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We develop a time-dependent conformal method to study the effect of viscosity on steep
surface waves. When the effect of surface tension is included, numerical solutions are
found that contain highly oscillatory parasitic capillary ripples. These small-amplitude
ripples are associated with the high curvature at the crest of the underlying viscous-gravity
wave, and display asymmetry about the wave crest. Previous inviscid studies of steep
surface waves have calculated intricate bifurcation structures that appear for small surface
tension. We show numerically that viscosity suppresses these. While the discrete solution
branches still appear, they collapse to form a single smooth branch in the limit of
small surface tension. These solutions are shown to be temporally stable, both to small
superharmonic perturbations in a linear stability analysis, and to some larger amplitude
perturbations in different initial-value problems. Our work provides a convenient method
for the numerical computation and analysis of water waves with viscosity, without
evaluating the free-boundary problem for the full Navier–Stokes equations, which
becomes increasingly challenging at larger Reynolds numbers.

Key words: capillary waves, surface gravity waves

1. Introduction

When surface tension is included in the classical formulation of a travelling nonlinear
gravity wave, solutions are seen to exhibit highly oscillatory parasitic capillary ripples.
These are small-scale ripples that travel with the same speed as the underlying
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gravity wave. In most previous numerical and asymptotic studies (Schwartz &
Vanden-Broeck 1979; Shelton, Milewski & Trinh 2021; Shelton & Trinh 2022), this
phenomenon has been studied with the use of potential flow theory, in which the effect of
viscosity is neglected. This results in symmetric solutions, in which the capillary ripples
are observed across the entire surface wave profile. This is in contrast to experimental
observations (Ebuchi, Kawamura & Toba 1987), in which the parasitic ripples are focused
on the forward face of the travelling wave. This disparity between the surface profiles
viewed experimentally, and those from inviscid theory, is usually attributed to the effect
of fluid viscosity (Dosaev, Troitskaya & Shrira 2021).

It is of significant interest to develop simplified models for gravity–capillary waves that
include viscosity, but without resorting to solving the full Navier–Stokes equations. To
this aim, the principal question is whether it is possible to combine the simplicity of the
classical potential flow framework for an inviscid water wave, with effective conditions
that govern and model viscous effects near key regions. Note that the viscous terms in
the Navier–Stokes equations are identically zero for a velocity derived from a potential. In
the limit of small viscosity, analytical progress is tractable through the study of a viscous
boundary layer near to the fluid surface (Longuet-Higgins 1992). Previous authors, such as
Ruvinsky, Feldstein & Freidman (1991) and Fedorov & Melville (1998), have applied these
techniques to investigate the effect of viscosity on steep gravity–capillary waves. Both of
these investigations produced solutions with asymmetric parasitic capillary ripples, which
closely resembled previous experimental observations. In the work by Ruvinsky et al.
(1991), kinematic and dynamic boundary conditions were presented, where viscosity feeds
into the kinematic condition through a non-local condition involving time integration of
the velocity potential – a step that was subsequently simplified into a local condition
by Dias, Dyachenko & Zakharov (2008). Approximations valid in the limit of small
amplitude were then made to determine explicit equations for the Fourier coefficients of
the solution, which also yielded the damping rate as a function of the small-amplitude
parameter. A steady formulation of this problem has also been developed by Fedorov
& Melville (1998) using viscous boundary layer approximations. With the addition of
a surface pressure forcing (modelling the effect of wind), steadily travelling solutions
were calculated numerically. This model was subsequently used by Melville & Fedorov
(2015) to demonstrate that in the ocean, parasitic capillary ripples, rather than the main
gravity wave, can be responsible for the majority of the viscous damping required to offset
the growth of the overall wave due to the effect of wind. We note that the earliest work
investigating the effect of viscosity on steep waves with parasitic capillary ripples was by
Longuet-Higgins (1963); however, these results compared poorly with the experimental
observations by Perlin, Lin & Ting (1993). This theory would later be improved upon
and updated by Longuet-Higgins (1995). While they proposed many ground-breaking
ideas, the above works are often challenging to interpret mathematically on account of
the number of approximations made.

In this work, we will study the formulation proposed by Dias et al. (2008),
which incorporates viscosity in the surface boundary conditions of a potential flow
boundary-value problem. In this model, the free-surface kinematic and dynamic boundary
conditions are given by

φt + 1
2
(φ2

x + φ2
y )+ ζ

F2 − B
F2 κ + P

F2 ζx + 2
Re
φyy = 0,

ζt = φy − φxζx + 2
Re
ζxx,

⎫⎪⎪⎬
⎪⎪⎭ (1.1)
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Viscous gravity–capillary waves

evaluated at the unknown free surface y = ζ(x, t). In boundary conditions (1.1), φ(x, t)
is the velocity potential that satisfies Laplace’s equation within the domain −1/2 ≤ x ≤
1/2, −∞ < y ≤ ζ(x, t). The formulation includes the effect of surface tension through the
Bond number B and curvature κ = ζxx/(1 + ζ 2

x )
3/2, the effect of fluid viscosity through

the Reynolds number Re, and surface wind forcing that depends on the wave slope ζx. The
wind forcing is required in order to obtain steadily travelling solutions in the presence of
viscous dissipation. Full details of the mathematical formulation are given later, in § 2 and
particularly in (2.1a)–(2.1d). Finding solutions to this formulation is difficult on account
of the moving domain −∞ ≤ y ≤ ζ(x, t) and the dependence of the solution on three
independent variables, x, y and t.

Our work focuses on the development of a time-dependent conformal method that allows
for the convenient numerical evaluation of a two-dimensional potential flow problem with
viscosity. The main benefit of this conformal method is that the original two-dimensional
domain, which is bounded by a moving surface wave, is reduced to a fixed one-dimensional
domain for the time-dependent free surface. We apply the conformal mapping techniques
of Dyachenko, Zakharov & Kuznetsov (1996) to system (1.1) to derive time-dependent
equations that govern each variable on the free surface. These will depend on only one
spatial coordinate, the conformal variable ξ , which parametrises the free surface. This
conformal method preserves all features of the original boundary-value problem, and no
further assumptions are made following the introduction of boundary conditions (1.1).

In previous investigations of inviscid surface waves, intricate bifurcation structures have
emerged in the small surface tension limit (Champneys, Vanden-Broeck & Lord 2002;
Shelton et al. 2021; Shelton, Milewski & Trinh 2023), an example of which is shown
for steadily travelling gravity–capillary waves in figure 1(a). These consist of a countably
infinite number of solution branches in the (B,F) plane that manifest for fixed amplitude
under the limit of small surface tension. Across each of the branches in figure 1(a), the
wavenumber of the parasitic capillary ripples increases by one. Figure 1(b) shows an
example of a travelling surface wave obtained in this inviscid framework, in which the
capillary ripples are symmetric about the wave crest. The amplitude of these parasitic
capillary ripples was measured by Shelton et al. (2021) to be exponentially small as
B → 0. Asymptotic solutions for these were later obtained by Shelton & Trinh (2022)
using beyond-all-order asymptotics, in which the capillary ripples were produced by
the Stokes phenomenon across Stokes lines associated with the high crest curvature of
the leading-order nonlinear gravity wave. This also produced an asymptotic solvability
condition for when perturbation solutions do and do not exist – values of non-existence
are shown with black circles in figure 1(a). The exponential scaling of the capillary ripple
amplitude is shown in the semi-log plot of figure 1(c).

We use the nonlinear formulation (1.1) to investigate the effect of small capillarity on
viscous gravity–capillary waves. First, we study steadily travelling solutions, for which
surface wind forcing is introduced in the kinematic boundary condition to counteract the
energy decay induced by viscous dissipation. We demonstrate numerically that in the
presence of viscosity, the discrete branching structure obtained in the inviscid regime
(figure 1a) does not persist below a certain value of the surface tension. While discrete
branches are observed for larger values of the surface tension, they close off such that
a single smooth branch exists in the limit of zero surface tension. This is observed
numerically both when the viscosity is fixed, and when distinguished limits are chosen
in which the viscosity decays alongside the surface tension in an algebraic manner.

Second, we study the temporal stability of our steady parasitic solutions. These are
shown to be superharmonically stable through a linear stability analysis, in which an
eigenvalue problem for small perturbations is studied and these are shown to decay
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Figure 1. Numerical results for steadily propagating inviscid gravity–capillary waves calculated by Shelton
et al. (2021). (a) The location of solutions is shown in the (B,F) plane, where the Bond number B and Froude
number F are non-dimensional parameters defined in (2.2a–d). Black circles show the parameter values given
from the failure of the nonlinear solvability condition derived by Shelton & Trinh (2022). (b) A typical solution
containing oscillatory capillary ripples, which has B = 0.001648 and F = 0.4245. (c) Semi-log plot showing
the exponentially-small amplitude of the capillary ripples for each solution branch in (a).

in time. A nonlinear stability analysis is then considered with an initial-value problem
that implements our time-dependent formulation. This allows us to comment on the
global ‘attractiveness’ of the steadily travelling solutions, and convergence is observed
when starting from both a large amplitude initial condition, and a small amplitude initial
condition. In this latter case, the surface wind forcing initially dominates which causes the
wave amplitude to increase, before eventually balancing with viscous dissipation as the
target solution is converged upon.

1.1. Outline of our paper
We begin in § 2 by formulating the two-dimensional boundary-value problem that models
nonlinear surface waves that travel upon a viscous fluid. Our conformal mapping of
the unsteady problem, for which full details are presented in Appendix A, yields a
one-dimensional formulation for the free surface. This is given in § 2.2 for unsteady
solutions, and § 2.3 for steadily travelling solutions. Numerical solutions to the steady
formulation are obtained in § 3, with an emphasis on detecting the bifurcation structure that
emerges for small surface tension and viscosity. The unsteady formulation is implemented
numerically in § 4, where we perform linear and nonlinear stability analysis to observe the
temporal stability of the steady solutions when starting from different initial conditions.

