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In this paper, we analyse Turing instability and bifurcations in a host–parasitoid
model with nonlocal effect. For a ordinary differential equation model, we provide
some preliminary analysis on Hopf bifurcation. For a reaction–diffusion model with
local intraspecific prey competition, we first explore the Turing instability of
spatially homogeneous steady states. Next, we show that the model can undergo
Hopf bifurcation and Turing–Hopf bifurcation, and find that a pair of spatially
nonhomogeneous periodic solutions is stable for a (8,0)-mode Turing–Hopf
bifurcation and unstable for a (3,0)-mode Turing–Hopf bifurcation. For a
reaction–diffusion model with nonlocal intraspecific prey competition, we study the
existence of the Hopf bifurcation, double-Hopf bifurcation, Turing bifurcation, and
Turing–Hopf bifurcation successively, and find that a spatially nonhomogeneous
quasi-periodic solution is unstable for a (0,1)-mode double-Hopf bifurcation. Our
results indicate that the model exhibits complex pattern formations, including
transient states, monostability, bistability, and tristability. Finally, numerical
simulations are provided to illustrate complex dynamics and verify our theoretical
results.
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1. Introduction

Many kinds of predator–prey systems have been developed, refined and widely stud-
ied since the Lotka–Volterra system was proposed and analysed, but most of these
studies considered specialist predators [9, 27] that rely on a single-prey species to
survive and will go extinct in the absence of the prey. However, in the real world,
many predators have several alternative prey species as food and can persist by
switching to other food sources even when one desired prey species is scarce. Such
predators are called generalist predators, such as foxes, common buzzards, cats, etc.
Recently, there are some works considering generalist predators (see [9, 11, 17, 21,
23, 26, 30, 35, 38–40] and references therein). Comparing to predator–prey sys-
tems with specialist predators, predator–prey systems with generalist predators can
undergo richer dynamical behaviours and bifurcation phenomena [9, 31, 38–40].

One main method to incorporate generalist predation in predator–prey systems
is to assume that alternative resources are constant and the predator’s equation
is logistic or logistic-like form in the absence of the prey (see [9, 23, 26, 38, 39]
and references therein). For example, in order to explore factors to stop and even
sometimes to reverse the invasion of lepidopteron, Magal et al. [26] developed the
following host (prey)–parasitoid (generalist predators) diffusive model:

⎧⎪⎪⎨
⎪⎪⎩
∂u

∂t
= DΔu+ r1u

(
1 − u

K1

)
− Euv

1 + Ehu
,

∂v

∂t
= DΔv + r2v

(
1 − v

K2

)
+

γEuv

1 + Ehu
,

(1.1)

where u(x, t) and v(x, t) stand for the densities of the hosts (prey) and parasitoids
(generalist predators) at location x ∈ Ω and time t � 0, respectively. The parameter
D represents the diffusion rate, r1 is the growth rate of hosts, r2 describes the growth
rate of parasitoids, K1 is the carrying capacity of hosts and K2 denote the carrying
capacity of parasitoids in the absence of hosts, E is the encounter rate of hosts and
parasitoids, γ is the conversion rate of parasitoids, and h describes the harvesting
time. In system (1.1), when u(x, t) = 0, the predators can still survive with logistic
growth. Under Neumann boundary condition, Magal et al. [26] performed numerical
simulations, such as the existence of travelling waves, to identify the conditions
for which the leafminers advance can be stopped and reversed by parasitoids. By
considering different diffusion rates for predator and prey, Madec et al. [25] found
that bistability induced by generalist natural enemies can reverse pest invasions.
Du and Lou [8] also studied the existence and nonexistence of non-constant positive
steady states under different diffusion rates. A wealth of conclusions about system
(1.1) are obtained, but the detailed theoretical analysis is not complete.

In studying spatiotemporal dynamics for single and multiple interacting com-
ponents, it is usually assumed that individuals only interact with their nearby
neighbours, which is often termed local interactions [4]. Furter and Grinfeld [12]
claimed that it is untenable to assume plainly that the interactions among individ-
uals are always local, as organisms may tend to communicate with their peers in
certain ranges, which causes nonlocal interactions. Ermentrout and Cowan [10]
showed that nonlocal spatial interactions in two-component systems can cause
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higher codimension bifurcations and patterns, when considering the secondary
bifurcation of double-Hopf bifurcations, e.g. spatially nonhomogeneous or quasi-
periodic solutions. Britton [3] argued that if mobile animals compete for a common
resource, considering the depletion of resources, intraspecific competition effects
should depend on average population density in the neighbourhood of the cur-
rent location, which implies that nonlocal intraspecific interactions may be more
reasonable, and indeed nonlocal competitions can facilitate the coexistence of two
competitors. It turns out that the nonlocal interaction can induce rich and inter-
esting dynamics, which has attracted substantial attention in the past decade
[6, 7, 22, 33, 34, 36, 37].

We would like to mention that there are different methods to model nonlocality.
The first approach is to describe nonlocal diffusion by convolution integrals, we
refer to the monograph by Andreu-Vaillo et al. [1] for fundamental theories of such
nonlocal equations and a survey by Bates [2] for applications in materials science.
The second approach is to use spatial integrals to characterize nonlocal effects,
which has been employed in modelling population dynamics by Britton [3] and
Gourley [14]. We also refer to a review by Ruan [29] on such nonlocal epidemiolog-
ical models. In this paper, we follow the second approach, that is, we use a spatial
integral to describe the nonlocal intraspecific competition among the prey popu-
lation. Based on system (1.1) and [13], we propose the following host–parasitoid
model with generalist predation:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
= d1Δu+ r1u

(
1 − 1

K1

∫
Ω

G(x, y)u(y, t) dy
)
− Euv

1 + Ehu
, x ∈ Ω, t > 0,

∂v

∂t
= d2Δv + r2v

(
1 − v

K2

)
+

γEuv

1 + Ehu
, x ∈ Ω, t > 0,

∂u

∂ν
=
∂v

∂ν
= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) � 0, v(x, 0) = v0(x) � 0, x ∈ Ω.
(1.2)

The domain Ω is a region in the Euclidean space R
n with smooth boundary ∂Ω,

where ν is the outward unit vector of the boundary ∂Ω, is bounded in R
n. For the

rest of this paper, we consider system (1.2) in Ω = (0, lπ), l ∈ R
+. The boundary

conditions are homogenous Neumann boundary conditions, which means the model
is self-contained with zero population flux across the boundary. The constants d1

and d2 denote diffusion coefficients of prey and predators, respectively. The integral
term in the first equation of (1.2) accounts for the nonlocal intraspecies interactions
among the prey individuals, i.e. the self-regulation of the prey species depends upon
its own spatial average, weighted properly according to the spatial scale. To be more
precisely, G(x, y) can be regarded a measurement of the competition pressure at
location x from the individuals at another location y. In this paper, we will analyse
the following two situations in turn:

(1) Dirac kernel: G(x, y) = δ(x− y),

(2) Spatial average kernel: G(x, y) = 1/|Ω|, where |Ω| denotes the volume of the
habitat Ω.
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Case (1) is referred to as the local interaction, where δ(x) is the Dirac measure,
which implies that the nonlocal term

∫
Ω
G(x, y)u(y, t) dy in (1.2) is reduced to

u(x, t); while in case (2), the competition strength among all prey individuals is
the same across the habitat, and we call such nonlocal interaction as the global
competition, i.e. the competition between any two prey individuals is the same.

To simplify our analysis and calculations, we make the following scaling:

u = K1ū, v = K2v̄, t =
τ

r1
,

then system (1.2) becomes (still denote τ by t and drop the bar):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
= d1Δu+ u(1 − û) − buv

a+ u
, x ∈ Ω, t > 0,

∂v

∂t
= d2Δv + cv

(
1 − v +

eu

a+ u

)
, x ∈ Ω, t > 0,

∂u

∂ν
=
∂v

∂ν
= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) � 0, v(x, 0) = v0(x) � 0, x ∈ Ω,

(1.3)

where

û =
∫

Ω

G(x, y)u(y, t) dy, a =
1

EK1h
, b =

K2

r1hK1
,

c =
r2
r1
, e =

γ

r2h
, di →

di

r1
, (i = 1, 2),

and a, b, c, e, d1, d2 are all positive constants.
In this paper, we first provide some preliminary analysis on Hopf bifurcation

for the local model. Next, for the reaction–diffusion model with local intraspe-
cific prey competition, we show the Turing instability of spatially homogeneous
steady states (i.e. diffusion-induced instability), the existence of Hopf bifurcation,
and Turing–Hopf bifurcation. We will rigorously prove the existence of two kinds of
normal forms with different dynamics for Turing–Hopf bifurcation, where a pair of
spatially nonhomogeneous periodic solutions is stable for (8,0)-mode Turing–Hopf
bifurcation and unstable for (3,0)-mode Turing–Hopf bifurcation, which were sel-
dom observed and proved in an applied problem. Our results indicate that the
model exhibits complex pattern formations, including transient states, monostabil-
ity, bistability, tristability, etc. Finally, numerical simulations are given to illustrate
complex dynamics and verify our theoretical results. For the nonlocal intraspecific
prey competition case, we follow the technique of Gourley [14] and Gourley and
Ruan [15], that is, we assume that the spatial kernel takes some specific forms and
reduce the nonlocal model into a local one. Then, we study the Hopf bifurcation,
Turing bifurcation, and Turing–Hopf bifurcation. In addition, a new bifurcation
called double-Hopf bifurcation is investigated. For the case with general spatial
kernels, one could use spectral theory to analyse the stability and bifurcation of the
model (see [43]), which deserves further consideration.

The remaining part of this paper is organized as follows. In § 2, we inves-
tigate the Hopf bifurcation for a ordinary differential equation (ODE) model.
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In § 3, we consider bifurcations of the reaction–diffusion system with
local intraspecific prey competition, including Turing instability of spa-
tially homogeneous steady states, Hopf bifurcation, Turing–Hopf bifurca-
tion, and spatiotemporal patterns via Turing–Hopf bifurcation are pro-
vided in this part. In § 4, we focus on a reaction–diffusion sys-
tem with nonlocal intraspecific prey competition, the criteria for the
existence of Hopf bifurcation, Turing bifurcation, and Turing Hopf bifurcation
are established, and a new bifurcation double-Hopf bifurcation is studied. Finally,
we provide a summary and open problems in § 5.

We use N to denote a set of all positive integers, and N0 := N ∪ 0 in this paper.

2. Hopf bifurcation of the ODE system

In this section, we consider system (1.3) without spatial effects, i.e. the local system:⎧⎪⎪⎨
⎪⎪⎩

du
dt

= u

(
1 − u− bv

a+ u

)
,

dv
dt

= cv

(
1 − v +

eu

a+ u

)
.

(2.1)

According to Xiang et al. [38], system (2.1) always has three boundary equilibria:
hyperbolic unstable node B1(0, 0), hyperbolic saddles B2(1, 0), and B3(0, 1) if
a > b.

The positive equilibrium (u, v) of system (2.1) satisfies

f(u) � u3 + (2a− 1)u2 + (a2 − 2a+ be+ b)u+ a(b− a) = 0. (2.2)

System (2.1) has a unique positive equilibrium E∗(u∗, v∗) if (a, b, c, e) ∈ U1, where
0 < u∗ < 1, v∗ = ((1 − u∗)(a+ u∗))/b and

U1 �
{

(a, b, c, e)|a > b, a � 1
2
, c > 0, e > 0

}
. (2.3)

The Jacobian matrix of system (2.1) at E∗ is

J(E∗) = J0 �
(
s1 − u∗ −δ1
cδ2 −cv∗

)
,

where

s1 =
u∗(1 − u∗)
a+ u∗

, δ1 =
bu∗

a+ u∗
, δ2 =

aev∗
(a+ u∗)2

. (2.4)

Then, we have

Det(J0) = M0 � c(δ1δ2 − (s1 − u∗)v∗) = cu∗v∗

(
1 +

abe

(a+ u∗)3
− bv∗

(a+ u∗)2

)
,

Tr(J0) = T0 � (s1 − u∗) − cv∗ =
1

a+ u∗
[(1 − a− 2u∗)u∗ − c(a+ (1 + e)u∗)] .

