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Abstract
Aiming at the problem that the covariance matrix includes the desired signal and the signal
steer vector mismatches will degrade the beamforming performance, an effective robust adap-
tive beamforming (RAB) approach is presented in this paper based on a residual convolutional
neural network (RAB-RCNN). In the presented method, the RAB-RCNN model is designed
by introducing a residual unit, which can extract the deeper features from the signal sample
covariance matrix. Residual noise elimination and interferences power estimation are utilized
to reconstruct the desired signal covariancematrix, and correct themismatched steering vector
(SV) by the eigenvalue decomposition of the reconstructed desired signal covariance matrix.
The projection method is utilized to redesign the signal interference-plus-noise covariance
matrix. Furthermore, the beamforming weight vector is calculated with the two parameters
obtained before and used as the label of the RAB-RCNNmodel,The trainedmodel can rapidly
and precisely output the predicted beamforming weight vector without complex matrix oper-
ations, including the matrix inversion of the signal covariance matrix, so that the calculation
time can be reduced for beamforming. Simulations demonstrate the robustness of the pre-
sented approach against SVmismatches due to the direction-of-arrival estimation error, sensor
position error, and local scattering interference.

Introduction

Adaptive beamforming is a crucial and indispensable technique where the received beam can
be adaptively formed to maintain the desired signal while suppressing the interference. It has
been extensively employed in wireless communication, radar, and navigation [1–3]. The stan-
dard Capon beamforming is a popular and essential adaptive beamforming algorithm, and
it is denoted as the minimum variance distortionless response (MVDR) beamformer [4, 5],
which can suppress interferences well and output the desired signal without distortion when
the direction of arrival (DOA) of the desired signal is accurate [6, 7].

However, adaptive beamforming is widely acknowledged to be susceptive tomismatch errors
such as the DOA estimation error, incoherent local scattering error and sensor position error.
Mismatch errors will severely deteriorate the capability of traditional adaptive approaches, such
as the sidelobe rising and signal cancelation [8, 9]. Therefore, several approaches have been
developed to enhance the efficacy of the MVDR beamforming approach. A diagonal loading
factor can be automatically computed via a parameter-free approach [10]. This approach has
demonstrated satisfactory performance in instances where there are minor mismatch errors.
However, an extent of performance deterioration will be observed at the high input signal-to-
noise ratio (SNR) levels. To achieve superior performance of the robustness, a novel algorithm
utilizing eigenspace-based (ESB) methodology is devised. The beamforming weight vector is
determined through the projection of the nominal steering vector (SV) onto the signal-plus-
interference subspace of the signal covariancematrix [11]. Nevertheless, it has a higher sidelobe
level with the lower SNR. To achieve greater of suppressing interferences, a beamforming
solution is presented that relies on worst-case performance optimization (WCP) principles
[12]. The desired signal SV is obtain by imposing an uncertainty constraint. The proposed
approach involves the resolution of a second-order cone programming problem, which is com-
putationally intensive. The performance of the aforementioned algorithms would be limited
in situations where the desired signal is strong [13]. A robust adaptive beamforming (RAB)
solution is introduced in response to the challenges with the strong desired signal. The pro-
posed approach employs reconstructing the interference-plus-noise covariance matrix and
estimating the desired signal SV for suppressing the desired signal in the sample covariance
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matrix [14]. It is evident that the method enjoys the outstanding
output signal-to-interference-plus-noise-ratio (SINR) compared
with the aforementioned beamformers. However, the presented
approach has unsatisfactory computation time because it needs to
solve a quadratically constrained quadratic programming problem
to obtain the desired signal SV. Additionally, the interference-plus-
noise covariancematrix is redesigned by estimating all interference
SVs and corresponding powers [15]. The quadratic convex opti-
mization problem serves to estimate the desired signal SV. The
aforementioned algorithms show the excellent performance, but it
is inevitable to solve the convex optimization that brings a lot of
computation.

Recently, deep learning has received significant attention in
addressing beamforming problems [16–19].These researches indi-
cate that neural networks have the capability to effectively identify
and extract themost important characteristics of the desired signal,
even in noisy and interference scenarios. This ability renders neu-
ral networks a useful tool in tackling beamforming challenges. For
example, a deep neural network (DNN) framework is devised with
an autoencoder and several classifiers as a solution to address the
issue of the DOA estimation [16]. The proposed approach exhibits
exceptional adaptability to different array-related imperfections,
including but not limited to gain and phase inconsistency, sensor
position error, and mutual coupling error. In order to improve the
beamforming performance of suppressing interferences, a novel
beamformer is employed based on a convolutional neural net-
work (CNN) to predict nearly-optimal beamformingweight vector
[17], which has less computation time than the MVDR approach.
To further enhance the precision of predictions for realizing the
predictive beamforming, a convolutional long-short termmemory
recurrent neural network is designed for angle prediction based on
the historical estimated angles, and then performs the predictive
beamforming [18]. To suppress jamming during the transmission
of information, a novel preprocessing deep reinforcement learning
algorithm is proposed using a CNN to obtain the optimal decision
of beamforming [19]. Simulations demonstrate that the presented
approach has greater performance in estimating the desired signal
in comparison with conventional algorithms. However, the afore-
mentioned algorithms are proposed based on deep learning in an
ideal scenario. When there are mismatch errors, including DOA
estimation error, incoherent local scattering error, sensor position
error, and so on [8, 9], the beamforming performance will deterio-
rate, such as sidelobe rising and signal cancelation. Therefore, it is
still a crucial problem to present an effective RAB approach against
mismatch errors and high complexity.

