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The basic inequality
The prolific output of G. H. Hardy included a number of inequalities,

each known, in its own context, simply as ‘Hardy's inequality’. Here we
give an account of one of them, together with some applications and
generalisations. It relates to averages.

We introduce some notation that enables a neat statement of the results.
A sequence , finite or infinite, will be denoted simply by . Given , let
be the sequence of its averages:

(xn) x x y

yn = 1
n (x1 + x2 +  …  + xn) . (1)

This can be seen as a matrix transformation: , where  is the
(infinite) lower-triangular ‘Cesàro matrix’ defined by:

y = Cx C

cn,k =
⎧

⎩
⎨
⎪
⎪

1
n for k ≤ n,
0 for k > n.

Observe next that convergence of  does not imply convergence of

. To see this, we only need to take : then

for each .

∑
∞

n = 1

xn

∑
∞

n = 1

yn x = (1,  0,  0,  … ) yn = 1
n

n
The situation is different if we consider . To discuss this, we use

the notation . For finite sequences, this is simply the length of
, regarded as a vector. More generally, it is called the ‘Euclidean norm’ of
. We denote by  the set of infinite sequences  for which  is finite

(equivalently,  is convergent), and by  the set of finite sequences of
length , equipped with this norm. For now, the only property we need is
the triangle inequality .

∑n x2
n

�x� = ∑n x2
n

x
x � 2 x �x�

∑n x2
n � N

2
N

�x + y� ≤ �x� + �y�
Now let  be given and  defined by (1). Note that in the special case

where  is decreasing and positive, then  for all , so both
and  are not greater than . This sets the scene for our main
result, no longer restricted to decreasing sequences.

x y
(xn) yn ≥ xn n �x�

�y − x� �y�

Theorem 1: Let  be an element of  or . Thenx � N
2 � 2

�Cx − x� ≤ �x�, (2)

  �Cx� ≤ 2�x�. (3)
Written out fully, with , the two statements areCx = y

∑
n

(yn − xn)2 ≤ ∑
n

x2
n and  ∑

n
y2

n ≤ 4 ∑
n

x2
n.
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26 THE MATHEMATICAL GAZETTE

Note that (3) follows at once from (2), since .
Actually, Hardy stated (3) but not (2), and (2) remains distinctly less well
known. In fact, Hardy proved a more general statement than (3); we return
to this below.

�y� ≤ �y − x� + �x�

We now give the proof, which the author finds rather elegant. In
essence, it follows the original one in [1, pp. 239-241].

Proof of Theorem 1: We prove (2) for  and  in . The statement for
infinite sequences then follows on taking limits as . For , we
have , which we can rewrite as

x y � N
2

N → ∞ n ≥ 2
xn = nyn − (n − 1) yn − 1

xn − yn = (n − 1) (yn − yn − 1) .
This is also true for  if we define  to be . For any , , we have

 (this equates to ). So ,
hence

n = 1 y0 0 a b
2a(a − b) ≥ a2 − b2 a2 + b2 ≥ 2ab 2yn(yn − yn− 1) ≥ y2

n − y2
n− 1

2yn (xn − yn) = 2 (n − 1) yn (yn − yn − 1) ≥ (n − 1) (y2
n − y2

n − 1) ,
equivalently

2xnyn − y2
n ≥ ny2

n − (n − 1) y2
n − 1.

Add these inequalities for : by cancellation, we obtain1 ≤ n ≤ N

2 ∑
N

n = 1

xnyn − ∑
N

n = 1

y2
n ≥ Ny2

N.

We actually only use the fact that this is non-negative, so that

∑
N

n = 1

y2
n ≤ 2 ∑

N

n = 1

xnyn. (4)

Hence

∑
N

n = 1
(yn − xn)2 = ∑

N

n = 1

(y2
n − 2xnyn + x2

n) ≤ ∑
N

n = 1

x2
n.

Another way to state Theorem 1 is in terms of norms of matrices. The
norm of a matrix , again denoted by , is defined to be the least  such
that  for all  in the domain (  or  as appropriate). So (2)
equates to , where  is the identity matrix, and (3) equates to

.

