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Introduction

Let Fp be the residue field modulo a prime number p. The mappings
of Fp into itself are viewed as functions in one variable over Fp. When the
mapping is onto, the function is a permutation.

In this paper we consider representations of functions over Fp as
polynomials over Fp. Henceforth, we shall omit the domain and unless
otherwise indicated, the domain is understood to be Fp. In section 1 we
prove that every function in one variable admits of a unique representation
as a polynomial of degree ^p—1 in one variable. Explicit expressions
for the coefficients of a polynomial representing a given function are
obtained. The main results of the paper are presented in section 2, where
we obtain necessary and sufficient conditions for the coefficients of a
polynomial in order that it should represent a permutation. From these
conditions we derive some general conclusions about the nature of the
coefficients of a polynomial representing a permutation. In section 3 we
apply the foregoing analysis to the special circumstances F3, FB and F7.

This paper was written within the framework of a seminar in Algebra
held in the Technion in 1959 under the guidance of Professor Dov Tamari.
We are grateful to Professor Tamari for suggesting to us the topic of this
research.

I. The representation of a function in one variable as a polynomial

Let a function (f>{x) be given by the mapping

/ - • * , . j = O,--,p-\;iieF,.

We prove first that the function admits of a representation by a polynomial
of degree sS p—1 and that such a representation is unique.

The polynomial
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represents the function <f>(x) if, and only if

Hence, the necessary and sufficient conditions for such a representation are:

(1.1) P(j) = 2 «„-*/*-* = it, j = 0, • • -,p-l.
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The equality of the determinants follows by Fermat's Theorem [1, p. 48].
Since the right-hand side determinant is essentially the Van-der-Monde
and p is a prime, we have A ^ 0. This proves the existence and uniqueness
of the representation.

We next obtain explicit expressions for the coefficients of the represent-
ing polynomial. It is well known [see 1, p. 122] that

*x\-k / ° when h^k 0 (modp—1)
iZx I —1 when k == 0 (mod/)—1).

For each fixed k, k = 1, • • •, p—1, we multiply the /-th equation of (1.1)
by 7*-1, ; = 0, • • • p—1. We sum the equation thus obtained by columns
and make use of (1.2). Thus we find

Clearly, we have also

(1.4) «o = V

This completes the proof of

THEOREM 1. Let <f>(x) be any function over Fv; it admits of a unique
representation by a polynomial of degree ^p~l over Fv. The coefficients
of this polynomial are given explicitly by (1.3) and (1.4).

II. The polynomial representation of a permutation

In this section we obtain necessary and sufficient conditions for the
coefficients of a polynomial in order that it represents a permutation. We
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first obtain a system of necessary conditions for the coefficients. Later we
show that these conditions are also sufficient.

Suppose that the polynomial P(x) = 2*=i av-k%1>~k represents a
permutation. Then the values P(j) = ijt j = 0, • • •, p—1, run over the full
residue class mod p, so that

(2.1) 5'i = °-
3=0

Combining (2.1) with (1.3) for k = 1, we find the first necessary condition,

(A.I) «,_! = 0.

We rewrite now the system (1.1) in the form

(2.2) J a^j"-* = *,-*o = *J. / = 1, • • •, P-1~

Since the numbers it, j = 0, • • •, p—1, cover the full residue class mod^>,
the numbers i\, j = 1, • • •, p—1, cover the residue class without the zero.
We square each equation of (2.2) and sum the resulting p—1 equations by
columns. Since the numbers i\ run over the residue class without the zero,
we see, by (1.2), that the coefficient of the (p-l)-th power has to vanish.
This yields

Similarly, by raising each of the equations in (2.2) to the 3, • • •, {p—l)-th
powers, we obtain the rest of the conditions.

The &-th condition, k = 2, • • •, p—2, has the form

k\ h V i _ _

where the summation extends over the (j>—l)-tuples (*i» • • •. *p_i),
0 ^ t\, • • •, ij,-! ^ k, which satisfy the conditions

(2.3) i + ' ' " +i = k

The last condition has the form

where (*lf — , jJ)_1) satisfy (2.3) with k replaced by p—1.

REMARKS, a) Taking into consideration condition (A.I), we can put
*„_! = 0 in the conditions (A.2) —(A. p—1).
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b) None of the (p—1) conditions involves a0.
c) Condition (A. p—1) is satisfied for every polynomial which attains

the value i0 exactly once.
We now prove that the conditions (A.I) — (A.p—1) are sufficient

conditions for the corresponding polynomial to represent a permutation.
Let P(x) be a polynomial whose coefficients satisfy (A.I) — (A. p—1).
Denoting by lt the values

we find that they satisfy:

(2.4)
3 = 1

J > - 1

5 = 0, k=l,

2 r1 = -i.
3=1

We construct the Van-der-Monde built on lx,

1 ••• 1

Equations (2.4) imply that
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0
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0

_ 1

0
- 1

0

0 — 1 0
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Hence,

(2.5) V = IX (h-h) # 0

so that lt, j = 1, • • -,p—1 have to be distinct. Therefore, they take all
the values of the residue class modp except the zero. Thus, P(0) and
P(j) = P(0)+lf, j = 1, • • -,p — \, run over the entire residue class. We
have thus proved

THEOREM 2. Necessary and sufficient conditions for the polynomial
P(x) = S L i ai>-k x"~k to represent a permutation are that its coefficients
satisfy (A.I) —(A.^—1).