A RAB residual CNN (RAB-RCNN) method is presented in
this paper to reduce the computation time for beamforming. The
presented approach formulates the computation of the beamform-
ing weight vector as a regression prediction problem of the neu-
ral network. The proposed RAB-RCNN framework is designed
to tackle the challenge of mapping the signal sample covariance
matrix to the relevant beamforming weight vector. In the proposed
approach, the beamforming weight vector as the training label
is derived from an excellent interference-plus-noise covariance
matrix reconstruction and desired signal SV estimation approach.
Then, invoking a deep residual block unit, the proposed RAB-
RCNN structure can learn deeper spatial features of the signal
sample covariance matrix during the training. In the end, the
trained RAB-RCNN can rapidly and precisely predict the beam-
forming weight vector without complex matrix operations, includ-
ing the inverse of the signal covariancematrix. Simulations indicate
that the presented approach has the promising capability of the

robustness compared with other approaches.The contributions are
summarized as follows.

(1) In the proposed RAB-RCNN model, a residual block unit is
utilized to extract the deeper features from the signal sample
covariance matrix and excavate the spatial correlation infor-
mation about the received signal, so that it can improve the
prediction performance of the proposed RAB-RCNN.

(2) The training label utilized for the proposed RAB-RCNN is an
outstanding beamformer that achieves a high output SINR.
The proposed model is trained by the aforementioned label,
which can output the predicted beamforming weight vector
with avoiding complex matrix operations, so that the compu-
tation time is reduced.

This paper is organized as follows. The signal model is intro-
duced detailedly in “Signal model” section. Section “Presented
RAB-RCNN algorithm” describes the presented approach. Section
“Simulations” presents the simulation results. Finally, section
“Conclusion” concludes the whole paper.

Signal model

Consider a uniform linear array which consists ofM sensors with
L+ 1 received narrowband signals. The sensor spacing d is half of
the wavelength 𝜆. The array received vector x(k) ∈ ℂM×1 at time k
can be given by:

x(k) = xs(k) + xin(k) + xn(k), (1)

where xs(k) denotes the statistically independent components of
the desired signal. xin(k) stands for interferences and xn(k) repre-
sents the noise.

The adaptive beamformer output is represented as:

y(k) = wHx(k), (2)

where w = [w1, ⋯ ,wM]T denotes the beamforming weight vector.
(⋅)H represents conjugate transpose.

According to [20], 𝛾 denotes the SINR of the array output, so 𝛾
can be defined as:

𝛾 =
𝜎2
s ∣wHa∣2

wHRin+nw
, (3)

where 𝜎2
s denotes the desired signal power. Rin+n represents the

theoretical interference-plus-noise covariance matrix, so it can be
given by:

Rin+n = Rin + 𝜎2
nI, (4)

where 𝜎2
n represents the noise power. Rin denotes the theoretical

interference covariance matrix. I ∈ ℂM×M stands for an identity
matrix.

It is intractable to maximize (3) directly. To tackle this issue, it
is rendered equivalent to the subsequent constrainedminimization
issue:

min
w

wHRin+nw

subject to wHa = 1,
(5)

where the constraint wHa = 1 serves to prevent the reduction in
gain along the direction of the desired signal.

However, the precise interference-plus-noise covariance
matrix Rin+n is unavailable in practical scenarios. It can be
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Figure 1. The presented RAB-RCNN framework.

replaced by the signal sample covariance matrix R̂ which can be
expressed by:

R̂ = 1
K

K

∑
k=1

x(k)x(k)H, (6)

where K represents the number of snapshots.
The solution of the problem (5) is beamforming weight vector

wmvdr , which can be expressed as [21]:

wmvdr =
̂R−1a

aHR̂−1a
, (7)

where (⋅)−1 stands for the matrix inverse operation.
The aforementioned solution is called as the MVDR method.

The MVDR beamformer provides excellent interferences suppres-
sion performance when the desired signal SV is known precisely
and the interference-plus-noise covariance matrix is available.
However, when there are SV mismatch errors, the approach will
be susceptible to substantial performance degradation.

Presented RAB-RCNN algorithm

In this section, the RAB-RCNN architecture is introduced
detailedly. Firstly, the nearly-optimal beamforming weight vector
is calculated by an excellent RAB algorithm, and it is used as the
training label of the proposed RAB-RCNNmodel.Then, the adap-
tive beamforming weight vector problem is transformed into a
regression problem based on neural network. Subsequently, the
trained RAB-RCNN model can rapidly and precisely output the
predicted beamforming weight vector.