A �A� M
�Ax� ≤ M�x� x � N

2 � 2

�C − I� ≤ 1 I
�C� ≤ 2

Best constants
We now show that in (2) and (3), regarded as statements for infinite

sequences or for sequences of any finite length, the respective constants 1
and 2 are optimal, so that (as operators on ), we have  and

.
� 2 �C − I� = 1

�C� = 2
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For (2), this is easily shown. Let  be the sequence with 1 in place
and 0 elsewhere. Then  and component  of  is , so

.

en n
�en� = 1 n Cen − en

1
n − 1

�Cen − en� ≥ 1 − 1
n

For (3), we again follow Hardy. Fix , and letN

xn =
⎧

⎩
⎨
⎪
⎪

1
n

for  n ≤ N,

0 for n > N.

Then : denote this (as usual) by . By integral estimation,

for ,

∑
N

n = 1

x2
n = ∑

N

n = 1

1
n

HN

n ≤ N

∑
n

j = 1

xj = ∑
n

j = 1

1
j

> ∫
 n

1

1
t
 dt = 2 ( n − 1) ,

so

yn >
2
n (1 −

1
n) ,

hence

y2
n >

4
n (1 −

1
n)2

>
4
n (1 −

2
n) .

So

∑
N

n = 1

y2
n > 4HN − 8S,

where , and henceS = ∑
∞

n = 1

1
n3/2

∑N
n = 1 y2

n

∑N
n = 1 x2

n
> 4 −

8S
HN

,

which tends to 4 as .N → ∞
(For a fixed , determination of the best constants in (2) and (3) is not

easy, and there are no pleasant answers.)
N

Hardy's theorem for general p
As mentioned earlier, Hardy actually proved a more general result than

(3). For any , define , so our  is . For a
matrix , define  to be the least  such that  for all .
For , define the conjugate index  by , so that

. Hardy's theorem is:  for all . The case

 is (3).

p ≥ 1 �x�p = (∑n |xn|
p)1/p

�x� �x�2

A �A�p M �Ax�p ≤ M �x�p x
p > 1 p∗ p∗ = p / (p − 1)

1
p

+
1
p∗ = 1 �C�p = p∗ p > 1

p = 2
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We indicate briefly how the proof of Theorem 1 can be modified to
prove this. It is enough to consider non-negative . The inequality

 is replaced by  for positive
, : this is a straightforward consequence of the mean-value theorem.

Following the previous steps, we then find that (4) becomes

xn
a2 − b2 ≤ 2a (b − a) ap − bp ≤ pap − 1 (a − b)
a b

(p − 1) ∑
N

n = 1

yp
n ≤ p ∑

N

n = 1

xny
p − 1
n .

Nothing like (2) can be deduced from this. In fact, the evaluation of
 for other  is quite tricky, and has only recently been achieved in

[2]. However, a neat application of Hölder's inequality now gives
�C − I�p p

(p − 1) ∑
N

n = 1

yp
n ≤ p ( ∑N

n = 1

xp
n)1/p ( ∑N

n = 1

yp
n)1/p∗

,

hence .�y�p ≤ p∗ �x�p

For most purposes, the case  is quite enough, but later on, in
Theorem 3, we will see an application where the statement for general
leads to a better result.

p = 2
p

The continuous case. A ‘continuous’ version of Hardy's theorem applies
to functions instead of sequences. For a function  on , let

 if this is finite. (This may require attention to
convergence of  both as  and as .) Let

x (t) (0, ∞)
�x�p = (∫ ∞

0 |x (t)|p dt)1/p

∫
X
δ |x (t)|p dt δ → 0 X → ∞

y (t) =
1
t ∫

 t

0
x (u) du.

Then again we have . The proof [1, p. 242] is a recognisable
variant of the proof for the discrete case, with finite differences replaced by
integration by parts. For the case , it transpires that (2) actually holds
with equality:  (see [3]).

�y�p ≤ p∗ �x�p

p = 2
�y − x�2 = �x�2

The dual: Copson's inequality
Denote by  the transpose of a matrix  (finite or infinite). For the

Cesàro matrix , we have , where
AT A

C CTx = z

zn = ∑
∞

k = n

xk

k
.

