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Abstract We consider families of special cycles, as introduced by Kudla, on Shimura varieties attached to
anisotropic quadratic spaces over totally real fields. By augmenting these cycles with Green currents, we
obtain classes in the arithmetic Chow groups of the canonical models of these Shimura varieties (viewed
as arithmetic varieties over their reflex fields). The main result of this paper asserts that generating series
built from these cycles can be identified with the Fourier expansions of non-holomorphic Hilbert-Jacobi
modular forms. This result provides evidence for an arithmetic analogue of Kudla’s conjecture relating
these cycles to Siegel modular forms.
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2 S. Sankaran

1. Introduction

The main result of this paper is a modularity result for certain generating series of ‘special’
cycles that live in the arithmetic Chow groups of Shimura varieties of orthogonal type.

We begin by introducing the main players. Let F be a totally real extension of Q
with d = [F : Q], and let σ1, . . . ,σd denote the archimedean places of F. Suppose V is a
quadratic space over F that is of signature ((p,2),(p+2,0),(p+2,0), · · · ,(p+2,0)) with

p > 0. In other words, we assume that V ⊗F,σ1
R is a real quadratic space of signature

(p,2) and that V is positive definite at all other real places.
We assume throughout that V is anisotropic over F. Note that the signature condition

guarantees that V is anisotropic whenever d > 1.

Let H = ResF/QGSpin(V ). The corresponding Hermitian symmetric space D has two

connected components; fix one component D+ and let H+(R) denote its stabilizer in
H(R). For a neat compact open subgroup Kf ⊂ H(Af ), let Γ := H+(Q)∩Kf , where

H+(Q) =H(Q)∩H+(R), and consider the quotient

X(C) := Γ
∖
D+. (1.1)

This space is a (connected) Shimura variety; in particular, it admits a canonical model
X over a number field E ⊂ C depending on Kf , see [13] for details. Moreover, as V is

anisotropic, X is a projective variety.

Fix a Γ-invariant lattice L⊂ V such that the restriction of the bilinear form 〈·,·〉 to L

is valued in OF , and consider the dual lattice

L′ = {x ∈ L | 〈x,L〉 ⊂ ∂−1
F }, (1.2)

where ∂−1
F is the inverse different.

For an integer n with 1≤ n≤ p, let S(V (Af )
n) denote the Schwartz space of compactly

supported, locally constant functions on V (Af )
n, and consider the subspace

S(Ln) := {ϕ ∈ S(V (Af )
n)Γ | supp(ϕ)⊂ (L̂′)n and ϕ(x+ l) = ϕ(x) for all l ∈ Ln}.

(1.3)

Note that S(Ln) is finite-dimensional, and is isomorphic to C[(L′)n/Ln]Γ. This isomor-

phism is induced by the following map: a basis function eμ ∈ C[(L′)n/Ln] attached to

the coset μ ∈ (L′)n/Ln is associated to the characteristic function ϕμ ∈ S(V (Af )
n) of

μ+L⊗ÔF .

For every T ∈ Symn(F ) and Γ-invariant Schwartz function ϕ ∈ S(Ln), there is an

E -rational ‘special’ cycle

Z(T,ϕ) (1.4)

of codimension n on X, defined originally by Kudla [13]; see Section 2.3 below.

It was conjectured by Kudla that these cycles are closely connected to automorphic

forms; more precisely, he conjectured that upon passing to the Chow group of X, the
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Arithmetic special cycles and Jacobi forms 3

generating series formed by the classes of these special cycles can be identified as the
Fourier expansion of a Hilbert-Siegel modular form. When F = Q, the codimension one

case of this conjecture follows from results of Borcherds [2], and the conjecture for higher

codimension was established by Zhang and Bruinier-Raum [4, 19]. When F 	= Q and in
codimension one, the result follows from work of Bruinier [3], which we review in Section 3

below. For higher codimensional cycles with F 	=Q, the result was established by Yuan-

Zhang-Zhang [18], contingent on the convergence of the generating series in an appropriate

sense. The same situation was investigated by Kudla [12] for more general signatures,
who established the result (including convergence) contingent on the Beilinson-Bloch

conjecture.

More recently, attention has shifted to the arithmetic analogues of this result, where
one replaces the Chow groups with an ‘arithmetic’ counterpart, attached to a model X
of X defined over a subring of the reflex field of E ; these arithmetic Chow groups were

introduced by Gillet-Soulé [9] and subsequently generalized by Burgos-Kramer-Kühn [5].
Roughly speaking, in this framework cycles are represented by pairs (Z,gZ), where Z is a

cycle on X , and gZ is a Green object, a purely differential-geometric datum that encodes

cohomological information about the archimedean fibres of Z.

In this paper, we consider the case where the model X is taken to be X itself. In
order to promote the special cycles to the arithmetic setting, we need to choose the

Green objects. For this, we employ the results of [8], where a family {g(T,ϕ;v)} of Green

forms was constructed. Note that these forms depend on an additional parameter v ∈
Symn(F ⊗QR)�0, which should be regarded as the imaginary part of a variable in the

Hilbert-Siegel upper half space.

With these Green objects in hand, we obtain classes

Ẑ(T,v) ∈ ĈHn
C(X)⊗C S(L

n)∨, (1.5)

where ĈHn
C(X) is the Gillet-Soulé arithmetic Chow group attached to X ; these classes

are defined by the formula

Ẑ(T,v)(ϕ) =
(
Z(T,ϕ), g(T,ϕ;v)

)
∈ ĈHn

C(X). (1.6)

For reasons that will emerge in the course of the proof of our main theorem, we will also
need to consider a larger arithmetic Chow group ĈHn

C(X,Dcur), constructed by Burgos-

Kramer-Kühn [5]. This group appears as an example of their general cohomological

approach to the theory of Gillet-Soulé. There is a natural injective map ĈHn
C(X) ↪→

ĈHn
C(X,Dcur); abusing notation, we identify the special cycle Ẑ(T,v) with its image

under this map.

Theorem 1.1. (i) Suppose 1 < n ≤ p. Fix T2 ∈ Symn−1(F ), and define the formal

generating series

F̂JT2
(τ ) =

∑
T=(∗ ∗

∗ T2
)

Ẑ(T,v)qT , (1.7)
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4 S. Sankaran

where τ ∈Hd
n lies in the Hilbert-Siegel upper half space of genus n, and v= Im(τ ).

Then F̂JT2
(τ ) is the q-expansion of a (non-holomorphic) Hilbert-Jacobi modular

form of weight p/2+1 and index T2, taking values in ĈHn
C(X,Dcur)⊗S(Ln)∨ via

the Weil representation.

(ii) When n= 1, the generating series

φ̂1(τ ) =
∑
t∈F

Ẑ(t,v)qt (1.8)

is the q-expansion of a (non-holomorphic) Hilbert modular form of weight p/2+1,

valued in ĈH1
C(X)⊗S(L)∨.

Some clarification is warranted in the interpretation of this theorem. The issue is that

there is no apparent topology on the arithmetic Chow groups for which the series (1.7)

and (1.8) can be said to converge in a reasonable sense. In a similar vein, while the Green
forms g(T,v) vary smoothly in the parameter v, upon passing to the arithmetic Chow

group, they are regarded as elements of the quotient space of currents modulo exact

currents; there does not appear to be a natural way in which the family of classes Ẑ(T,v)
can be said to vary smoothly in the arithmetic Chow group.

To give a more precise account of the main theorem, what is being asserted is the

existence of the following objects:

(i) finitely many classes Ẑ1, . . . Ẑr ∈ ĈHC
n(X,Dcur) (or in ĈH1

C(X) when n= 1),

(ii) finitely many S(Ln)∨-valued Jacobi modular forms (in the usual sense) f1, . . . ,fr,

(iii) and a Jacobi form g(τ ) valued in D•(X)⊗S(Ln)∨ (where D•(X) is the space of

currents on X ) and is locally uniformly bounded in τ ,

such that the T ’th coefficient of the Jacobi form
∑

i fi(τ )Ẑi + a(g(τ )) coincides with

Ẑ(T,v). Here. a(g(τ )) ∈ ĈHn(X,Dcur) is an ‘archimedean class’ associated to the current
g(τ ). A more detailed account may be found in Section 2.6.

To prove the theorem, we first prove the n = 1 case, using a modularity result due to

Bruinier [3] that involves a different set of Green functions. The theorem in this case

follows from a comparison between his Green functions and ours.
For n > 1, we exhibit a decomposition

Ẑ(T,v) = Â(T,v)+ B̂(T,v) (1.9)

in ĈHn(X,Dcur)⊗S(Ln)∨, which is based on a mild generalization of the star product

formula [8, Theorem 4.10]. The main theorem then follows from the modularity of the

series

φ̂A(τ ) :=
∑

T=(∗ ∗
∗ T2

)

Â(T,v)qT and φ̂B(τ ) =
∑

T=(∗ ∗
∗ T2

)

B̂(T,v)qT , (1.10)

which are proved in Corollary 6.3 and Theorem 5.1, respectively. The classes Â(T,v)

are expressed as linear combinations of pushforwards of special cycles along sub-Shimura

varieties of X, weighted by the Fourier coefficients of classical theta series; the modularity
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of φ̂A(τ ) follows from this description and the n= 1 case. The classes B̂(T,v) are purely
archimedean, and the modularity of φ̂B(τ ) follows from an explicit computation involving

the Kudla-Millson Schwartz form [14].

This result provides evidence for the arithmetic version of Kudla’s conjecture – namely,
that the generating series

φ̂n(τ ) =
∑

T∈Symn(F )

Ẑ(T,v)qT (1.11)

is a Hilbert-Siegel modular form1; indeed, the series F̂JT2
(τ ) is a formal Fourier-Jacobi

coefficient of φ̂n(τ ). Unfortunately, there does not seem to be an obvious path by which

one can infer the more general result from the results in this paper, as the decomposition
of Ẑ(T,v) that we use depends on the lower-right matrix T2, and it is not clear how to

compare the decompositions for various T2.

2. Preliminaries

2.1. Notation

• Throughout, we fix a totally real field F with [F : Q] = d. Let σ1, . . . ,σd denote
the real embeddings. Using these embeddings, we identify F ⊗QR with Rd, and
denote by σi(t) the i ’th component of t ∈ F ⊗QR under this identification.

• For any matrix A, we denote the transpose by A′.
• If A ∈Matn(F ⊗QR), we write

e(A) :=

d∏
i=1

exp
(
2πitr(σi(A))

)
. (2.1)

• If (V ,Q) is a quadratic space over F, let 〈x,y〉 denote the corresponding bilinear
form. Here, we take the convention Q(x) = 〈x,x〉. If x ∈ V and y = (y1, . . . ,yn) ∈
V n, we set 〈x,y〉= (〈x,y1〉, . . . ,〈x,yn〉) ∈Mat1,n(F ).

• For i= 1, . . . d, we set Vi = V ⊗F,σi
R.

