
POLYTOPES, VALUATIONS, AND THE EULER RELATION 

G. T. SALLEE 

1. Introduction. By a d-polytope we shall mean a d-dimensional convex 
poly tope. We shall denote a 7-dimensional face (or j-face) of a polytope by F3. 
Every d-polytope P has proper j-faces for 0 S j S d — 1 and we shall also 
say that P is a d-face of itself. Observe that every face of a polytope is again a 
polytope. The collection of all convex polytopes shall be denoted by SP. 

It is well known that for every d-polytope P , the Euler relation holds: 

(1.1) /o - / 1 + / * - . . . + (-iy-%-i = 1 - ( - D " , 

where fj denotes the number of 7-faces of P. 
Recently, G. C. Shephard has pointed out that other functions on polytopes 

(for example, mean widths, Steiner points, interior angles, etc.) satisfy 
identities remarkably similar to (1.1) (see 8 for additional background to this 
problem). All of these relations can be viewed as special cases of the following 
relation, E(e), for a function </>: 

(1.2) i (-i)'£*(*") = €«(p), 

where P is any d-polytope and the inner summation on the left is taken over 
all 7-faces of P. If 0 satisfies (1.2) for some e and every polytope P , we will 
say that <£ satisfies an Euler relation. In particular, if (/>(P) = 1 for every poly­
tope P and e = 1, then (1.2) reduces to (1.1), the standard Euler relation. 

Our aim in this paper is to call attention to the close relationship between 
functions which satisfy an Euler relation and valuations. 

We shall say that 0 is a valuation on a c l a s s a of sets if 

(1.3) 4>(A) + <j>(B) = 4>(A \J B) + <f>(A C\ B) 

whenever A, B, A \J B, and A C\ B are all members ois/. For our purposes, 
the range of <£ may be any vector space over the real numbers (see the remarks 
at the end of the paper, however). Generally, stf will be either £P or J^7, the 
class of all simplices. For convenience, we set 0(0) = 0. 

A very similar notion, which we term a weak valuation, has been extensively 
studied by Hadwiger (see 2, pp. 236-243, for the continuous, motion-invariant 
case and 3 for the general case). I t would be of interest to know whether this 
notion is equivalent to that of a valuation. 
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POLYTOPES 1413 

We prove three theorems relating these two concepts. The third of these, a 
rather surprising decomposition theorem, was first suggested by G. C. 
Shephard in a private communication. 

(1.4) THEOREM. Suppose that </> is a continuous function on SP which satisfies 
E(l) or E( — l). Then <f> is a valuation on SP. 

(1.5) THEOREM. Suppose that </> is a valuation on &\ Then <j> satisfies E(e) 
on £P if and only if <t> satisfies E(e) on £f. 

(1.6) THEOREM. Suppose that <j> is a valuation on SP. Then we can write 4> as 
the sum of two valuations a and /3, such that a satisfies E(l) and /3 satisfies E( — 1 ). 

The second theorem appears more general than is the case, for it can be 
shown (see (5.7)) that e can equal only 1 and —1 in an E(e) relation. 

Section 2 is devoted to proving a number of general results about valuations 
which are applied in § 3 to prove (1.4). In §§ 4 and 5, derived valuations are 
defined and their properties explored to prove (1.5) and (1.6). Analogues of 
the Dehn-Sommerville equations for functions satisfying E(e) are proved in 
§ 7, while in § 8 it is proved that if a continuous function satisfies an Euler 
relation, this is essentially the only linear relation which it can satisfy. 

My thanks are due to Professor Shephard for originally suggesting this 
problem to me and to Professor Micha Perles for his careful and valuable 
criticism of an earlier version of this paper. 

2. Properties of valuations. In this section we prove a number of results 
about valuations which will be of use later. First, some definitions. 

We say that 0 is a weak valuation on a class s/ of sets if 

(2.1) <t>(A U B) + 4>(A r\B) = <l>(A) + 4>{B) 

whenever A, B, A \J B, and A C\ B are all members of se, and A and B have 
no common relatively interior points. 

We say that 0 is a quasi-valuation onS$ Ç gp if (2.1) holds whenever all 
four poly topes belong to s/, and every proper face of A KJ B is a face of either 
A orB. 