For matrix operators on , it is well known that  (we return to
this shortly). If we assume this, then we can deduce at once from Theorem 1
that  and . However, a direct proof along the lines
of Theorem 1 is actually slightly simpler than the proof of Theorem 1 itself,
so we give it here for any readers with the appetite for it. We go straight to
the infinite case.

� 2 �AT� = �A�

�CT − I� ≤ 1 �CT� ≤ 2
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Theorem 2: Let  be a sequence in . Then  is in  andx � 2 CTx � 2

�CTx − x� ≤ �x� , (5)

�CTx� ≤ 2 �x� . (6)

Proof: Let . Note first that, by the Cauchy–Schwarz inequality,CTx = z

z2
n + 1 ≤ ( ∑

∞

k = n + 1

1
k2) ( ∑

∞

k = n + 1

x2
k) ≤

1
n ∑

∞

k = n + 1

x2
k, (7)

since 

∑
∞

k = n + 1

1
k2

< ∑
∞

k = n + 1

1
(k − 1) k

=
1
n

.

Now  and , hencexn = n (zn − zn + 1) 2zn (zn − zn + 1) ≥ z2
n − z2

n + 1

2xnzn ≥ n (z2
n − z2

n + 1) = z2
n + (n − 1) z2

n − nz2
n + 1.

Adding for , we obtain1 ≤ n ≤ N

2 ∑
N

n = 1

xnzn ≥ ∑
N

n = 1

z2
n − Nz2

N + 1.

With (7), we deduce

∑
N

n = 1
(zn − xn)2 ≤ ∑

N

n = 1

x2
n + Nz2

N + 1 ≤ ∑
∞

n = 1

x2
n.

This applies for all , so (5) follows.N

The statement for general  is . Furthermore, for
non-negative , the reverse inequality applies when . These two
statements together comprise Copson's inequality. Of course, they require a
little more work, except for the case , which is very easy: in this case,
we have the pleasing identity

p ≥ 1 �CTx�p ≤ p �x�p
xn 0 < p < 1

p = 1

∑
∞

n = 1

zn = ∑
∞

n = 1
∑
∞

k = n

xk

k
= ∑

∞

n = 1

xk

k ∑
k

n = 1

1 = ∑
∞

k = 1

xk.

A slick alternative proof, and some equalities underlying the inequalities
For readers familiar with basic Hilbert space theory, we outline a very

slick alternative proof of Theorems 1 and 2 which was given in [4] (other
readers can move on to the next section). In fact, the method delivers a
stronger statement. Very briefly, the facts needed are as follows. We use the

notation  for the inner product . Then , and the

Cauchy–Schwarz inequality says . Consequently,
, and for a matrix , we have

�x, y� ∑
∞

n = 1

xnyn �x, x� = �x�
2

|�x, y�| ≤ �x� · �y�
�x� = sup {|�x, y�| : �y� = 1} A
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. The transpose  satisfies
, hence . Further,

�A� = sup {|�Ax, y�| : �x� = �y� = 1} AT

�Ax, y� = 〈x, ATy〉 �AT� = �A�

〈AATx, x〉 ≤ 〈ATx, ATx〉 = �ATx�
2
.

Since it follows that .〈AATx, x〉 ≤ �AAT� · �x�
2

�AAT� = �AT�
2

= �A�
2

For the Cesàro matrix , it is quite easy to verify that  is the matrix
having  in place , and hence that ,
where  is the diagonal matrix with entries . So

C CCT

1 / max (j, k) (j, k) C + CT = CCT + D
D (1, 1

2, 1
3, … )

(C − I) (CT − 1) = CCT − C − CT + I = I − D. (8)

Now  is also diagonal, with entries , so . Hence
.  However, (8) actually tells us more than this: it

gives

I − D 1 − 1
n �I − D� = 1

�C − I� = �CT − I� = 1

�CTx − x�
2

= 〈(I − D) x, x〉 = ∑
∞

n = 1
(1 −

1
n) x2

n. (9)

This is an equality that clearly implies the inequality (5).