• Let

Hd
n = {τ = u+ iv ∈ Symn(F ⊗QR) | v� 0} (2.2)

denote the Hilbert-Siegel upper half-space of genus n attached to F. Via the
fixed embeddings σ1, . . . ,σd, we may identify Symn(F ⊗R) � Symn(R)

d; we let

1More broadly, Kudla’s program seeks to establish the modularity of generating series of the
form

Φ̂n(τ) =
∑
T

Ẑ(T,v)qT ,

where Ẑ(T,v) = (Z(T ),g(T,v)) ∈ ĈHn(X )⊗S(Ln)∨; here, Z(T ) is a suitable integral model
of Z(T ), defined on a suitable model X/OF of X. Putting aside what ‘suitable’ should mean

here, we note that there is a natural map ĈHn(X )→ ĈHn(X) given by passing to the generic
fibre; applying this map coefficient-wise, the modularity of a generating series of the above
form would imply the modularity of (1.11).
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σi(τ ) = σi(u)+ iσi(v) denote the corresponding component, so that, in particular,
σi(v) ∈ Symn(R)>0 for i= 1, . . . ,d. If τ ∈Hd

n and T ∈ Symn(F ), we write

qT = e(τT ). (2.3)

2.2. Arithmetic Chow groups

An arithmetic cycle of codimension n is a pair (Z,g), where Z is a formal C-linear
combination of codimension n subvarieties of X, and g is a Green current for Z ; more
precisely, g is a current of degree (n−1,n−1) on X(C) such that Green’s equation

ddcg + δZ(C) = ω (2.4)

holds, where the right-hand side is the current defined by integration2 against some

smooth form ω. We write Ẑn
C (X) for the complex vector space of arithmetic cycles.

Given a codimension n−1 subvariety Y and a rational function f ∈ E(Y )× on Y, let

d̂iv(f) := (div(f),− log |f |2 δY ) (2.5)

denote the corresponding principal arithmetic cycle. Let R̂atnC(X) denote the subspace
spanned by (a) the principal arithmetic divisors and (b) classes of the form (0,η) with

η ∈ im(∂)+ im(∂) a current of degree (n−1,n−1). Then, by definition, the codimension

n arithmetic Chow group is the quotient

ĈHn
C(X) = Ẑn

C (X)/R̂atnC(X). (2.6)

In addition, Gillet and Soulé define an intersection product for these Chow groups, giving

ĈH∗
C(X) =⊕nĈH

n
C(X) the structure of a ring; for more details on all these constructions,

see [9, 16].
In their paper [5], Burgos, Kramer and Kühn give an abstract reformulation and

generalization of this theory: their main results describe the construction of an arithmetic

Chow group

ĈHn(X,C) = Ẑn
C (X,C)/R̂atnC(X,C) (2.7)

attached to a ‘Gillet complex’ C. One of the examples they describe is the group attached
to the complex of currents Dcur; we will content ourselves with the superficial description

of this group given below, which will suffice for our purposes, and the reader is invited to

consult [5, §6.2] for a thorough treatment.
Unwinding the formal definitions in [5], one finds that the space of arithmetic classes

Ẑn
C (X,Dcur) admits a description as the space of tuples (Z,[T,g]), with Z as before, but

now T and g are currents of degree (n,n) and (n−1,n−1), respectively, such that3

ddcg+ δZ(C) = T +ddc(η) (2.8)

2Here and throughout this paper, we will abuse notation and write ω both for a smooth form
and the current it defines.

3The reader is cautioned that in [5], the authors normalize delta currents and currents defined
via integration by powers of 2πi, resulting in formulas that look slightly different from those
presented here; because we are working with C-coefficients, the formulations are equivalent.
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for some current η with support contained in Z(C); we can view this as a relaxation of

the condition that the right-hand side of (2.4) is smooth. There is a natural map

Ẑn
C (X)→ Ẑn

C (X,Dcur), (Z,g) �→ (Z,[ω,g]). (2.9)

In this description, it turns out that the space of relations R̂atnC(X,Dcur) is the image of

R̂atnC(X) under this map; as a consequence, we obtain an injective map

ĈHn
C(X)→ ĈHn

C(X,Dcur), (2.10)

cf. [5, Theorem 6.35]. Moreover, while ĈH∗
C(X,Dcur) is not a ring in general, it is a module

over ĈH∗
C(X).

A nice consequence of preceding description of Ẑn
C (X,Dcur) is that any codimension n

cycle Z on X gives rise to a canonical class (see [5, Definition 6.37])

Ẑcan := (Z,[δZ,0]) . (2.11)

Finally, we record the following intersection formula, which will be useful in the sequel.
Let (Z,g)∈ ĈH1

C(X) be an arithmetic divisor, where g is a Green function with logarithmic

singularities along the divisor Z. Suppose Ŷ can ∈ ĈHm(X,Dcur) is the canonical class

attached to a cycle Y that intersects Z properly; then by inspecting the proofs of [5,

Theorem 6.23, Proposition 6.32], we find

(Z,g) · Ŷ can =
(
Z ·Y ,[ω∧ δY (C),g∧ δY (C)]

)
∈ ĈHm+1

C (X,Dcur). (2.12)

Remark 2.1. One consequence of our setup is the vanishing of certain ‘archimedean
rational’ classes in ĈHn(X) and ĈHn(X,Dcur). More precisely, if Y is a codimension

n−1 subvariety, then

(0,δY (C)) = 0 ∈ ĈHn
C(X). (2.13)

To see this, let c ∈ Q be any rational number such that c 	= 0 or ±1, and view c as a

rational function on Y ; its divisor is trivial, and so

0 = d̂iv(c) = (0,− log |c|2δY (C)) = − log |c|2 · (0,δY (C)), (2.14)

and hence, (0,δY (C)) = 0. As a special case, we have (0,1) = 0 ∈ ĈH1
C(X).

2.3. Special cycles

Here, we review Kudla’s construction of the family {Z(T )} of special cycles on X, [13].

First, recall that the symmetric space D has a concrete realization

D= {z ∈ P1(V ⊗σ1,F C) | 〈z,z〉= 0,〈z,z〉< 0}, (2.15)

where 〈·,·〉 is the C-bilinear extension of the bilinear form on V ; the space D has two

connected components, denoted D±, which are interchanged by conjugation.

Given a collection of vectors x= (x1, . . . ,xn) ∈ V n, let

D+
x := {z ∈ D+ | z ⊥ σ1(xi) for i= 1, . . . ,n}, (2.16)
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8 S. Sankaran

where, abusing notation, we denote by σ1 : V → V1 = V ⊗F,σ1
R the map induced by

inclusion in the first factor.

Let Γx denote the pointwise stabilizer of x in Γ; then the inclusion D+
x ⊂D+ induces a

map

Γx

∖
D+

x → Γ
∖
D+ =X, (2.17)

which defines a complex algebraic cycle that we denote Z(x). If the span of {x1, . . . ,xr}
is not totally positive definite, then D+

x = ∅ and Z(x) = 0; otherwise, the codimension of

Z(x) is the dimension of this span.
Now suppose T ∈ Symn(F ) and ϕ ∈ S(Ln), and set

Z(T,ϕ)� :=
∑

x∈Ω(T )
mod Γ

ϕ(x) ·Z(x), (2.18)

where

Ω(T ) := {x= (x1, . . . ,xn) ∈ V n | 〈xi,xj〉= Tij}. (2.19)

This cycle is rational over E. If Z(T,ϕ)� 	= 0, then T is necessarily totally positive

semidefinite, and in this case, Z(T,ϕ)� has codimension equal to the rank of T.

Finally, we define a S(Ln)∨-valued cycle Z(T )� by the rule

Z(T )� : ϕ �→ Z(T,ϕ)� (2.20)

for ϕ ∈ S(Ln).

2.4. The cotautological bundle

Let E →X denote the tautological bundle: over the complex points X(C) = Γ\D+, the
fibre Ez at a point z ∈D+ is simply the line corresponding to z in the model (2.15). There

is a natural Hermitian metric ‖ · ‖2E on E(C), defined at a point z ∈ D+ by the formula

‖vz‖2E,z = −〈vz,vz〉 for vz ∈ z.
Consider the arithmetic class

ω̂ =−ĉ1(E,‖ · ‖E) ∈ ĈH1
C(X); (2.21)

concretely, ω̂ =−(divs,− log‖s‖2E), where s is any meromorphic section of E . Finally, for
future use, we set

Ω :=−c1(E,‖ · ‖E) ∈A1,1(X(C)), (2.22)

where −Ω = c1(E,‖ · ‖E) is the first Chern form attached to (E,‖ · ‖E); here, the Chern

form is normalized as in [16, §4.2]. Note that −Ω is a Kähler form; cf. [8, §2.2].

Remark 2.2. Elsewhere in the literature, one often finds a different normalization (i.e.,

an overall multiplicative constant) for the metric ‖ · ‖E that is better suited to certain
arithmetic applications; for example, see [15, §3.3]. In our setting, however, Remark 2.1

implies that rescaling the metric does not change the Chern class in ĈH1
C(X).

https://doi.org/10.1017/S1474748025101023 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748025101023


Arithmetic special cycles and Jacobi forms 9

2.5. Green forms and arithmetic cycles

In this section, we sketch the construction of a family of Green forms for the special

cycles, following [8].

We begin by recalling that for any tuple x = (x1, . . . xn) ∈ V n
1 = (V ⊗σ1,F R)n, Kudla

and Millson (see [14]) have defined a Schwartz form ϕKM(x), which is valued in the space
of closed (n,n) forms on D+, and is of exponential decay in x. Let T (x)∈ Symn(R) denote
the matrix of inner products (i.e., T (x)ij = 〈xi,xj〉), and consider the normalized form

ϕo
KM(x) := ϕKM(x)e2πtrT (x). (2.23)

In [8, §2.2], another form νo(x), valued in the space of smooth (n− 1,n− 1) forms on

D+ is defined (this form is denoted by νo(x)[2n−2] there). It satisfies the relation

ddcνo(
√
ux) = −u

∂

∂u
ϕo
KM(

√
ux), u ∈ R>0. (2.24)

For a complex parameter ρ� 0, let

go(x;ρ) :=

∫ ∞

1

νo(
√
ux)

du

u1+ρ
; (2.25)

then go(x,ρ) defines a smooth form for Re(ρ)� 0. The corresponding current admits a
meromorphic continuation to a neighbourhood of ρ= 0, and we set

go(x) := CT
ρ=0

go(x;ρ). (2.26)

Note that, for example,

go(0) = νo(0) CT
ρ=0

∫ ∞

1

du

u1+ρ
= 0. (2.27)

In general, the current go(x) satisfies the equation

ddcgo(x)+ δ
D

+
x
∧Ωn−r(x) = ϕo

KM(x), (2.28)

where r(x) = dimspan(x) = dimspan(x1, . . . ,xn); for details regarding all these facts, see

[8, §2.6].
Now suppose T ∈ Symn(F ). Following [8, §4], we define an S(Ln)∨-valued current

go(T,v), depending on a parameter v ∈ Symn(F ⊗QR)�0, as follows: let v = σ1(v) and

choose any matrix a∈GLn(R) such that v = aa′. Then go(T,v) is defined by the formula

go(T,v)(ϕ) :=
∑

x∈Ω(T )

ϕ(x) go (σ1(x)a), (2.29)

where σ1(x)∈V n
1 ; by [8, Proposition 2.12], this is independent of the choice of a∈GLn(R).

Note that go(T,v) is a Γ-invariant current on D+ and hence descends to X(C) = Γ\D+.
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Next, consider the S(Ln)∨-valued differential form ω(T,v), defined by the formula

ω(T,v)(ϕ) :=
∑

x∈Ω(T )

ϕ(x)ϕo
KM(σ1(x)a), σ1(v) = aa′, (2.30)

and which is a q-coefficient of the Kudla-Millson theta series

ΘKM(τ ) =
∑

T∈Symn(F )

ω(T,v)qT , (2.31)

where τ ∈Hd
n, and v = Im(τ ). We then have the equation of currents

ddcgo(T,v) + δZ(T )(C)∧Ωn−rankT = ω(T,v) (2.32)

on X ; see [8, Proposition 4.4].