2. Mathematical formulation

We consider the time evolution of a nonlinear surface wave subject to small viscous effects
within a two-dimensional fluid extending to infinite depth. The travelling wave is assumed
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Viscous gravity–capillary waves

to be periodic in the direction of propagation, and is subject to the effects of both gravity
and surface tension. The boundary-value problem describing this is specified on the fluid
domain −1/2 ≤ x ≤ 1/2 and −∞ < y ≤ ζ(x, t), with the velocity potential φ(x, y, t) and
the free surface y = ζ(x, t) as solutions. After non-dimensionalisation, and moving into
a co-moving frame of unit speed through a Galilean transformation, the boundary-value
problem is given by

φt − φx + 1
2
(φ2

x + φ2
y )+ ζ

F2 − B
F2 κ + P

F2 ζx + 2
Re
φyy = 0 at y = ζ(x, t), (2.1a)

ζt = φy + ζx(1 − φx)+ 2
Re
ζxx at y = ζ(x, t), (2.1b)

φxx + φyy = 0 for y ≤ ζ(x, t), (2.1c)

φx → 0, φy → 0 as y → −∞. (2.1d)

This system comprises of kinematic and dynamic boundary conditions (2.1a) and (2.1b)
on the surface, Laplace’s equation (2.1c) within the fluid, and the decay of motion in
the deep-water limit (2.1d). The effect of viscosity appears in the boundary conditions
(2.1a) and (2.1b); these model effects were proposed by Dias et al. (2008). Note also
the inclusion of the surface wind forcing Pζx/F2 in (2.1a). We will refer to P as the
non-dimensional wind strength. Note that in the inviscid formulation with 1/Re = 0 and
P = 0, the wave energy, which measures the effects of kinetic, capillary and gravitational
potential energies, is a time-conserved quantity of the unsteady formulation. However,
when 1/Re /= 0 and P = 0, dissipation renders the energy a decreasing function of time
for solutions to formulation (2.1), which we demonstrate in Appendix B. Thus steadily
travelling waves will not exist in this viscous formulation in the absence of wind forcing.
This is the reason why we include the effects of both viscous dissipation and wind forcing
in this work, in order to study and classify steadily travelling solutions, as well as to analyse
their stability. This model for wind forcing is discussed in more detail in § 2.1.

Four non-dimensional constants appear in system (2.1). These are the Froude number
F, the Bond number B, the Reynolds number Re, and the non-dimensional wind strength
P, defined by

F = c√
gλ
, B = σ

ρgλ2 , Re = cλ
ν
, P = p

gλ
. (2.2a–d)

Here, c is the speed of the travelling frame (which for steady solutions is the wave speed), g
is the constant acceleration due to gravity, λ is the wavelength, σ is the constant coefficient
of surface tension, ρ is the fluid density, ν is the kinematic viscosity of the fluid, and p is
the amplitude of the physical wind forcing. Note that we have non-dimensionalised length
scales and the free-surface elevation with respect to λ, the velocity potential with respect
to cλ, and time with respect to λ/c.

Crucially, we note that when considering the full effects of both nonlinearity and
viscosity, there is no known explicit formulation of the kinematic and dynamic boundary
conditions that can be written in a form analogous to (2.1a) and (2.1b) for the velocity
potential and surface height. In such cases, it is necessary to solve the full Navier–Stokes
equations within the unknown fluid domain; this has been performed numerically by e.g.
Hung & Tsai (2009) for the case of time-dependent nonlinear viscous gravity–capillary
waves. However, explicit kinematic and dynamic boundary conditions for the velocity
potential φ and free surface ζ can be derived in two cases.
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(i) Inviscid flows, for which the kinematic and dynamic boundary conditions for
gravity–capillary waves emerge, the former from the classical Bernoulli equation
(cf. Vanden-Broeck 2010). These are the same as (2.1) but with the viscous terms,
which contain the Reynolds number Re, removed.

(ii) Linear flows with non-zero viscosity: here, the kinematic and dynamic boundary
conditions may be derived from the linearised two-dimensional Navier–Stokes
equations. This is performed by decomposing the velocity field into irrotational
and solenoidal components, for which the linearised forms of (2.1a) and (2.1b)
were derived by Dias et al. (2008). These equations have subsequently been used
to study viscous effects on a variety of free-surface formulations, such as for
Faraday pilot waves in bouncing fluid droplets (Milewski et al. 2015; Blanchette
2016), three-dimensional solitary waves with forcing (Wang & Milewski 2012), and
deriving dissipation rates for ocean swell (Henderson & Segur 2013).

Thus the equations that we use throughout this work are obtained by combining the
viscous term found from (ii) above with the nonlinear inviscid boundary conditions
from (i), yielding (2.1a) and (2.1b). We note that the ‘correct’ nonlinear generalisation
of the term φyy in kinematic condition (2.1a) is φnn, where n is the normal vector to
the free surface, which was originally derived by Ruvinsky et al. (1991). There is no
known correct nonlinear generalisation of the term ζxx in (2.1b). These model equations
were proposed by Dias et al. (2008), and one aim of our current work is to develop
a time-dependent conformal map that efficiently solves the nonlinear version of this
problem. This methodology is then used to study the effect that viscosity plays in the
parasitic capillary ripples present on steep gravity waves, their associated bifurcation
structure, and temporal stability. We are particularly interested in the small surface tension
limit on account of the intricate bifurcation structures that exist in this singular regime.
We note that these nonlinear equations have previously been applied to study dissipative
effects on solitons by Brunetti et al. (2014) and Liao et al. (2023), both of whom derived
forced nonlinear Schrodinger equations asymptotically.

2.1. Choice of wind forcing
To obtain steadily travelling solutions, we balance viscous dissipation with the addition
of a wind forcing term in Bernoulli’s equation (2.4b). The surface wind forcing that we
consider is that developed by Jeffreys (1925) as a model for linear wave growth induced by
wind forcing. This results in the addition of the term pζ̂x̂ into the dimensional kinematic
condition, which after non-dimensionalisation becomes Pζx/F2 in (2.1b). Here, p is the
dimensional wind strength, and P = p/(gλ) is the non-dimensional wind strength. This
is known as a sheltering model; for a wave travelling from left to right with P > 0, it
adds energy to the rear face of the wave, and removes energy from the forward face. In
our numerical search for steadily travelling solutions in § 3, the constant P is treated as an
unknown of the formulation, and a unique value is obtained by solving an underdetermined
system of equations.

In the study by Fedorov & Melville (1998), who included forcing in the kinematic
condition, the term P cos(2πx)was used to mimic the effect of wind. Fedorov and Melville
found that when all other parameters were fixed, a range of P values was permitted,
corresponding to different phase shifts between their fixed wind forcing and unknown
solution profile. This complication occurred as a result of their choice of wind forcing
breaking the translational invariance of the system. In contrast, the Jeffreys model for wind
forcing that we use in this work both retains the translational invariance of the system and
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Viscous gravity–capillary waves

is a justifiable model for the shear stress induced by wind forcing. Since a unique value
of P is selected as an unknown to the steady solutions, the resultant bifurcation space is
simpler than that investigated by Fedorov & Melville (1998), which allows for an easier
study of solution branches.

We note that more accurate models exist to capture the influence of wind on surface
water waves. The monograph by Janssen (2004) details elements incorporated in these,
such as the transfer of energy between coupled air and water layers, and the consideration
of turbulent effects in the air. For instance, the formulation from which Miles (1957)
developed his theory of linear wave generation involved inviscid and incompressible air
and water layers coupled by an interfacial stress condition. The water layer was irrotational,
and the consideration of rotational effects in the air layer gave rise to a critical layer
problem governed by the inviscid Orr–Sommerfeld equation for linear disturbances to the
wave surface.

2.2. The time-dependent conformal mapping
Evolving the solutions ζ(x, t) and φ(x, y, t) to the boundary-value problem (2.1) in time
is difficult. This is due to both the physical (x, y) domain being two-dimensional, and the
boundary conditions being imposed upon the free surface, which itself can change in time.
In this subsection, we present a time-dependent mapping of system (2.1), under which the
flow domain −1/2 ≤ x ≤ 1/2 and −∞ < y ≤ ζ(x, t) is mapped to the lower-half (ξ, η)
plane. Upon evaluating the solutions at the fluid surface η = 0, a one-dimensional surface
formulation emerges, parametrised by ξ and t. This conformal method was originally
developed by Dyachenko et al. (1996) and Choi & Camassa (1999) for nonlinear gravity
capillary waves.

In writing x = x(ξ, η, t) and y = y(ξ, η, t), the surface solutions X, Y , Φ and Ψ are
defined by

X(ξ, t) = x(ξ, 0, t), Φ(ξ, t) = φ(x(ξ, 0, t), y(ξ, 0, t), t),
Y(ξ, t) = ζ(x(ξ, 0, t), t), Ψ (ξ, t) = ψ(x(ξ, 0, t), y(ξ, 0, t), t).