(2.5)

https://doi.org/10.1017/prm.2024.24 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2024.24


6 C. Xiang, J. Huang, M. Lu, S. Ruan and H. Wang

A simple calculation shows that

Det(J0) = M0 =
cs1
b
f ′(u∗) > 0. (2.6)

Let

cH0 � s1 − u∗
v∗

=
u∗(1 − a− 2u∗)
a+ (1 + e)u∗

, (2.7)

we have the following results.

Lemma 2.1. If (a, b, c, e) ∈ U1, then system (2.1) has a unique positive equilib-
rium E∗, which is unstable for Tr(J0) > 0, and locally asymptotically stable for
Tr(J0) < 0. More precisely:

(I) if u∗ � (1 − a)/2, then E∗ is locally asymptotically stable;

(II) if u∗ < (1 − a)/2 and

(i) 0 < c < cH0 , then E∗ is unstable;

(ii) c = cH0 , then E∗ is a centre-type equilibrium;

(iii) c > cH0 , then E∗ is locally asymptotically stable.

We next consider case (II)(ii) in lemma 2.1, and explore the existence of Hopf
bifurcation at E∗. Using the formula in Perko [28], we obtain the first Lyapunov
coefficient:

σ1 =
u∗(1 − a− 2u∗)σ11

8(a+ u∗)6(1 − u∗)M0
, (2.8)

where M0 is given in (2.5) and

σ11 = (2a2 + a(1 + 3u∗)u∗ + (1 − 3u∗ + 4u2
∗)u∗)ab− 2(a+ u∗)2(a2 − u3

∗)(1 − u∗).

Theorem 2.2. If (a, b, c, e) ∈ U1, u∗ < (1 − a)/2 and a < 1, then system (2.1)
undergoes a Hopf bifurcation at E∗ for c = cH0 . Moreover,

(i) if σ11 < 0, then the Hopf bifurcation is supercritical and the bifurcating periodic
orbit is stable;

(ii) if σ11 > 0, then the Hopf bifurcation is subcritical the bifurcating periodic orbit
is unstable.

Example 2.3. In order to verify the conclusions of theorem 2.2, we fix a = 1
2 , b = 1

4 ,
and e = 95

16 . Select c as bifurcation parameter, then system (2.1) can be written as⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

du
dt

= u

(
1 − u− v

2 + 4u

)
,

dv
dt

= cv

(
1 +

95u
8 + 16u

− v

)
,

u(0) = 0.2, v(0) = 1.5.

(2.9)
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Figure 1. (a) E∗ of system (2.1) is stable when c = 1
40 > cH

0 = 4
175 ; (b) E∗ of system

(2.1) is unstable and surrounded by a stable limit cycle when c = 1
50 < cH

0 .

It is easy to check that E∗ is stable when c = 1
40 > cH0 = 4

175 (figure 1(a)), and
a stable limit cycle, bifurcating from supercritical Hopf bifurcation at E∗, occurs
when c = 1

50 < cH0 (figure 1(b)).

3. System (1.3) with local intraspecific prey competition

In this section, we consider system (1.3) with local intraspecific prey competition,
i.e. the nonlocal term û in (1.3) is reduced to u(x, t).

3.1. Turing instability of the reaction–diffusion system

In this subsection, we consider the Turing instability of the positive constant
steady state E∗ in reaction–diffusion system (1.3) when (a, b, c, e) ∈ U1.

Proposition 3.1. The solutions of (1.3) are non-negative. Moreover, the non-
negative solution (u, v) of system (1.3) satisfies

lim sup
t→∞

max
Ω̄

u(x, t) � 1, lim sup
t→∞

max
Ω̄

v(x, t) � 1 +
e

1 + a
.

Proof. Since both the u-axis and v-axis are invariant lines, if the initial values are
non-negative, then solutions of system (1.3) are also non-negative. According to
comparison principle, we have

u(1 − u) − buv

a+ u
� u(1 − u), (x, t) ∈ Ω × [0,∞),

hence, there exists a T ∈ (0, ∞) such that u(x, t) � 1 + ε in Ω̄ × [T, ∞) for any
ε > 0. Moreover,

cv

(
1 +

eu

a+ u
− v

)
� cv

(
1 +

e(1 + ε)
a+ 1 + ε

− v

)
, x ∈ Ω̄, t ∈ [T,∞),
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then again by comparison principle, we have

lim sup
t→∞

max
Ω̄

v(x, t) � 1 +
e+ ε

1 + a+ ε
,

by the arbitrariness of ε, the conclusion holds. �

The linear part of system (1.3) is
⎛
⎜⎝
∂u

∂t
∂u

∂t

⎞
⎟⎠ = L

(
u
v

)
= D

(
uxx

vxx

)
+ J

(
u
v

)
(3.1)

where

D =
(
d1 0
0 d2

)
,

and J = J0. L is a linear operator with domain DL = XC := X ⊕ iX = {x1 + ix2 :
x1, x2 ∈ X} and

X := {(u, v) ∈ H2[(0, lπ)] ×H2[(0, lπ)]
∣∣ux(0, t) = ux(lπ, t)

= vx(0, t) = vx(lπ, t) = 0},

where H2[(0, lπ)] represent a standard Sobolev space.
Define (k ∈ N):

Jk =

⎛
⎜⎜⎝
s1 − u∗ − d1

(
k

l

)2

−δ1

cδ2 −cv∗ − d2

(
k

l

)2

⎞
⎟⎟⎠ ,

then the corresponding characteristic equation of Jk is

Pk(λ) = λ2 − Tkλ+ Mk, (3.2)

in which

Tk = T0 − (d1 + d2)
(
k

l

)2

,

Mk = d1d2

(
k

l

)4

+ (cv∗d1 − (s1 − u∗)d2)
(
k

l

)2

+ M0.

Obviously, Bi (i = 1, 2, 3) and E∗ are all constant steady states. When (a, b, c, e) ∈
U1, Bi (i = 1, 2, 3) are still unstable, and E∗(u∗, v∗) is locally asymptotically stable
for system (1.3) if and only if one of the following conditions holds:

(i) u∗ � (1 − a)/2;

(ii) u∗ < (1 − a)/2, c > cH0 , cv∗d1 − (s1 − u∗)d2 � 0.
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Next, we study the instability and stability of the positive constant steady state
E∗ induced by diffusion.

Because Tk < 0 and Mk > 0 for any k � 0 when u∗ � (1 − a)/2 and (a, b, c, e) ∈
U1, we consider Turing instability under the following conditions:

c > cH0 , u∗ <
1 − a

2
, (a, b, c, e) ∈ U1, (3.3)

where U1 and cH0 are given in (2.3) and (2.7), respectively. Note that Tk < 0 for any
positive integer k if u∗ < (1 − a)/2 and c > cH0 , thus to make sure Turing instability
occurs, we need find the parameter conditions for Mk < 0. Define:

U2 =
{

(a, b, c, e, u∗)|u∗ <
1 − a

2
, 1 > a � 1

2
, a > b > 0, c > 0, e > 0

}
. (3.4)

Next, we discuss diffusion-induced instability at E∗ for system (1.3).
We define

B = (s1 − u∗)d2 − cv∗d1. (3.5)

To ensure that Turing instability occurs, we need to find appropriate parameter
conditions such that Mk < 0 for some k ∈ N. Hence, we let:

B > 0 and (Mk)min = M
l
√

B/2d1d2
= M0 −

B2

4d1d2
< 0,

which are equivalent to

B > 2
√
d1d2M0,

then we have the following results.

Lemma 3.2. Suppose (a, b, c, e, u∗) ∈ U2, c > cH0 and B > 2
√
d1d2M0, then

diffusion-induced Turing instability occurs for system (1.3).

Example 3.3. Choosing (a, b, c, e, d1, d2) = (1
2 ,

1
3 ,

1
25 ,

203
48 ,

1
18 , 3), we can get

(u∗, v∗) = ( 1
12 ,

77
48 ), and

(i) if l = 1, then for any positive integer k, we have Mk > 0. Hence, E∗ is a stable
constant steady state with respect to systems (1.3) (see figure 2(a));

(ii) if l = 3, then there exists a unique positive integer k = 2, such that M2 =
− 5921

453 600 < 0. Hence, E∗ is an unstable equilibrium with respect to system (1.3)
(see figure 2(b)).

3.2. Bifurcations of the reaction–diffusion system

In this subsection, we discuss the Hopf bifurcation and Turing–Hopf bifurcation
for system (1.3) around E∗ under the parameter condition U2, where U2 is given
in (3.4).
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Figure 2. Turing instability of the spatially homogeneous steady state E∗(u∗, v∗): (a)
l = 1, E∗ is stable with respect to systems (1.3); (b) l = 3, E∗ is unstable with respect to
system (1.3). u0(x) = 1

12 − 0.001 cos(x), v0(x) = 77
48 + 0.001 cos(x).

3.2.1. Hopf bifurcation. In theorem 2.2 we discussed the existence of temporal peri-
odic solutions for system (1.3) when all the diffusion coefficients are equal to zero.
Now, we want to explore the Hopf bifurcation when the diffusion coefficients are
not all zero and (a, b, c, e, u∗) ∈ U2, where U2 is given in (3.4).

Here, we still use c as the bifurcation parameter, the necessary conditions for a
Hopf bifurcation at c = cHi (i = 0, 1, 2, . . .) are

Ti|c=cH
i

= 0, Mi|c=cH
i
> 0, (3.6)

Tj |c=cH
i
�= 0, Mj |c=cH

i
�= 0, j �= i, (3.7)

where Tk and Mk are given in (3.2).
Next, we first explore the existence and bifurcating direction of spatially homoge-

neous periodic orbits for system (1.3), i.e. i = 0, c = cH0 in (3.6) and (3.7). Obviously,
T0 = 0 and M0 > 0 hold for c = cH0 and (a, b, c, e, u∗) ∈ U2. Moreover, at c = cH0 ,
Tk < 0 for any positive integer k. According to the expression of Mk, we let:

2
√
d1d2M0 > B, (3.8)

which implies that

(Mk)min > 0 (3.9)

for any positive integer k. Under these conditions, we have a single pair of complex
eigenvalues with zero real part given by λ = ±β0i (where β0 =

√
M0) and

dRe(λ(c))
dc

∣∣∣∣
c=cH

= −v∗
2

�= 0. (3.10)

To get the stability of the bifurcated periodic solutions we need to know the
behaviour of system (1.3) in its centre manifold at the bifurcation point. First, we
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define a conjugate operator of L which was defined in (3.1) as follows:

L∗
(
u
v

)
= D

(
uxx

vxx

)
+ J∗

(
u
v

)
. (3.11)

Here, J∗ = JT (E∗) and L∗ are also defined in domain X.
Let:

q =
(
q1
q2

)
=

⎛
⎝ 1
s1 − u∗
δ1

− β0

δ1
i

⎞
⎠, q∗ =

(
q∗1
q∗2

)
=

1
2lβ0π

(
β0 + (s1 − u∗)i

−δ1i

)
,

where β0 = β(cH) and 〈m, n〉 =
∫ lπ

0
mTndx for any m ∈ DL∗ and n ∈ DL, which

denotes the inner product in L2[(0, π)] × L2[(0, π)]. It is easy to check that
〈L∗m, n〉 = 〈m, Ln〉, Lq = iβ0q, L∗q∗ = −iβ0q

∗, 〈q∗, q〉 = 1 and 〈q∗, q̄〉 = 0.
Following the calculating procedure in Hassard et al. [18] (see also [42]), we

obtain:

Re(σ1(cH0 )) = 4
u∗(1 − a− 2u∗)

8(a+ u∗)6(1 − u∗)M0
σ11,

where σ11 is given in (2.8). Then, we have the following results.