In particular, if T is non-degenerate, then rank(T ) = n and go(T,v) is a Green current
for the cycle Z(T )�. In this case, we obtain an arithmetic special cycle

Ẑ(T,v) := (Z(T )�,go(T,v)) ∈ ĈHn
C(X)⊗C S(L

n)∨. (2.33)

Now suppose T ∈ Symn(F ) is arbitrary. Let r = rank(T ), and fix ϕ ∈ S(Ln). We may

choose a pair (Z0,g0) representing the class ω̂n−r ∈ ĈHn
C(X), such that Z0 intersects

Z(T,ϕ)� properly and g0 has logarithmic type [16, §II.2]. We then define

Ẑ(T,v,ϕ) :=
(
Z(T,ϕ)� ·Z0, g

o(T,v,ϕ)+g0∧ δZ(T,ϕ)�(C)

)
∈ ĈHn

C(X). (2.34)

The reader may consult [8, §5.4] for more detail on this construction, including the fact
that it is independent of the choice of (Z0,g0).

Finally, we define a class Ẑ(T,v) ∈ ĈHn
C(X)⊗S(Ln)∨ by the rule

Ẑ(T,v)(ϕ) = Ẑ(T,v,ϕ). (2.35)

Remark 2.3. In [8], the Green current go(T,v) is augmented by an additional term,

depending on log(detv), when T is degenerate see [8, Definition 4.5]. This term was

essential in establishing the archimedean arithmetic Siegel-Weil formula in the degenerate
case; however, in the setting of the present paper, Remark 2.1 implies that this additional

term vanishes upon passing to ĈHn
C(X) and can be omitted from the discussion without

consequence. In particular, according to our definitions, we have

Ẑ(0n,v)(ϕ) = ϕ(0) · ω̂n. (2.36)

2.6. Hilbert-Jacobi modular forms

In this section, we briefly review the basic definitions of vector-valued (Hilbert) Jacobi

modular forms, mainly to fix notions. For convenience, we work in ‘classical’ coordinates
and only with parallel scalar weight. Throughout, we fix an integer n≥ 1.

We begin by briefly recalling the theory of metaplectic groups and the Weil represen-

tation; a convenient summary for the facts mentioned here, in a form useful to us, is
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[10, §2]. Let Spn denote the symplectic group, viewed as an algebraic group: given any

ring R, we have

Spn(R) :=

{
g ∈M2r(R) | g′

(
−1

1

)
g =

(
−1

1

)}
.

For a place v≤∞, let S̃pn(Fv) denote the metaplectic group, a two-fold cover of Spn(Fv);

as a set, S̃pn(Fv) = Spn(Fv)×{±1}. When Fv = R, the group S̃pn(R) is isomorphic to
the group of pairs (g,φ), where g = (A B

C D ) ∈ Spn(R) and φ : Hn → C is a function such

that φ(τ)2 = det(Cτ +D). In this model, multiplication is given by

(g,φ(τ)) · (g′,φ′(τ)) = (gg′,φ(g′τ)φ′(τ)). (2.37)

At a non-dyadic finite place, there exists a canonical embedding Spn(Ov)→ S̃pn(Fv),

which splits the double covering K̃ over K ; here, K̃ is the inverse image of K under
the projection map S̃pn(Fv)→ Spn(Fv). Consider the restricted product

∏′
v≤∞ S̃pn(Fv)

with respect to these embeddings. Then the global double cover S̃pn,A of Spn(A) is the

quotient
∏′

v≤∞ S̃pn(Fv)/I of this restricted direct product by the subgroup

I :=

{
(1,εv)v≤∞ |

∏
v

εv = 1, εv = 1 for almost all v

}
. (2.38)

Moreover, there is a splitting

ιF : Spn(F ) ↪→ S̃pn,A , γ �→
∏
v

(γ,1)v · I. (2.39)

Let Γ̃′ denote the full inverse image of Spn(OF ) under the covering map∏
v|∞ S̃pn(Fv) → Spn(F ⊗Q R). We obtain an action ρ of Γ̃′ on the space S(V (Af )

n)

as follows. Let ω denote the4 Weil representation of S̃pn,A on S(V (A)n). Given γ̃ ∈ Γ̃′,

choose γ̃f ∈
∏′

v<∞ S̃pn(Fv) such that γ̃γ̃f ∈ im(ιF ) and set

ρ(γ̃) := ω(γ̃f ). (2.40)

Recall that we had fixed a lattice L⊂ V . The subspace S(Ln)⊂ S(V (Af )
n), as defined in

(1.3), is stable under the action of Γ̃′; when we wish to emphasize this lattice, we denote

the corresponding action by ρL.

For a half-integer κ ∈ 1
2Z, we define a (parallel, scalar) weight κ slash operator, for the

group Γ̃′ acting on the space of functions f : Hd
n → S(Ln)∨, by the formula

f |κ[γ̃](τ ) =
∏
v|∞

φv(σv(τ ))
−2κρ∨L(γ̃

−1) ·f(gτ ), γ̃ = (gv,φv(τ))v|∞ (2.41)

where g = (gv)v.

4Here, we normalize the Weil representation as in [11, Section II.4]. This representation also
depends on the choice of an additive character ψF : AF /F → C; we choose the standard one,
and suppress this choice from the notation.
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If n> 1, consider the Jacobi group GJ =GJ
n,n−1 ⊂ Spn: for any ring R, its R-points are

given by

GJ (R) :=

⎧⎪⎪⎨⎪⎪⎩g =

⎛⎜⎜⎝
a 0 b aμ− bλ

λt 1n−1 μt 0

c 0 d cμ−dλ
0 0 0 1n−1

⎞⎟⎟⎠
∣∣∣∣∣
(
a b

c d

)
∈ SL2(R), μ,τ ∈M1,n−1(R)

⎫⎪⎪⎬⎪⎪⎭ .

(2.42)

Define Γ̃J ⊂ Γ̃′ to be the inverse image of GJ (OF ) in G̃′
R.

Definition 2.4. Suppose f : Hd
n → S(Ln)∨ is a smooth function. Given T2 ∈ Symn−1(F ),

we say that f(τ ) transforms like a Jacobi modular form of genus n, weight κ and index

T2 if the following conditions hold.

(a) For all u2 ∈ Symn−1(FR),

f
(
τ +
(
0
u2

))
= e(T2u2)f(τ ). (2.43)

(b) For all γ̃ ∈ Γ̃J ,

f |κ[γ̃](τ ) = f(τ ). (2.44)

Let Aκ,T2
(ρ∨L) denote the space of S(Ln)∨-valued smooth functions that transform like

a Jacobi modular form of weight κ and index T2.

Remark 2.5.

1. If desired, one can impose further analytic properties of f (holomorphic, real analytic,

etc.).

2. If n=1, then we simply say that a function f : Hd
1 →S(L)∨ transforms like a (Hilbert)

modular form of weight κ if it satisfies f |κ[γ̃](τ ) = f(τ ) as usual.

3. An S(Ln)∨-valued Jacobi modular form f, in the above sense, has a Fourier expansion

of the form

f(τ ) :=
∑

T=(∗ ∗
∗ T2

)

cf (T,v)q
T , (2.45)

where the coefficients cf (T,v) are smooth functions cf (T,v) : Symn(F ⊗Q R)�0 →
S(Ln)∨.

4. For each i = 1, . . . ,d, let (φv(τ))v be the collection given by φvj
(τ) = 1 if j 	= i, and

φvi
(τ) =−1. Let ε̃(i) = (Id,(φv)). Then, using the formulas in [11], we have that

f |κ[ε̃(i)](τ ) = (−1)2κ+dim(V )f(τ ).

In particular, if 2κ 	≡ dimV (mod 2), then Aκ,T2
(ρ∨L) = {0}.

We now clarify what it should mean for generating series with coefficients in arithmetic

Chow groups, such as those appearing in Theorem 1.1, to be modular.
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First, let Dn−1(X) denote the space of currents on X(C) of complex bidegree (n− 1,

n−1), and note that there is a map

a : Dn−1(X) → ĈHn
C(X,Dcur), a(g) = (0, [ddcg,g]). (2.46)

Definition 2.6. Define the space Aκ,T2
(ρ∨;Dn−1(X)) of ‘Jacobi forms valued in

S(Ln)∨⊗CD
n−1(X)’ as the space of functions

ξ : Hd
n →Dn−1(X)⊗C S(L

n)∨ (2.47)

such that the following two conditions hold.

(a) For every smooth form α on X, the function ξ(τ )(α) is an element of Aκ,T2
(ρ∨L),

and in particular, is smooth in the variable τ .

(b) Fix an integer k ≥ 0 and let ‖ · ‖k be an algebra seminorm, on the space of smooth

differential forms on X, such that given a sequence {αi}, we have ‖αi‖k → 0 if and
only if αi, together with all partial derivatives of order ≤ k, tends uniformly to zero.

We then require that for every compact subset C ⊂Hd
n, there exists a constant ck,C

such that

|ξ(τ )(α)| ≤ ck,C‖α‖k (2.48)

for all τ ∈ C and all smooth forms α.

The second condition ensures that any such function admits a Fourier expansion as in

(2.45) whose coefficients are continuous in the sense of distributions (i.e., they are again

S(Ln)∨-valued currents).

Definition 2.7. Given a collection of classes

{Ŷ (T,v) | T ∈ Symn(F ),v ∈ Symn(F ⊗QR)�0} (2.49)

with Ŷ (T,v) ∈ ĈHn(X,Dcur)⊗C S(L
n)∨, consider the formal generating series

Φ̂T2
(τ ) :=

∑
T=(∗ ∗

∗ T2
)

Ŷ (T,v)qT . (2.50)

Roughly speaking, we say that Φ̂T2
(τ ) is modular (of weight κ and index T2) if there is

an element

φ̂(τ ) ∈Aκ,T2
(ρ∨L)⊗C ĈH

n
C(X,Dcur) + a

(
Aκ,T2

(ρ∨L;D
n−1(X))

)
(2.51)

whose Fourier expansion coincides with Φ̂T2
(τ ). More precisely, we define the modularity

of Φ̂T2
(τ ) to mean that there are finitely many classes

Ẑ1, . . . ,Ẑr ∈ ĈHn(X,Dcur) (2.52)

and Jacobi forms

f1, . . . fr ∈Aκ,T2
(ρ∨), g ∈Aκ,T2

(ρ∨;Dn−1(X)) (2.53)
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such that

Ŷ (T,v) =
∑
i

cfi(T,v) Ẑi+a(cg(T,v)) ∈ ĈHn
C(X,Dcur)⊗C S(L

n)∨ (2.54)

for all T = (∗ ∗
∗ T2

) .

Remark 2.8.

1. If Ẑ1, . . . ,Ẑr ∈ ĈHn
C(X) and g(τ ) takes values in the space of (currents represented

by) smooth differential forms on X, then we say that Φ̂T2
(τ ) is valued in ĈHn

C(X)⊗
S(Ln)∨; indeed, in this case, the right-hand side of (2.54) lands in this latter group.

2. As before, one may also impose additional analytic conditions on the forms fi,g

appearing above if desired.

3. Elsewhere in the literature (e.g., [2, 3, 19]), one finds a notion of modularity that

amounts to omitting the second term in (2.51); this notion is well-adapted to the

case that the generating series of interest are holomorphic (i.e., the coefficients are
independent of the imaginary part of τ ).