}
(2.3)

Here, the streamfunction ψ is the harmonic conjugate of the velocity potential φ. We then
derive time-evolution equations for the surface solutions (2.3), for which full details are
presented in Appendix A. We obtain evolution equations for the surface height Y ,

Yt = Xξ (Yξ − Ψξ)

J
+ 2

Re
XξYξξ − YξXξξ

XξJ
− Yξ H

[
Yξ − Ψξ

J
+ 2

Re
XξYξξ − YξXξξ

X2
ξ J

]
,

(2.4a)

and the surface velocity potential Φ,

Φt = Ψ 2
ξ −Φ2

ξ

2J
− Y

F2 − P
F2

Yξ
Xξ

+ Bκ
F2 + XξΦξ

J

−Φξ H

[
Yξ − Ψξ

J
+ 2

Re
XξYξξ − YξXξξ

X2
ξ J

]
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+ 2
Re

[
YξXξξ − XξYξξ

X2
ξ J

Ψξ + YξXξξ (Y2
ξ − 3X2

ξ )+ XξYξξ (X2
ξ − 3Y2

ξ )

J3 Ψξ

+ XξXξξ (3Y2
ξ − X2

ξ )+ YξYξξ (Y2
ξ − 3X2

ξ )

J3 Φξ + X2
ξ − Y2

ξ

J2 Φξξ + 2XξYξ
J2 Ψξξ

]
,

(2.4b)

where Xξ and Ψ are known from the harmonic relations

Xξ = 1 − H [Yξ ] and Ψ = H [Φ]. (2.4c,d)

In system (2.4), J = X2
ξ + Y2

ξ is the Jacobian of the mapping, κ = (XξYξξ − YξXξξ )/J3/2

is the surface curvature, and H [Y] = ∫ 1/2
−1/2 Y(ξ ′) cot [π(ξ ′ − ξ)] dξ ′ is the periodic

Hilbert transform. Given an initial condition for Y(ξ, 0), Φ(ξ, 0), and values of B, F,
Re and P, (2.4) may be used to evolve the solutions in time. In § 4, we use this scheme to
study the stability of steadily travelling solutions with surface wind forcing, when viewed
as convergence in a time-evolution problem.

2.3. Conformal mapping for steadily travelling waves
We now present integro-differential equations, depending only on the conformal domain
ξ , that are satisfied by steady solutions of the mapped system (2.4). These are given by

Φ2
ξ + Ψ 2

ξ

2J
− XξΦξ + YξΨξ

J
+ Y

F2 + P
F2

Yξ
Xξ

− B
F2

XξYξξ − YξXξξ
J3/2

+ 2
Re

[
(Y2
ξ − X2

ξ )Φξξ − 2XξYξΨξξ
J2 + Φξ

J3

(
XξξXξ (X2

ξ − 3Y2
ξ )+ YξξYξ (3X2

ξ − Y2
ξ )
)

+ Ψξ

J3

(
XξξYξ (3X2

ξ − Y2
ξ )+ YξξXξ (3Y2

ξ − X2
ξ )
)]

= 0, (2.5a)

Ψξ = Yξ + 2
Re

XξYξξ − YξXξξ
X2
ξ

, (2.5b)

together with harmonic relations

Xξ = 1 − H [Yξ ] and Φξ = −H [Ψξ ], (2.5c,d)

where H is the periodic Hilbert transform. This yields four equations for the four
unknown functions X, Y , Φ and Ψ .

There are two ways to derive system (2.5). First, one may consider steady solutions of the
original boundary-value problem (2.1), for which a steady conformal mapping analogous
to that presented in Appendix A yields (2.5a) and (2.5b). Alternatively, one may consider
steady solutions of the time-dependent conformal system (2.4), which after simplification
also yields (2.5a) and (2.5b).
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Viscous gravity–capillary waves

When solving (2.5) numerically, we will typically fix B, Re and the wave energy E ,
defined by

E = 1
Ehw

∫ 1/2

−1/2

⎡
⎣F2

2
ΨξΦ︸ ︷︷ ︸

kinetic

+ B(
√

J − Xξ )︸ ︷︷ ︸
capillary

+ 1
2

Y2Xξ︸ ︷︷ ︸
gravitational

⎤
⎦ dξ, (2.6a)

for which F and P are obtained as unknowns of the problem. This is performed in § 3
to calculate nonlinear solutions for small values of the surface tension. The numerical
method used to solve system (2.5) is given in § 3.1. In (2.6a), we have normalised with
respect to the energy of the highest inviscid Stokes wave, Ehw = 0.00184, computed to
three significant digits. The steady solutions calculated in this paper will have E = 0.4,
which is chosen to compare with previous inviscid works (Shelton et al. 2021; Shelton
& Trinh 2022) studying the classes of parasitic solutions that emerge in the small surface
tension limit. Note that the energy is not a conserved quantity in this formulation, due to the
presence of wind forcing and dissipation. An expression for the rate of change of energy in
the absence of the surface wind forcing is derived in Appendix B, and this is shown to be
inversely proportional to Re. Note also that the steady solutions provide information only
about Φξ , whereas evaluation of (2.6a) requires Φ, which we obtain by integration. The
constant of integration for Φ is determined explicitly from the condition∫ 1/2

−1/2
ΦXξ dξ = 0. (2.6b)

Condition (2.6b) is equivalent to writing
∫ 1/2
−1/2 φ(x, ζ(x)) dx = 0 in conformal variables.

2.4. Linear solutions for the surface and the internal vorticity field
In the Dias et al. (2008) model, a Helmholtz decomposition was used to write the internal
velocity field as u(x, y, t) = φx − Ay and v(x, y, t) = φy + Ax, where φ is the velocity
potential, and the function A contributes to the vorticity field ω = vx − uy = Axx + Ayy.
For our formulation of travelling solutions that are steady in a co-moving frame, A(x, y)
satisfies the boundary-value problem

−∂A
∂x

= 1
Re

(
∂2A
∂x2 + ∂2A

∂y2

)
for y ≤ ζ(x), (2.7a)

∂A
∂x

= 2
Re

∂2ζ

∂x2 at y = ζ(x), (2.7b)

Ax → 0,Ay → 0 as y → −∞, (2.7c)

where y = ζ(x) is assumed known. In conformal variables, system (2.7) becomes

yξAη − yηAξ = 1
Re
(Aξξ + Aηη) for η ≤ 0, (2.8a)

XξAξ − YξAη = 2
Re

(XξYξξ − YξXξξ )(X2
ξ + Y2

ξ )

X3
ξ

at η = 0, (2.8b)

Aξ → 0,Aη → 0 as η → −∞, (2.8c)
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and the vorticity field is given by ω = (Aξξ + Aηη)/(x2
ξ + y2

ξ ). The functions X(ξ) and
Y(ξ) in boundary condition (2.8b) parametrise the free surface y = ζ(x), and are assumed
known from solving system (2.5). The functions x(ξ, η) and y(ξ, η) in partial differential
equation (2.8a) and the expression for ω are the analytic continuations of these within
the flow domain via Laplace’s equation, and may be calculated by the Poisson integral
formula (or in Fourier space with the multiplier exp(2 |k|πη)). As an example, if we know
the coefficients of the Fourier series Y(ξ) = ∑∞

k=−∞ ck e2kπiξ , then we may calculate
y(ξ, η) = η +∑∞

k=−∞ ck e2 |k| πη e2kπiξ .
While both systems (2.7) and (2.8) are linear, they are difficult to solve – (2.7) on account

of evaluation of boundary condition (2.7b) at the free surface y = ζ , and (2.8) due to the
coefficients being known nonlinear functions. We now proceed to solve for the vorticity
field analytically, first by constructing linear solutions for the free surface in § 2.4.1, and
then for the function A and the vorticity field in § 2.4.2.

2.4.1. Linear theory for the free surface
We now analytically study small-amplitude solutions for the unknown free surface. These
will be required for our small-amplitude study of the vorticity field, and will also provide
a possible explanation for the behaviour of solution branches that we later observe
numerically in the nonlinear regime in § 3.

We consider a Stokes expansion in powers of a small-amplitude parameter ε.
In substituting for solutions of the form X ∼ ξ + εX1, Y ∼ εY1, Ψ ∼ εΨ1 and Φ ∼ εΦ1
into (2.5a) and (2.5b), at O(ε), two equations are found for the first-order perturbation
solutions. We eliminate Φ1 from these two equations by using the harmonic relation
Φ1 = −H [Ψ1], and then eliminate Ψ1 to find the single equation

X1ξ − Y1

F2 − P
F2 Y1ξ + B

F2 Y1ξξ + 4
Re

X1ξξ + 4
Re2 X1ξξξ = 0. (2.9)

In writing Y(ξ) as a Fourier series of the form

Y(ξ) = a0 +
∞∑

k=1

[ak cos(2kπξ)+ bk sin(2kπξ)], (2.10)

we use the harmonic relation X1 = −H [Y1], and equate each coefficient of cos(2kπξ)
and sin(2kπξ) to zero, to find(

2kπ − 1
F2 − 4k2π2B

F2 − 32k3π3

Re2

)
ak +

(
16k2π2

Re
− 2kπP

F2

)
bk = 0,

(
2kπ − 1

F2 − 4k2π2B
F2 − 32k3π3

Re2

)
bk −

(
16k2π2

Re
− 2kπP

F2

)
ak = 0.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (2.11)

For non-degenerate solutions, there must exist a value of k for which at least one of ak
or bk is non-zero. This yields

2kπ − 1
F2 − 4k2π2B

F2 − 32k3π3

Re2 = 0 and P = 8kπF2

Re
. (2.12a,b)

In the inviscid regime, for which 1/Re and P are both zero, it is possible to find values of
B and F for which (2.12a) is satisfied for two values of k. These are known as Wilton’s
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Viscous gravity–capillary waves

ripples, after Wilton (1915). However, when 1/Re and P are non-zero, this is not possible,
due to condition (2.12b).

This seems to suggest that the discrete solution branch structure discovered in the
inviscid problem, shown in figure 1(a), will not occur in our current viscous formulation.
This is because in the beyond-all-orders asymptotic theory of Shelton & Trinh (2022), the
values of the Bond number dividing adjacent solution branches (shown with black circles
in figure 1a) were determined from the failure of a solvability condition. As the linear
regime was approached (E → 0), these values of the Bond number tended towards those
determined by Wilton (1915). Thus the lack of these linear Wilton ripples in our current
viscous formulation suggests that the discrete branch structure of nonlinear solutions may
not persist in the small surface tension limit, which was the asymptotic limit under which
Shelton & Trinh (2022) obtained the solvability condition.