Finally, we define 0 to be a d-valuation if (2.1) holds whenever A, B, and 
A\J B are d-polytopes. Note that this implies that dim (A H B ) = d — 1 or 
d. In an analogous fashion, we define a weak d-valuation and a quasi-d-valuation. 

In general, if <j> is a d-valuation, it is not true that 0 is a d'-valuation if 
d 7^ d'. However, if 0 is a function, continuous with respect to the Hausdorff 
metric on convex sets (which we shall hereafter term simply as a continuous 
function), we have the following result. 

(2.2) Suppose that <t> is a continuous function on SP and suppose that 4> is a 
d-valuation. Then 4> is a k-valuation for k S d. 
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Proof. Let P , Q, and P U Q be (d — l)-polytopes, and let P e and Ce be 
cylinders of height e having bases P and <2, respectively. Then P € U Ce and 
P € Pi Ce are, likewise, cylinders of height e over P \J Q and P C\ Q. Moreover, 
P e , Ce, and P e W Qe are d-polytopes. 

Since 0 is a d-valuation, P e and Q€ satisfy the valuation relation (2.1). By 
the continuity of </>, </>(Pe) —* </>(P) as e —-» 0 and, similarly, for the other poly-
topes. I t thus follows that P and Q satisfy the valuation property. 

As P and Q were arbitrary, <j> is a (d — 1)-valuation. Repeating the argument 
yields the result for any k ^ d. 

(2.3) <f> is a weak d-valuation on SP if and only if </> is a d-valuation on &. 

Proof. I t is clear that any d-valuation is a weak d-valuation. For the 
converse statement, let P , Q, and P W Q be d-polytopes and <£ a weak d-
valuation. We shall show that the valuation property holds for them. By the 
hypothesis on <£, we need consider only the case when dim P C\ Q = d. 

Assume that P C\ Q has r facets (faces of dimension d — 1) F such that 
rel int F Ç int P . We shall prove the result by means of induction on the 
number r. 

The assertion is trivial if r = 0, for then P Q Q. Assume that the statement 
is true for any r <n. We wish to prove it for r — n. Let F be a facet of P C\ Q 
lying in the interior of P and let H be the associated hyperplane supporting 
P C\ Q on F. We suppose that H+ is the closed half-space determined by H 
such that P n ^ C i J + a n d let P1 = H+ C\P and P 2 = H~ C\ P. Observe 
that QQH+ and that PiC\Q = P C\ Q. 

Since P\C\ Q has at most r — 1 facets interior to Pi , by our induction 
hypothesis we have that 

(2.4) 4>(Pi W Q) + «KPi H Q) = tf ( A ) + <K<2). 

Since </> is assumed to be a weak d-valuation, we also have that 

(2.5) </>(Pi \J P2) + tf (P, H P2) = 0(PO + 0(P2) 

and 

(2.6) 0(Px U G) + 0(P2) = 0(Pi U P 2 U Ç ) + 0((P x U Q) C\ P 2 ) . 

Using the fact that P±\J P2 = P , we can combine (2.4), (2.5), and (2.6) to 
show that 

(2.7) 0(p u e) + *(Pi n o = 0(P) + 0(® + 0(Pi n P2) 
- * ( ( P i U 0 ) n p 2 ) . 

Since Pi C\ Q = P C\ Q, our proof will be complete if we show that 
P1r\P2 = (Pi U (?) Pi P 2 . But this is easy since P2C\ Q <^ P2C\ H = 
P 2 P\ P i . This completes the proof. 

I t would be of interest to know if the above result holds true for arbitrary 
convex sets. Of course, if <f> is assumed to be continuous, a standard approxi-
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mation argument, together with (2.3), may be used, but the general problem 
is unsettled. 

I t would be pleasant to report that it is also true that every quasi-valuation 
is a valuation. Unfortunately, this is false, as the following example (due to 
M. Perles) shows: define 

/f) oN w m /number of vertices of P if dim P à 1, 
(2.8) \ ( P ) = | 2 jf d . m p = Q 

It is easily verified that A(P) is a quasi-valuation and equally easily verified 
that it is not a valuation. We can salvage the situation for continuous quasi-
valuations, however. 

(2.9) Let <j> be a continuous function on &. Then 4> is a quasi-d-valuation on 
£P if and only if </> is a d-valuation on £P. 