Rather similar reasoning delivers a neat relation between  and
 (as we have seen, both are bounded by , so a direct comparison

between them is of interest). Again write  and . One can
show that , where  is the diagonal matrix with

component . Now , while

�Cx�
�CTx� 2 �x�

Cx = y CTx = z
CT�C = CCT � n th

n / (n + 1) 〈CCTx, x〉 = �CTx�
2

= ∑
∞

n = 1

z2
n

〈CT�Cx, x〉 = 〈�Cx, Cx〉 = 〈�y, y〉 = ∑
∞

n = 1

n
n + 1

y2
n,

so

∑
∞

n = 1

n
n + 1

y2
n = ∑

∞

n = 1

z2
n. (10)

Since  for all , it follows that .n/ (n + 1) ≥ 1
2 n ≥ 1 �CTx� ≤ �Cx� ≤ 2�CTx�

There is also an equality that underlies the inequality (2): if ,
then

Cx = y

∑
∞

n = 2

n
n − 1

(yn − xn)2 = ∑
∞

n = 1

x2
n. (11)

The proof is not by matrix identities, and entails rather more work: it is
presented in [5]. It needs to be emphasised that both (10) and (11) apply
strictly to infinite sequences. In fact, if curtailed to , we have ,
where , so . By contrast, in infinite
dimensions,  has continuing terms  for ; the
reader may care to verify that (11) indeed holds in this case.

�n Cx = x
x = (1,  1,  … ,  1) Cx − x = 0

C (1,  …  1,  0,  … ) n / k k > n
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As well as implying (2), identity (11) also implies the reverse inequality
. The factor  occurs for : then

.
�Cx − x� ≥ 1

2 �x� 1
2

x = (1, −1,  0, … )
Cx − x = (0,  1,  0, … )

Carleman's inequality
Roughly speaking, Carleman's inequality replaces the arithmetic means

in Hardy's inequality by geometric means, but the terms do not need to be
squared. The exact statement is as follows.

Theorem 3: Let  for , and let . Thenxn > 0 1 ≤ n ≤ N Gn = (x1x2… xn)1/n

∑
N

n = 1

Gn ≤ e ∑
N

n = 1

xn. (12)

First, we show how this can be deduced from Hardy's inequality. To
obtain the correct constant , we need the inequality for general , not just

.
e p

p = 2

Proof 1: Take . Let , so . Let . By the

inequality of the means, , hence

p > 1 zn = x1/p
n xn = zp

n Zn = ∑
n

j = 1

zj

(z1z2… zn)1/n ≤ Zn / n

Gn = (z1z2… zn)p/n ≤ (Zn

n )p

.

So by Hardy's inequality for general ,p

∑
N

n = 1

Gn ≤ ∑
N

n = 1
(Zn

n )p

≤ ( p
p − 1)p

∑
N

n = 1

zp
n = ( p

p − 1)p

∑
N

n = 1

xn.

Now  as , so (12) follows. (If we only considered

, we would obtain the constant 4 instead of .)
( p
p − 1)p

→ e p → ∞

p = 2 e

Again, it is possible to give quite a short self-contained proof along the
lines of Theorem 1 itself, as follows.

Proof 2: We have , so for ,∑
n

j = 1

log xj = n log Gn n ≥ 2

logxn = n logGn − (n − 1) logGn− 1 = logGn + (n − 1)(logGn − logGn− 1).
This also holds for , since . We apply the elementary

inequality , which is easily seen from the integral .

This gives

n = 1 x1 = G1

logb − loga ≥
b − a

b ∫
 b

a

1
t
dt

log xn ≥ log Gn + (n − 1)
Gn − Gn − 1

Gn
,
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hence

Gn (log xn − log Gn + 1) ≥ nGn − (n − 1) Gn − 1.
Adding these inequalities for , we obtain1 ≤ n ≤ N

∑
N

n = 1

Gn (log xn − log Gn + 1) ≥ NGN ≥ 0.