In contrast, the generating series that figure in our main theorem depend on these

parameters in an essential way. Indeed, the Green forms go(T,v) vary smoothly in

v; however, to the best of the author’s knowledge, there is no natural topology
on ĈHn(X), or ĈHn(X,Dcur), for which the corresponding family Ẑ(T,v) varies

smoothly in v. As we will see in the course of the proof of the main theorem,

the additional term in (2.51) will allow us enough flexibility to reflect the non-
holomorphic nature of the generating series. Similar considerations appear in [6] in

the codimension one case.

3. The genus one case

In this section, we prove the main theorem in the case n= 1; later on, this will be a key
step in the proof for general n. The proof of this theorem amounts to a comparison with

a generating series of special divisors equipped with a different family of Green functions,

defined by Bruinier. A similar comparison appears in [6] for unitary groups over imaginary
quadratic fields; in the case at hand, however, the compactness of X allows us to apply

spectral theory and simplify the argument considerably.

Suppose t � 0. In [3], Bruinier constructs an S(L)∨-valued Green function Φ(t) for

the divisor Z(t) = Z(t)�. To be a bit more precise about this, recall the Kudla-Millson
theta function ΘKM(τ ) from (2.31). As a function of τ , the theta function ΘKM is non-

holomorphic and transforms as a Hilbert modular form of parallel weight κ= p/2+1. It

is moreover of moderate growth, [3, Prop. 3.4] and hence can be paired, via the Petersson
pairing, with cusp forms. Let ΛKM(τ ) ∈ Sκ(ρL) denote the cuspidal projection, defined

by the property

〈ΘKM,g〉Pet = 〈ΛKM,g〉Pet (3.1)

for all cusp forms g ∈ Sκ(ρ).
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Writing the Fourier expansion

ΛKM(τ ) =
∑
t

cΛ(t) q
t, ΛKM,t ∈A1,1(X)⊗C S(L)

∨, (3.2)

it follows from [3, Corollary 5.16, Theorem 6.4] that Φ(t) satisfies the equation

ddc[Φ(t)] + δZ(t) = [cΛ(t)+B(t) ·Ω] (3.3)

of currents on X, where

B(t) := − deg(Z(t))

vol(X,(−Ω)p)
∈ S(L)∨. (3.4)

Recall here that (−Ω)p induces a volume form on X.

For future use, we define Φ(t) = 0 =B(t) if t is not totally positive.

Finally, we define classes ẐBr(t) ∈ ĈH1
C(X)⊗C S(L)

∨ as follows:

ẐBr(t) =

⎧⎪⎨⎪⎩
(Z(t),Φ(t)), if t� 0

ω̂⊗ ev0, if t= 0.

0, otherwise,

(3.5)

where ev0 ∈ S(L)∨ is the functional ϕ �→ ϕ(0).

We then form the generating series

φ̂Br(τ) =
∑
t

ẐBr(t)q
t. (3.6)

Theorem 3.1 (Bruinier). The generating series φ̂Br(τ) is a (holomorphic) Hilbert

modular form of parallel weight κ = p/2 + 1. More precisely, there are finitely many

classes Ẑ1, . . . Ẑr ∈ ĈH1
C(X) and holomorphic Hilbert modular forms f1, . . . ,fr such that

ẐBr(t) =
∑

cfi(t) Ẑi for all t ∈ F .

Proof. The proof follows the same argument as [3, Theorem 7.1], whose main steps

we recall here. Bruinier defines a space M !
k(ρL) of weakly holomorphic forms [3, §4] of

a certain ‘dual’ weight k; each f ∈ M !
k(ρL) is defined by a finite collection of vectors

cf (m) ∈ S(L)∨ indexed by m ∈ F . Applying Bruinier’s criterion for the modularity of a

generating series (cf. [3, (7.1)]), we need to show that∑
m

cf (m)ẐBr(m) = 0 ∈ ĈH1(X) (3.7)

for all f ∈ M !
k(ρL). Given such a form f, let c0 = cf (0)(0), and assume c0 ∈ Z. By

[3, Theorem 6.8], after replacing f by a sufficiently large integer multiple, there exists
an analytic meromorphic section Ψan of (ωan)−c0 such that

divΨan =
∑
m 	=0

cf (m) ·Z(m)an (3.8)

https://doi.org/10.1017/S1474748025101023 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748025101023


16 S. Sankaran

and

− log‖Ψan‖2 =
∑
m 	=0

cf (m) ·Φ(m). (3.9)

Recall that X is projective; by GAGA and the fact that the Z(m)’s are defined over E,

there is an E -rational section ψ of ω−c0 and a constant C ∈ C such that

div(ψ) =
∑
m 	=0

cf (m)Z(m), − log‖ψan‖2 =− log‖Ψan‖2+C. (3.10)

Thus,

−c0 · ω̂ = d̂iv(ψ) =
∑
m 	=0

cf (m) · ẐBr(m) + (0,C) ∈ ĈH1(X). (3.11)

However, as in Remark 2.1, the class (0,C) vanishes, and thus, we find∑
m

cf (m)ẐBr(m) = c0 · ω̂+
∑
m 	=0

cf (m)ẐBr(m) = 0 (3.12)

as required.

Now we consider the difference

φ̂1(τ )− φ̂Br(τ ) =
∑
t

(0,go(t,v)−Φ(t))qt, (3.13)

whose terms are classes represented by purely archimedean cycles. Comparing the Green

equations (2.28) and (3.3), we have that for t 	= 0 and any smooth form η,

ddc[go(t,v)−Φ(t)](η) =

∫
X

(go(t,v)−Φ(t)) ddcη =

∫
X

(ω(t,v)− cΛ(t)−B(t)Ω)∧η,

(3.14)

where ω(t,v) is the t ’th q-coefficient of ΘKM(τ ); in particular, [9, Theorem 1.2.2 (i)]

implies that the difference go(t,v)−Φ(t) is smooth on X(C).

Theorem 3.2. There exists a smooth S(L)∨-valued function s(τ ,z) on Hd
1×X(C) such

that the following holds.

(i) For each fixed z ∈X(C), the function s(τ ,z) transforms like a Hilbert modular form

in τ .

(ii) Let

s(τ ,z) =
∑
t

cs(t,v,z) q
t (3.15)

denote its q-expansion in τ ; then for each t, we have

(0,go(t,v)−Φ(t)) = (0,cs(t,v,z)) ∈ ĈH1
C(X)⊗C S(L)

∨. (3.16)

Combining this theorem with Theorem 3.1, we obtain the following:
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Corollary 3.3. The generating series φ̂1(τ ) is modular, valued in ĈH1
C(X)⊗S(L)∨, in

the sense of Remark 2.8(i).

Proof of Theorem 3.2. Recall that the (1,1) form −Ω is a Kähler form on X. Let
−ΔX denote the corresponding Laplacian; the eigenvalues of −ΔX are non-negative and

discrete in R≥0, and each eigenspace is finite-dimensional.

Write ΔX = 2(∂∂∗ + ∂∗∂) and let L : η �→ −η ∧ (−Ω) denote the Lefschetz operator.

From the Kähler identities [L,∂] = [L,∂] = [L,ΔS ] = 0 and [L,∂∗] = i∂, an easy induction
argument shows that

∂∗ ◦Lk = Lk ◦∂∗ − ik∂ ◦Lk−1 (3.17)

for k ≥ 1.
Thus, for a smooth function φ on X, we have

ΔX(φ) · (−Ω)p =ΔX ◦Lp(φ) = 2∂∂∗ ◦Lp(φ) (3.18)

= 2 ∂ ◦
(
Lp ◦∂∗− ip∂ ◦Lp−1

)
(φ) (3.19)

= −2ip ∂∂
(
φ∧ (−Ω)p−1

)
(3.20)

= −4πp ddc
(
φ∧ (−Ω)p−1

)
; (3.21)

note here that p= dimC(X).

Consider the Hodge pairing

〈f,g〉L2 =

∫
X

f g (−Ω)p = (−1)p
∫
X

f gΩp. (3.22)

If λ > 0 and φλ is a Laplace eigenfunction, we have that for any t 	= 0,

〈go(t,v)−Φ(t),φλ〉L2 = λ−1〈go(t,v)−Φ(t),−ΔXφλ〉L2 (3.23)

= (−1)pλ−1

∫
X

(go(t,v)−Φ(t)) · (−ΔXφλ) ·Ωp (3.24)

= (−1)p+1 4πp

λ

∫
X

(go(t,v)−Φ(t)) ·ddc
(
φλΩ

p−1
)

(3.25)

= (−1)p+1 4πp

λ

∫
X

(ω(t,v)− cΛ(t)−B(t)Ω)∧φλΩ
p−1. (3.26)

Note that
∫
X
φλΩ

p = 〈1,φλ〉L2 = 0, as λ > 0 and so φλ is orthogonal to constants; thus,

the term involving B(t)Ω vanishes, and so

〈go(t,v)−Φ(t),φλ〉L2 = (−1)p+1 4πp

λ

∫
X

(ω(t,v)− cΛ(t))∧φλΩ
p−1 (3.27)

for all t 	= 0. This equality also holds for t = 0, as both sides of this equation vanish.

Indeed, for the left-hand side we have go(0,v) = 0 (cf. (2.27)), and Φ(0) = 0 by definition;
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on the right-hand side, cΛ(0) = 0 as ΛKM(τ ) is cuspidal, and the constant term of the

Kudla-Millson theta function is given by

ω(0,v) = Ω⊗ ev0. (3.28)

Now define

h(τ ,z) = (L∗)p−1 ◦∗(ΘKM(τ )−ΛKM(τ )), (3.29)

where ∗ is the Hodge star operator, and L∗ is the adjoint of the Lefschetz map L. Then

h(τ ,z) is smooth, and transforms like a modular form in τ , since both ΘKM(τ ) and

ΛKM(τ ) do; writing its Fourier expansion

h(τ ,z) =
∑
t

ch(t,v,z)q
t, (3.30)

we have

〈ch(t,v,z),φ〉L2 = (−1)p−1

∫
X

(ω(t,v)− cΛ(t))∧φΩp−1 (3.31)

for any smooth function φ.

Note that for any integer N and L2 normalized eigenfunction φλ with λ 	= 0,

|〈h,φλ〉L2 |= λ−N |〈−ΔN
X(h),φλ〉| ≤ λ−N‖−ΔN

X(h)‖2L2 . (3.32)

Choose an orthonormal basis {φλ} of L2(X) consisting of eigenfunctions, and consider

the sum

s(τ,z) = 4πp
∑
λ>0

λ−1〈h,φλ〉L2 φλ(z). (3.33)

By Weyl’s law, there are positive constants C1 and C2 such that

#{λ | λ < x} ∼ xC1 (3.34)

and ‖φλ‖L∞ =O(λC2). These facts imply that there exists an integer N � 0 such that

CN :=
∑
λ>0

λ−1−N‖φλ‖L∞ <∞.

For such fixed N, we then have the estimate∑
λ>0

λ−1|〈h,φλ〉L2 φλ(z)| ≤ ‖−ΔN
X(h)‖2L2

∑
λ>0

λ−1−N‖φλ‖L∞ = ‖−ΔN
X(h)‖2L2 CN <∞.

In particular, the sum (3.33) is absolutely convergent, locally uniformly in τ and z, and

hence defines a smooth function in (τ ,z).