Proof. I t is clear that every d-valuation is a quasi-d-valuation. 
Conversely, suppose that <f> is a quasi-d-valuation, and let P , Q, and P \J Q 

be d-poly topes such that dim P C\ Q = d — 1. I t is easy to find a projective 
image P* of P such that: 

P* \J Q is a polytope, every face of which is a face of either P* or Q, 
p * n Q = P H Q, and 
P* is arbitrarily close to P in the Hausdorff metric 

(see 5, (2.10)). Since <j> is a quasi-d-valuation, P* and Ç satisfy the valuation 
property. It then follows by the continuity of <j> that P and Q also satisfy the 
valuation property. The result is then a consequence of (2.3). 

We now return to valuations to state the following useful result. 

(2.10) Let </> be a k-valuation on SP for all k ^ d. / / P = P i U . . . U Pn , 
where P , Pi , . . . , Pn are all d-polytopes, then 

<t>(P) = Ê 4>CP*) - £ tiPt^Pi) + ... + ( - î y - ^ P i n . . . n p » ) . 

The proof of this is completely analogous to the proof of the same result for 
Steiner points in (4, (10)). 

(2.11) COROLLARY. Suppose that <j> is a k-valuation on £P for all k ^ d. If 
(j)(S) = 0 whenever S is a j'-simplex and j ^ d, then 4>(P) — Ofor any j-polytope 
P with j S d. 

Proof. I t is clear that any j-polytope P can be written as a finite union of 
j-simplices, Si, . . . , Sw, where Stl P\ . . . P\ S i r is a simplex for any set of 
indices ii, . . . , ir. The result now follows immediately from (2.10). 

Our final result is equivalent to (2.11). 

(2.12) Suppose that fa and <j>2 are k-valuations of SP for all k rg d. If 0i(S) = 
fa(S) whenever Sis a j'-simplex and j S d,thenfa(P) = fa{P) for any j-polytope 
P with j S d. 
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3. Proof of the first theorem. Most of the machinery which we need to 
prove (1.4) is now ready, but one more lemma is needed. 

(3.1) LEMMA. Let </> be a function on SP which satisfies E(l) for a given odd 
value of d. Then <j> is a quasi-d-valuation. 

Proof. Let P and Q be two d-polytopes such that P U Q is a d-polytope 
and every proper face of P U Q is a face of either P or Q. The remainder of the 
proof is largely devoted to keeping track of the various faces which are of 
interest. With this in mind we break up the set of all j-faces for j ^ d — 1 
which occur as a face of P , Q, P U Q or PC\ Q into five subsets: 

7*-faces which are faces o f P U Ç and P, but not Q; 
7-faces which are faces of P W Q and Q, but not P\ 
j-faces which are faces of P \J Q, P and Q; 
j-faces which are faces of P C\ Q and P, but not Q\ 
j-faces which are faces of P C\ Q and Q, but not P . 

I t is clear that all of these sets are disjoint and that for j < dim(P C\ Q) we 
have that 

where ^j{K) denotes the set of j-faces of the poly tope K. 
If dim (P Pi Q) = d - 1, then 

(3.2) J ^ - ^ P ) = &~id-1 \J{P r\Q) 

since J ^ - 1 = ^ Y " 1 = ^ V " 1 = 0. Similarly for ^d~^{Q). For all j < d, we 
also have that 

For each of the sets J^Y, let XY denote the sum S<£(P"0 taken over all 
members of <^Y; for each &-polytope X, le t^ (X) denote £ * = o ( - l ) ' I > ( ^ y ) , 
where the inner summation is taken over all j-faces of X. Using these notations, 
we see that if dim(P Pi Q) = d, then since d is odd, we have that 

(3.3) 2<KP U Q ) = * (P U Ç ) = Ë ( - 1 ) ' { Ex3 ' + £ , ' + £ . ' } = 

Ë (-îyfE^+Es'+E^+E^+EB'+E^-E^-E^-E^ = 

* ( P ) + *(Q) - HP n Q) = 2[*(P) + <KC) - * C P n Q)]. 

J V = 
J^V = 

^ 6 ' = 
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If dim(P Pi Q) = d — 1, then we can imitate the above proof except that 

Noting that \f/(P f~\ Q) = 0 since dim(P (~\ Q) = d - 1, we have that 

(3.4) 2<f,(P KJQ)= *{P KJQ) = *(P) + *(Q) - 2<j>(P n Q) = 

2[*(P)+*(0 -«(PHQ)]. 