Theorem 3.4. If (a, b, c, e, u∗) ∈ U2 and 2
√
d1d2M0 > B, then system (1.3)

undergoes a 0-mode Hopf bifurcation around E∗ at c = cH0 . Moreover,

(1) if σ11 < 0, then the Hopf bifurcation is supercritical and the bifurcating
(spatially homogeneous) periodic solutions are asymptotically stable;

(2) if σ11 > 0, then the Hopf bifurcation is subcritical and the bifurcating (spatially
homogeneous) periodic solutions are unstable.

Example 3.5. Fix a = 1
2 , b = d2 = 1

3 , and e = 7
2 , choose d1 = 0.015 and c =

0.03 < 0.031 = cH0 , then we have Re(σ1(cH0 )) = −1.615 < 0, which means that the
bifurcating periodic solutions are orbitally asymptotically stable (see figure 3).

Next, we consider the spatially nonhomogeneous Hopf bifurcations for system
(1.3) with k � 1.

Define:

A1 = δ1δ2 − (s1 − u∗)v∗, A2 =
√
δ1δ2(δ1δ2 − (s1 − u∗)v∗), (3.12)

where A1 > 0 since Det(J(E∗)) > 0.
If d1 + d2 � (s0 − u∗)l2, then Tk < 0 for any positive integer k. If d1 + d2 < (s1 −

u∗)l2, then there exists a largest positive integer ǩ such that (d1 + d2)k2 < (s1 −
u∗)l2 for 1 � k � ǩ, and (d1 + d2)k2 � (s1 − u∗)l2 for k > ǩ. Moreover, from Tk = 0
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Figure 3. Stable spatially homogeneous periodic solution bifurcating from 0-mode Hopf
bifurcation in system (1.3), where (a, b, e) = ( 1

2 , 1
3 , 7

2 ), l = 2, (d1, d2) = (0.015, 1
3 ), c =

0.03 < cH = 0.031, (u0(x), v0(x)) = (0.1 − 0.01 cos(1.5x), 1.8 − 0.05 cos(1.5x)).

(1 � k � ǩ), we have c = cHk , where

cHk =
(s1 − u∗)l2 − (d1 + d2)k2

v∗l2
(1 � k � ǩ). (3.13)

On the other hand, substituting cHk into Mk, we have

Mk =

(
(s1 − u∗) − d1

(
k

l

)2
)(

d1

(
k

l

)2

+
A1

v∗

)
− d2

(
k

l

)2 (s1 − u∗)v∗ + A1

v∗
,

it is obvious that Mk < 0 for any positive integer k if (s1 − u∗) �
d1(1/l)2. If (s1 − u∗) > d1(1/l)2, then there exists a largest positive inte-
ger k̂ such that (s1 − u∗) > d1(k/l)2 for 1 � k � k̂, and (s1 − u∗) � d1(k/l)2

for k > k̂. It is easy to see that ǩ � k̂. From Mk = 0, we have d2 = dk
2 �

((A1l
2 + d1v∗k2)((s1 − u∗)l2 − d1k

2))/(k2l2(A1 + (s1 − u∗)v∗)), and dk
2 is decreas-

ing with respect to k2. Let:

d∗2 =
(A1l

2 + d1v∗k̂2)((s1 − u∗)l2 − d1k̂
2)

k̂2l2(A1 + (s1 − u∗)v∗)
, (3.14)

where c0 and A1 are given in (2.4) and (3.12), respectively. We have the following
results.

Theorem 3.6. Assume (a, b, c, e, u∗) ∈ U2, d1 + d2 < (s1 − u∗)l2 and d2 < d∗2
hold, then system (1.3)undergoes a k-mode Hopf bifurcation at c = cHk for k ∈ [1, ǩ],
where the characteristic equation Pk(λ) = 0 has a pair of purely imaginary roots and
other roots of Pk(λ) = 0 with non-zero real parts.

Proof. By (a, b, c, e, u∗) ∈ U2, we have (s1 − u∗) > 0. For fixed k ∈ [1, ǩ] and c =
cHk , we have Tk = 0 and Mk > 0 since d1 + d2 < (s1 − u∗)l2 and d2 < d∗2. Moreover,
for other integer k � 0, we have Tk �= 0 and Mk �= 0. These complete the proof. �
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Example 3.7. Fixed a = 1
2 , b = 1

4 , and e = 95
16 , if we chose d1 = 1

4 , d2 = 1
28 , and

l = 8, then k̂ = ǩ = 3 and d∗2 = 4807
46 080 >

1
28 . Hence, according to theorem 3.6, sys-

tem (1.3) exhibits a k-mode Hopf bifurcation for k = 1, 2, 3, which are spatially
nonhomogeneous.

3.2.2. Turing–Hopf bifurcation. In this subsection, we consider the existence of
Turing–Hopf bifurcations around E∗ in system (1.3) under the condition U2, where
U2 is given in (3.4).

According to Jiang et al. [19], if there exists a positive integer k1 and a non-
negative integer k2 (k2 �= k1) such that Pk1(λ) = 0 has a simple zero root and
Pk2(λ) = 0 has a pair of purely imaginary roots, while all other eigenvalues of
Pk(λ) = 0 have non-zero real parts, and the corresponding transversal conditions
hold, then we say that a (k1, k2)-mode Turing–Hopf bifurcation occurs.

Let Pk(0) = 0 (k ∈ N), then we have

d1d2

(
k

l

)4

+ (cv∗d1 − (s1 − u∗)d2)
(
k

l

)2

+ c(δ1δ2 − (s1 − u∗)v∗) = 0,

from which we have

c = ck(d1) � d2k
2((s1 − u∗)l2 − d1k

2)
v∗d1k2l2 + A1l4

, d1 ∈
(

0,
l2

k2
(s1 − u∗)

)
, (3.15)

where A1 is defined in (3.12). Thus, system (1.3) may undergo k-mode Turing
bifurcation if c = ck(d1), d1 ∈ (0, ((s1 − u∗)l2)/k2) and k ∈ N.

Theorem 3.8. Assume (a, b, c, e, u∗) ∈ U2, if k � k∗ =
⌊
l
√

A1/d2v∗
⌋

+ 1, then
system (1.3) undergoes a (k, 0)-mode Turing–Hopf bifurcation at E∗ for (d1, c) =
(dk

1 , c
H
0 ). Moreover, when (d1, c) = (dk∗

0
1 , cH0 ), system (1.3) undergoes a (k∗0 , 0)-

mode Turing–Hopf bifurcation, where all other eigenvalues of Pk(λ) = 0 have
negative real parts except a simple zero eigenvalue and a pair of pure imaginary
eigenvalues.

Proof. First, we denote the curves c = ck(d1) in the (d1, c)-plane by Lk, i.e.:

Lk : c = ck(d1), 0 < d1 <
(s1 − u∗)l2

k2
, k ∈ N,

and denote the 0-mode Hopf bifurcation curve in the (d1, c)-plane by H0, i.e.:

H0 : c = cH0 ,

where cH0 is defined in (2.6).
Second, we explore the existence of Turing–Hopf bifurcation point. From

(3.15) we have dck(d1)/dd1 = −(d2δ1δ2k
4/((v∗d1k

2 + A1l
2)2)) < 0, which implies

that ck(d1) is monotonically decreases in d1. By straightforward calculation
we have limd1→0+ ck(d1) = ((s1 − u∗)d2k

2)/A1l
2 > (s1 − u∗)/v∗ = cH0 if k � k∗ �⌊

l
√
A1/d2v∗

⌋
+ 1 (�·� denotes the floor function). Combining the above results
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Figure 4. Turing bifurcation curves Lk, Lj , Lk∗
0
, Hopf bifurcation curve H0 and

Turing–Hopf bifurcation points THk, THj , THk∗
0

in the (d1, c)-plane.

with limd1→((s1−u∗)l2)/k2 ck(d1) = 0, we know that there exists a unique d1 = dk
1 ∈

(0, (l2(s1 − u∗))/k2) such that ck(dk
1) = cH0 for k � k∗ (see figure 4). Thus, the

Turing–Hopf bifurcation point THk(dk
1 , c

H
0 ) exists for k � k∗, where

dk
1 =

(s1 − u∗)(v∗d2k
2 −A1l

2)l2

v∗k2((s1 − u∗)l2 + d2k2)
, k � k∗. (3.16)

Moreover, we have

ddk
1

dk2
=

(s1 − u∗)l2(−v∗d2
2k

4 + 2d2A1l
2k2 + (s1 − u∗)A1l

4)
v∗k4((s1 − u∗)l2 + d2k2)2

.

Next, we discuss the sign of ddk
1/dk

2. It is obviously that ddk
1/dk

2 has the same
sign with ϕ(k2) � −v∗d2

2k
4 + 2d2A1l

2k2 + (s1 − u∗)A1l
4. Let w = k2, then ϕ(w) =

−v∗d2
2w

2 + 2d2A1l
2w + (s1 − u∗)A1l

4. Since limw→0+ ϕ(w) = (s1 − u∗)A1l
4 > 0,

and limw→∞ ϕ(w) = −∞, there exists a unique positive w∗ satisfying ϕ(w∗) = 0,
and ϕ(w) > 0 in the interval [0, w∗). Denote:

k0
m � �√w∗� =

⌊
l

√
A2 + A1

v∗d2

⌋
,

where A2 is defined in (3.12). Define km � max{k∗, k0
m}, then dk

1 monotonically
increases in the interval [k∗, km] for km � k∗, and monotonically decreases in the
interval [km + 1, ∞) in k.
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We denote:

k∗0 =

{
km, if dkm

1 > dkm+1
1 ,

km + 1, if dkm
1 < dkm+1

1 ,

then for any given c = cH0 , dk∗
0

1 = maxk∈N{dk
1}, which is the abscissa of Turing–Hopf

bifurcation point THk∗
0
(dk∗

0
1 , cH0 ) (see figure 4). Thus, system (1.3) may undergo a

(k∗0 , 0)-mode Turing–Hopf bifurcation, where all other eigenvalues of Pk(λ) = 0
have negative real parts except a simple zero eigenvalue and a pair of pure
imaginary eigenvalues. If dkm

1 = dkm+1
1 , then diffusive system (1.3) may undergo

Turing–Turing–Hopf bifurcation, which is a codimension-3 bifurcation, we leave it
for future consideration.

When (d1, c) = (dk∗
0

1 , cH0 ), we have T0 = 0, M0 > 0, Tk∗
0
< 0, and Mk∗

0
= 0. In

addition, we have Tk < 0 for any positive integer k, and Mk > 0 for any k �= k∗0 since
d

k∗
0

1 = maxk∈N{dk
1}. This implies that the real parts of the eigenvalues of Pk(λ) = 0

(k �= 0, k∗0) are all negative. Moreover, suppose λ1 = α1 + iβ1 and λ2 = α2 + iβ2,
where β1 =

√
M0 and α1 = α2 = β2 = 0 when (d1, c) = (dk∗

0
1 , cH0 ), then we have

the transversality conditions:

dα1

dc

∣∣∣∣
c=cH

0

= −v∗
2
< 0,

dα2

dd1

∣∣∣∣
d1=d

k∗
0

1

=
(d2 (k/l)2 + (s1 − u∗)) (k/l)2

Tk∗
0

< 0, c = cH0 .