2.4.2. Linear theory for the vorticity field
We now consider linear solutions to the conformal formulation for A(ξ, η) and the vorticity
field ω = (Aξξ + Aηη)/(x2

ξ + y2
ξ ). We substitute x ∼ ξ + εx1, y ∼ η + εy1 and A ∼ εA1

into the conformal system (2.8). At O(ε), this yields the partial differential equation A1ξ =
−(A1ξξ + A1ηη)/Re for η ≤ 0, boundary condition A1ξ = 2Y1ξξ /Re at η = 0, and decay
conditions A1ξ → 0, A1η → 0 as η → −∞. The linear vorticity field may subsequently
be determined as ω ∼ ε(A1ξξ + A1ηη). We solve the boundary-value problem for A1 by
separation of variables, which yields a Fourier series expansion in ξ , with coefficients
depending on η. Two of the four coefficients must be zero to satisfy the decay conditions
as η → −∞, and evaluation of the boundary condition at η = 0 relates the remaining
coefficients to those for the free-surface Fourier expansion from (2.10). Overall, this yields
our solution for the vorticity field as

ω ∼ ε

∞∑
k=1

(2kπ)2
[
ak

{
exp

(√
2kπ(2kπ + i Re) η

)
+ c.c.

}

+ ibk

{
exp

(√
2kπ(2kπ + i Re) η

)
− c.c.

}]
cos(2kπξ)

− (2kπ)2
[
iak

{
exp

(√
2kπ(2kπ + i Re) η

)
− c.c.

}
− bk

{
exp

(√
2kπ(2kπ + i Re) η

)
+ c.c.

}]
sin(2kπξ) (2.13)

(where c.c. denotes complex conjugate), which decays with the behaviour exp[(kπ +
[(2kπ)2 + Re2]1/2/2)1/2η] for η ≤ 0.

3. Steadily travelling solutions

In this section, we numerically calculate steady solutions of our viscous formulation (2.5)
for small values of the surface tension B. These correspond to travelling wave solutions
that are steady in a co-moving frame.

3.1. The steady numerical method
We will use an iterative method to solve system (2.5) with Newton’s method, in which each
equation is evaluated at collocation points in the conformal variable ξ . Each derivative
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and Hilbert transform is evaluated efficiently in physical space by first utilising spectral
relations for the Fourier multiplier of each operator in Fourier space.

We begin by assuming that an initial guess for Y(ξ) is known at each of the N
collocation points ξl = −1/2 + l/N. In practice, this is either a linear solution from § 2.4.1
or, for more energetic solutions, a previously computed numerical solution with different
parameter values. When combined with the unknown constants, the Froude number F and
non-dimensional wind strength P, we have a total of N + 2 unknown constants.

Each component of the governing equations is then evaluated efficiently by using
spectral relations in Fourier space combined with the fast Fourier transform algorithm.
Since the Fourier symbol for differentiation is 2πik, and that for the Hilbert transform
is i × sgn(k) (where sgn is the signum function), we have Yξ = F−1[2πik F [Y]] and
H [Y] = F−1[i × sgn(k)F [Y]]. Here, F denotes the Fourier transform. Since an initial
guess for Y is known, we calculate first Xξ from the harmonic relation (2.5c), then Ψξ from
(2.5b), and finally Φξ from (2.5d).

Evaluation of our amplitude condition, the energy (2.6a), requires knowledge ofΦ. This
is determined spectrally with the Fourier multiplier of integration 1/(2πik) for k ≥ 1, and
is 0 if k = 0. Condition (2.6b), which correctly determines the constant of integration of
Φ, is enforced in Fourier space by setting the constant level of ΦXξ to zero.

We then evaluate Bernoulli’s equation (2.5a) at the N collocation points ξl =
−1/2 + l/N, and the energetic constraint (2.6a), which yields N + 1 conditions, for
the N + 2 unknowns. We note that since solutions to the current formulation are
translationally invariant, a further condition could be imposed to remove this and close
the system. However, we have found that numerical convergence is faster when solving
the underdetermined system with the Levenberg–Marquardt algorithm. We then seek to
minimise the square of the L2 norm such that it is smaller than 10−10.

For the numerical solutions presented in the following subsections, we have used
N = 512 in § 3.2 where Re is fixed, and N = 1024 in § 3.3 where Re depends on B.
Solutions were calculated on a desktop computer using fsolve in MATLAB, which usually
took under a second to converge with approximately 10 iterations. The residual was also
typically minimised below 10−13. However, for some more difficult solutions, such as
those near the end points of branches (solutions a and b in figure 3, for instance), up to 100
iterations were required for the residual to fall below 10−10.

3.2. Viscous solutions with small surface tension
To demonstrate the effect that viscosity has on our solution profiles, we first take an
inviscid gravity–capillary wave (determined in the current formulation as Re → ∞), then
use this as an initial guess to converge upon a numerical solution with a finite value of Re.
The results of this are shown in figure 2, in which we start with a gravity–capillary wave
with B = 0.002278, F = 0.4307 and E = 0.4. We then compute solutions with the same
value of B and E , but different values for the Reynolds number, given by Re = 20 000,
10 000, 5000 and 2500. We see that the inviscid profile is symmetric about the wave
crest, with parasitic capillary ripples distributed across both the forward and rear faces
of the travelling wave. As the effect of viscosity increases (corresponding to decreasing
Re), asymmetry is seen to develop, and the capillary ripples become less noticeable on
the rear face of the wave. The surface profile of these viscous gravity capillary waves
closely resembles the experimental observations by Ebuchi et al. (1987) and Perlin et al.
(1993), although we note that this latter study produced capillary ripples whose amplitude
fluctuated in time.

1003 A13-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

12
27

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1227
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−0.5 0 0.5

0

0.05

0.10

x

y

Re → ∞
Re = 20 000

Re = 10 000

Re = 5000

Re = 2500

Figure 2. The effect of increasing viscosity, starting from an inviscid solution found as Re → ∞,
with B = 0.002278, F = 0.4307 and E = 0.4. As the viscosity increases, asymmetry develops in the
parasitic capillary ripples, which are most noticeable near the forward face of the travelling wave.
These solutions have Re = {20 000, 10 000, 5000, 2500}, F = {0.4307, 0.4308, 0.4310, 0.4310} and P =
{0.001424, 0.001667, 0.001770, 0.002574}. For visibility, each profile has been shifted vertically by 0.015.

The bifurcation structure associated with these viscous gravity–capillary waves is shown
in figure 3 for fixed energy and viscosity. We have fixed E = 0.4, and have chosen the three
values Re = 10 000, 7500 and 5000 to explore. Given one solution, the surrounding branch
is explored in the (B,F) plane by numerical continuation. We have focused on detecting
the branches of solutions that exist for small values of the surface tension parameter, B.
For inviscid solutions, a detailed bifurcation structure emerges in the small surface tension
limit, shown in figure 1(a), in which a countably infinite number of adjacent solution
branches pile up as B → 0. The same phenomenon is not seen to occur in figure 3, in
which the viscosity is held constant as the Bond number decreases. We see in figure 3(c)
that while these adjacent branches do exist for B > 0.003, they quickly disappear in the
limit B → 0. Furthermore, as the effect of viscosity increases, the fingering structure of
the solution branches disappears at larger values of B. When Re = 5000, the discrete
branch structure occurs for B > 0.004. The surface profiles of solutions labelled a to f in
figure 3(c), with Re = 10 000, are shown in figure 4. The solutions shown in figures 4(c,d),
which lie at the top of the solution branch in figure 3(c), resemble the parasitic ripples
observed to form physically on steep travelling Stokes waves. They also have smaller
values of the wind strength P than the other displayed solutions, thus are expected to
be more physically realisable.

3.3. Distinguished limit between viscosity and surface tension
In the previous subsection, we fixed the Reynolds number Re, and computed solution
branches as the Bond number B was varied. It was seen that the fingering branch structure,
associated with inviscid solutions for small surface tension (figure 1a), does not emerge
when B is decreased and Re held constant. The discrete branching structure, which occurs
as B → 0 in the inviscid regime, is associated with the exchange of energy between
solutions dominated by gravitational energy (at the top of each solution branch) and
solutions dominated by capillary energy (down the sides of each solution branch), as
measured by each component of (2.6a). In this subsection, we explore the same bifurcation
structure in the (B,F) plane, but with a specified scaling for Re given by

Re = λα
Bα
. (3.1)
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Figure 3. Branches of solutions are shown in the (B,F) plane for fixed energy E = 0.4. Each plot shows the
solution branches computed for a different fixed value of the Reynolds number: (a) Re = 5000, (b) Re = 7500,
and (c) Re = 10 000. The labelled points along the branch in (c) are the locations of the solutions plotted in
figure 4.

The intention of this choice is to investigate possible distinguished limits of Re for which
viscosity has the same effect as capillarity on the parasitic capillary ripples, and also
investigate whether a discrete branching structure can emerge as B → 0.

We compute the bifurcation structure of solutions, between B = 0.001 and 0.002, for
α = 1, 2 and 3. The constant λα in (3.1) is specified such that the distinguished curve
passes through the point B = 0.005 and Re = 5000, which yields λα = 5000 × 0.005α .
These solution branches are shown in the (B,F) bifurcation diagrams of figures 5(a–c),
for α = 1, 2 and 3, respectively. The effect of viscosity is largest in the solutions along the
branch in figure 5(a). We see that in all three cases, the discrete branching structure recedes
as B decreases, such that below a certain value of B, all solutions found by numerical
continuation are dominated by the effect of gravity. The parasitic capillary ripples present
in these solutions appear as a small perturbation to the base nonlinear viscous-gravity
wave. Even with α = 3 in figure 5(c), the branch of solutions can be continued to B = 0
in this manner.