From (3.3) and (3.4) it follows that 0 is a quasi-d-valuation. 
We are now ready to complete the proof of one part of the theorem. In fact, 

we shall prove a slightly stronger result. 

(3.5) Suppose that <j> is a function continuous on 0 which satisfies E(l) for 
each k-polytope if k rg d (odd). Then <j> is a k-valuation on & for all k ^ d. 

Proof. By (3.1), it follows from the hypotheses that <j> is a quasi-d-valuation. 
Since 4> is continuous on 0, <j> is a ^-valuation by (2.9), and thus a ^-valuation 
on 0 for k ^ d by (2.2). This completes the proof. 

We can essentially duplicate the proof of (3.1) to show the following result. 

(3.6) Let <j> be a function on 0 which satisfies E( — 1) for a given value of d 
(even). Then <t> is a quasi-d-valuation. 

From here, it is again a short step to proving the following assertion. 

(3.7) Let 4> be a continuous function on 0 which satisfies E( — l) for all 
poly topes of dimension k S d (even). Then 4> is a k-valuation on 0 for all k S d. 

The proof of (1.3) is now complete. The result cannot be extended to 
discontinuous functions on 0 as the function \(P) denned by (2.8) shows. I t 
may be verified that X satisfies E(l) for all polytopes (see 1, (8.3.1) for details), 
but as we have already observed, X is not a valuation. 

4. Derived valuations. If <j> is any valuation on 0, we define <£*, the 
valuation derived from <£, on any d-polytope P by: 

(4.1) 4>*{P) = t, (-1)' £ HP1)-
i=0 P3ÇiP 

The following theorem, from which we shall draw many useful corollaries, 
verifies that <£* is a valuation. 

(4.2) THEOREM. Suppose that $ is a valuation on 0. Then <£* defined from <j> 
by (4.1), w o valuation. 

Proof. We shall show that <£* is a weak valuation on 0 and then use (2.3) 
to conclude that <£* is a valuation on 0. 
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Let P and Q be two d-polytopes such that P \J Q is convex and P C\ Q is a 
face of both P and Q. We divide up the j-faces which appear in P , Q, P U (2, 
or P P\ Q into the following disjoint classes: 

^ V = i-faces of P U <2 which are j-faces of P and of Q\ 
^ V = j-faces of P U <2 which are j-faces of P but not Q; 
^ V = j-faces of P U Q which are j-faces of Q but not P ; 
# V = j-faces of P VJ Q which are j-faces of neither P nor Q; 
^ V = j-faces of P which are j-faces of Q but not P U <2; 
^~V = j-faces of P which are j-faces of neither Q nor P \J Q; 
# V = j-faces of Q which are j-faces of neither P nor P VJ Q. 

We also make the following conventions: XV denotes ]C</>(P0> where the 
summation is taken over the class *^V, and (j>j(R) = S 0 ( P y ) if the summation 
is taken over all of the j-faces of the polytope R. 

I t is important to note the one-to-one correspondence among the classes 
i ^ V , ^ V , ^ V , a n d ^ V - 1 for 1 ^ j ^ ^ — 1 which arises in the following way: 
each Pj G ^ V corresponds to some Qj 6 ^ V whose union Pj U <2; G J^V 
and whose intersection Pj Pi Q-7' G J^V - 1 . Since 0 is a valuation, by summing 
over all members of J^V we see that 

(4.3) XV = 2 > + 2 > - 2V-1-
We further observe that for j < d — 1, 

^(p w Q) = x y + T,*1 + XV + XV, 
*>(pr\Q) = Ei> + XV, 

^(ç) = E I ' + E » ' + X V + 2 : 7 ' . 
Thus, if 1 ^ j g d - 2, 

(4.4) *'(P W 0 = XV + XV + Es' + £*' 
= (Es+IV+IV+5» + (£1' +E»' + XV+XV) 

- (XV +£. ' ) + (2V - XV - ETO - E.' 
= 4>J(P) + <t>KQ) - * ' ( P n<2)- Ea^-1 - E*'-

Similar reasoning for the two remaining cases of j = 0, j = d — 1, yields: 