Since  for ,log x ≤ x − 1 x > 0

log xn − log Gn + 1 = log
exn

Gn
≤

exn

Gn
− 1,

so

0 ≤ ∑
N

n = 1

Gn (exn

Gn
− 1) = e ∑

N

n = 1

xn − ∑
N

n = 1

Gn.

Numerous other proofs have appeared. One such can be seen in [1,
pp. 249-250]: it is rather more elaborate. Given the resemblance to the proof
of Hardy's inequality, it is a little surprising that nothing like proof 2 is
given there.

Is  the best constant? Yes, again in the sense of a constant that applies

for all . To show this, take  for , so  while

. By integral estimation,

e

N xn =
1
n

1 ≤ n < N ∑
N

n = 1

xn = Hn

Gn =
1

(n!)1/n

∑
n − 1

r = 1

log r ≤ ∫
 n

1
log x dx = n log n − n + 1,

hence  andn! ≤
nn + 1

en − 1

Gn ≥
1

(en)1/n 
e
n

.

For given , this implies that  for large enough . The
conclusion follows in a routine way.

ε > 0 Gn ≥ (1 − ε) e
n n

Some generalisations
Arguably, a test of a good theorem is that it stimulates further theorems.

Hardy's inequality certainly passes this test: there is a massive literature
presenting various generalisations of it. Here we describe just two of them.

A summability matrix is a lower-triangular matrix with non-negative
entries and row sums equal to 1. Of course, the Cesàro matrix is an example.
So, in a trivial way, is the identity matrix. Bennett [6, Theorem 1.14]
established the following attractive generalisation of Hardy's inequality.
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Suppose that  is a summability matrix. ThenA = (an,k)
(i) if  for each , then ;an,1 ≤ an,2 ≤  …  ≤ an,n n �A�p ≤ p∗

(ii) if  for each , then .an,1 ≥ an,2 ≥  …  ≥ an,n n �A�p ≥ p∗

Now let  be a sequence of positive numbers, and write

. The weighted mean matrix  is the summability matrix

defined by

w = (wn)
Wn = ∑

n

k = 1

wk Aw (an,k)

an,k =
⎧

⎩
⎨
⎪
⎪

wk
Wn

for k ≤ n,

0 for > n,

so that  equates toy = Awx

yn =
1

Wn
∑

n

k = 1

wkxk.

The Cesàro matrix is the case  for all .wn = 1 n

A simple modification of the proof of Theorem 1, which can be seen in

[9], gives a weighted version of Hardy's inequality:

for non-negative . Another generalisation was proved by J. Cartlidge. It
was published in his doctoral thesis [7], which is not easily accessible;
proofs, again along the lines of Theorem 1, can be seen in [8] or [9]. The
statement is as follows. Let

∑
∞

n =1

wny
p
n ≤ (p∗)p ∑

∞

n =1

wnx
p
n

xn

S (w) = sup
n ≥ 1

(Wn + 1

wn + 1
−

Wn

wn
) .

If  and , thenp ≥ 1 S (w) < p

�Aw�p ≤
p

p − S (w)
.

This reproduces Hardy's inequality, because if , then . For
the case , our (2) can be extended as follows: if , then

.

wn = 1 S (w) = 1
p = 2 S (w) ≤ 1

�Aw − I�2 ≤ 1

Example: Let , so that  and .

(This is the ‘gamma matrix of order 2’.) Then , hence

 and  for all .

wn = n Wn = 1
2n (n + 1) an,k =

2k
n (n + 1)

Wn / wn = 1
2 (n + 1)

S (w) = 1
2 �Aw�p ≤

2p
2p − 1

p ≥ 1
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There are corresponding generalisations of Carleman's theorem to
weighted geometric means, proved by suitable modification of either of the
earlier methods. Let

Gn (w) = (∏n

k = 1

xwk
k )1/Wn

.

Then for all ,N ≥ 1

∑
N

n = 1

Gn (w) ≤ eS(w) ∑
N

n = 1

xn.

Also,  Again, see [8] or [9].∑
N

n = 1

wnGn (w) ≤ e ∑
N

n = 1

wnxn.
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