “The Information in the Term Structure.” Journal of Financial Economics, 13 (1984),

509–528.

Ghysels, E., and A. Hall. “A Test for Structural Stability of Euler Conditions Parameters Estimated

Via the Generalized Method of Moments Estimator.” International Economic Review, 31 (1990),

355–364.

Giacoletti, M.; K. T. Laursen; and K. J. Singleton. “Learning from Disagreement in the U.S.

Treasury Bond Market.” Journal of Finance, 76 (2021), 395–441.

Gürkaynak, R. S.; B. Sack; and J. H. Wright. “The U.S. Treasury Yield Curve: 1961 to the Present.”

Journal of Monetary Economics, 54 (2007), 2291–2304.

38

https://doi.org/10.1017/S0022109023000984 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0022109023000984
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Figure 1

Time series of mean-root-squared yield fitting errors in the single-regime model estimated on

pre-ELB data (extended to the post-ELB subsample as a shadow rate model), and one-year moving

average. The pre-ELB period is shaded.
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Figure 2

Autocorrelations of level, slope, curvature innovations (lags are in weeks). The blue (dashed) lines

represent approximate 95 percent confidence bounds under the hypothesis of no autocorrelation.
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Figure 3

Time series of Lagrange multiplier statistics from two years before to two years after our assumed

break point. A large statistic rejects the hypothesis that the full-sample GMM conditions are satisfied

separately in the subsample before the given date and the subsample after the given date.
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Figure 4

Time series of estimated shadow rates from the structurally stable model based on pre-ELB parame-

ter estimates (and subsequently extended to the post-ELB period as a shadow rate model), and the

structurally broken shadow rate model.
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Figure 5

Two- (left panel) and ten-year (right panel) yield term premiums implied by our different models,

shown for the post-ELB subsample.
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Table 1

Empirical covariance matrix of implied innovation vectors (model rotated such that state variables

can be interpreted as principal components).

Pre-ELB
0.96 0.00 0.00
0.00 0.93 −0.08
0.00 −0.08 0.68

Post-ELB
0.69 0.39 0.22
0.39 0.66 0.23
0.22 0.23 0.64
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Table 2

Rotation-invariant χ2 statistics of implied innovation vectors. Lag 0 corresponds to equation (18),

and lags ≥ 1 correspond to equation (19).

Lag Pre-ELB Post-ELB d.f. 1% Cutoff Post/Pre 1% Cutoff
0 55.98 206.73 6 16.81 3.69 8.47
1 108.19 115.59 9 21.67 1.07 5.35
2–12 281.02 380.10 99 134.64 1.35 1.60
Sum 445.19 702.42 114 152.04 1.58 1.55
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Table 3

Empirical covariance matrix of implied innovation vectors (model rotated such that state variables

can be interpreted as principal components), by post-ELB sub-period.

Period I
1.03 0.70 0.32
0.70 0.85 0.41
0.32 0.41 0.79

Period II
0.84 0.40 0.34
0.40 0.67 0.54
0.34 0.54 0.74

Period III
0.65 0.14 0.26
0.14 0.55 0.04
0.26 0.04 0.71

Period IV
0.35 0.24 0.13
0.24 0.33 0.19
0.13 0.19 0.34
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Table 4

Rotation-invariant χ2 statistics of innovation vectors by post-ELB subperiod. Periods I, II, III, and

IV denote 12/2008–8/2011, 8/2011–5/2013, 6/2013–12/2015, and 1/2016–6/2019, respectively.