(4.5) *<>(P W Q) = 4,0(P) + 4fi(Q) -4,°{Pr\Q) - E s 0 

and 

(4.6) ** - i (Pu<2) = ^ ( P ) + tf'-KÇ) - 2 # n ç ) - E a * - 2 -

It then follows from (4.4), (4.5), (4.6), and the valuation property for <f> that 

(4.7) É ( - l ) V ' C P W Ç ) = É ( - 1 ) V ( P ) + É ( - l ) V ( Q ) 

- E (-D V ( P n Q) - E ( - D T / - E ( - i ) T ^ 1 + (-irT**-2. 
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As the last three terms sum to 0, we can rewrite (4.7) as 

(4.8) 0*(P W Q) = 4>*(P) + 0*(<2) - 0*(P H Q). 

Thus, <£* is a weak valuation on SP, and hence a valuation. This concludes 
the proof. 

The applications which we shall make of the preceding theorem depend 
upon the following easy observation. 

(4.9) A valuation 0 satisfies E(e) on & if and only if the valuation <£* — e</> 
vanishes identically on SP\ 

With the two preceding results, wre can now prove (1.5). 

Proof. By (4.9), the result is equivalent to showing that <f>* — e<j> vanishes 
identically on SP if and only if it vanishes identically on j ^ 7 . But this statement 
is proved in (2.11) and the proof of the theorem is complete. 

5. A decomposition theorem for valuations. Having defined derived 
valuations, we can now formulate (1.6) in more detail. 

(5.1) THEOREM. Let <t> be a valuation defined on £P. Then there exist two 
valuations a and /3 such that: 

0(P) = a(P) + 0(P) for all P Ç ^ , 
a satisfies E(l) on £P, and 
P satisfies E ( - l ) on &. 
In fact, we can compute a and fi explicitly by: a(P) = \[4>{P) + $*(P)L 

j3(P) = h\<t>{P) — <t>*(P)]i where <£* is the valuation derived from <j>. 

A preliminary lemma is needed which is of independent interest. 

(5.2) LEMMA. Let 0 be any valuation defined on SP, let <£* be derived from 4> 
and <£** derived from <£*. Then <£** = <£. 

Proof. By (4.2) we know that <£** is a valuation and by (2.12) we know 
that <f> = <£** on SP if and only if <j> = <£** on 5f. Thus, let £P be any ^-simplex 
with vertices v0, . . . , vd. Then 

(5.3) *«(P) = E (-D' E <W), 
where 

4>*(PI) = i (-D* E .<t>(pk). 

Since P is a ^-simplex, each &-face of P is contained in exactly (f Z*) j-faces and 
it easily follows that: 

(5.4) E **(po = £ (-i)*( .̂ - J) E *(^). 
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Substituting (5.4) into (5.3) and collecting all the terms corresponding to 
&-faces of P yields: 

(5.5) <f>**(P) = É ( - D * E 4>(Pk)\ 
k=0 pkŒp [£<-»<î:I) 

We observe that the bracketed sum on the right-hand side is 0 if k < d, and 
1 if k = d. Hence, 

(5.6) <*>**(P) = ( - l ) W ) • ( - ! ) * = 4>(P). 

Since P was an arbitrary ^-simplex, the result follows. 

We can now prove (5.1). Let a and /3 be defined as in (5.1) and let a* be 
derived from a. I t is clear that 

a* = i f o * + <t>**] = U<t>* + 4>] = « 

from the preceding lemma. Hence, a* — a = 0, which is equivalent to saying 
that a satisfies E(l) on £P. A similar argument shows that (3 satisfies £ ( — 1). 
Since </>= a + ft by construction, the proof is complete. 

As a corollary to (5.2), we also have the following result. 

(5.7) Suppose that </> is a valuation on & which satisfies E(e). Then e2 = 1. 

6. Further relations on simple and quasi-simple polytopes. Once a 
function is known to satisfy a relation E(e) for every poly tope, it is not 
difficult to show that it satisfies further relations analogous to the well-known 
Dehn-Sommerville equations (9, § 7.1). Although the Dehn-Sommerville 
equations were originally stated for simplicial polytopes (polytopes in which 
every facet is a simplex), for our purposes it is more convenient to work with 
their duals, the simple polytopes. 

A polytope is termed simple [quasi-simple] if every vertex [edge] is contained 
in exactly d facets [d — 1 facets]. 