We note that numerical verification of these trends for larger values of α would require
computation of the bifurcation diagram to smaller values of B to check if the discrete
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( f )
B = 0.002737
F = 0.4224
P = 0.003710

B = 0.002736
F = 0.4284
P = 0.003774

B = 0.002807
F = 0.4338
P = 0.002028
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F = 0.4367
P = 0.001900

B = 0.003073
F = 0.4320
P = 0.003535

B = 0.003043
F = 0.4261
P = 0.003475

Figure 4. The free surface y = ζ(x) for six numerical solutions across the same solution branch from
figure 3(c). These solutions have E = 0.4 and Re = 10 000. Solutions (a) and ( f ) correspond to where each
side of the solution branch terminated, beyond which no further solutions could be obtained through numerical
continuation.

branching structure persists. However, due to the beyond-all-order (as B → 0) nature
of the parasitic capillary ripples, there exists a value of B below which these are not
captured by double precision accuracy. When this occurs, the vertical branches of the
bifurcation diagram (in which energy is transferred into the oscillatory ripples) are unable
to be computed through numerical continuation from the gravity-dominated solutions.
In practice, for E = 0.4, this occurs when B ≤ 0.0008. It is possible that the discrete
branching structure of solutions is recovered in the small-surface-tension limit only when
the effect of viscosity, as measured by 1/Re, is exponentially small in comparison to B.
However, due to the lack of any multiple-scales asymptotic theory for this regime, even in
the inviscid framework, there is no analytical evidence to support this.

The parasitic capillary ripples present in the solution profile are shown in figure 6
for α = 1 and 2. These were computed with B = 0.0015, and correspond to the marked
locations in figures 5(a,b). In this figure, we have subtracted the leading- and first-order
solutions Y0(ξ) and B Y1(ξ), and to view the ripples in more detail, defined

yripples = Y(ξ)− Y0(ξ)− B Y1(ξ). (3.2)

The leading-order solution Y0 was computed numerically with B = 0 and E = 0.4. For
the first-order solution, rather than substituting asymptotic expansions into the governing
system (2.5) and then solving the O(B) equation numerically, we have estimated by
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Figure 6(a)

Figure 6(b)

Re = λ1/B

Re = λ2/B2

Re = λ3/B3

Figure 5. Branches of solutions in the (B,F) plane for fixed energy E = 0.4. The Reynolds number Re is
specified by Re = λα/Bα from (3.1), thus the effect of viscosity decays proportionally to the surface tension.
We have (a) α = 1, (b) α = 2, and (c) α = 3. Note that λ1 = 25, λ2 = 0.125 and λ3 = 0.000625 are chosen
such that the distinguished limit (3.1) intersects with Re = 5000 and B = 0.005. The marked points correspond
to the solutions shown in figure 6.

computing Y1 ∼ (Y − Y0)/B with B = 0.0005. We see in figure 6(a) that the ripple
amplitude is highly asymmetric under this specification of Re, and that the ripple
wavelength slightly decreases as we travel to the right away from the wave crest. When the
effect of viscosity is weaker, as in figure 6(b) with α = 2, the asymmetry is less prominent.

This behaviour is expected when analysing our previous exponential asymptotic theory
for nonlinear gravity–capillary waves. This is because the inviscid parasitic ripples are
generated by the Stokes phenomenon, which arises from branch points in the analytic
continuation of the leading-order gravity wave solution, and this yields their exponential
scaling

yripples ∼ A(ξ) e−χ(ξ)/B + c.c.. (3.3)

Here, A is an amplitude function, and χ controls the exponential scaling as B → 0. When
Re = O(1/B) as in figure 6(a), the viscous terms in the governing equations (2.5) will
feed into the differential equations for both A and χ . However, when Re = O(1/B2) as in
figure 6(b), the viscous terms will alter only the amplitude equation for A.

This is demonstrated in the semi-log plot of figure 7, in which the parasitic ripple
amplitude is shown against 1/B, for α = 1 and 2. The slope of this behaviour corresponds
to the exponential scaling in (3.3) evaluated at ξ = 1/2, near to which the amplitude was
measured, which is given by −χ(1/2). For inviscid capillary ripples, this gradient was
determined analytically as −0.0077, as shown in figure 1(c), which is very close to the
measurement −0.0076 for Re = O(1/B2) in figure 7. However, when Re = O(1/B), this
gradient is steeper, with value −0.0097. We also note that for Re = O(1/B2) in figure 7,
all solutions along the branch have this asymptotic scaling as B → 0, in contrast to that
in the inviscid regime (see the spikes in figure 1c). It is therefore expected that the
beyond-all-order solvability mechanism dividing adjacent branches of inviscid solutions
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Figure 6. The parasitic capillary ripples present in the free surface for two of the solutions with B = 0.0015
in the bifurcation diagram of figure 5. These profiles have been estimated numerically by calculating yripples =
Y − Y0 − BY1, where Y0(ξ) is the solution found with B = 0, and Y1(ξ) has been estimated from (Y − Y0)/B
with B = 0.0005. The effect of viscosity is stronger in solution (a), which produces substantial asymmetry in
the parasitic ripple profile.
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Figure 7. The parasitic capillary ripple amplitude, measured near ξ = 0.5, against the Bond number. This
amplitude is shown for each solution from the branches in figures 5(a,b). The linear behaviour in a semi-log
plot is indicative that this amplitude is exponentially small as B → 0. For Re = λ1/B in (a), the gradient is
approximately −0.0097, and for Re = λ2/B2 it is −0.0076. This is compared with the inviscid asymptotic
theory of Shelton & Trinh (2022), which yields gradient −0.0077.

(Shelton & Trinh 2022) will not manifest in the future exponential asymptotic analysis of
our current viscous formulation.

4. Time-dependent results

We now study the temporal stability of the steady solutions found in § 3. First, in
§ 4.1, we analyse the linear stability of these solutions. Growth rates are obtained for
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small superharmonic perturbations to the steady solutions by solving a linear eigenvalue
problem for the perturbations. The eigenvalue σ corresponds to the growth rate of the
perturbations that contain a term of the form eσ t. We will find that the steady solutions
are superharmonically stable since Re[σ ] ≤ 0. Second, in § 4.2, we study the nonlinear
stability of the solutions. This is achieved by considering the unsteady time-evolution
problem, which was formulated in § 2.2 as a set of time-evolution equations for Y(ξ, t)
and Φ(ξ, t) in terms of the conformal variable ξ . We will pick an initial condition at
t = 0, and for t > 0 set all associated constants B, F, Re and P to the values of the steady
solution whose nonlinear stability is to be studied. This allows us to comment on the
‘global’ stability and attractiveness of these solutions, as t → ∞, with respect to different
initial conditions, such as a steep gravity wave or an almost flat free surface.

4.1. Linear stability of the steady solutions
We now examine the linear stability of the steady solutions from § 3. We begin by detailing
the methodology used to analyse the linear stability of these steady solutions. The method
presented here is similar to that used by Tiron & Choi (2012) for pure capillary waves, and
by Blyth & Părău (2022) for constant vorticity waves, with the exception that we study
only superharmonic modes that fit with within the assumed period −1/2 ≤ ξ ≤ 1/2, in
order to draw comparisons with the time-evolution problem studied in § 4.2.

4.1.1. Numerical implementation
We begin by linearising about a steady solution by writing X ∼ X0(ξ)+ ε X1(ξ, t),
Y ∼ Y0(ξ)+ ε Y1(ξ, t), Φ ∼ Φ0(ξ)+ ε Φ1(ξ, t) and Ψ ∼ Ψ0(ξ)+ ε Ψ1(ξ, t). Here, X0
Y0, Ψ0 and Φ0 are solutions of equations (2.5a–d), whose temporal stability we will
analyse by studying growth/decay rates of the perturbation quantities. Substitution of these
expressions into the time-dependent equations (2.4a–d) yields at O(ε) four equations
for X1, Y1, Φ1 and Ψ1. Two of these equations are given by X1ξ = −H [Y1ξ ] and
Ψ1 = H [Φ1]. The other two equations, obtained at O(ε) from (2.4a) and (2.4b), have
coefficients involving the leading-order quantities, for which in practice we calculate
expressions with a symbolic programming language. Next, for the time-dependent
perturbations, we pose a Floquet ansatz of the form

{X1, Y1, Φ1, Ψ1} = eσ t
M∑

m=−M

{am, bm, cm, dm} e2mπiξ , (4.1)

where the real part of the complex-valued constant σ will correspond to the growth/decay
rate in time of the perturbation. Note that the ansatz (4.1) would differ if used to
analyse the stability of time-dependent solutions, such as time-periodic standing waves
whose stability was studied by Wilkening (2020). Since H [e2mπiξ ] = i × sgn(m) e2mπiξ ,
we immediately have from the O(ε) harmonic relations that am = −i × sgn(m) bm and
dm = i × sgn(m) dm. We note that given a solution {σ, b−M, . . . , bM, c−M, . . . , cM} to the
O(ε) equations, there exists another solution given by {σ ∗, b∗

M, . . . , b∗
−M, c∗

M, . . . , c∗
−M};

when these are combined, they yield a real-valued solution to the O(ε) equations. Here, ∗
denotes the complex conjugate.