Lag I II III IV d.f. 1% Cutoff
0 96.85 52.74 23.80 125.50 6 16.81
1 41.07 21.22 93.25 10.64 9 21.67
2–12 192.58 53.78 536.24 54.04 99 134.64
Sum 330.50 127.74 653.29 190.18 114 152.04

50

https://doi.org/10.1017/S0022109023000984 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0022109023000984


Table 5

Ghysell-Hall statistics for null hypothesis of structural stability. In the middle table (“Subsample”)

and the rightmost table (“Surveys”), r is set to 7.3 basis points.

r χ2

12.5 299.36
7.3 326.12
5.5 325.20

Subsample χ2

I 117.18
II 86.42

III 120.53
IV 179.58

Surveys χ2

Included 326.12
Excluded 331.28

51

https://doi.org/10.1017/S0022109023000984 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0022109023000984


Table 6

The upper panel shows the PC1, PC2, PC3 loadings for the PC decomposition of weekly changes

in yields in the pre-ELB period (left hand side) and in the post-ELB period (right hand side). The

lower panel shows the loadings for the PC decomposition of instantaneous changes in shadow yields

implied by the pre-ELB subsample estimate θ̂pre (left hand side) and by the post-ELB subsample

estimate θ̂post (right hand side). These PCs are based on maturities (τ ) of 0.25, 0.5, 1, 2, 4, 7, 10

years. Standard errors are shown in parentheses.

Pre-ELB Post-ELB
τ PC1 PC2 PC3 PC1 PC2 PC3

0.25 0.2578 -0.7150 0.5128 0.0224 0.1032 0.6425
0.5 0.2829 -0.4273 -0.1066 0.0538 0.2031 0.5739

1 0.3601 -0.1749 -0.4435 0.1318 0.4302 0.2891
2 0.4338 0.0093 -0.4428 0.2900 0.5748 -0.1426
4 0.4599 0.1930 -0.1212 0.4819 0.3552 -0.3192
7 0.4244 0.3167 0.2841 0.5756 -0.1872 -0.0318

10 0.3795 0.3715 0.4873 0.5759 -0.5210 0.2261

Pre-ELB Post-ELB
τ PC1 PC2 PC3 PC1 PC2 PC3

0.25 0.22(0.03) -0.62(0.02) 0.49(0.03) 0.11(0.04) -0.58(0.02) 0.35(0.04)
0.5 0.28(0.02) -0.48(0.01) 0.10(0.03) 0.14(0.04) -0.53(0.01) 0.19(0.04)

1 0.37(0.01) -0.28(0.03) -0.34(0.02) 0.18(0.04) -0.44(0.02) -0.08(0.05)
2 0.44(0.01) -0.03(0.04) -0.52(0.01) 0.27(0.04) -0.27(0.06) -0.43(0.04)
4 0.46(0.01) 0.21(0.03) -0.19(0.01) 0.42(0.02) -0.01(0.08) -0.57(0.02)
7 0.43(0.01) 0.34(0.02) 0.27(0.02) 0.56(0.02) 0.21(0.05) -0.08(0.06)

10 0.39(0.02) 0.38(0.02) 0.50(0.02) 0.61(0.04) 0.29(0.03) 0.57(0.02)
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Table 7

PC-rotation (θ†pre, θ
†
post) of the estimated parameters for the pre-ELB subsample and post-ELB sub-

sample. Standard errors are shown in parentheses. The parameter vector kP
0 is zero by normalization.

θ̂†pre θ̂†post θ̂†pre θ̂†post
[KP†

1 ]11 -0.3245(0.0992) -0.1039(0.1176) ρ†0 0.0450(0.0023) 0.0374(0.0097)
[KP†

1 ]21 -0.5771(0.1076) -0.3488(0.0839) [ρ†1]1 0.1372(0.0415) 0.0892(0.0426)
[KP†

1 ]31 0.0703(0.0327) 0.0317(0.0623) [ρ†1]2 -0.7881(0.0552) -0.6272(0.0420)
[KP†

1 ]12 0.1105(0.1725) 0.5613(0.3275) [ρ†1]3 1.0756(0.0469) 0.5382(0.0320)
[KP†

1 ]22 -1.2233(0.3176) -0.8334(0.3421) [Σ†]11 0.0209(0.0007) 0.0370(0.0119)
[KP†

1 ]32 0.0094(0.0266) 0.0372(0.0844) [Σ†]22 0.0086(0.0007) 0.0060(0.0007)
[KP†

1 ]13 2.5916(0.8509) 0.9523(1.0423) [Σ†]33 0.0032(0.0002) 0.0030(0.0004)
[KP†

1 ]23 5.6326(0.4849) 3.5576(0.6313) [λ†
0]1 -0.2102(0.1844) -0.3395(0.4170)