(6.1) Let 4> be a function defined on SP which satisfies E(e) on £P. Then for 
any simple d-polytope P , the following relation holds for each k, 1 ^ k ^ d, 
where the inner summation on the left is taken over all of the j-faces of P , and the 
summation on the right is taken over all the k-faces of P : 

(6.2) i (-i)'(^ : j ) z * ( ^ ) = «2>(**). 

Proof. By assumption, for each &-face Pk of P , 

(6.3) É ( - 1 ) ' D éiP1) = e4>(Pk). 

Since P is simple, it is easily verified that each j-face of P is contained in 
exactly ( ^ ) &-faces of P . Summing (6.3) over all &-faces of P yields (6.2), 
thus completing the proof. 

https://doi.org/10.4153/CJM-1968-142-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1968-142-0


POLYTOPES 1421 

Note that if </> is a function which vanishes on all polytopes of dimension 
less than k, then the proof of (6.1) is valid whenever each &-face of P is con­
tained in exactly d — k facets. In particular, since a function satisfying 
E{ — 1) vanishes on 0-polytopes, the following result is true. 

(6.4) COROLLARY. If <j> is a function satisfying E{ — 1) on &', then <£ satisfies 
each relation (6.2) for every quasi-simplicial poly tope P . 

I t should be noted, however, that not all of the relations given in (6.1) are 
linearly independent. In fact, the same methods as were used by Shephard 
for the special cases of Steiner points and mean widths in (6, §4) and (7, §3), 
respectively, can be used to prove the following more general results. 

(6.5) Let <f> be a function satisfying E{1) on 0* which does not vanish on all 
0-polytopes. Then exactly [\{d + 1)] of the relations of the type (6.2) are linearly 
independent {namely, those corresponding to the odd values of k not exceeding d). 

(6.6) Let (j) be a function satisfying £ ( — 1) on 0 which does not vanish on all 
1-polytopes. Then exactly [d/2] of the relations of the type (6.2) are linearly 
independent {namely, those corresponding to the even values of k not exceeding d). 

7. A uniqueness theorem. The results of the last section show that if a 
function satisfies one of the Euler relations, it satisfies many more relations on 
the class of simple polytopes. However, such results are false on the class of all 
polytopes. In fact, in this section we shall prove that if a continuous function 
satisfies an Euler relation, this is the only linear relation of this type that the 
function can satisfy for every polytope. This result generalizes the theorem of 
Grunbaum (1, §8.2) which states that the/-vectors of all ^-polytopes satisfy 
essentially only one linear relation. 

(7.1) THEOREM. Suppose that 4> is a continuous function satisfying E{e) on 
SP such that 4>{P) = 0 for every polytope P if dim(P) < k, and such that 
<j){Po) 9e 0 for some k-polytope P0 . If for d ^ k every d-polytope Q satisfies 

(7.2) JV2>(0*) + . • • + BWEMQ1-1) + BU{Q) = o, 
where the sums are taken over all faces of Q of the dimension indicated, then 

Bd = {-l)j-kBk
d for k ^ j ^ d - 1, Bd

d = [ ( - l )* + 1 e + {-l)d-k]Bk
d. 

Two preliminary lemmas are needed. In what follows, conv(^4, B) denotes 
the convex hull of A and B ; that is, the smallest convex set containing both A 
and B. Observe that if A and B are polytopes, then conv(^4, B) is also a 
polytope. 

(7.3) Let <j> be a valuation on 0\ P a d-polytope, v G int P , and let Rj+l = 
conv(fl, Pj) for any j-face of P . Then 

(7.4) <t>(P) = Z<t>(Rd) -Z-K^-1) + • • • + ( - lWf) . 
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Proof. For any poly tope Q, let ri(Q) = <£(conv(V, Q)). I t is easily checked 
that 7] is a valuation, and thus rç*, the derived valuation, is one as well. We 
can then rewrite (7.4) as 

(7.5) 4>{P) = (-iy-^*{P) - (-m(P)] + ( - D ^ ( » ) 

or 

(7.6) v*(P) = 4>(v). 

To prove this, a routine computation shows that rj*(Q) = <j)(v) for any 
simplex Q having v as a vertex. Since P can be written as a union of simplices 
Si, . . . , Sn, such that each intersection of them is a simplex having v as a 
vertex, it follows from (2.10) that 

(7.7) V*(P) = Hv*(st) -Tv*(stnsj) + ...+ ( - i)-y(Sin. . .n s„) 

y-g+...+(-.r^j 
This completes the proof of the lemma. 