(3.17)

The proof is completed. �

3.3. Spatiotemporal patterns via Turing–Hopf bifurcation

In this section, we calculate the normal forms of the (k∗0 , 0)-mode Turing–Hopf
bifurcation for reaction–diffusion system (1.3) at E∗. We choose d1 and c as bifurca-
tion parameters, let d1 = d

k∗
0

1 + μ1, c = cH0 + μ2, and obtain the unfolding system
from system (1.3) as follows:⎧⎪⎪⎨

⎪⎪⎩
∂u

∂t
− (dk∗

0
1 + μ1)Δu = u

(
1 − u− bv

a+ u

)
, x ∈ (0, lπ), t > 0,

∂v

∂t
− d2Δv = (cH0 + μ2)v

(
1 − v +

eu

a+ u

)
, x ∈ (0, lπ), t > 0.

(3.18)

The constant steady state of system (3.18) is E∗, where u∗ satisfies f(u∗) = 0 and
v∗ = ((1 − u∗)(a+ u∗))/b. To apply the generic formulas developed by Jiang et al.
[19], we consider the transformation ŭ = u− u∗, v̆ = v − v∗ and drop the breves,
then system (3.18) is transformed into:⎧⎪⎪⎨

⎪⎪⎩
∂u

∂t
− (dk∗

0
1 + μ1)Δu = (u+ u∗)

(
1 − (u+ u∗) −

b(v + v∗)
a+ (u+ u∗)

)
,

∂v

∂t
− d2Δv = (cH0 + μ2)(v + v∗)

(
1 − (v + v∗) +

e(u+ u∗)
a+ (u+ u∗)

)
.

(3.19)

According to [19], by a series of calculations, the normal form of system
(1.3) restricted on the centre manifold up to third order at the Turing–Hopf
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singularity is

⎧⎪⎨
⎪⎩
ż1 = a1(μ)z1 + a200z

2
1 + a011z2z̄2 + a300z

3
1 + a111z1z2z̄2 + h.o.t.,

ż2 = iω0z2 + b2(μ)z2 + b110z1z2 + b210z
2
1z2 + b021z

2
2zz̄2 + h.o.t.,

˙̄z2 = −iω0z̄2 + b̄2(μ)z̄2 + b̄110z1z̄2 + b̄210z
2
1 z̄2 + b̄021z2z̄

2
2 + h.o.t.,

(3.20)

where the coefficients can be directly calculated according to [19]; here, we omit
the expressions for brevity. Instead, we derive concrete expressions for normal
form (3.20) by fixing parameters. Then, we present bifurcation diagrams of the
Turing–Hopf bifurcation and the corresponding phase portraits to exhibit spa-
tiotemporal dynamics for diffusive system (1.3) near the Turing–Hopf singularity.

3.3.1. (3, 0)-mode Turing–Hopf bifurcation. In this subsection, we set (a, b, e,
d2, l) = (1

2 ,
1
3 ,

7
2 ,

1
3 , 2). By straightforward calculations for system (1.3), we

have s1 − u∗ = 0.0505, M0 = 0.01169, (u∗, v∗) = (0.109, 1.629), k∗0 = 3, and dk∗
0

1 =
0.014534. Then, we have k1 = 3 and k2 = 0. The Turing bifurcation curve is

L3 : c = c3(d1) =
d2k

2(l2c0 − d1k
2)

v∗d1l2k2 + (δ1δ2 − c0v∗)l4

=
0.0103 − 0.4604d1

d1 + 0.1028
, 0 < d1 < 0.0224,

Hopf bifurcation curve is c = cH0 = 0.031, and (3, 0)-mode Turing–Hopf bifurcation
point is (d1, c) = (0.014534, 0.031).

Furthermore, for the above given parameters, the normal form system (3.20)
truncated to order 3 for the (3, 0)-mode Turing–Hopf bifurcation is

ż1 = −(2.3011μ1 + 0.5495μ2)z1 − 3.2542z3
1 − 5.9346z1z2z̄2,

ż2 = 0.1081iz2 + (1.7432i− 0.8141)μ2z2 + (0.01822i− 2.1171)z2
1z2

− (1.6147 + 1.2983i)z2
2 z̄2,

˙̄z2 = −0.1081iz̄2 − (1.7432i+ 0.8141)μ2z̄2 − (0.01822i+ 2.1171)z2
1 z̄2

− (1.6147 − 1.2983i)z2z̄2
2 . (3.21)

Let z1 = r, z2 = ρ cos θ + iρ sin θ, z̄2 = ρ cos θ − iρ sin θ, and drop the equation of θ,
then system (3.21) becomes

ṙ = −(2.3011μ1 + 0.5495μ2)r − 3.2542r3 − 5.9346rρ2,

ρ̇ = −0.8141μ2ρ− 2.1171r2ρ− 1.6147ρ3. (3.22)
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Figure 5. (3, 0)-mode Turing–Hopf bifurcation diagram in the (d1, c)-plane for system
(1.3) and the corresponding phase portraits for system (3.22).

The equilibria for system (3.22) are

E0 = (0, 0),

E±
1 = (±

√
−(0.7071μ1 + 0.1689μ2), 0), for 0.7071μ1 + 0.1689μ2 < 0,

E2 = (0,
√

−0.5042μ2), for μ2 < 0,

E±
3 = (±

√
0.5083μ1 − 0.5396μ2,

√
−0.6665μ1 + 0.2033μ2), for 0.5083μ1

− 0.5396μ2 > 0, −0.6665μ1 + 0.2033μ2 > 0.

The critical bifurcation curves for system (3.22) are

H0 : μ2 = 0; T : μ2 = −4.1876μ1;

T1 : μ2 = 0.9421μ1, μ1 � 0; T2 : μ2 = 3.2786μ1, μ1 � 0, (3.23)

the dynamics and bifurcations for system (3.22) are similar to Case Ib in section
7.5 of [16]. Therefore, the bifurcation curves in the (d1, c)-plane, still denoted by
H0, T , T1, and T2, respectively, are shown in figure 5(a), where

H0 : c = cH0 , T : c = cH0 − 4.1876(d1 − d
k∗
0

1 ),

T1 : c = cH0 + 0.9421(d1 − d
k∗
0

1 ), d1 � d
k∗
0

1 ,

T2 : c = cH0 + 3.2786(d1 − d
k∗
0

1 ), d1 � d
k∗
0

1 . (3.24)

The small neighbourhood around the point (dk∗
0

1 , cH0 ) in the (d1, c)-plane is divided
into six regions by these bifurcation curves. In each region, the dynamics of system
(3.22) can be described by the corresponding phase portraits in figure 5(b).

The equilibria E0, E1, E±
2 , and E±

3 of normal form system (3.22) corresponding
to the positive constant steady state, the spatially homogeneous periodic solution,
the positive non-constant steady states, and spatially nonhomogeneous periodic
solutions of system (1.3) (or (3.18)), respectively. Thus, the dynamics of system
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(1.3) (or (3.18)) near the Turing–Hopf bifurcation singularity in the (d1, c)-plane
can be classified as follows:

(1) When (d1, c) = (0.0155, 0.032) ∈ I, system (3.18) exhibit monostability: a spa-
tially homogeneous steady state, which is asymptotically stable in region I and
unstable in other regions (see figure 6).

(2) When (d1, c) = (0.0135, 0.032) ∈ II, system (1.3) exhibits bistability: a pair
of spatially nonhomogeneous steady states. For different initial values, system
(3.18) converges to one of these two spatially nonhomogeneous steady states
(see figure 7).

(3) When (d1, c) = (0.01, 0.03) ∈ III, an unstable spatially homogeneous periodic
solution occurs, and system (3.18) still exhibits bistability: a pair of spa-
tially nonhomogeneous steady states. Moreover, system (3.18) evolves from
the transient spatially homogeneous periodic solution to one of spatially
nonhomogeneous steady states (see figure 8).

(4) When (d1, c) = (0.0135, 0.029) ∈ IV, a pair of unstable spatially nonhomo-
geneous periodic solutions occur, and system (3.18) exhibits tristability: two
spatially nonhomogeneous steady states and a spatially homogeneous periodic
solution. For different initial values, system (3.18) evolves from the spatially
homogeneous steady state to a transient spatially nonhomogeneous periodic
solution, and finally to the stable spatially homogeneous periodic solution (see
figure 9(a) and (b)), or finally tends to one of spatially nonhomogeneous steady
states (see figure 9(c)–(f)).

(5) When (d1, c) = (0.014, 0.025) ∈ V, a pair of unstable spatially nonhomoge-
neous periodic solutions disappear and system (3.18) exhibits monostability: a
spatially homogeneous periodic solution (see figure 10).

(6) When (d1, c) = (0.0155, 0.028) ∈ VI, a pair of unstable spatially nonhomo-
geneous steady states disappear and system (3.18) exhibits monostability: a
spatially homogeneous periodic solution (see figure 11).

3.3.2. (8, 0)-mode Turing–Hopf bifurcation. In this subsection, we set (a, b, e,
d2, l) = (1

2 ,
1
4 ,

1199
100 ,

1
2 , 6). By straightforward calculations for system (1.3), we have

s1 − u∗ = 2
55 , M0 = 501

33 275 , (u∗, v∗) = ( 1
20 ,

209
100 ), k∗0 = 8 and d

k∗
0

1 = 46 539
4 433 440 . Then,

we have k1 = 8 and k2 = 0. The Turing bifurcation curve in the (d1, c)-plane is

L8 : c = c8(d1) =
d2k

2(l2c0 − d1k
2)

v∗d1l2k2 + (δ1δ2 − c0v∗)l4

=
3200(9 − 440d1)

171(4509 + 19 360d1)
, 0 < d1 <

9
440

.

The Hopf bifurcation curve is c = cH0 = 40
2299 , and the (8, 0)-mode Turing–Hopf

bifurcation point is (d1, c) = ( 46 539
4 433 440 ,

40
2299 ).
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Figure 6. When (d1, c) ∈ I in figure 5(a) for the (3, 0)-mode Turing–Hopf bifurcation,
system (3.18) exhibits monostability: a positive constant steady state

E∗(0.109, 1.629).

Figure 7. When (d1, c) ∈ II in figure 5(a) for the (3, 0)-mode Turing–Hopf bifurcation,
system (3.18) exhibits bistability: (a),(b) One spatially nonhomogeneous steady state and
(c,d): the other spatially nonhomogeneous steady state.
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Figure 8. When (d1, c) ∈ III in figure 5(a) for the (3, 0)-mode Turing–Hopf bifurcation,
system (3.18) exhibits an unstable spatially homogeneous periodic solution and bista-
bility: (a, b) system (3.18) evolves from the transient spatially homogeneous periodic
solution to one spatially nonhomogeneous steady stateand (c, d) to the other spatially
nonhomogeneous steady state.

Furthermore, for above given parameters, the normal form system (3.20)
truncated to order 3 is

ż1 = −(1.8124μ1 + 0.9965μ2)z1 − 5.3167z3
1 − 5.5792z1z2z̄2,

ż2 = 0.1227iz2 + (3.5262i− 1.045)μ2z2 − (2.5151i+ 0.5623)z2
1z2

− (8.1415i+ 1.8222)z2
2 z̄2,

˙̄z2 = −0.12271iz̄2 − (3.5262i+ 1.045)μ2z̄2 + (2.5151i− 0.5623)z2
1 z̄2

+ (8.1415i− 1.8222)z2z̄2
2 . (3.25)

Again let z1 = r, z2 = ρ cos θ + iρ sin θ, z̄2 = ρ cos θ − iρ sin θ, and drop the equation
of θ, then system (3.25) becomes

ṙ = −(1.8124μ1 + 0.9965μ2)r − 5.3167r3 − 5.5792rρ2,

ρ̇ = −1.045μ2ρ− 0.5623r2ρ− 1.8222ρ3. (3.26)
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Figure 9. When (d1, c) ∈ IV in figure 5(a) for the (3, 0)-mode Turing–Hopf bifurcation,
system (3.18) exhibits a pair of unstable spatially nonhomogeneous periodic solutions and
tristability: (a, b) transient spatially nonhomogeneous periodic solutions to a stable spa-
tially homogeneous periodic solution, (c, d) one stable spatially nonhomogeneous steady
state,and (e, f) the other stable spatially nonhomogeneous steady state.