Writing its Fourier expanison as

s(τ ,z) =
∑
t

cs(t,v,z)q
t, (3.35)

we have

〈cs(t,v,z),φλ〉L2 = 〈go(t,v)−Φ(t),φλ〉L2 (3.36)
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for any eigenfunction φλ with λ 	=0. Thus, cs(t,v,z) and go(t,v)−Φ(t) differ by a function

that is constant in z ; as (0,1) = 0 ∈ ĈH1
C(X), we have

(0,go(t,v)−Φ(t)) = (0,cs(t,v,z)) ∈ ĈH1
C(X)⊗C S(L)

∨, (3.37)

which concludes the proof of the theorem.

4. Decomposing Green currents

We now suppose n > 1 and fix T2 ∈ Symn−1(F ).

The aim of this section is to establish a decomposition Ẑ(T,v) = Â(T,v) + B̂(T,v),

where T = (∗ ∗
∗ T2

). Our first step is to decompose Green forms in a useful way; the result

can be seen as an extension of the star product formula [8, Theorem 4.10] to the degenerate

case.
Let x = (x1, . . . ,xn) ∈ (V1)

n = (V ⊗F,σ1
R)n and set y = (x2, . . . ,xn) ∈ V n−1

1 . By [8,

Proposition 2.6. (a)], we may decompose

go(x,ρ) =

∫ ∞

1

νo(
√
tx1)∧ϕo

KM(
√
ty)

dt

t1+ρ
+

∫ ∞

1

ϕo
KM(

√
tx1)∧νo(

√
ty)

dt

t1+ρ
(4.1)

for Re(ρ)� 0.
By the transgression formula (2.24), we may rewrite the second term in (4.1) as∫ ∞

1

ϕo
KM(

√
tx1)∧νo(

√
ty)

dt

t1+ρ

=

∫ ∞

1

(∫ t

1

∂

∂u
ϕo
KM(

√
ux1)du

)
∧νo(

√
ty)

dt

t1+ρ
+ϕo

KM(x1)∧
∫ ∞

1

νo(
√
ty)

dt

t1+ρ

=

∫ ∞

1

(∫ t

1

−ddcνo(
√
ux1)

du

u

)
∧νo(

√
ty)

dt

t1+ρ
+ϕo

KM(x1)∧go(y,ρ).

(4.2)

For t > 1, define smooth forms

αt(x1,y) :=

∫ t

1

∂νo(
√
ux1)

du

u
∧νo(

√
ty) (4.3)

and

βt(x1,y) :=

∫ t

1

νo(
√
ux1)

du

u
∧∂νo(

√
ty) (4.4)

so that

(4.2) =
i

2π

∫ ∞

1

∂αt(x1,y)+∂βt(x1,y)
dt

t1+ρ
−
∫ ∞

1

[∫ t

1

νo(
√
ux1)

du

u

]
∧ddcνo(

√
ty)

dt

t1+ρ

+ϕo
KM(x1)∧go(y,ρ). (4.5)
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Finally, we consider the second integral above; as Re(ρ) is large, we may interchange the

order of integration and obtain∫ ∞

1

(∫ t

1

νo(
√
ux1)

du

u

)
∧ddcνo(

√
ty)

dt

t1+ρ

=

∫ ∞

1

νo(
√
ux1)∧

(∫ ∞

u

ddcνo(
√
ty)

dt

t1+ρ

)
du

u

=

∫ ∞

1

νo(
√
ux1)∧

(∫ ∞

u

− ∂

∂t
ϕo
KM(

√
ty)

dt

tρ

)
du

u

=

∫ ∞

1

νo(
√
ux1)∧ϕo

KM(
√
uy)

du

u1+ρ
−ρ

∫ ∞

1

νo(
√
ux1)∧

(∫ ∞

u

ϕo
KM(

√
ty)

dt

t1+ρ

)
du

u
.

(4.6)

Note that the first term in the last line above coincides with the first term in (4.1).

Combining these computations, it follows that

go(x,ρ) = ϕo
KM(x1)∧go(y,ρ)+

i

2π

∫ ∞

1

∂αt(x1,y)+∂βt(x1,y)
dt

t1+ρ

+ρ

∫ ∞

1

νo(
√
ux1)∧

(∫ ∞

u

ϕo
KM(

√
ty)

dt

t1+ρ

)
du

u
.

(4.7)

This identity holds for arbitrary x = (x1,y) ∈ V n
1 and Re(ρ) � 0, and is an identity of

smooth differential forms on D.
To continue, we view the above line as an identity of currents, and consider meromorphic

continuation.5 Note that (as currents)

ρ

∫ ∞

1

νo(
√
ux1)∧

(∫ ∞

u

ϕo
KM(

√
ty)

dt

t1+ρ

)
du

u

= ρ

∫ ∞

1

νo(
√
ux1)∧

∫ ∞

u

(
ϕo
KM(

√
ty)− δ

D
+
y
∧Ωn−1−r(y)

) dt

t1+ρ

du

u

+

∫ ∞

1

νo(
√
ux1)∧ δ

D
+
y
∧Ωn−1−r(y) du

u1+ρ
(4.8)

where r(y) = dim span(y). The first term vanishes at ρ= 0; indeed, the double integral in
the first term is holomorphic at ρ= 0, as can easily seen by by Bismut’s asymptotic6 [1,

Theorem 3.2]

5More precisely, we mean that for every smooth form α, the function [go(x,ρ)](α) =
∫
X
g
o(x,ρ)∧

α admits a meromorphic continuation in ρ, such that the Laurent coefficients are continuous
in α in the sense of currents.

6This asymptotic is meant in the sense of distributions. To be more precise, we say that a

family of currents Tt, parametrized by t > 0, is O(t−
1
2 ) if the following holds. Let k > 0 be any

integer, and let ‖ · ‖ denote a norm on the space of smooth differential forms on X such that
for a sequence ηn, we have ‖ηn‖→ 0 if and only if ηn, together with all partial derivatives up
to order k, converge uniformly to 0 on X. Then there exists a constant C = C‖·‖ such that

|Tt(η)| ≤ Ct−
1
2 ‖η‖

for all smooth forms η.
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ϕo
KM(

√
ty)− δ

D
+
y
∧Ωn−1−r(y) = O(t−1/2) (4.9)

as t→∞.

Next, let

α(x1,y;ρ) :=

∫ ∞

1

αt(x1,y)
dt

t1+ρ
, β(x1,y;ρ) :=

∫ ∞

1

βt(x,y)
dt

t1+ρ
. (4.10)

A straightforward modification of the proof of [8, Proposition 2.12.(iii)] can be used
to show that α(x1,y;ρ) and β(x1,y;ρ) have meromorphic extensions, as currents, to a

neighbourhood of ρ= 0. We denote the constant terms in the Laurent expansion at ρ= 0

by α(x1,y) and β(x1,y) respectively. Thus, as currents on D, we have

go(x1,y) = ϕo
KM(x1)∧go(y)+dα(x1,y)+dcβ(x1,y)

+CTρ=0

∫ ∞

1

νo(
√
ux1)∧ δ

D
+
y
∧Ωn−1−r(y) du

u1+ρ

(4.11)

for all x1 ∈ V1 and y ∈ (V1)
n−1.

As a final observation, note that if x1 ∈ span(y), then νo(
√
ux1)∧ δ

D
+
y
= δ

D
+
y
; see [8,

Lemma 2.4]. Thus,

γ(x1,y) := CTρ=0

∫ ∞

1

νo(
√
ux1)∧ δ

D
+
y
∧Ωn−1−r(y) du

u1+ρ

=

{
go(x1)∧ δ

D
+
y
∧Ωn−1−r(y), if x1 /∈ span(y)

0, if x1 ∈ span(y).

(4.12)

In the case that the components of x= (x1,y) = (x1, . . . ,xn) are linearly independent, we

recover the star product formula from [8, Theorem 2.16].

Now we discuss a decomposition of the global Green current go(T,v), for v ∈
Symn(FR)�0. Write

v := σ1(v) =

(
v1 v12
v′12 v2

)
(4.13)

with v1 ∈ R>0 and v12 ∈ M1,n−1(R); recall that σ1 : F → R is the distinguished real

embedding. Set

v∗2 := v2−v′12v12/v1 ∈ Symn−1(R)>0, (4.14)

and fix a matrix a∗2 ∈GLn−1(R) such that v∗2 = a∗2 · (a∗2)′.

Proposition 4.1. Let T ∈ Symn(F ) and v ∈ Symn(FR)�0 as above, and define S(L)∨-
valued currents a(T,v) and b(T,v) on X by the formulas

a(T,v)(ϕ) :=
∑

x∈Ω(T )

ϕ(x)γ(
√
v1x1,y), (4.15)
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where we have written σ1(x) = (x1,y) ∈ V1⊕ (V1)
n−1, and

b(T,v)(ϕ) =
∑

x∈Ω(T )

ϕ(x)ϕo
KM

(√
v1x1+

y ·v′12√
v1

)
∧go(ya∗2). (4.16)

Then

go(T,v)(ϕ)≡ a(T,v)(ϕ)+b(T,v)(ϕ) (mod im∂ + im∂). (4.17)

Proof. First, the fact that the sums defining a(T,v) and b(T,v) converge to currents on

X follows from the same argument as [8, Proposition 4.3].
Now recall that

go(T,v)(ϕ) =
∑

x∈Ω(T )

ϕ(x)go(xa), (4.18)

where x= σ1(x), and a ∈GLn(R) is any matrix satisfying v = aa′. Note that

v =

(
v1 v12
v′12 v2

)
= θ

(
v1

v∗2

)
θ′, where θ =

(
1

v′12/v1 1n−1

)
. (4.19)

Thus, we may take

a= θ ·
(√

v1

a∗
2

)
, (4.20)

and so, applying (4.11) , we find

go(T,v)(ϕ) =
∑

x∈Ω(T )

ϕ(x)go
(
(x1,y)θ

(√
v1

a∗
2

))
x= (x1,y)

=
∑

x∈Ω(T )

ϕ(x)go
(√

v1x1+
y ·v′12√

v1
, ya∗2

)

=
∑

x∈Ω(T )

ϕ(x)
(
ϕo
KM

(√
v1x1+

y ·v′12√
v1

)
∧go(ya∗2)+∂α(

√
v1x1+

y ·v′12√
v1

,ya∗2)

+∂β(
√
v1x1+

y ·v′12√
v1

,ya∗2)+γ(
√
v1x1+

y ·v′12√
v1

,ya∗2)
)
.

(4.21)

Again, an argument as in [8, Proposition 4.3] shows that the sums

η1 :=
∑

x∈Ω(T )

ϕ(x)α(
√
v1x1+

y ·v′12√
v1

,ya∗2) (4.22)

and

η2 :=
∑

x∈Ω(T )

ϕ(x)β(
√
v1x1+

y ·v′12√
v1

,ya∗2) (4.23)

converge to Γ-invariant currents on D, and hence define currents on X. Moreover, it follows

easily from the definitions that
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γ(
√
v1x1+

y ·v′12√
v1

,ya∗2) = γ(
√
v1x1,y). (4.24)

Thus, we find

go(T,v)(ϕ) = a(T,v)(ϕ)+b(T,v)(ϕ)+∂η1+∂η2, (4.25)

as required.