To solve for the unknowns {σ, b−M, . . . , bM, c−M, . . . , cM}, we collocate the two
remaining O(ε) equations at the N := 2M + 1 points ξ = −1/2 + l/N, for l = 0, . . . ,N −
1. This yields 2N algebraic equations for 2N + 1 unknowns, which we write as the linear
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Viscous gravity–capillary waves

Re B F P
5000 0.0026 0.433693732256569 0.002241721973881
7500 0.0026 0.433421267153132 0.001841654933803
10 000 0.0026 0.433231130404047 0.001522514473361

Table 1. Parameter values used in the stability results of figure 8 and the time-dependent simulations of
figures 11 and 12. These were obtained from the steady solutions of § 3, iterated upon such that the residual,
defined by the square of the L2-norm of (2.5), is smaller than 10−20.

system σLv = Rv. Here, the eigenvalue σ is the temporal coefficient from (4.1), v =
[b−M, . . . , bM, c−M, . . . , cM]T is a 2N × 1 eigenvector consisting of the unknown Fourier
coefficients, and L and R are 2N × 2N matrices. The matrix L contains entries associated
with the time derivative in the O(ε) equations, given by Lij = exp(2( j − 1 − M)πiξi) for
1 ≤ i ≤ N and 1 ≤ j ≤ N, Lij = exp(2( j − N − 1 − M)πiξi−N) for N + 1 ≤ i ≤ 2N and
N + 1 ≤ j ≤ 2N, and Lij = 0 otherwise. For details on the construction of R, we refer the
reader to either the work of Blyth & Părău (2016) (cf. their equation (4.17)) for a similar
boundary-integral problem, or the MATLAB code in our supplementary material available
at https://doi.org/10.1017/jfm.2024.1227, which constructs R column by column.

We solve the generalised eigenvalue problem σLv = Rv in MATLAB with the QZ
algorithm. The code that implements this method, and produces the results shown
next in § 4.1.2, is provided alongside this work as supplementary material. When M =
127, solving this generalised eigenvalue problem on a standard desktop computer takes
approximately 3.5 s.

4.1.2. Linear stability results
We now calculate the growth rates σ and the corresponding eigenvectors Y1(ξ, 0), for
instance, for perturbations to steady solutions calculated previously in § 3. The parameter
values for the steady solutions, whose linear and nonlinear stability we will investigate in
detail, are provided in table 1. We will investigate the effect of viscosity and surface wind
forcing on the solution stability. Each of these solutions has the same Bond number B =
0.0026, and different values of the Reynolds number, which are taken to be Re = 5000,
7500 and 10 000. Recall that the magnitude of the surface wind forcing P was an unknown
in the steady formulation. The solution with the largest viscous dissipation, Re = 5000,
has a larger value of P to compensate.

The real and imaginary parts of the growth rates σ for perturbations to each of these
steady solutions are shown in figure 8. While only eigenvalues with Im[σ ] ≥ 0 have
been shown in figure 8, complex conjugate values are also solutions of the generalised
eigenvalue problem. The real part of these eigenvalues corresponds to the growth rate
of time-dependent perturbation. Note that our formulation does not possess time-reversal
symmetry, therefore there is no fourfold symmetry in the eigenvalue spectrum (in which
σ , σ ∗, −σ , −σ ∗ would be solutions). Such fourfold symmetry is associated with inviscid
formulations that are Hamiltonian (Deconinck & Oliveras 2011). Aside from σ = 0,
corresponding to translational invariance of the steady formulation (a small perturbation
of a steady solution can result in another steady solution), all eigenvalues have negative
real part, Re[σ ] < 0. The solutions are therefore superharmonically stable.

Note that under the inviscid limit Re → ∞, the growth rates are observed to tend
towards the imaginary axis. This is demonstrated in figure 9 for solutions without
surface tension. Modulational and high-frequency instabilities (Creedon, Deconinck &
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Figure 8. (a–c) The complex-valued eigenvalues σ for small-amplitude perturbations to the steady solutions
from § 3. The parameter values for these steady solutions are given in table 1, and these eigenvalues were
calculated with the numerical methodology described in § 4.1.1. From (4.1), the real part of σ is the temporal
growth rate of the perturbation. The eigenvalue shown in black has the largest real part, with Re[σ ] =
{−0.059114,−0.045994,−0.0371606}. The first eigenvalue on the real axis, with Im[σ ] = 0, is shown in grey
with values Re[σ ] = {−0.230998,−0.232593,−0.199846}. These values predict the growth rates observed
later in the time-evolution simulations in figures 11 and 12. (d) Perturbations to the free-surface elevation
predicted by the linear stability analysis, which correspond to the eigenvectors for the two labelled eigenvalues
in the inset of (b). Here, (a) Re = 5000, (b) Re = 7500, (c) Re = 10 000, (d) Re = 7500.

Trichtchenko 2022) do not emerge here as we study only superharmonic perturbations
with zero Floquet exponent in ansatz (4.1).

Typically, the eigenvalues with the largest real part will dominate the evolution of
time-dependent simulations for solutions close to the steady solution. We investigate this
in detail later, in § 4.2, where it is seen that different choices of initial conditions can
result in different rates of convergence for the transient behaviour towards the stable steady
state. The growth rates that dominate the time-dependent simulations of § 4.2 are: (i) the
eigenvalue with the largest real part, shown with a black circle in figure 8; and (ii) the
eigenvalue on the real axis with Im[σ ] = 0, shown with a grey circle in figure 8. The
steady solution with Re = 7500, for which the growth rates are shown in figure 8(b), has
Re[σ ] = −0.045994 and Re[σ ] = −0.232593 for these two values.

The perturbation solution Y1 corresponding to each of these two growth rates is shown
in figure 8(d). Here, we have computed the contribution to the free-surface elevation
Y1(ξ, 0) from the corresponding eigenvector and the complex conjugate eigenvector by the
relation Y1(ξ, 0) = ∑M

m=−M[bm e2mπiξ + b∗
m e−2mπiξ ] from (4.1). The eigenvector for the

Re[σ ] = −0.045994 mode, shown in black, has more of an effect on the wave amplitude,
whereas that for the Re[σ ] = −0.232593 mode, shown in grey, has a larger contribution
to the oscillatory capillary ripples. We now turn to the nonlinear time-evolution problem
to observe how these stability results emerge in practice.
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Figure 9. The real and imaginary components of the growth rates σ from (4.1), for steady solutions with zero
surface tension (B = 0). The growth rates shown with white circles have Re = 5 × 103, P = 8.229 × 10−4 and
F = 0.4110. The growth rates shown with grey circles have Re = 1 × 106, P = 4.115 × 10−6, and F = 0.4110.
Black contours between these show the behaviour of the eigenvalues for 50 intermediary values of Re. These
tend towards the imaginary axis as Re → ∞.

We have also studied the linear stability of solutions for larger values of Re, to see if a
critical Reynolds number exists beyond which instability emerges. However, all solutions
that we have tested in the range 0 ≤ Re ≤ 106 have been linearly stable.

4.2. Nonlinear stability of the steadily travelling solutions
We now perform time-evolution simulations to test the nonlinear stability of the steady
solutions from § 3. To measure convergence towards the steady solution as t → ∞, we
will use the norm |E (t)− E |, which compares the wave energy E (t) in (2.6a) to that of
the intended steady solution E . The initial condition that we use at t = 0 will be chosen as
one of the following:

(i) an inviscid gravity wave that is a solution of the steady equations (2.5) solved for
with E = 0.4, B = 0, P = 0 and 1/Re = 0;

(ii) a small-amplitude cosine profile Y(ξ) = 10−5 cos(2πξ).

For t > 0, we then set the values for B, F, Re and P to those of a selected steady solution,
whose nonlinear stability we wish to analyse. The parameter values used in this subsection
are shown in table 1.

Surface profiles for both of these time-evolution simulations are shown in figure 10.
We see in figure 10(a) that for the initial condition of a steep gravity wave, parasitic ripples
form quickly within the interval 0 ≤ t ≤ 5 due to the nonlinearity of the initial condition.
When the initial condition is of smaller amplitude, as in figure 10(b), it takes much longer
for the parasitic ripples to form. This is due to the surface wind forcing inducing a small
growth rate in the solution, and the ripples then become noticeable within the plotted
interval 200 ≤ t ≤ 300. For the simulation with the large-amplitude initial condition, the
solution tends towards the steady solution in an oscillatory manner, as shown in the inset
of figure 10(a), which is associated with a complex-valued growth rate from the linear
stability analysis. The simulation with a small-amplitude initial condition approaches the
steady solution monotonically, which is associated with a real-valued growth rate in the
linear stability analysis. These two dominant growth rates were highlighted in figure 8(a).
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Figure 10. The time evolution of the free surface is shown from the initial conditions at t = 0 of (a) a steep
viscous-gravity wave with E = 0.4, and (b) a linear cosine profile with amplitude 10−5. The parameter values
used for t > 0 are given in table 1 for Re = 5000, and the time interval between displayed solutions is 0.1 in
(a), and 2 in (b). The insets show the difference in height of the wave crest of the steady solution, ys, and that
of the current numerical solution, y. For the simulation in (a), the solution approaches the steady solution in an
oscillatory manner in time, while the solution in (b) approaches the same steady solution monotonically.

We begin by examining the stability of three different viscous solutions when starting
from an inviscid gravity wave as an initial condition. The difference between the energy
of the time-evolved solution and that of the target solution is shown in figure 11. In each
case studied, the energy converges to within the tolerance of the computed steady solution,
which occurs at approximately t = 250 when Re = 5000, t = 300 when Re = 7500, and
t = 400 when Re = 10 000. Convergence is seen to occur more quickly when the effect of
viscosity, and the associated wind strength P, are larger. Note that in each of the three cases
shown in figure 11, while the initial gravity wave at t = 0 has E = 0.4, this value increases
once the associated parameters are set to the values shown in table 1. For instance, at
the first time step, we have E = 0.4442 in figure 11(a), E = 0.4439 in figure 11(b), and
E = 0.4437 in figure 11(c). Two stages of convergence are observed in figure 11. First,
there is the faster stage, during which the norm log(|E − 0.4|) decreases to −16, and
then there is the slower stage, during which the energy oscillates about 0.4, with the norm
decreasing from −16 to −27. The gradients for each of these stages, predicted by the linear
stability analysis of § 4.1, are shown within each plot. Both the fast and slow stages of
convergence are predicted by the real part of the eigenvalues σ obtained from this stability
analysis. The fast growth rate in the initial stage of convergence is associated with the
largest real-valued eigenvalue (Im[σ ] = 0). For the Re = 7500 simulation in figure 11(b),
we have Re[σ ] = −0.232593. The slow growth rate in the last stage of convergence is
associated with the complex-valued eigenvalue (Im[σ ] /= 0) whose real part is largest.
For the Re = 7500 simulation, this is Re[σ ] = −0.045994. Note that in each of the three
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Figure 11. The magnitude of the difference between the energy E (t) and the ‘target’ energy 0.4 in a semi-log
plot for the three cases (a) Re = 5000, (b) Re = 7500, and (c) Re = 10 000. The initial condition at t = 0 was
chosen to be a steep gravity wave with E = 0.4, B = 0, P = 0 and 1/Re = 0, and the parameter values used
for t > 0 in each of these simulations are given in table 1. The annotated gradients are predictions from the
linear stability results of figure 8.

simulations shown in figure 11, the differing values at which E − 0.4 plateaus is due to
the accuracy of the parameter values given in table 1.