System (3.26) has equilibria

E0 = (0, 0),

E±
1 = (±

√
−(0.3409μ1 + 0.1874μ2), 0), for 0.3409μ1 + 0.1874μ2 < 0,
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Figure 10. When (d1, c) ∈ V in figure 5(a) for the (3, 0)-mode Turing–Hopf bifurcation, a
pair of unstable spatially nonhomogeneous periodic solutions disappear and system (3.18)
exhibits monostability: a spatially homogeneous periodic solution.

Figure 11. When (d1, c) ∈ VI in figure 5(a) for the (3, 0)-mode Turing–Hopf bifurcation,
a pair of unstable spatially nonhomogeneous steady states disappear and system (3.18)
exhibits monostability: a spatially homogeneous periodic solution.

E2 = (0,
√

−0.5735μ2), for μ2 < 0,

E±
3 = (±

√
−0.5041μ1 + 0.6128μ2,

√
0.1556μ1 − 0.7626μ2), for − 0.5041μ1

+ 0.6128μ2 > 0, 0.1556μ1 − 0.7626μ2 > 0.

Similar to the (3, 0)-mode Turing–Hopf bifurcation, the critical bifurcation curves
are

H0 : μ2 = 0; T : μ2 = −1.8177μ1; T1 : μ2 = 0.204μ1,

μ1 � 0; T2 : μ2 = 0.8227μ1, μ1 � 0. (3.27)

The dynamics and bifurcations for system (3.26) are similar to Case Ia in section
7.5 of [16]. Therefore, the bifurcation curves in the (d1, c)-plane are (still denoted
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Figure 12. Phase portrait of system (3.26) for the (8, 0)-mode Turing–Hopf bifurcation
when (µ1, µ2) ∈ IV in figure 5(a).

by H0, T , T1, and T2, respectively):

H0 : c = cH0 , T : c = cH0 − 1.8177(d1 − d
k∗
0

1 ),

T1 : μ2 = cH0 + 0.204(d1 − d
k∗
0

1 ), d1 � d
k∗
0

1 ,

T2 : μ2 = cH0 + 0.8227(d1 − d
k∗
0

1 ), d1 � d
k∗
0

1 . (3.28)

Compared with the (3, 0)-mode Turing–Hopf bifurcation (similar to Case Ib in
[16]), the (8, 0)-mode Turing–Hopf bifurcation (similar to Case Ia in [16]) only has
some differences in region IV of figure 5, where a pair of spatially nonhomogeneous
steady states and a spatially homogeneous periodic solution all turn into unsta-
ble, and a pair of spatially nonhomogeneous periodic solutions become stable (see
figures 12 and 13).

4. System (1.3) with nonlocal intraspecific prey competition

In this section, we consider system (1.3) with nonlocal intraspecific prey competi-
tion, i.e. the nonlocal term û takes the following form:

û :=
1
lπ

∫ lπ

0

u(y, t) dy, (4.1)

then the linearized system of (1.3) at E∗(u∗, v∗) is given by

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂u

∂t
= d1Δu− u∗û+

u∗(1 − u∗)
a+ u∗

u− bu∗
a+ u∗

v,

∂v

∂t
= d2Δv +

acev∗
(a+ u∗)2

u− cv∗v,

ux(0, t) = vx(0, t) = ux(lπ, t) = vx(lπ, t) = 0,

(4.2)
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Figure 13. When (d1, c) ∈ IV in figure 5(a) for the (8, 0)-mode Turing–Hopf bifurcation,
a spatially homogeneous steady state, a pair of spatially nonhomogeneous steady states
and a spatially homogeneous periodic solution are all unstable, while a pair of spatially
nonhomogeneous periodic solutions is stable: (a, b) one stable spatially nonhomogeneous
periodic solution, (c, d) the other stable spatially nonhomogeneous periodic solution, where
u0(x) = 0.05 ± 0.03cos(4

3x), v0(x) = 2.09 − 0.01cos(4
3x), (µ1, µ2) = (−0.001, −0.0006).

where x ∈ (0, lπ). Then, the characteristic equations of (4.2) are

Pk(λ) = λ2 − Tk(c)λ+ Mk(c) = 0, k ∈ N0, (4.3)

where

T0 = s1 − u∗ − cv∗, M0 = (s2 − (s1 − u∗)v∗)c, (4.4)

and for k ∈ N

Tk(c) = s1 − cv∗ −
(d1 + d2)k2

l2
,

Mk(c) =
d1d2k

4

l4
+ (cv∗d1 − s1d2)

k2

l2
+ (s2 − s1v∗)c, (4.5)

where s1 is given in (2.4) and

s2 =
aeu∗(1 − u∗)

(a+ u∗)2
> 0.
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To guarantee the existence of Turing bifurcation, here we suppose s2 − s1v∗ > 0,
i.e.:

u∗ < min
{

1,
(e− 1)a
1 + e

}
, e > 1. (4.6)

Define:

U3 :=
{

(a, b, e, u∗)|a � 1
2
, a > b > 0, e > 1, 0 < u∗ < min

{
1,

(e− 1)a
1 + e

}}
. (4.7)

4.1. Hopf and double-Hopf bifurcation

In this section, we study the existence and nonexistence of Hopf bifurcation for
system (1.3). Define:

Γ1 :=
{
k ∈ N|k2 <

s1l
2

d1

}
,

cTk :=
(s1 − d1k

2/l2)d2(k2/l2)
s2 − v∗s1 + v∗d1(k2/l2)

, k ∈ Γ1. (4.8)

Lemma 4.1. For any l, d2 > 0, (a, b, e, u∗) ∈ U3, suppose 0 < d1 < s1l
2, then

Γ1 �= ∅.

(1) If k ∈ N0\Γ1, then Mk(c) > 0 for any c > 0.

(2) If k ∈ Γ1, then Mk(c) > 0 for all c > cTk∗ , where k∗ is defined as follows:

k∗ :=

{
k0, if cTk0

> cTk0+1,

k0 + 1, if cTk0
< cTk0+1,

(4.9)

with

k0 :=

⎢⎢⎢⎣l
√√

(s2 − s1v∗)s2 − (s2 − s1v∗)
v∗d1

⎥⎥⎥⎦ . (4.10)

Proof. For any l, d2 > 0 and (a, b, e, u∗) ∈ U3, the assumption 0 < d1 < s1l
2

guarantees that Γ1 �= ∅. By straightforward calculation we have

Mk(c) =
(
s2 − s1v∗ + v∗d1

k2

l2

)
(c− cTk ), k ∈ N. (4.11)

(1) If k = 0, then M0(c) > 0 for any c > 0 by (2.6). For any k /∈ Γ1 and k ∈ N,
that is, s1 < d1(k2/l2), then according to (4.8), one can get cTk < 0, then for
any c > 0, we have c− cTk > 0, i.e. Mk(c) > 0.

(2) In view of the expression of cTk in (4.8), define ρ(ξ) as follows:

ρ(ξ) =
s1ξ − d1ξ

2

s2 − s1v∗ + d1v∗ξ
, ξ > 0.

Through simple calculation, there exists a unique ξ∗ = (
√

(s2 − s1v∗)s2 − (s2 −
s1v∗))/v∗d1, such that ρ(ξ) is increasing in (0, ξ∗), decreasing in (ξ∗, ∞), and
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attains the maximum at ξ = ξ∗. Obviously, ξ∗ < s1/d1, that is, k0 ∈ Γ1, where k0 is
defined in (4.10). If cTk0

> cTk0+1, then cTk attains the maximum in k at k = k0; while
if cTk � cTk+1, by k1 ∈ Γ1, we have cTk0+1 > cTk0

, which implies that k0 + 1 ∈ Γ1, i.e.
cTk attains the maximum at k = k0 + 1. According to the definition of k∗ in (4.9),
cTk attains the maximum in k at k = k∗. By (4.8) and (4.11), we know Mk(c) > 0
if c > cTk . Hence, if c > cTk∗ , then Mk(c) > 0 for each k ∈ Ω1. �

Based upon the expression of T0(c) in (4.4), the set U3 can be divided into two
disjoint regions: U31 and U32, where

U31 :=
{

(a, b, e, u∗)|a � 1, a > b > 0, e > 1, 0 < u∗ < min
{

1,
(e− 1)a
1 + e

}}

∪
{

(a, b, e, u∗)|1 > a � 1
2
, a > b > 0, e > 1,

1 − a

2
< u∗ <

(e− 1)a
1 + e

}
,

U32 :=
{

(a, b, e, u∗)|1 > a � 1
2
, a > b > 0, e > 1, 0 < u∗ < min

{
1 − a

2
,
(e− 1)a
1 + e

}}
.

(4.12)

We have the following results about the nonexistence of Hopf bifurcation.

Lemma 4.2.

(1) For any d1, d2, l > 0, if (a, b, e, u∗) ∈ U31, then T0(c) < 0, which implies that
there is no 0-mode Hopf bifurcation of system (1.3) for any c > 0.

(2) For any d2, l > 0 and (a, b, e, u∗) ∈ U3, if d1 � s1l
2, then for each k ∈ N,

Tk(c) < 0, which implies that there is no k-mode Hopf bifurcation for any c > 0.

Define:

cHk :=
s1 − (d1 + d2)(k2/l2)

v∗
,

dk
2k∗ :=

(s1 − d1(k2/l2))(s2 − s1v∗ + v∗d1((k∗)2/l2))
v∗(s1 − d1((k∗)2/l2))((k∗)2/l2) + (s2 − s1v∗ + v∗d1((k∗)2/l2))(k2/l2)

.

(4.13)

Next, we list the result about the existence of Hopf bifurcation.

Theorem 4.3. For any l > 0 and (a, b, e, u∗) ∈ U31, assume that 0 < d1 < s1l
2.

Then, for each k ∈ Γ1, if 0 < d2 < dk
2k∗ , system (1.3) undergoes a k-mode Hopf

bifurcation near E∗ at c = cHk , and the bifurcating periodic orbits are spatially
nonhomogeneous, where k∗ ∈ Ω1 is defined in (4.9).