Next, we define an S(Ln)∨-valued current ψ(T,v) as follows. For x ∈ Ω(T ), write

σ1(x) = x= (x1,y) ∈ V1⊕V n−1
1 as above; then

ψ(T,v)(ϕ) :=
∑

x∈Ω(T )

ϕ(x)ϕo
KM(

√
v1x1)∧ δ

D
+
y
∧Ωn−1−r(y) (4.26)

defines a Γ-equivariant current on D+, and hence descends to a current (also denoted

ψ(T,v)) on X(C).

Lemma 4.2.

(i) Let ω(T,v) be the Tth coefficient of the Kudla-Millson theta function, as in (2.30);

then

ddcb(T,v) = ω(T,v)−ψ(T,v). (4.27)

(ii) We have

ddc a(T,v)+ δZ(T )�(C)∧Ωn−r(T ) = ψ(T,v), (4.28)

where r(T ) = rank(T ).

Proof. With v = σ1(v) and taking a= θ ·
(√

v1

a∗
2

)
as (4.20), we have

ω(T,v)(ϕ) =
∑

x∈Ω(T )

ϕ(x)ϕo
KM(xa)

=
∑

x∈Ω(T )

ϕ(x)ϕo
KM

(√
v1x1+

y v′12√
v1

, ya∗2

)

=
∑

x∈Ω(T )

ϕ(x)ϕo
KM

(√
v1x1+

yv′12√
v1

)
∧ϕo

KM (ya∗2)

(4.29)

for ϕ ∈ S(Ln), where the last line follows from [14, Theorem 5.2(i)]. Therefore,

ddcb(T,v)(ϕ) =
∑

x∈Ω(T )

ϕ(x)ϕo
KM

(√
v1x1+

y v′12√
v1

)
∧ddcgo(ya∗2) (4.30)

=
∑

x∈Ω(T )

ϕ(x)ϕo
KM

(√
v1x1+

y v′12√
v1

)
∧
{
− δ

D
+
y
∧Ωn−1−r(y)+ϕo

KM(ya∗2)
}

(4.31)

=−
∑

x∈Ω(T )

ϕ(x)ϕo
KM

(√
v1x1+

y v′12√
v1

)
∧ δ

D
+
y
∧Ωn−1−r(y)+ω(T,v)(ϕ).

(4.32)
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For v ∈ V1, the restriction ϕo
KM(v)∧ δ

D
+
y
depends only on the orthogonal projection of v

onto span(y)⊥; see, for example, [8, Lemma 2.4]. In particular,

ϕo
KM

(√
v1x1+

y v′12√
v1

)
∧ δ

D
+
y
= ϕo

KM (
√
v1x1)∧ δ

D
+
y
. (4.33)

The first part of the lemma follows upon applying the definition of γ(T,v) in (4.26).
The second part then follows from the first, together with Proposition 4.1

and (2.32).

We finally arrived at the promised decomposition of Ẑ(T,v). Recall that in defining the

cycle Ẑ(T,v) in Section 2.5, we fixed a representative (Z0,g0) for ω̂n−r(T ) such that Z0

intersects Z(T ) properly. By the previous proposition,

ddc
(
a(T,v)+g0∧ δZ(T )�(C)

)
+ δZ(T )�∩Z0(C) = ψ(T,v); (4.34)

we then obtain classes in ĈHn
C(X,Dcur)⊗C S(L

n) by setting

Â(T,v) :=
(
Z(T )� ·Z0, [ψ(T,v), a(T,v)+g0∧ δZ(T )�(C)]

)
(4.35)

and

B̂(T,v) := (0, [ω(T,v)−ψ(T,v), b(T,v)]), (4.36)

so that

Ẑ(T,v) = Â(T,v)+ B̂(T,v) ∈ ĈHn
C(X,Dcur)⊗C S(L)

∨. (4.37)

Remark 4.3. Suppose T = (∗ ∗
∗ T2

) as above; if T2 is not totally positive semidefinite, then

D+
y = ∅ for any y ∈ Ω(T2), and hence, Â(T,v) = 0.

5. Modularity I

In this section, we establish the modularity of the generating series

φ̂B(τ ) =
∑

T=(∗ ∗
∗ T2

)

B̂(T,v)qT . (5.1)

Note that

B̂(T,v) = (0,[ddcb(T,v),b(T,v)]) = a(b(T,v)); (5.2)

thus, in light of Definition 2.7, it suffices to establish the following theorem.

Theorem 5.1. Fix T2 ∈ Symn−1(F ), and consider the generating series

ξ(τ ) =
∑

T=(∗ ∗
∗ T2

)

b(T,v)qT , (5.3)

Then ξ(τ ) is an element of Aκ,T2
(ρ∨L;D

∗(X)) with κ= p/2+1; see Definition 2.6.
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Proof. We begin by showing the convergence of the series (5.3). By definition,∑
T=

(
T1 T12

T ′
12 T2

) b(T,v)(ϕ)qT =
∑
T

∑
(x1,y)∈Ω(T )

ϕ(x1,y)ϕ
o
KM

(√
v1x1+

y ·v′12√
v1

)
∧go(ya∗2) q

T ,

(5.4)

where x1 = σ1(x1) and y = σ1(y), and here we are working with Γ-equivariant currents
on D+.

For v ∈ V1, consider the normalized Kudla-Millson form

ϕKM(v) := e−2π〈v,v〉ϕo
KM(v), (5.5)

which is a Schwartz form on V1, valued in closed forms on D+. More precisely, fix an

integer k, a relatively compact open subset U ⊂ D+, and an algebra seminorm ‖ · ‖k,U
measuring uniform convergence of all derivatives of order ≤ k on the space of smooth
forms supported on U . Then there exists a totally positive definite quadratic form QU on

V such that

‖ϕKM(v)‖k,U � e−QU (v), (5.6)

where the implied constant depends on k and U , and we abuse notation and write QU

for the induced positive definite quadratic form on V1. Similarly, for y ∈ V n−1
1 , write

g(y) = e−2π
∑

〈yi,yi〉go(y). (5.7)

If D+
y ∩U = ∅, then g(y) is smooth on U, and the form QU may be chosen so that

‖g(y)‖k,U � e−
∑n−1

i=1 QU (yi), y = (y1, . . . ,yn−1) ∈ V n−1
1 ; (5.8)

see [8, §2.1.5].
Finally, for the remaining real embeddings σ2, . . . σd, let ϕ∞i

∈ S(V n
i ) denote the stan-

dard Gaussian on the positive definite space Vi = V ⊗F,σi
R, defined by ϕ∞i

(x1, . . . ,xn) =

e−2π
∑

〈xi,xi〉. Then a brief calculation gives

ξ(τ )(ϕ) =
∑
T

∑
(x1,y)∈Ω(T )

ϕ(x1,y)ϕKM

(√
v1x1+

y ·v′12√
v1

)
∧g(ya∗2) ·

d∏
i=2

ϕ∞i(σi(x1,y)ai) e(Tu),

(5.9)

where we have chosen matrices ai ∈GLn(R) for i= 2, . . . ,d, such that σi(v) = ai ·a′i.
Let

S1 := {y ∈ (L′)n−1 |〈y,y〉= T2 and D+
y ∩U 	= ∅} (5.10)

and

S2 := {y ∈ (L′)n−1 |〈y,y〉= T2 and D+
y ∩U = ∅}. (5.11)
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We claim that S1 is finite. To see this, first note that for a point z ∈ D+ ⊂ P(V1,C), there

is an associated positive definite form Qzon V1, determined by the formulas

Qz(v) =

{
−Q(v), if v ∈ Re(z)+Im(z)

Q(v), if v ∈ (Re(z)+Im(z))⊥

for v ∈ V1. Moreover, this quadratic form varies smoothly in z, and we have the equivalence

z ∈ D+
y ⇐⇒ Qz(yi) =Q(yi) for all i= 1, . . . ,n−1

for y = (y1, . . . ,yn−1) ∈ V n−1
1 .

Without loss of generality, we may suppose that QU is chosen so that QU (v) < Qz(v)
for all v ∈ V1 and z ∈ U on V1, and that QU (v)<

1
2 〈v,v〉 on Vi for i > 1. Then

S1 ⊂
{
y = (y1, . . . ,yn−1) ∈ (L′)n−1 | QU (yi)� tr(T2) for i= 1, . . . ,n−1

}
.

The latter set is finite, as QU is totally positive definite and L′ is a lattice.
Using the estimates (5.6) and (5.8), and standard arguments for convergence of theta

series, it follows that the sum

∑
T=(∗ ∗

∗ T2
)

∑
(x1,y)∈Ω(T )

y∈S2

ϕ(x1,y)ϕKM

(√
v1x1+

y ·v′12√
v1

)
∧g(ya∗2)

d∏
i=2

ϕ∞i
(σi(x1,y)ai) e(Tu)

(5.12)

converges absolutely to a smooth form on Hd
n×U . The (finitely many) remaining terms,

corresponding to y ∈ S1, can be written as∑
y∈S1

fy(τ )(ϕ)∧g(ya∗2), (5.13)

where, for any y ∈ V n−1 and ϕ ∈ S(Ln), we set

fy(τ )(ϕ) =
∑
x1∈V

ϕ(x1,y)ϕKM

(√
v1x1+

y ·v′12√
v1

) d∏
i=2

ϕ∞i
(σi(x1,y)ai) e(T (x1,y)u),

(5.14)

where T (x1,y) =
(

〈x1,x1〉 〈x1,y〉
〈x1,y〉′ 〈y,y〉

)
. Again, the estimate (5.6) shows that the series defining

fy(τ ) converges absolutely to a smooth form on Hn
d ×D+. Moreover, for a fixed y ∈ V n−1

1

and any compactly supported test form α on D+, the value of the current go(ya∗2)[α] varies
smoothly in the entries of a∗2 (this fact follows easily from the discussion in [8, §2.1.4]).
Taken together, the above considerations imply that the series ξ(τ )(ϕ) converges

absolutely to a Γ-invariant current on D+, and therefore descends to a current on X

that satisfies part (b) of Definition 2.6 as τ varies. In addition, this discussion shows that
given any test form α, the value of the current ξ(τ )[α] is smooth in τ .

It remains to show that ξ(τ ) transforms like a Jacobi modular form (i.e. is invariant

under the slash operators (2.41)). Recall that the form ϕKM is of weight p/2+1; more
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precisely, let Ũ(1) ⊂ S̃p1(R) denote the inverse image of U(1), which admits a genuine

character χ whose square is the identity on U(1). Then ω(k̃)ϕKM = (χ(k̃))p+2ϕKM for all
k̃ ∈ Ũ(1), where ω is the Weil representation attached to V1; cf. [14, Theorem 5.2].

To show that ξ(τ ) transforms like a Jacobi form, note that (by Vaserstein’s theorem

[17]), every element of Γ̃J can be written as a product of the following elements.

(i) For each i= 1, . . . ,d, let

ε̃(i) = (ε̃(i))v ∈
∏
v|∞

S̃pn(Fv) (5.15)

be the element whose v ’th component is (Id,1) if v 	= σi, and (Id,−1) if v = σi.

(ii) For μ,λ ∈M1,n−1(OF ), let

γλ,μ =

⎛⎜⎜⎝
1 0 0 μ

λ′ 1n−1 μ′ 0

0 0 1 −λ

0 0 0 1n−1

⎞⎟⎟⎠ ∈GJ (OF ). (5.16)

Let ιF (γλ,μ)∈ S̃pn,A denote its image under the splitting (2.39); we choose γ̃λ,μ ∈ Γ̃J

to be the archimedean part of a representative ιF (γλ,μ) = γ̃λ,μ · γ̃f .
(iii) For r ∈ OF , let

γr =

⎛⎜⎜⎝
1 0 r 0
0 1n−1 0 0

0 0 1 0

0 0 0 1n−1

⎞⎟⎟⎠ ∈GJ (OF ), (5.17)

and choose an element γ̃r as the archimedean part of a representative of ιF (γr), as

before.