Convergence towards the same steady solutions is also studied in figure 12 from a
small-amplitude initial condition at t = 0. In figures 12(a i), 12(b i) and 12(c i), we plot the
behaviour of log(E ) in time to show the initial growth rate away from the linear solution.
We then plot in figures 12(a ii), 12(b ii) and 12(c ii) the behaviour of log(|E − 0.4|) in
time to show the rate of convergence towards the steady solution. The total time taken
for log(|E − 0.4|) to reach −27 is longer than that for the simulations in figure 11, which
is due to the duration of the initial growth away from the linear profile at t = 0. Once
|E − 0.4| is smaller than 10−2, the steadily travelling solution is approached rapidly.
The rate of convergence here is also predicted by the linear stability analysis of § 4.1.
However, unlike the transient behaviour in figure 11, which contained two different growth
rates, only one growth rate emerges for the simulations in figure 12. This growth rate is
associated with not the complex-valued eigenvalue with largest real part (which emerged
as a transient in figure 11), but rather the largest real-valued eigenvalue. For instance,
the rate of convergence in the simulation with Re = 7500 in figure 12 is controlled by
the real-valued eigenvalue σ = −0.232593, and no transient behaviour associated with
Re[σ ] = −0.045994 is present.

In summary, the growth rates that emerge in this time-evolution problem can be
determined from the formal linear stability analysis of § 4.1. However, it is not clear
in advance which growth rate will emerge as the dominant transient behaviour; this
depends on the choice of initial condition. The large-amplitude initial condition initially
produces fast convergence, which subsequently is dominated by a slower mode (figure 11),
whereas the convergence that emerges from the small-amplitude initial condition contains
only the fast mode (figure 12). Further simulations are shown in a total energy versus
capillary energy phase space in figure 13. The simulations in this figure have different
values of the surface tension parameter B. Those that begin from a large-amplitude initial
condition converge towards the steady solution in an oscillatory manner, as observed
for other parameter values in figure 11. The radius of these oscillations decays rapidly
as B decreases, which is possibly related to the capillary modes of the steady solution
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Figure 12. Convergence is shown for the initial condition at t = 0 of a small-amplitude cosine profile
Y(ξ) = 10−5 cos(2πξ). The parameter values used in each of these simulations are given in table 1, for
(a) Re = 5000, (b) Re = 7500, and (c) Re = 10 000. (a i,b i,c i) Plots of E (t) show the initial growth rate from
the initial condition. (a ii,b ii,c ii) Plots of |E (t)− 0.4| show the final convergence rate towards the steadily
travelling solution. The annotated gradients are predictions from the linear stability results of figure 8.
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Capillary energy

Figure 13. Phase space diagram for time-dependent simulations. We show the energy of the solution E from
(2.6a) against the capillary energy defined by the middle term in the integrand on the right-hand side of (2.6a).
The white circles indicate the positions of six steady solutions with E = 0.4 and Re = 7500. These have B =
{0.00222, 0.0024, 0.0026, 0.00287, 0.0033, 0.00365}, in order from left to right in the figure. Two simulations
have been performed for each set of parameter values associated with these steady solutions. Similar to the
simulations from figures 10–12, one simulation (black lines/dashes) begins from a large-amplitude gravity
wave with E = 0.4, and the other (grey lines/dashes) from a small-amplitude cosine profile.

being exponentially small as B → 0 (figure 7). Conversely, the simulations with a
small-amplitude initial condition tend towards the steady solution monotonically.

Note that while the simulations that we show here all result in convergence, indicating
nonlinear stability, this is not true in general. For instance, starting with a small-amplitude
initial condition with multiple Fourier modes (in contrast to Y(ξ, 0) = 10−5 cos(2πξ)
used in figure 12) results in general unsteady motion persisting at large time. Similar
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time-evolution simulations have been performed by Hung & Tsai (2009) and Murashige
& Choi (2017), who all used a steep gravity wave as an initial condition. However,
these works studied the initial formation of capillary ripples, rather than characterising
convergence towards steady solutions as t → ∞ by selecting appropriate parameter
values. Hung & Tsai (2009) observed that the amplitude of the parasitic capillary ripples
fluctuated in time, much like that seen in the experiments of Perlin et al. (1993).
We observe similar behaviour in time-evolution simulations when a different value of the
wind strength P is used.

5. Conclusion and discussion

While we have focused on viscous gravity–capillary waves travelling on water of infinite
depth, the formulation with finite depth is also of significant interest. This is because
viscosity requires a no-slip condition on the lower surface. A nonlinear potential flow
model incorporating the no-slip condition at a lower boundary has previously been
developed by Dutykh & Dias (2007), by first applying a Helmholtz decomposition to
the linear Navier–Stokes equations, and then introducing a viscous boundary layer at the
substrate. The dominant effect of viscosity in their model, of O(Re−1/2), occurs from the
lower boundary condition, rather than that of O(Re−1) in the surface boundary conditions.
We therefore expect that the discrete branching structure associated with capillarity in
figure 4 would be further suppressed by viscosity in the presence of a finite-depth fluid.

It may also be possible to support steadily travelling surface wave solutions of a viscous
fluid, by considering the effect of gravity on a flow down an inclined plane, rather than
the surface wind forcing considered in this paper. The effect of capillarity and viscosity
on the parasitic solutions that would emerge in this formulation remains unknown. More
generally, it is also of interest to ask whether these viscous boundary layer techniques
may be extended to derive potential flow formulations for water waves in the presence
of more complicated lower topography and submerged obstacles. Such formulations have
been studied extensively in the inviscid regime by e.g. Dagan & Tulin (1972), Dias &
Vanden-Broeck (1989), Lustri, McCue & Binder (2012) and Ambrose et al. (2022), for
which recirculation zones can emerge with the inclusion of viscosity (Biswas, Breuer &
Durst 2004). The analytical insight available in these viscous potential flow models would
provide a distinct advantage to that from the Navier–Stokes equations with a free boundary.

Due to the assumed periodicity of our solutions, the linear and nonlinear temporal
stability results in § 4 should be regarded only as evidence for their superharmonic stability
with respect to perturbations that lie within the periodic window. Their modulational
stability (with respect to subharmonic perturbations wider than the periodic domain) has
not been investigated in this work. While nonlinear gravity waves are known to exhibit
the modulational instability (Longuet-Higgins 1978), there is the possibility that this can
be suppressed by the effect of viscosity, which has been studied in a damped nonlinear
Schrödinger equation by Segur et al. (2005).

Previously, Longuet-Higgins (1995) had obtained approximate solutions for the
asymmetric parasitic capillary waves that form upon steep gravity waves with viscosity,
which built upon an earlier theory by Longuet-Higgins (1963). However, the methodology
used there involves a number of modelling assumptions, rather than a systematic
asymptotic study of the governing equations. The direct asymptotic analysis of these, in
the limit B → 0, is therefore of interest. In the inviscid study by Shelton & Trinh (2022,
2024), the capillary ripples observed on steep gravity–capillary waves were determined
asymptotically. These were obtained by resolving the Stokes phenomenon generated from
branch points in the analytic continuation of the leading-order gravity wave. We note also
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that the solutions upon which we have focused in this work are steady in a co-moving
frame, which may not be the precise manner in which they occur physically. In experiments
performed by Perlin et al. (1993) in a wave tank with a wave maker, parasitic ripples
were seen to travel at the same speed as the propagating gravity wave, but the ripples
had an amplitude that varied in time. Beyond-all-order asymptotic techniques are well
suited to investigate if such time-dependent behaviour can emerge in this formulation
for small surface tension, and the application of our viscous formulation to study this is
an exciting area of future research. Here, the leading-order gravity wave solution would
be time-independent, and the exponentially subdominant order (the parasitic capillary
ripples) and associated Stokes lines would be time-dependent. The future extension of
this methodology to our viscous formulation is also expected to yield insight into the
competing effects of viscosity and surface tension on the observed ripple asymmetry.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2024.1227.
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Appendix A. The time-dependent conformal mapping

We now develop the time-dependant mapping that takes the physical fluid domain −1/2 ≤
x ≤ 1/2 and −∞ < y ≤ ζ(x, t) to the lower-half (ξ, η) plane. The time-dependent
evolution equations that we derive in this appendix were presented previously in § 2.2.
The following method is an extension of that presented by Choi & Camassa (1999) and
Milewski, Vanden-Broeck & Wang (2010) for inviscid regimes.