We now make some general observations concerning the coefficients
of a polynomial P(x) representing a permutation. Let (p—\)jk be a natural
number larger than 1. By considering the necessary condition (A. k) we
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find that in this condition a* appears as a summand if, and only if / has
one of the values

i(p-l)

k

Furthermore, if klt • • •, kt satisfy

* = 1, • • •. k.

. , ^ ( « o + l ) ( ^ l ) . .
} < k ' 7 '

for some i0, 0 ^i0^ k—1, then there is no summand of the form
aj.*1 • • • <4*'. These considerations yield

COROLLARY 2.1. Let P(x) — ^ L i a
v-k

x*~k &e a polynomial representing
a permutation; let k be a divisor of p—1 (different from p~l), and let i0 be
some integer, 0 ^ i0 fS k—1. If air = 0 for every j satisfying one of the
inequalities

(2.6,

or

then

)/* = 0.

For i0 ^ 0, we also have:
If at = 0 /or tfwry / satisfying one of the inequalities

(2.6')

or

(2-7')

(2-8') aVl)_1)A = 0.

Since we may choose a0 = 0 without loss of generality, the result
formulated in (2.6), (2.7) and (2.8) for iQ = 0, yields

COROLLARY 2.2 The actual degree of a polynomial representing a per-
mutation can never be (p—1) Ik.

Since av_x = 0 is always satisfied, the result formulated in (2.6'),
(2.7') and (2.8') for i0 = k—1, yields
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COROLLARY 2.3. The exponent of the lowest power appearing in a poly-
nomial representing a permutation cannot be equal to ((k—l)(p—l))jk,k>l.

Since the number p—1 is always divisible by 1, 2, (p—\)j2, we have

COROLLARY 2.4. a) The actual degree of a polynomial representing a
permutation cannot be p—\. (This amounts to a rephrasing of condition (A.I).)

b) The actual degree of a polynomial representing a permutation can
never be (p~\)\2; the exponent of the lowest power appearing in a polynomial
representing a permutation is never (p—1)/2.

c) A polynomial of actual degree 2 cannot represent a permutation; if
the lowest power appearing in a polynomial is p—Z, it cannot represent a
permutation.

A similar analysis yields

COROLLARY 2.5. The polynomial P(x) = x" represents a permutation
if, and only if (k,p—l) = 1.

This last corollary can also be derived directly by using the fact that
the multiplicative group is cyclic.

It is clear that if P(x) is a polynomial representing a permutation,
then aP(x)-\-b, a ^ 0, is also, such a polynomial. In particular:

All the linear polynomials P(x) = ax-\-b, a =£ 0 represent permutations.

III. A detailed discussion of F3, Fs and F7

a) Let p = 3. There are 3! = 6 permutations. The number of linear
polynomials is 3X2 = 6. Since every linear polynomial represents a per-
mutation, we see that in this case the linear polynomials are the only
polynomials representing permutations.

b) Let p = 5. In this case, the number of permutations is 5! = 120,
while the number of linear polynomials is only 5 X 4 = 20. Hence, there
exist 100 non-linear polynomials representing permutations. Corollary 2.4
implies that neither second degree polynomials nor fourth degree polynomials
can represent permutations. The system of necessary and sufficient con-
ditions for this case is

(3.1) at = 0

(3.2) al+2a1a3 = 0

(3.3) a2[a\+a%) = 0

(3.4)

It can be easily verified that there exist (4x5+5) X 5 distinct polynomials
satisfying (3.1) and (3.2). Five of these are constants (not satisfying (3.4))
and the remaining 120 are theefore the polynomials representing per-
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mutations. Hence, (3.1), (3.2) and (3.4) are the necessary and sufficient
conditions. This is an example demonstrating that the system of con-
ditions (A.I) — (A. p—1) is not independent in general. We do not know how
to find an independent system for general p.

c) Let p = 7. The number of permutations is 7! = 5040, while the
number of hnear polynomials is only 7 x 6 = 42. Corollary 2.4 rules out
polynomials of degrees 2, 3 and 6 thus leaving 4998 fifth and fourth degree
polynomial representing permutations (e.g., P(x) = x6 or, P(x) = 3z*
+4a^+2a;2). Analysis of the system (A.I) — (A. p—1) is complicated in
this case, and therefore will not be discussed in detail.
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