Proof. For any l > 0 and (a, b, e, u∗) ∈ U31, the assumption 0 < d1 < s1l
2 guaran-

tees that Γ1 is nonempty. Let Tk(c) = 0, then one can get c = cHk with cHk defined
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in (4.13). By simple calculation

⎧⎪⎪⎨
⎪⎪⎩
cHk (d2) > cTk∗(d2), for 0 < d2 < dk

2k∗ ,

cHk (d2) = cTk∗(d2), for d2 = dk
2k∗ ,

cHk (d2) < cTk∗(d2), for d2 > dk
2k∗ ,

(4.14)

and dk
2k∗ is given in (4.13). Obviously, cHk (d2) > 0 for 0 < d2 < dk

2k∗ . Hence,
cHk (d2) > cTk∗(d2) if 0 < d2 < dk

2k∗ . By lemma 4.1(2), we can know that
Mj(cHk (d2)) > 0 for any j ∈ Ω1. By lemma 4.1(1), Mj(c) > 0 for any j ∈ N0\Γ1

and c > 0. Hence, Mj(cHk (d2)) > 0.
For each k ∈ Γ1, Tk(cHk (d2)) = 0. According to lemma 4.2, T0(c) < 0 for all c > 0

as (a, b, e, u∗) ∈ U31. In particular, T0(cHk (d2)) < 0. For any j ∈ N, j �= k, note
that Tj(cHk (d2)) �= 0 since Tj(c) is decreasing in j. Therefore, Pk(λ) = 0 has a
pair of purely imaginary eigenvalues, all other eigenvalues have nonzero real parts.
Moreover, suppose that λ1(c) = α1(c) ± iω1(c) is a pair of roots of the characteristic
equation Pk(λ) = 0 near c = cHk with α1(cHk ) = 0, ω1(cHk ) > 0, then

d(α1(cHk ))
dc

= −v∗
2
< 0, (4.15)

which implies that the transversality condition is fulfilled. The proof is
complete. �

Next, we define the Hopf bifurcation curves in the (d2, c)-plane as

H0 : c = cH0 =
s1 − u∗
v∗

,

Hk : c = cHk (d2), 0 < d2 <
sl2

k2
− d1, k ∈ Γ1. (4.16)

Theorem 4.4. For any l > 0, (a, b, e, u∗) ∈ U32 and u∗l2 � d1 < s1l
2, we have the

following statements hold:

(1) If 0 < d2 < d0
2k∗ , then system (1.3) undergoes a 0-mode Hopf bifurcation near

E∗ at c = cH0 , the bifurcating periodic orbit is spatially homogeneous, where cH0
and k∗ are defined in (4.16) and (4.9), respectively:

d0
2k∗ :=

(s1 − u∗)(s2 − s1v∗ + v∗d1((k∗)2/l2))
v∗(s1 − d1((k∗)2/l2))((k∗)2/l2)

. (4.17)

(2) For each k ∈ Γ1, if 0 < d2 < dk
2k∗ , then system (1.3) undergoes a k-mode Hopf

bifurcation near E∗ at c = cTk , and the bifurcating periodic orbit is spatially
nonhomogeneous, where cHk and dk

2k∗ are defined in (4.13).

Proof. For any l > 0 and (a, b, e, u∗) ∈ U32, then s1 > u∗, hence, cH0 > 0. According
to (4.4), we have T0(cH0 ) = 0 and M0(cH0 ) > 0. Since u∗l2 � d1 < s1l

2, then Γ1 is
nonempty, and for any k ∈ Γ1, H0 is above Hk, i.e. cH0 > cHk (d2) for any d2 > 0.
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(1) By direct calculation we have⎧⎪⎪⎨
⎪⎪⎩
cH0 > cTk∗(d2), for 0 < d2 < d0

2k∗ ,

cH0 = cTk∗(d2), for d2 = d0
2k∗ ,

cH0 < cTk∗(d2), for d2 > d0
2k∗ ,

(4.18)

then, cH0 > cTk∗(d2) if 0 < d2 < d0
2k∗ . By lemma 4.1(2), Mj(cH0 ) > 0 for each j ∈ Γ1.

For any j ∈ N0\Γ1, according to lemma 4.1(1), Mj(c) > 0 for all c > 0. Hence,
Mj(cH0 ) > 0.

Obviously, T0(cH0 ) = 0. For each j ∈ Γ1, Tj(cHj ) = 0 by (4.4) and (4.13). Since
Tj(c) is decreasing in c and cH0 > cHk (d2) for any d2 > 0, then Tj(cH0 ) < Tj(cHj ) = 0.
Note that for each j ∈ N\Γ1, d1j

2 > s1l
2, then Tj(c) < −cv∗ − d2(k2/l2) < 0 for any

positive c. Hence, the characteristic equation P0(λ) = 0 has a pair of purely imag-
inary eigenvalues, and all the other eigenvalues have nonzero real parts. Moreover,
here we suppose λ1(c) = α1(c) ± iω1(c) is a pair of roots of characteristic equation
P0(λ) = 0 near c = cH0 with α1(cH0 ) = 0 and ω1(cH0 ) > 0. By simple calculation:

dα1(cH0 )
dc

= −v∗
2
< 0, (4.19)

thus the transversality condition holds.

(2) For each k ∈ Γ1, we have Tk(cHk ) = 0, T0(cHk ) > 0, since cH0 > cHk (d2) for any
d2 > 0, and T0(c) is decreasing in c. By lemma 4.1(1), M0(cHk ) > 0, then
we can prove result (2) by using a similar argument as in the proof of
theorem 4.3. �

Define:

Γ2 :=
{
k ∈ N|k2 <

u∗l2

d1

}
,

d̄2k :=
u∗l2

k2
− d1, k ∈ Γ2. (4.20)

Theorem 4.5. For any l > 0 and (a, b, e, u∗) ∈ U32, if 0 < d1 < u∗l2, then we have
the following statements hold:

(1) for any k ∈ Γ2 and d̄2k < d0
2k∗ :

(a) if 0 < d2 < d0
2k∗ and d2 �= d̄2j for all j ∈ Γ2, then system (1.3) undergoes

a 0-mode Hopf bifurcation near E∗ at c = cH0 , and the bifurcating periodic
orbit is spatially homogeneous;

(b) if 0 < d2 < dk
2k∗ and d2 �= d̄2k, then system (1.3) undergoes a k-mode

Hopf bifurcation near E∗ at c = cHk , the bifurcating periodic orbit is
spatially nonhomogeneous.

(2) For each k ∈ Γ2 and d̄2k > d0
2k∗ , or k ∈ Γ1\Γ2, the same conclusion as in

theorem 4.4 holds,

where cHk , dk
2k∗ , and d0

2k∗ are given in (4.13) and (4.17), respectively.
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Proof. For simplicity, we only prove case (1), since case (2) can be proved by the
same argument as in theorem 4.3.

For any l > 0 and (a, b, e, u∗) ∈ U32, we have s1 > u∗, then cH0 > 0. If 0 < d2 <
u∗l2, then Γ2 is nonempty, H0 and Hk can intersect at d2 = d̄2k for k ∈ Γ2, which
implies that T0(d̄2k) = Tk(d̄2k) = 0 for each j ∈ Γ2.

(1)(a) If 0 < d2 < d0
2k∗ , according to (4.18), cH0 > cTk (d2). Then, by lemma

4.1(2), Mj(cH0 ) > 0 holds for each j ∈ Γ1. While for j ∈ N0\Γ1, by lemma 4.1(1),
Mj(c) > 0 for any c > 0, which means, Mj(cH0 ) > 0.

In addition, we know that T0(cH0 ) = 0. Since d2 �= d̄2j for any j ∈ Γ2, then
Tj(cH0 ) �= 0 for each j ∈ Γ2. For any j /∈ Γ2, i.e. d1j

2 > u∗l2, then

Tj(cH0 ) = s1 − v∗cH0 − (d1 + d2)
j2

l2
� s1 − u∗ − v∗cH0 − d2

j2

l2
= −d2

j2

l2
< 0.

Thus, the characteristic equation P0(λ) = 0 has a pair of purely imaginary
eigenvalues, and all the other eigenvalues have nonzero real parts.

(1)(b) If 0 < d2 < dk
2k∗ , by using the same methods as in the proof of theorem

4.3, one can easily check that Mj(cHi ) > 0 for any j ∈ N0. In addition, Tj(cHj ) = 0.
As d2 �= d̄2k, then T0(cHj ) �= 0. Note that Tj is decreasing in j, then for any k ∈ N

and k �= j, Tk(cHj ) �= 0. Hence, the characteristic equation P(λ) = 0 has a pair of
purely imaginary eigenvalues, an all other eigenvalues have nonzero real parts. More-
over, the corresponding transversality conditions are given by (4.19) and (4.15),
respectively. The proof of (1) is complete. �

According to the definition of double-Hopf bifurcation, we know that system (1.3)
exhibits a double-Hopf bifurcation if the corresponding linear system has two pairs
of purely imaginary eigenvalues at a singular point, and all the other eigenvalues
have nonzero real parts. Next, we consider the interactions among Hopf bifurcations
with different spatial modes and determine when system (1.3) will exhibit double-
Hopf bifurcation. By (4.13), we know that cHk is decreasing in k, which implies
that for any distinct positive integers k and j, there is no (k, j)-mode double-Hopf
bifurcation. For the existence of (0, k)-mode double-Hopf bifurcation we have the
following result.

Theorem 4.6. For any l > 0 and (a, b, e, u∗) ∈ U32, assume that 0 < d1 < u∗l2

and d̄2k < d0
2k∗ , then for each k ∈ Γ2, system (1.3) undergoes a (0, k)-mode double-

Hopf bifurcation near E∗ at (d2, c) = (d̄2k, c
H
0 ), where cH0 , d0

2k∗ , d̄2k, and Γ2 are
defined in (4.16), (4.17) and (4.20), respectively.

Proof. For any l > 0 and (a, b, e, u∗) ∈ U32, we have s1 > u∗, then cH0 > 0. If 0 <
d1 < u∗l2, then Γ1 and Γ2 are nonempty, which means that H0 and Hk can intersect
at (d2, c) = (d̄2k, c

H
0 ) for each k ∈ Γ2, i.e. T0(cH0 ) = Tk(cH0 ) for each k ∈ Γ2. Since

cHk is decreasing in k, then Tj(cH0 ) �= 0 for any positive integer j (j �= k).
If 0 < d2 < d0

2k∗, by (4.18), cH0 > cTk∗ , then according to lemma 4.1(2) we have
Mj(cH0 ) > 0 for any j ∈ Γ1. For j ∈ N0\Γ1, according to lemma 4.1(1) Mj(c) >
0 holds for any positive c. Hence, for any j ∈ N0, Mj(cH0 ) > 0 holds. Thus,
P0(λ) = 0 and Pk(λ) = 0 (k ∈ Γ2) have a pair of pure imaginary eigenvalues, and
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all other eigenvalues have nonzero real parts. Moreover, by (4.19) and (4.15) the
corresponding transversality conditions are fulfilled. �

Remark 4.7. By (3.2), we know that when system (1.3) has local intraspecific
prey competition, it will not exhibit double-Hopf bifurcation, that is, the local
interactions cannot induce double-Hopf bifurcation.

4.2. Turing and Turing–Hopf bifurcations

In this subsection, we consider the Turing and Turing–Hopf bifurcations, and
derive the sufficient conditions for the existence of Turing–Hopf and Turing–double-
Hopf bifurcations.

By lemma 4.1(1) we know that if d1 � s1l
2, Mk(c) > 0 for any c > 0, which

implies that there is no Turing bifurcation of (1.3) for each k ∈ N. Next, we consider
the existence of Turing bifurcation.

Lemma 4.8. Suppose 0 < d1 < s1l
2 and cTk0

�= cTk0+1, then we have the following
statements hold:

(1) if (a, b, e, u∗) ∈ U31, then for d2 > d1
2k∗ , system (1.3) undergoes a k∗-mode

Turing bifurcation near E∗ at c = cTk∗ .

(2) if (a, b, e, u∗) ∈ U32, then for d2 > max
{
d0
2k∗ , d1

2k∗
}
, system (1.3) undergoes

a k∗-mode Turing bifurcation near E∗ at c = cTk∗ .

Proof. The assumption 0 < d1 < s1l
2 guarantees that Γ1 is nonempty, and accord-

ing to lemma 4.1(2), k∗ ∈ Γ1, and cTk∗ > 0.
(1) If (a, b, e, u∗) ∈ U31, then T0(c) < 0 for any c > 0, which implies that

T0(cTk∗) < 0. If d2 > d1
2k∗ , according to (4.14) we have cTk∗(d2) > cH1 (d2), then for

each k ∈ N:

Tk(cTk∗(d2)) � T1(cTk∗(d2)) < T1(cH1 (d2)) = 0. (4.21)

Moreover, Mk(cTk∗(d2)) = 0, that is the characteristic equation Pk∗(λ) = 0 has a
simple zero eigenvalue. Next, we will show that all other eigenvalues have nonzero
real parts. According to (4.21) and T0(cTk∗) < 0, for each non-negative integer k,
Pk(λ) = 0 has no purely imaginary eigenvalues. If k /∈ Γ1, then by lemma 4.1(1),
Mk(c) > 0 for any c > 0. For k ∈ Γ1 and k �= k∗, according to lemma 4.1(2),
Mk(cTk∗) > 0 as cTk0

�= cTk0+1. Hence, Pk(λ) = 0 has no zero real part eigenvalue
for each k �= k∗.