We consider both x = x(ξ, η, t) and y = y(ξ, η, t) to be functions of the conformal
domain. The free-surface variables, defined previously in (2.3), are given by X(ξ, t) =
x(ξ, 0, t), Φ(ξ, t) = φ(x(ξ, 0, t), y(ξ, 0, t), t), Y(ξ, t) = ζ(x(ξ, 0, t), t) and Ψ (ξ, t) =
ψ(x(ξ, 0, t), y(ξ, 0, t), t). We will derive four coupled integro-differential equations for
these. Our aim is to develop expressions for each of the components of Bernoulli’s
equation (2.1a) in terms of the free-surface variables (2.3). Starting by differentiating
Y(ξ, t) = ζ(x, t), we find ζt = Yt − Xtζx, ζx = Yξ /Xξ and ζxx = (XξYξξ − YξXξξ )/X3

ξ , of
which the last two yield an expression for the curvature, κ = ζxx/(1 + ζ 2

x )
3/2 = (XξYξξ −

YξXξξ )/J3/2. Next, by using the chain rule on Φξ and Ψξ , and the Cauchy–Riemann
equations ψx = −φy and ψy = φx, we find the two equations Φξ = Xξφx + Yξφy and
Ψξ = Yξφx − Xξφy, which may be solved to find

φx = XξΦξ + YξΨξ
J

and φy = YξΦξ − XξΨξ
J

. (A1a,b)
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It remains to find expressions for φt and φyy. We use the chain rule to find
Φξξ = Xξξφx + Yξξφy + (Y2

ξ − X2
ξ )φyy + 2XξYξφxy and Ψξξ = Yξξφx − Xξξφy + (Y2

ξ −
X2
ξ )φxy − 2XξYξφyy, where φxx has been eliminated from Laplace’s equation (2.1c).

We then eliminate φxy, and substitute for φx and φy from (A1a,b), which yields

φyy = Y2
ξ − X2

ξ

J2 Φξξ + XξXξξ (X2
ξ − 3Y2

ξ )+ YξYξξ (3X2
ξ − Y2

ξ )

J3 Φξ

− 2XξYξ
J2 Ψξξ + YξXξξ (3X2

ξ − Y2
ξ )+ XξYξξ (3Y2

ξ − X2
ξ )

J3 Ψξ . (A2)

The expression (A2) for φyy in conformal variables is required due to the viscous term in
Bernoulli’s equation (2.1a). Finally, we differentiate Φ(ξ, t) using the chain rule to find

φt = Φt − φxXt − φyYt. (A3)

However, substitution of (A3) into Bernoulli’s equation results in components given by
Φt, Xt and Yt. The last two of these can be specified explicitly through consideration of the
kinematic boundary condition.

Substitution of the conformal expressions for ζt, ζx, ζxx, φx, and φy into the kinematic
boundary condition yields

XξYt − YξXt = Yξ − Ψξ + 2
Re

XξYξξ − YξXξξ
X2
ξ

. (A4a)

Furthermore, through the study of the analytic function z(ξ, η, t) = x(ξ, η, t)+ i y(ξ, η, t),
we have Im[zt/zξ ]η=0 = (XξYt − YξXt)/J, for which the numerator is the left-hand side of
(A4a). In noting that Re[zt/zξ ]η=0 = (XξXt + YξYt)/J, we may then use the harmonic
relation between the real and imaginary parts of zt/zξ , Re[zt/zξ ] = −H [Im[zt/zξ ]], to
find

XξXt + YξYt = −J H

[
Yξ − Ψξ

J
+ 2

Re
XξYξξ − YξXξξ

X2
ξ J

]
. (A4b)

From (A4a) and (A4b), we may eliminate Xt to find our time-evolution equation for Y ,
which is given by

Yt = Xξ (Yξ − Ψξ)

J
+ 2

Re
XξYξξ − YξXξξ

XξJ
− Yξ H

[
Yξ − Ψξ

J
+ 2

Re
XξYξξ − YξXξξ

X2
ξ J

]
.

(A5a)

Next, we substitute the above expressions into the dynamic boundary condition to find the
following time-evolution equation for Φ:

Φt = Ψ 2
ξ −Φ2

ξ

2J
− Y

F2 + P
F2

Yξ
Xξ

+ Bκ
F2 + XξΦξ

J

+Φξ H

[
Ψξ − Yξ

J
− 2

Re
XξYξξ − YξXξξ

X2
ξ J

]
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+ 2
Re

[
YξXξξ − XξYξξ

X2
ξ J

Ψξ + YξXξξ (Y2
ξ − 3X2

ξ )+ XξYξξ (X2
ξ − 3Y2

ξ )

J3 Ψξ

+ XξXξξ (3Y2
ξ − X2

ξ )+ YξYξξ (Y2
ξ − 3X2

ξ )

J3 Φξ + X2
ξ − Y2

ξ

J2 Φξξ + 2XξYξ
J2 Ψξξ

]
.

(A5b)

Combined with the harmonic relations Xξ = 1 − H [Yξ ] and Ψξ = H [Φξ ], equations
(A5) form our evolution equations for the free-surface variables in the moving frame.

A.1. The numerical method for time evolution
Our numerical implementation of the time-evolution equations (A5a) and (A5b) is similar
to that used by Milewski et al. (2010) for solitary waves, and Shelton et al. (2023) for
standing waves. We now provide details on the implementation of this method. We note
that other methods exist to evolve surface water waves in time such as the graph-based
formulation from Wilkening & Yu (2012), which used Dirichlet-to-Neumann operators to
evaluate the kinematic and dynamic boundary conditions in order to study steep standing
waves both with and without capillarity.

We begin at t = 0 with a specified initial condition for Y(ξ, 0), Φ(ξ, 0), B, F, Re and
P, for which X(ξ, 0) and Ψ (ξ, 0) are computed spectrally from harmonic relations (2.4c)
and (2.4d). The number of grid points in the initial condition is typically N = 1024. Note
that the steady solutions from § 3 only yield Φξ(ξ, 0). We determine Φ(ξ, 0) from this
by integrating spectrally with the Fourier multiplier 1/(2πik) if k /= 0, and 0 if k = 0.
The constant of integration is subsequently determined from (2.6b), which we enforce in
Fourier space by setting the constant level of ΦXξ to be zero.

The temporal step size �t = tj+1 − tj is typically specified throughout the evolution
process as �t = 0.00015, but this may need to be smaller for larger values of N. We
then use the fourth-order Runge–Kutta method to obtain solution values at the next time
step, Y(ξ, tj+1) and Φ(ξ, tj+1). This requires the evaluation of evolution equations (A5a)
and (A5b). Derivatives and Hilbert transforms are computed spectrally in Fourier space
(see § 3.1 for more details of this). Nonlinear terms are computed by multiplication in
real space, during which aliasing errors are reduced by padding each solution with an
additional N/2 Fourier modes, which are subsequently set to zero.

Note that energy and momentum are not conserved quantities of this viscous
formulation. Across our simulations in § 4.2, which each ran to t = 1000, the mass
M = ∫ 1/2

−1/2 YXξ dξ is conserved to within 10−13.

Appendix B. Energy evolution due to viscosity

In this appendix, we directly calculate the energy decay induced by the damping in the
kinematic and dynamic boundary conditions (1.1). In the absence of viscous dissipation
and wind forcing, the non-dimensional bulk energy

E =
∫ 1/2

−1/2

∫ ζ

−∞
F2

2
|∇φ|2 dy dx +

∫ 1/2

−1/2

[
B
(
(1 + ζ 2

x )
1/2 − 1

)
+ ζ 2

2

]
dx (B1)

is a Hamiltonian of the system (Zakharov 1968). To derive (B1), we non-dimensionalised

each component of the dimensional energy Ê = (ρ/2)
∫ λ/2
−λ/2

∫ ζ̂
−∞|∇φ̂|2 dŷ dx̂ + ∫ λ/2

−λ/2
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[σ([1 + ζ̂ 2
x̂ ]1/2 − 1)+ gρζ̂ 2/2] dx̂, and defined Ê = ρgλ3E. Note that our previous energy

expression (2.6a) may be derived by applying the divergence theorem to the double
integral in (B1), and writing in terms of conformal variables. Differentiating (B1) with
respect to time yields

dE
dt

=
∫ 1/2

−1/2

∫ ζ

−∞
F2 ∇φ · ∇φt dy dx +

∫ 1/2

−1/2

[
F2 |∇φ|2 ζt

2
+ Bζxζxt

(1 + ζ 2
x )

1/2 + ζ ζt

]
dx.

(B2)

We may now apply the divergence theorem to the first integral above by writing
∇φ · ∇φt = ∇ · (φt ∇φ)− φt ∇2φ, which, together with integration by parts on the
surface tension term, yields

dE
dt

=
∫ 1/2

−1/2
F2φtφn

ds
dx

dx +
∫ 1/2

−1/2

[
F2 |∇φ|2

2
− Bζxx

(1 + ζ 2
x )

3/2 + ζ

]
ζt dx

= −F2

Re

∫ 1/2

−1/2

([
−1

2
|∇φ|2 + Bζxx

F2(1 + ζ 2
x )

3/2 − ζ

F2

]
ζxx − φxxφn

ds
dx

)
dx

= −F2

Re

(∫ 1/2

−1/2

[
−1

2
|∇φ|2 ζxx + Bζ 2

xx

F2(1 + ζ 2
x )

3/2 + ζ 2
x

F2

]
dx

+
∫ 1/2

−1/2

∫ ζ

−∞
|∇φx|2 dy dx

)
, (B3)

where φn is the normal derivative of φ, and s is arc length. In the second line, we have used
the boundary conditions (1.1), noting that the kinematic boundary condition can be written
ζt = φn(ds/dx)+ (2/Re)ζxx. In the third line, we have applied the divergence theorem
and integrated two terms by parts. We see from this that the energy evolution is inversely
proportional to Re, and that the linear dissipation model in the nonlinear system leads to
one higher-order sign indefinite term 1

2 |∇φ|2 ζxx. We have been unable to identify any
situation in which the integral of this sign indefinite term dominates the other components
of (B3) and leads to dE/dt ≥ 0. In all of our numerical simulations without wind forcing,
the energy has been a decreasing function of time.
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