(iv) Finally, let

S =

⎛⎜⎜⎝
0 0 −1 0

0 1n−1 0 0

1 0 0 0

0 0 0 1n−1

⎞⎟⎟⎠ (5.18)

and take S̃ ∈ Γ̃J to be the archimedean part of a representative of ιF (S).

Now, rearranging the absolutely convergent sum (5.12), we may write

ξ(τ ) =
∑

y∈Ω(T2)

fy(τ )∧g(ya∗2). (5.19)

Using the aforementioned generators, a direct computation shows that v∗
2 = v2 −

v′
12v12/v1, viewed as a function on Hd

n, is invariant under the action of Γ̃J ; it therefore

suffices to show that for a fixed y, the S(Ln)∨-valued function fy(τ ) transforms like a

Jacobi form.
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It is a straightforward verification to check that fy(τ ) is invariant under the action of

ε̃(i), γ̃λ,μ, and γ̃r. For example, the invariance with respect to ε̃(i) follows from Remark 2.5.

The element γ̃−1
λ,μ acts on S(Ln) by the formula

ρ(γ̃−1
λ,μ)(ϕ)(x1,y) = e

(
2〈x1,y〉μ′−〈yλ′,y′〉μ′)ϕ(x1−yλ′,y), (5.20)

and γλ,μ acts on Hd
n by the formula

γλ,μ ·τ =

(
τ 1 τ 12+τ 1λ+μ

τ ′
12+τ 1λ

′+μ′ τ 2+(λ′ ·τ 12+τ ′
12 ·λ)+μ′ ·λ

)
, (5.21)

where τ =
(

τ1 τ12

τ ′
12 τ2

)
. Moreover, writing γ̃λ,μ = (γλ,μ,(φv))v as in Section 2.6, we have∏

φv(τ) = 1. For x1 ∈ V and y ∈ V n−1, a direct computation gives

tr
(
T (x1,y) ·Re(γλ,μ ·τ )

)
= tr

(
T (x1+yλ′,y)u

)
+2〈x1,y〉μ′+ 〈yλ′,y〉μ′; (5.22)

therefore, applying the above identity and the change of variables x1 �→ x1 −y ·λ′, we
find

fy(γλ,μ ·τ )(ϕ) =
∑
x1∈V

ϕ(x1,y)ϕKM

(√
v1(x1+y ·λ′)+

y ·v′12√
v1

)

×
{

d∏
i=2

ϕ∞i

(
σi(x1,y)

(
1
λ′ 1

)
ai
)}

e
(
T (x1,y)Re(γλ,μτ )

)
(5.23)

=
∑
x1∈V

{
ϕ(x1−yλ′)e(2〈x1,y〉μ′−〈yλ′,y〉μ′)

}
ϕKM

(√
v1x1+

y ·v′12√
v1

)

×
d∏

i=2

ϕ∞i
(σi(x1,y)ai) e(T (x1,y)u) (5.24)

= fy(τ )(ρ(γ̃λ,μ)ϕ) (5.25)

as required.

Similarly, for r ∈ OF , the element γ̃−1
r = γ̃−r acts on S(Ln) by the formula

ρ(γ̃−r)(ϕ)(x1,y) = e
(
T (x1,y)

(−r
0

))
ϕ(x1,y).

However, γr acts on Hd
n by

γr · τ = τ +( r 0n−1 ) .

The invariance of fy(τ) under the action of γ̃r follows immediately.

As for S̃, recall that ιF (S) acts on S(V (A)n) by the partial Fourier transform in the first

variable; the desired invariance follows from Poisson summation on x1 and straightforward

identities for the behaviour of the Fourier transform under translations and dilations.
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6. Modularity II

In this section, we prove the modularity of the generating series φ̂A(τ ). By Remark 4.3,
we only need to consider totally positive semidefinite matrices T2, and we assume that

this is the case throughout this section.

We begin by fixing an element y = (y1, . . . ,yn−1) ∈ Ω(T2), and setting y = σ1(y). Let

Uy = span(y1, . . . ,yn−1)⊂ V , (6.1)

so that Uy is totally positive definite. Let

Λy := Uy ∩L, and Λ⊥
y := U⊥

y ∩L (6.2)

and set

Λ := Λy⊕Λ⊥
y ⊂ L, (6.3)

so that

Λ⊂ L⊂ L′ ⊂ Λ′. (6.4)

In light of the definition (1.3), we have a natural inclusion S(Ln) → S(Λn), and the
composition

S(Ln)→ S(Λn)
∼→ S(Λn

y)⊗C S((Λ
⊥
y )

n) (6.5)

is equivariant for the action of Γ̃J , via ρL on the left-hand side, and via ρΛy ⊗ρΛ⊥
y
on the

right; this latter fact can be deduced from explicit formulas for the Weil representation;

cf. [11, Proposition II.4.3].
Note that U⊥

y is a quadratic space of signature ((p′,2),(p′ + 2,0), . . . (p′ + 2,0)) with

p′ = p− rank(T2), so the constructions in Section 2 apply equally well in this case. In

particular, let Xy(C) = Γy

∖
D+

y . Then for m ∈ F and v1 ∈ (F ⊗RR)�0, we have a special
divisor

ẐU⊥
y
(m,v1) =

(
ZU⊥

y
(m), goU⊥

y
(m,v1)

)
∈ ĈH1

C(Xy)⊗S(Λ⊥
y )

∨, (6.6)

where we introduce the subscript U⊥
y in the notation to emphasize the underlying

quadratic space being considered.
Let

πy : Xy →X (6.7)

denote the natural map, which defines the cycle Z(y) of codimension rank(T2). We define
a class

Ẑy(m,v1) ∈ ĈHrk(T2)+1(X,Dcur)⊗C S((Λ
⊥
y )

n) (6.8)

as follows: if ϕ ∈ S((Λ⊥
y )

n) is of the form ϕ1⊗ϕ2 with ϕ1 ∈ S(Λ⊥
y ) and ϕ2 ∈ S((Λ⊥

y )
n−1),

we set

Ẑy(m,v1)(ϕ1⊗ϕ2) := ϕ2(0) ·πy,∗
(
ẐU⊥

y
(m,v1,ϕ1)

)
∈ ĈHrk(T2)+1(X,Dcur), (6.9)
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and extend this definition to arbitrary ϕ by linearity. Here, the pushforward is given
explicitly as

πy,∗
(
ẐU⊥

y
(m,v1,ϕ1)

)
=
(
πy,∗ZU⊥

y
(m)(ϕ1),

[
ωU⊥

y
(m,v1,ϕ1)∧ δZ(y),g

o(m,v1,ϕ1)δZ(y)

])
.

Observe that this pushforward is an element of ĈHn
C(X,Dcur); the existence of pushfor-

ward maps along arbitrary proper morphisms, which are not available in general for the

Gillet-Soulé Chow groups, are an essential feature of the extended version, [5, §6.2].
Finally, for τ =

(
τ1 τ12

τ ′
12 τ2

)
∈Hn

d , we define the generating series

φ̂y(τ 1) :=
∑
m∈F

Ẑy(m,v1)q
m
1 , (6.10)

where τ 1 ∈Hd
1 with v1 = Im(τ 1), and qm1 = e(mτ 1).

There is also a classical theta function attached to the totally positive definite space

Uy, defined as follows: let ϕ ∈ S(Λn
y) and suppose ϕ = ϕ1 ⊗ϕ2 with ϕ1 ∈ S(Λy) and

ϕ2 ∈ S(Λn−1
y ). Then we set

θy(τ )(ϕ1⊗ϕ2) := ϕ2(y)
∑
λ∈Uy

ϕ1(λ) e(〈λ,λ〉τ 1+2〈λ,y〉τ ′
12) e(T2 ·τ 2), (6.11)

and again, extend to all ϕ ∈ S(Λn
y) by linearity. It is well known that θy(τ ) is a

holomorphic Jacobi modular form of weight dimUy/2 = rk(T2)/2 and index T2; see, for
example, [7, §II.7].
The Fourier expansion of θy(τ )(ϕ) can be written, for ϕ= ϕ1⊗ϕ2 as above, as

θy(τ )(ϕ1⊗ϕ2) = ϕ2(y)
∑

T=(∗ ∗
∗ T2

)

ry(T,ϕ1) q
T , (6.12)

where ry(T ) ∈ S(Λy)
∨ is given by the formula

ry

((
T1 T12

T ′
12 T2

)
,ϕ1

)
=

∑
λ∈Uy

〈λ,λ〉=T1

〈λ,y〉=T12

ϕ1(λ). (6.13)

Finally, note that given T as above, we must have either rank(T ) = rank(T2)+ 1, or
rank(T ) = rank(T2).

Lemma 6.1. Suppose rank(T ) = rank(T2) + 1. Then for any y ∈ Ω(T2), we have

ry(T ) = 0.

Proof. Suppose ry(T ) 	= 0; by definition, there exists λ ∈ Uy = span(y) such that
(λ,y) ∈ Ω(T ). Since V is anisotropic, we have rank(T ) = dimspan(λ,y). However,

λ ∈ Uy, so dimspan(λ,y) = dimspan(y) = rank(T2), which contradicts the assumption on

rank(T ).
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Proposition 6.2. As formal generating series, we have

φ̂A(τ ) =
∑

T=(∗ ∗
∗ T2

)

Â(T,v)qT =
∑

y∈Ω(T2)
mod Γ

φ̂y(τ ) · ω̂n−r(T2)−1⊗θy(τ ), (6.14)

where

φ̂y(τ ) · ω̂n−r(T2)−1 :=
∑
m∈F

Ẑy(m,v1) · ω̂n−r(T2)−1 qm1 ; (6.15)

here, we view the right-hand side of (6.14) as valued in S(Ln)∨ by dualizing (6.5).

Proof. By linearity, it suffices to evaluate both sides of the desired relation at a Schwartz
function ϕ ∈ S(Ln) of the form ϕ= ϕ1⊗ϕ2 for ϕ1 ∈ S(L) and ϕ2 ∈ S(Ln−1).

Then we may write

Z(T )(ϕ1⊗ϕ2) =
∑

x∈Ω(T )
mod Γ

(ϕ1⊗ϕ2)(x)Z(x) (6.16)

=
∑

y∈Ω(T2)
mod Γ

ϕ2(y)
∑

x1∈Ω(T1)
〈x1,y〉=T12

mod Γy

ϕ1(x1)Z(x1,y). (6.17)

We may further assume that

ϕ1 = ϕ′
1⊗ϕ′′

1 ∈ S(Uy)⊗S(U⊥
y ) and ϕ2 = ϕ′

2⊗ϕ′′
2 ∈ S(Λn−1

y )⊗S((Λ⊥
y )

n−1);

(6.18)

in this case, ϕ2(y) = ϕ′
2(y)ϕ

′′
2(0).

For a vector x1 ∈ V as above, write its orthogonal decomposition as

x1 = x′
1 + x′′

1 ∈ Uy⊕U⊥
y , (6.19)

and note that D+
(x1,y)

= D+
(x′′

1 ,y)
, where x1 = σ1(x1), etc., and Γ(x1,y) = Γ(x′′

1 ,y)
.