(2) If (a, b, e, u∗) ∈ U32, then cH0 > 0. When d2 > max
{
d0
2k∗ , d1

2k∗
}
, according

to (4.14) and (4.18), we have cTk∗(d2) > max{cH0 , cH1 (d2)}, that is T0(cTk∗(d2)) < 0
and T0(cTk (d2)) < 0 for each k ∈ N. In addition, as cTk0

�= cTk0+1, by lemma 4.1,
Mk(cTk∗) > 0 for any k ∈ N and k �= k∗. Then, Pk∗(λ) = 0 has a simple zero
eigenvalue and all other eigenvalues have nonzero real parts.

Moreover, suppose that λ2(c) = α2(c) + iω2(c) is a complex eigenvalue of the
characteristic equation Pk∗(λ) = 0 near c = cTk∗ with α2(cTk∗) = ω2(cTk∗) = 0. By
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straightforward calculation:

d(α2(cTk∗))
dc

=
s2 − s1v∗ + v∗d1((k∗)2/l2)

Tk∗(cTk∗)
< 0. (4.22)

Thus, the transversality condition is fulfilled. �

Remark 4.9. cTk0
= cTk0+1 is equivalent to d1 taking some special values, in this

case system (1.3) may undergo a (k0, k0 + 1)-mode Turing–Turing bifurcation, this
left for our future work.

Now, we analyse the Turing–Hopf bifurcation. By theorems 4.3–4.5 and lemma
4.8, we know that the positive constant steady state may be destabilized through a
0-mode or k-mode Hopf bifurcation (or k-mode Turing bifurcation). Next, we turn
to study the (k, 0)-mode and (k, 1)-mode Turing–Hopf bifurcations.

Define:

Tk∗ : c = cTk∗(d2), d2 > 0,

c0k∗ := cH0 ,

c1k∗ := cH1 (d1
2k∗), (4.23)

where cTk∗ and k∗ are defined in (4.8) and (4.9), respectively.

Theorem 4.10. For any l > 0 and (a, b, e, u∗) ∈ U31, assume that 0 < d1 < s1l
2,

k∗ > 1, and cTk0
�= cTk0+1, then system (1.3) undergoes a (k∗, 1)-mode Turing–Hopf

bifurcation near E∗ at (d2, c) = (d1
2k∗ , c1k∗). Moreover, the real parts of other eigen-

values for the characteristic equation (4.3) are negative except for a pair of purely
imaginary eigenvalues and a simple zero eigenvalue, where k∗, k0, d1

2k∗ , and c1k∗

are given in (4.9), (4.10), (4.13), and (4.23), respectively (see figure 14(d)).

Proof. By lemma 4.2, we know that there is no 0-mode Hopf bifurcation if
(a, b, e, u∗) ∈ U31. The assumption 0 < d1 < s1l

2 guarantees that Γ1 is nonempty.
Let cH1 (d2) = cTk∗(d2), we can obtain the intersection of H1 and Tk∗ is (d1

2k∗ , c1k∗).
When (d2, c) = (d1

2k∗ , c1k∗), T0(d1
2k∗ , c1k∗) < 0 for (a, b, e, u∗) ∈ U31, and

T1(d1
2k∗ , c1k∗) = 0. Since Tk is decreasing in k, then for any k ∈ N:

Tk(d1
2k∗ , c1k∗) < T1(d1

2k∗ , c1k∗) = 0,

which implies that Tk∗(d1
2k∗ , c1k∗) < 0 as k∗ > 1. In addition, Mk∗(d1

2k∗ , c1k∗) = 0.
Thus, Pk∗(λ) = 0 has a simple zero, and for any k �= 1, Pk(λ) = 0 has no purely
imaginary roots.

For any k ∈ Γ1 and k �= k∗, we have c1k∗ = cH1 (d1
2k∗) = cTk∗(d1

2k∗) > cTk (d1
2k∗),

then according to lemma 4.1(2) and cTk0
�= cTk0+1, Mk(d1

2k∗ , c1k∗) > 0 holds for
each k ∈ Γ1 and k �= k∗. Since k∗ > 1, then M1(d1

2k∗ , c1k∗) > 0. By lemma 4.1(1),
Mk(d1

2k∗ , c1k∗) > 0 for any k /∈ Γ1. Hence, P1(λ) = 0 has a pair of purely imaginary
roots, and for any k �= k∗, Pk(λ) = 0 has no zero eigenvalue.

Moreover, according to (4.15) and (4.22) the transversality conditions are fulfilled.
Therefore, system (1.3) undergoes a (k∗, 1)-mode Turing–Hopf bifurcation near
positive constant steady state E∗ at (d2, c) = (d1

2k∗ , c1k∗). �
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Figure 14. Turing–Hopf, double-Hopf, and Turing–double-Hopf bifurcations of system (1.3)
near E∗ in the (d2, c)-plane for any l > 0: (a) (a, b, e, u∗) ∈ U32 and u∗l2 � d1 < s1l2; (b)
(a, b, e, u∗) ∈ U32, 0 < d1 < u∗l2 and d0

2k∗ > d̄21; (c) (a, b, e, u∗) ∈ U32, 0 < d1 < u∗l2
and d0

2k∗ < d̄21; (d) (a, b, e, u∗) ∈ U31; (e) (a, b, e, u∗) ∈ U32 and d0
2k∗ = d̄21. H0, H1,

and Tk∗ represent the 0-mode, 1-mode Hopf bifurcation, and k∗-mode Turing bifurcation
curves, respectively. TH, HH, and THH represent Turing–Hopf bifurcation, double-Hopf
bifurcation, and Turing–double-Hopf bifurcation, respectively.

Remark 4.11. When k∗ = 1, a Bogdanov–Takens bifurcation may occur. To reduce
the length of the paper, we ignore the case k∗ = 1.

Theorem 4.12. For any l > 0 and (a, b, e, u∗) ∈ U32, assume that 0 < d1 < s1l
2,

k∗ > 1, and cTk0
�= cTk0+1, then the following statements hold:

(1) if u∗l2 � d1 < s1l
2, system (1.3) undergoes a (k∗, 0)-mode Turing–Hopf bifur-

cation near constant steady state E∗ at (d0
2k∗ , c0k∗).

(2) if 0 < d1 < u∗l2, then we have the following result:

(i) when d0
2k∗ > d̄21, then system (1.3) undergoes a (k∗, 0)-mode Turing–Hopf

bifurcation near constant steady state E∗ at (d0
2k∗ , c0k∗);

(ii) when d0
2k∗ < d̄21, then system (1.3) undergoes a (k∗, 1)-mode Turing–Hopf

bifurcation near constant steady state E∗ at (d1
2k∗ , c1k∗).

Moreover, the real parts of other eigenvalues for the characteristic equation (4.3)
are negative except for a pair of purely imaginary eigenvalues and a simple zero
eigenvalue. Here, d1

2k∗ , d0
2k∗ , d̄21, c1k∗ , and c0k∗ are given in (4.13), (4.17), (4.20),

and (4.23), respectively.
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Proof. (1) As (a, b, e, u∗) ∈ U32, then cH0 > 0. Let cH0 = cHk∗ , we obtain the
intersection of H0 and Tk∗ , given by (d0

2k∗ , c0k∗), and (d0
2k∗ , c0k∗) is above

(d1
2k∗ , c1k∗) in the (d2, c)-plane. When (d2, c) = (d0

2k∗ , c0k∗), T0(d0
2k∗ , c0k∗) = 0.

If u∗l2 � d1 < s1l
2, then T1(d0

2k∗ , c0k∗) = −v∗c0k∗ + s1 − d1/l
2 − d0

2k∗/l2 = u∗l2 −
d1/l

2 − d0
2k∗/l2 < 0. Since Tk is decreasing in k, then for any positive integer k,

Tk(d0
2k∗ , c0k∗) � T1(d0

2k∗ , c0k∗) < 0 hold, which implies that Tk∗(d0
2k∗ , c0k∗) < 0. On

the other hand, for (d2, c) = (d0
2k∗ , c0k∗), Mk∗(d0

2k∗ , c0k∗) = 0. Hence, Pk∗(λ) = 0
has a simple zero, and for any k �= 0, Pk(λ) = 0 has no purely imaginary roots.

For any k /∈ Γ1, by lemma 4.1(1), Mk(c) > 0 for any c > 0, thus
Mk(d0

2k∗ , c0k∗) > 0, and we also have M0(d0
2k∗ , c0k∗) > 0. When k∗ > 1 and cTk0

�=
cTk0+1, by the definition of k∗, we have c0k∗ = cH0 = cTk∗(d0

2k∗) � cTk (d0
2k∗) for any k ∈

N, then Mk(d0
2k∗ , c0k∗) > 0 for k ∈ Γ1 and k �= k∗, which implies that P0(λ) = 0 has

a pair purely imaginary roots, and for any k �= k∗, Pk(λ) = 0 has no zero eigenvalue.
Moreover, the transversality conditions hold via (4.19) and (4.22). Hence, system
(1.3) undergoes a (k∗, 0)-mode Turing–Hopf bifurcation at (d2, c) = (d0

2k∗ , c0k∗).
(2) If 0 < d1 < u∗l2, then H0 and H1 intersect at (d2, c) = (d̄21, c

H
0 ). According

to the relationship between d̄21 and d0
2k∗ , we have the following two cases:

(i) if d̄21 < d0
2k∗ , then (d0

2k∗ , c0k∗) is above (d1
2k∗ , c1k∗) in the (d2, c)-plane, see

figure 14(b);

(ii) if d̄21 > d0
2k∗ , then (d0

2k∗ , c0k∗) is below (d1
2k∗ , c1k∗) in the (d2, c)-plane, see

figure 14(c).

Case (2) can be proved by using the same argument as in the proofs of theorem
4.10 and case (1). �

Corollary 4.13. For any l > 0 and (a, b, e, u∗) ∈ U32, assume that 0 < d1 <
s1l

2, k∗ > 1, and cTk0
�= cTk0+1, then system (1.3) undergoes a (k∗, 1, 0)-mode

Turing–double-Hopf bifurcation near the constant steady state E∗ at (d1
2k∗ , c1k∗),

when d0
2k∗ = d̄21. Moreover, the real parts of other eigenvalues for the characteris-

tic equation (4.3) are negative except for two pairs of purely imaginary eigenvalues
and a simple zero eigenvalue (see figure 14(e)).