(7.8) Let <j>bea valuation on SP as described in (7.1). Then for each d ^ k + 2 
there exists a d-polytope P and a point v £ mt P such that $ (P) — ^(t>(Rd) 9* 0, 
where Rd = conv(y, Pd~1) and the summation is taken over all {d — 1)-faces of P. 

Proof. Let <£(P, y) denote the difference in question. Suppose that P 0 is a 
&-polytope such that 0(PO) ^ 0. Then from (2.10) it follows that there exists 
a ^-simplex, S, such that 0(5) ^ 0. 

Let P be a ^-simplex having S as a &-face and all of the rest of its vertices 
vk+i, . . . , vd, near a fixed vertex, p, of 5. Choose v near >̂ as well. 

By the continuity of <£, with suitable choices of v, vk+i, . . . , vd, we can 
approximate cj)(v, P) as closely as we like by assuming that all of them are 
identical with the vertex p of 5. An easy computation then shows that <l>(v, P) 
can be made arbitrarily close to (k + 1 — d)<t>(S). Since <£(5) ^ 0, the 
conclusion follows. 

Proof of (7.1). We shall use induction on dimension. The assertion is 
immediate if d = k + 1. Suppose that the result is known for all dimensions 
less than d. We shall prove it for d. For convenience, we shall omit the super­
script "d" on the coefficients of (7.2). 

Let Q be a given (d — 1)-polytope and let P be a pyramid over Q. If we 
allow the apex of P to collapse to a point v £ int Q, then by the continuity of 
</>, it follows that: 

(7.9) B*2>«2*) + ••• + Ba-MQ) + BMQ) 

+ BX<t>(Rk) + •••+ Bd^<t>(Ra-i) = 0, 

where R1 = conv(z>, Q^1) for j > 0, and i?° = v, by convention. 
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Similarly, if P t t is a bipyramid over Q and we collapse both vertices of P # 

which do not lie in Q to the point v, then 

(7.10) 5*I>«2*) + . • . + Bd_2Z<t>(Qd-2) + BMQ) 

+ 23*2>(tf*) + . . . + 2Bd_1Z<t>(Ra-1) = 0. 

Subtracting (7.10) from twice (7.9) yields 

(7.11) SJXG*) + . . . + B^ZtiQ*-2) + l2Bd-i + Bd]<j>(Q) = 0. 

From our induction hypothesis, it then follows that 

(7.12) Bj = (-l)'-*Bk torkSj^d-2 

and 

(7.13) 2Bd^ + Bd= [ ( - l )* + 1 e + (-iy-i-*]Bk. 

Because of (1.4), ^ is a valuation and we see from (7.3) that 

(7.14) St[2>(2?*) + . . . + ( - l r - ^ X X ^ - 1 ) ] = ( - l ) " - * - ^ ^ ^ ) . 

Subtracting (7.9) from (7.10) and simplifying by means of (7.12), (7.13), and 
(7.14) yields 

(7.15) {Bd_, + (-iy-*Bk)(-4>(Q) +I>(^- 1 ) ) = 0. 

If we choose Q and v so that the right-hand bracketed term does not vanish, 
which we know can be done by (7.8), then 

(7.16) Bd^+ {-l)d-kB, = 0. 

This last equation, together with (7.13), completes the proof. 

Continuity is a necessary hypothesis in the theorem as the function X(P) 
given in (2.8) shows, since, for all polytopes, X satisfies E(l) as well as the 
following linear relation: LX(P°) - 2X(P) = 0. 

Remarks. The results dealing solely with valuations (such as §2) would be 
valid for any valuation taking values in an arbitrary abelian group with 
characteristic different from 2 (possibly with a topology if the result deals 
with continuity questions). Statements involving an Euler relation are true if 
the range of the valuation involved lies in a module over a commutative ring 
with identity. For the results of the last section, we require, in addition, that 
the ring have no zero divisors. 

Professor Perles has pointed out that we do not need a valuation for the 
results of §5 to hold. In fact, (5.1), (5.2), and (5.5) are all true under the 
weaker assumption that 0 is an arbitrary function on &P (although in that 
case, we cannot expect a and /3 in (5.1) to be valuations). 
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