[KP†
1 ]33 -0.7590(0.2928) -0.4871(0.3646) [λ†

0]2 0.4708(0.3557) 1.2801(1.2667)
[KQ†

1 ]11 0.5469(0.0523) 0.2749(0.0122) [λ†
0]3 -0.9817(0.1722) 0.8064(1.3404)

[KQ†
1 ]21 -0.7085(0.1127) -0.2958(0.0515) [Λ†

1]11 -41.7789(6.8946) -10.2476(4.3675)
[KQ†

1 ]31 0.1410(0.0555) -0.0508(0.0174) [Λ†
1]21 15.2818(8.5456) -8.9001(9.0878)

[KQ†
1 ]12 1.4295(0.2204) 0.5185(0.1330) [Λ†

1]31 -22.0198(11.4565) 27.3390(17.6313)
[KQ†

1 ]22 -1.4008(0.2523) -0.6274(0.1834) [Λ†
1]12 -63.2374(15.2839) 1.1569(10.2985)

[KQ†
1 ]32 0.2006(0.0207) -0.0539(0.0345) [Λ†

1]22 20.6275(15.0579) -34.6007(27.7273)
[KQ†

1 ]13 -2.9793(0.2268) -0.6228(0.2122) [Λ†
1]32 -59.5334(8.9792) 30.2072(24.7968)

[KQ†
1 ]23 4.7374(0.1870) 2.2668(0.0781) [Λ†

1]13 267.0819(36.9095) 42.6123(30.4754)
[KQ†

1 ]33 -1.3247(0.2714) -0.1417(0.1303) [Λ†
1]23 104.0556(59.7746) 216.8494(86.7756)

[kQ†
0 ]1 0.0044(0.0038) 0.0126(0.0146) [Λ†

1]33 176.1143(63.0105) -114.5137(85.4108)
[kQ†

0 ]2 -0.0041(0.0031) -0.0076(0.0078)
[kQ†

0 ]3 0.0032(0.0004) -0.0024(0.0040)
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Table 8

Model-implied expectations hypothesis regression coefficients. The upper panel shows the Campbell-

Shiller regression coefficients implied by the pre-ELB and post-ELB subsample parameter estimates,

θ̂pre and θ̂post. The lower panel shows the implied Fama regression coefficients. Standard errors are

shown in parentheses.

Campbell-Shiller
n β(θ̂pre) β(θ̂post)
2 -0.2181 (0.1386) 1.0367 (0.6128)
3 -0.2527 (0.1322) 0.9087 (0.6903)
6 -0.3469 (0.1150) 0.5429 (0.9432)

12 -0.4933 (0.0903) -0.0865 (1.2645)
24 -0.6543 (0.0755) -0.9392 (1.0551)
36 -0.7203 (0.0918) -1.4068 (0.4604)
48 -0.7527 (0.1198) -1.6552 (0.6097)
60 -0.7777 (0.1518) -1.7798 (1.2152)
84 -0.8393 (0.2200) -1.8352 (2.2844)

120 -0.9813 (0.3225) -1.6951 (3.5157)

Fama
n β(θ̂pre) β(θ̂post)
6 0.3173 (0.0668) 0.6428 (0.5004)

12 0.2582 (0.0662) 0.3518 (0.5240)
18 0.2269 (0.0676) 0.1815 (0.4152)
24 0.2120 (0.0699) 0.0820 (0.2855)
30 0.2051 (0.0722) 0.0226 (0.1761)
36 0.2019 (0.0744) -0.0141 (0.0983)
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