4.3. Spatiotemporal patterns via double-Hopf bifurcation

In this subsection, we use the formulas derived by Geng and Wang [13] to com-
pute the (0, 1)-mode double-Hopf bifurcation normal form, which may help us to
find some interesting spatiotemporal patterns. Let:

d2 = d̄21 + η1, c = cH0 + η2,

where d̄21 and cH0 are given in (4.20) and (4.16), respectively. Define:

V (t) = (u(t), v(t))T , V̂ (t) =
1
lπ

∫ lπ

0

V (y, t) dy,

and system (1.3) can be transformed into:

V̇ (t) = D0(η)ΔV (t) + L(η)V (t) + L̂(η)V̂ (t) +G(V (t), V̂ (t), η), (4.24)
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in which

D(η) =

(
d1 0

0 d̄21 + η1

)
,

L(η) =

⎛
⎜⎜⎝

s1 − bu∗
a + u∗

aev∗
(a + u∗)2

cH
0 −v∗cH

0

⎞
⎟⎟⎠ , L̂(η) =

(−u∗ 0

0 0

)
,

G(u, û, η) =

⎛
⎜⎜⎜⎝

(u + u∗)(1 − û − u∗) − b(u + u∗)(v + v∗)

a + u + u∗
+ u∗û − s1u1 +

bu∗
a + u∗

v

(cH
0 + η2)(v + v∗)

(
1 − v − v∗ +

e(u + u∗)

a + u + u∗

)
− (cH

0 + η2)

(
aev∗

(a + u∗)2
u − v∗v

)
⎞
⎟⎟⎟⎠ ,

and u = (u, v)T , û = (û, v̂)T := (1/lπ)
∫ lπ

0
u(ζ, t)dζ, η = (η1, η2). Then

D0(η) =

(
d1 0

0 d̄21

)
, D1(η) =

(
0 0

0 η1

)
,

L0 =

⎛
⎜⎜⎜⎝

s1 − bu∗
a + u∗

aeu∗(1 − u∗)

(a + u∗)2
cH
0 −v∗cH

0

⎞
⎟⎟⎟⎠ , L1(η) =

⎛
⎜⎝ 0 0

aeu∗
(a + u∗)2

η2 −v∗η2

⎞
⎟⎠ ,

L̂(0)(η) =

(−u∗ 0

0 0

)
, L̂1(η) =

(
0 0

0 0

)
,

Q(V,V) =

(
2a(1 − u∗)

(a + u∗)2
u2 − 2ab

(a + u∗)2
uv − 2u∗uû − 2aev∗cH

0

(a + u∗)3
u2 +

2aecH
0

(a + u∗)2
uv − 2cH

0 v2

)
,

C(V,V,V) =

⎛
⎜⎜⎜⎝
−6a(1 − u∗)

(a + u∗)3
u3 +

6ab

(a + u∗)3
u2v

6aev∗cH
0

(a + u∗)4
u3 − 6aecH

0

(a + u∗)3
u2v

⎞
⎟⎟⎟⎠ ,

where V = (
u
û ). For the (0, 1)-mode double-Hopf bifurcation, according to [13],

the eigenfunctions φ1, φ̄i, ψ1, ψ̄i (i = 1, 2) satisfying ψiφi = 1, ψiφj = 1 for i,
j = 1, 2 (j �= i) are

φ1 =
(

1
φ12

)
, φ2 =

(
1
φ22

)
, ψ1 =

⎛
⎜⎜⎝

1
N1

ψ12

N1

⎞
⎟⎟⎠

T

, ψ2 =

⎛
⎜⎜⎝

1
N2

ψ22

N2

⎞
⎟⎟⎠

T

,
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where

φ12 =
(a+ u∗)(s1 − u∗ − iω1)

bu∗
, φ22 =

(a+ u∗)(s1 − iω2 − d1/l
2)

bu∗
,

ψ12 = − bu∗
(a+ u∗)(iω1 + cH0 v∗)

, ψ22 = − bu∗
(a+ u∗)(iω2 + cH0 v∗ + d̄21/l2)

,

N1 = 1 + φ12ψ12, N2 = 1 + φ22ψ22.

Next, we fix the parameters of (1.3) except d2, c as follows:

a = 0.5, b = 0.25, e = 5.9375, d1 = 0.5, l = 3.

For (k1, k2) = (0, 1), according to Lemma 3.4 and Proposition 3.5 in [13], we
have the following statements.

Proposition 4.14. For system (1.3) with (d1, a, b, e, l) = (0.5, 0.5, 0.25, 5.9375, 3),
the positive constant steady state E∗ is (0.125, 2.1875), and there exist critical val-
ues (d̄21, c

H
0 , ω1, ω2)

.= (0.625, 0.02286, 0.1285, 0.03762) such that when (d2, c) =
(d̄21, c

H
0 ), all eigenvalues of Pk(λ) have negative real parts other than two pairs

of purely imaginary roots ±iω1, ±iω2, and system (1.3) undergoes a (0, 1)-mode
double-Hopf bifurcation near E∗.

By Lemma 3.4 and Proposition 3.5 in [13], the coefficients of the normal form
up to third order are as follows:

a1(η) = −(1.09375 − 2.80989i)η2,

b2(η) = −(0.055556 + 0.1756399i)η1 − (1.09375 − 7.57567i)η2,

a2100 = −1.28834 − 3.135i, a1011 = −21.5985 − 41.8235i,

b0021 = 10.0251 − 6.5363i, b1110 = 28.6488 + 141.7397i, (4.25)

by making the following transformations successively:

z1 = r1 cos(θ) + ir1 sin(θ), z2 = r2 cos(θ) + ir2 sin(θ);√
|Re(a2100)|sign(Re(a2100)r1 → r1,

√
|Re(b0021)|r2 → r2, sign(Re(a2100))t→ t,

then the corresponding planar system is

ṙ1 = r1(1.09375η2 + r21 − 2.1545r22),

ṙ2 = r2(0.0555556η1 + 1.09375η2 − 22.237r21 − r22), (4.26)

and all equilibria of system (4.26) are

E0 = (0, 0), E1 = (
√

−1.0938η2, 0), for η2 < 0,

E2 = (0,
√

0.055556η1 + 1.0938η2), for η2 > −0.050794η1,

E3 = (
√

0.002447η1 + 0.02582η2,
√

0.001136η1 + 0.5197η2),

for 0.002447η1 + 0.02582η2 > 0 and 0.001136η1 + 0.5197η2 > 0.
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It follows from Re(a2100) = −1.28834 < 0 that the Case VIII of the unfolding in
Chapter 7 of [16] occurs. The critical bifurcation lines in the (d2, c)-plane are as
follows:

H0 : c = cH0 , H1 : c = cH0 − 0.050794(d2 − d̄21),

L1 : c = cH0 − 0.09479(d2 − d̄21), d2 < d̄21,

L2 : c = cH0 − 0.002186(d2 − d̄21), d2 > d̄21. (4.27)

As shown in figure 15(a), the (d2, c)-plane is divided into six disjoint regions
around (d̄21, c

H
0 ), and the corresponding phase portraits are given in figure 15(b).

The equilibria E0, E1, E2, and E3 of normal form system (4.26) corresponding to
the positive constant steady state, the spatially homogeneous periodic solution, the
spatially nonhomogeneous periodic solution, and spatially nonhomogeneous quasi-
periodic solution of system (1.3), respectively. Thus, the dynamics of system (1.3)
near the (0, 1)-mode double-Hopf bifurcation singularity in the (d2, c)-plane can
be classified as follows:

(1) When (d2, c) ∈ I, E∗ is unstable.

(2) When (d2, c) ∈ II, E∗ remain unstable, and an unstable spatially homogeneous
periodic solution Ē1 bifurcates from E∗.

(3) When (d2, c) ∈ III, E∗, and the spatially homogeneous periodic solution Ē1

are unstable, and an unstable spatially nonhomogeneous periodic solution Ē2

appears.

(4) When (d2, c) ∈ IV, E∗, and the spatially homogeneous periodic solution Ē1

are unstable, the spatially nonhomogeneous periodic solution Ē2 becomes
locally asymptotically stable, and an unstable spatially nonhomogeneous
quasi-periodic solution Ē3 appears.

(5) When (d2, c) ∈ V, E∗ becomes locally asymptotically stable, the spatially
homogeneous periodic solution Ē2 becomes unstable, the quasi-periodic solu-
tion Ē3 remain unstable, and there is no spatially homogeneous periodic
solution Ē1.

(6) When (d2, c) ∈ VI, E∗ remains locally asymptotically stable, the spatially
nonhomogeneous quasi-periodic solution Ē3 disappears, and the spatially
nonhomogeneous periodic solution Ē2 still unstable.

5. Concluding remarks

In this paper, we formulated and rigorously studied a host–parasitoid model with
generalist predation and diffusion, where the predators have alternative food. After
performing a detailed bifurcation analysis, our results revealed that system (1.3)
exhibits complex dynamics and rich bifurcations. For a local model, we provided
some preliminary analysis on Hopf bifurcation. For a reaction–diffusion model
with local intraspecific prey competition, we first obtained the Turing instability
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Figure 15. (a) Bifurcation set of system (4.26) near (d̄21, cH
0 ) in the (d2, c)-plane. (b)

The corresponding phase portraits in I–VI, where H0, H1, L1, and L2 represent critical
bifurcation curves defined as in (4.27).

of spatially homogeneous steady states or spatially homogeneous periodic solu-
tions. Then, we showed that the model with diffusion undergoes Hopf bifurcation
and Turing–Hopf bifurcation. Especially, we found two different normal forms for
the Turing–Hopf bifurcation, where a pair of spatially nonhomogeneous periodic
solutions is stable for a (8,0)-mode Turing–Hopf bifurcation and unstable for a
(3,0)-mode Turing–Hopf bifurcation. Our results indicate that the model exhibits
complex pattern formations, including transient states (spatially homogeneous or
nonhomogeneous periodic solutions), monostability (a spatially nonhomogeneous
steady state or a spatially homogeneous periodic solution), bistability (a pair of
spatially nonhomogeneous steady states or a pair of spatially nonhomogeneous
periodic solutions), tristability (a pair of spatially nonhomogeneous steady states
and a spatially homogeneous periodic solution), and heteroclinic orbits (connect-
ing a spatially nonhomogeneous periodic solution to a non-constant steady state
or a spatially homogeneous periodic solution, connecting a spatially homogeneous
periodic solution to non-constant steady states and vice versa). Finally, numerical
simulations are provided to illustrate complex dynamics and verify our theoretical
results.

It is worth noting that we found two kinds of normal forms with different
dynamics for Turing–Hopf bifurcation (see § 3), i.e. the (8,0)-mode Turing–Hopf
bifurcation with a pair of stable spatially nonhomogeneous periodic solutions, and
the (3,0)-mode Turing–Hopf bifurcation with a pair of unstable spatially nonhomo-
geneous periodic solutions. These two are similar to the Cases Ia and Ib in section
7.5 of [16]. Recently, although Turing–Hopf bifurcation and the corresponding spa-
tiotemporal patterns are discussed in different systems (see [5, 19, 24, 32, 41] and
references therein), normal forms with different modes having different dynamics
for Turing–Hopf bifurcation in an applied problem are rare (see [19, 20]).

After replacing the local intraspecific prey competition by nonlocal intraspecific
prey competition in diffusion model (1.3), we obtained more complex dynam-
ics, such as (i) both (k, 0)-mode and (k, 1)-mode Turing–Hopf bifurcations can
destabilize the constant equilibrium E∗, whereas in contrast only (k, 0)-mode for
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system with local interactions; (2) nonlocal interaction can induce double-Hopf and
Turing–double-Hopf bifurcations, while local interaction cannot; (3) when k∗ = 1, a
1-mode Bogdanov–Takens bifurcation may occur; and (4) double-Hopf bifurcation
can induce a superposition of time-periodic solutions with different spatial modes.

The spatially nonhomogeneous periodic solutions are stable for some param-
eter values (according to the result of the (8,0)-mode Turing–Hopf bifurcation)
and unstable for other parameter values (according to the result of the (3,0)-mode
Turing–Hopf bifurcation), which implies that system (1.3) may have a degener-
ate spatially nonhomogeneous Hopf bifurcation around E∗. Moreover, our results
in [38] showed that the local system of (1.3) exhibits degenerate Hopf bifurcation
with codimension up to 2 at E∗, then we can discuss Turing instability of degenerate
spatially homogeneous periodic solutions. We leave these as open questions.
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