Thus, decomposing the sum on x1 as above and writing T =
(

T1 T12

T ′
12 T2

)
, we have

Z(T )(ϕ1⊗ϕ2)

=
∑

y∈Ω(T2)
mod Γ

ϕ2(y)
∑
m∈F

⎛⎜⎜⎜⎜⎜⎜⎝
∑

x′′
1 ∈U⊥

y

〈x′′
1 ,x

′′
1 〉=m

mod Γy

ϕ′′
1(x

′′
1)Z(x′′

1,y)

⎞⎟⎟⎟⎟⎟⎟⎠ ·

⎛⎜⎜⎜⎜⎜⎜⎝
∑

x′
1∈Uy

〈x′
1,x

′
1〉=T1−m

〈x′
1,y〉=T12

ϕ′
1(x

′
1)

⎞⎟⎟⎟⎟⎟⎟⎠

=
∑

y∈Ω(T2)
mod Γ

ϕ2(y)
∑
m∈F

⎛⎜⎜⎜⎜⎜⎜⎝
∑

x′′
1 ∈U⊥

y

〈x′′
1 ,x

′′
1 〉=m

mod Γy

ϕ′′
1(x

′′
1)Z(x′′

1,y)

⎞⎟⎟⎟⎟⎟⎟⎠ · ry
((

T1−m T12

T12′ T2

)
,ϕ′

1

)
, (6.20)
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which we may rewrite as

Z(T )(ϕ1⊗ϕ2) =
∑

y∈Ω(T2)
mod Γ

ϕ′′
2(0)ϕ

′
2(y)

∑
m

πy,∗
(
ZU⊥

y
(m)(ϕ′′

1)
)
· r
((

T1−m T12

T12′ T2

)
,ϕ′

1

)
(6.21)

=
∑

y∈Ω(T2)
mod Γ

∑
m

Zy(m)(ϕ′′
1 ⊗ϕ′′

2) ·
{
ϕ′
2(y)r

((
T1−m T12

T12′ T2

)
,ϕ′

1

)}
, (6.22)

where in the second line, Zy(m) denotes the S((Λ⊥
y )

n)∨-valued cycle

Zy(m) : ϕ′′ �→ ϕ′′
2(0)πy,∗ZU⊥

y
(m,ϕ′′

1). (6.23)

Now suppose that rk(T ) = rk(T2)+1. Then, by Lemma 6.1, the term m = 0 does not

contribute to (6.21), and so all the terms ZU⊥
y
(m) that do contribute are divisors. To

incorporate Green currents in the discussion, recall that, at the level of arithmetic Chow
groups, the pushforward is given by the formula

Ẑy(m,v1)(ϕ
′′) = ϕ′′

2(0) πy,∗ẐU⊥
y
(m,v1,ϕ

′′
1) (6.24)

=
(
πy,∗ZU⊥

y
(m,ϕ′′

1),
[
ωU⊥

y
(m,v1,ϕ

′′
1)∧ δZ(y),g

o
U⊥

y
(m,v1,ϕ

′′
1)∧ δZ(y)

])
, (6.25)

where, as before, we use the subscript U⊥
y to denote objects defined with respect to that

space.

This may be rewritten as

Ẑy(m,v1)(ϕ
′′) = Ẑy(m)can(ϕ′′)

+ϕ′′
2(0)

(
0,
[
ωU⊥

y
(m,v1,ϕ

′′
1)∧ δZ(y)− δZy(m), g

o
U⊥

y
(m,v1,ϕ

′′
1)∧ δZ(y)

])
,

(6.26)

where Ẑy(m)can = (Zy(m),[δZy(m),0]) is the canonical class associated to Zy(m). Thus,

Ẑy(m,v1) · ω̂n−rk(T ) = Ẑy(m)can · ω̂n−rk(T )+(0, [βy(m,v1),αy(m,v1)]), (6.27)

where αy(m,v1) and βy(m,v1) are S((Λ⊥
y )

n)∨-valued currents defined by

αy(m,v1)(ϕ
′′) = ϕ′′

2(0) g
o
U⊥

y
(m,v1,ϕ

′′
1)∧ δZ(y)∧Ωn−rk(T ) (6.28)

and

βy(m,v1)(ϕ
′′) = ϕ′′

2(0) ωU⊥
y
(m,v1,ϕ

′′
1)∧ δZ(y)∧Ωn−rk(T )− δZy(m)(ϕ′′)∧Ωn−rk(T )

(6.29)

where ϕ′′ = ϕ′′
1 ⊗ϕ′′

2 as before.

Turning to the class Â(T,v), it can be readily verified that

Â(T,v) = Ẑ(T )can · ω̂n−rk(T ) +
(
0,[ψ(T,v)− δZ(T )∧Ωn−rk(T ),a(T,v)]

)
, (6.30)
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where the currents a(T,v) and ψ(T,v) are defined in (4.15) and (4.26), respectively. Now,

by the same argument as in (6.21), and under the assumption rank(T ) = rank(T2)+1,

we have (as a Γ-invariant current on D)

a(T,v)(ϕ1⊗ϕ2) =
∑

y∈Ω(T2)

ϕ2(y)
∑

x1∈Ω(T1)
〈x1,y〉=T12

ϕ1(x1)g
o(
√
v1x1)∧ δ

D
+
y
∧Ωn−r(T ) (6.31)

=
∑

y∈Ω(T2)

ϕ2(y) ·
∑
m∈F

⎛⎜⎜⎜⎝ ∑
x′′
1 ∈U⊥

y

〈x′′
1 ,x

′′
1 〉=m

ϕ′′
1(x

′′
1)g

o(
√
v1x

′′
1)∧ δ

D
+
y
∧Ωn−r(T )

⎞⎟⎟⎟⎠
(6.32)

× r
((

T1−m T12

T12′ T2

)
,ϕ′

1

)
, (6.33)

where we use the fact that go(
√
v1x1)∧δ

D
+
y
only depends on the orthogonal projection x′′

1

of x1 onto U⊥
y = σ1(U

⊥
y ). Thus, as S(Ln)∨-valued currents on X, we obtain the identity

a(T,v)(ϕ1⊗ϕ2) =
∑

y mod Γ

∑
m∈F

αy(m,v1)(ϕ
′′
1 ⊗ϕ′′

2) ·
{
ϕ′
2(y)ry

((
T1−m T12

T12′ T2

)
,ϕ′

1

)}
(6.34)

with ϕi = ϕ′
i⊗ϕ′′

i as above.

A similar argument gives

ψ(T,v)(ϕ)− δZ(T )(ϕ)∧Ωn−rk(T ) (6.35)

=
∑

y mod Γ

∑
m∈F

βy(m,v1)(ϕ
′′
1 ⊗ϕ′′

2) ·
{
ϕ′
2(y)ry

((
T1−m T12

T12′ T2

)
,ϕ′

1

)}
,

and so in total, we have

Â(T,v)(ϕ1⊗ϕ2) (6.36)

=
∑

y mod Γ

∑
m

Ẑy(m,v1)(ϕ
′′
1 ⊗ϕ′′

2) · ω̂n−rk(T2)−1 ·
{
ϕ′
2(y)ry

((
T1−m T12

T12′ T2

))
(ϕ′

1)
}

whenever rank(T ) = rank(T2)+1.
Now suppose rank(T ) = rank(T2). Then for any tuple (x1,y) ∈ Ω(T ), we must have

x1 ∈ Uy, and in particular, the only terms contributing to the right-hand side of (6.36)

are those with m= 0. However, we have

a(T,v) = 0, ψ(T,v) = δZ(T )∧Ωn−rk(T ), (6.37)

and hence,

Â(T,v) = Ẑ(T )can · ω̂n−rk(T ); (6.38)
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with these observations, it follows easily from unwinding definitions that (6.36) continues

to hold in this case.

Finally, the statement in the proposition follows by observing that the T ’th q coefficient
on the right-hand side of (6.14) is precisely the right-hand side of (6.36).

Corollary 6.3. The series φ̂A(τ ) is a Jacobi modular form of weight κ := (p+2)/2 and
index T2, in the sense of Definition 2.7.

Proof. Fix y ∈ Ω(T2). By Corollary 3.3, applied to the space U⊥
y , there exist finitely

many ẑy,1, . . . ,ẑy,r ∈ ĈH1
C(Xy), finitely many (elliptic) forms fy,1, . . . ,fy,r ∈Aκ(ρ

∨
Λ⊥

y
) and

an element gy ∈Aκ(ρ
∨
Λ⊥

y
;D∗(X)) such that the identity

∑
m∈F

ẐU⊥
y
(m,v1)q

m =

r∑
i=1

fy,i(τ 1)ẑy,i + a(gy(τ 1)) (6.39)

holds at the level of q-coefficients; here, τ 1 ∈ Hd
1 and v1 = Im(τ 1). Moreover, from the

proof of Corollary 3.3, we see that gy(τ) is smooth on X.

Therefore, applying Proposition 6.2 and unwinding definitions, we obtain the identity

φ̂A(τ ) =
∑

y∈Ω(T2)
mod Γ

r∑
i=1

(Fy,i(τ )⊗θy(τ )) Ẑy,i + a
(
(Gy(τ )⊗θy(τ ))∧ δZ(y)∧Ωn−rank(T2)−1

)

(6.40)

of formal generating series, where

Ẑy,i := πy,∗ (ẑy,i) · ω̂n−rk(T2)−1 ∈ ĈHn
C(X,Dcur), (6.41)

and we promote the elliptic forms fy,i and gy to S((Λ⊥
y )

n)∨-valued functions by setting

Fy,i(τ )(ϕ) := ϕ2(0) ·fy,i(τ 1)(ϕ1), Gy(τ ) = ϕ2(0) ·gy(τ 1)(ϕ1) (6.42)

for ϕ= ϕ1⊗ϕ2 ∈ S(Λ⊥
y )⊗S((Λ⊥

y )
n−1) and τ =

(
τ1 τ12

τ ′
12 τ2

)
.

It remains to show that Fy,i(τ )⊗θy(τ ) and Gy(τ)⊗θy(τ ) are invariant under the slash

operators (2.41) for elements of Γ̃J ; this can be verified directly using the generators

(5.15)–(5.18), the modularity in genus one of fy,i and gy, and explicit formulas for the
Weil representation (as in, for example, [11]).
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[9] Gillet H and Soulé C (1990) Arithmetic intersection theory. Inst. Hautes Études Sci.
Publ. Math. 72, 93–174.

[10] Jiang D and Soudry D (2007) On the genericity of cuspidal automorphic forms of
SO (2n+1). II. Compos. Math. 143(3), 721–748.

[11] Kudla S (1996) Notes on the local theta correspondence. Lecture notes from the European
School on Group Theory, Schloß Hirschberg, Germany.

[12] Kudla S (2019) Remarks on generating series for special cycles. arXiv preprint 1908.08390.
[13] Kudla SS (1997) Algebraic cycles on Shimura varieties of orthogonal type. Duke Math.

J. 86(1), 39–78.
[14] Kudla SS and Millson JJ (1990) Intersection numbers of cycles on locally symmetric

spaces and Fourier coefficients of holomorphic modular forms in several complex variables.
Inst. Hautes Études Sci. Publ. Math. 71, 121–172.

[15] Kudla SS, Rapoport M and Yang T (2006) Modular Forms and Special Cycles on
Shimura Curves. Annals of Mathematics Studies, vol. 161. Princeton, NJ: Princeton
University Press.
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