Structure of proposed RAB-RCNN

Thearchitecture of the presentedRAB-RCNN is designed as shown
in Figure 1, which comprises an input layer, two convolutional lay-
ers, two maxpooling layers, a residual block unit, a fully connected

layer, and an output layer. The functions and hyperparameters are
described as follows.

The input layer

Thefirst layer is the input layer. It has been studied that real-valued
neural networks can achieve superior performance. So the signal
sample covariance matrix R̂ as a complex-valued data should be
converted into a real-valued input vector.

The convolutional layer

A series of convolutional layers are designed to learn the abun-
dant information about the spatial correlation in the received
signals. In the proposed RAB-RCNN framework, it consists of
two convolutional layers. The first convolutional layer includes 64
kernels of size 1 × 3 and the other includes 256 kernels of size
1 × 3. The activation function utilized within the convolutional
layers is the exponential linear unit (ELU), which is defined as
follows:

ELU(l) = {l, l ≥ 0

𝛽(el − 1), l < 0,
(8)

where l denotes the output of a linear unit of the RAB-RCNN. 𝛽
represents an adjustable parameter.

Themaxpooling layer

Themaxpooling layers are used to further learn deeper spatial fea-
tures of received signals, and remove some unimportant features,
which are detrimental to the beamforming weight vector estima-
tion. Each convolutional layer is preceded by a maxpooling layer
which comprises kernel of size 1 × 3.
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Figure 2. A residual block.

The residual block unit

As the number of the network layers increases, the beamforming
weight vector estimation accuracy gets saturated and then degrades
rapidly [22]. In order to improve estimation performance, a resid-
ual block unit is introduced into CNN. The unit consists of four
residual blocks with the same structure. The first two residual
blocks have 64 kernels of size 1 × 3 and the last two have 128 ker-
nels of size 1×3. Each residual block structure is shown in Figure 2,
which consists of two convolutional layers and is given by:

y = F(x,W) + x, (9)

where x stands for the input vectors of the residual unit designed
and y denotes the output. The function F(x,W) = W2𝛿(W1x)
denotes a residual mapping function, in which 𝛿 stands for ELU
activation function,W1 andW2 represent weight matrices.

Compared with the previous works based on the classical neu-
ral networks such as DNN and CNN, the residual block provides
several advantages, such as: (a) the residual block only learns the
residual F(x,W) = y−x , which is easier to learn essential features
of the signal sample covariance matrix during the training phase
than conventional CNN. Therefore, a sequence of residual blocks
is utilized to learn more features, so that the beamforming weight
vector estimation performance is improved; (b) the residual block
utilizes a shortcut to connect the input and output information,
which can solve the beamforming weight vector estimation per-
formance degradation problem caused by deficient information.
Furthermore, the shortcut in the residual block introduces neither
extra parameters nor computation complexity.

The fully connected layer

Similar to most related works [16–19], a fully connected layer is
added prior to the output layer, which can put all the features
together.Then the output layer can rapidly and precisely output the
predicted beamforming weight vectorwpred with avoiding complex
matrix operations.

Generation label

The weight vector label is utilized to train the proposed RAB-
RCNN.The process for generating the beamforming weight vector
label through SV estimation and interference-plus-noise covari-
ance matrix reconstruction can be detailed as follows.

Steering vector estimation

It is challenging to obtain the precise SV in practical scenarios, to
solve this problem, the solution is usually to replace a(𝜃) by a nom-
inal SV a(𝜃). To obtain precise estimation of the SV for the desired
signal, the desired signal covariancematrix ̂Rs is redesigned as [23]:

R̂s = ∫
Θs

( ̂P(𝜃) − 𝜎2
n)a(𝜃)aH(𝜃) d𝜃

= ∫
Θs

( 1
aH(𝜃)R̂−1a(𝜃)

− 𝜎2
n)a(𝜃)aH(𝜃) d𝜃, (10)

where Θs stands for an area where the desired signal angle is
located. ̂P(𝜃) denotes the Capon spatial power spectrum. 𝜎2

n repre-
sents the estimated residual noise power.

The eigenvector corresponding to the largest eigenvalue con-
tains the most information on desired signal covariance matrix

̂Rs in (10). Hence, the eigendecomposition of the desired signal
covariance matrix ̂Rs is given by:

̂Rs =
M

∑
m=1

𝛼mcmcHm, (11)

where 𝛼m represents the eigenvalue of desired signal covariance
matrix R̂s. cm denotes the eigenvectors corresponding to 𝛼m.

Therefore, the corrected desired signal SV ̂as is defined as fol-
lows [24]:

̂as =
√
Mc1, (12)

where c1 denotes the eigenvector of the largest eigenvalue.

Interference-plus-noise covariance matrix reconstruction

To remove the negative effects of the desired signal, its compo-
nents ̃x(k) are eliminated from the received snapshots through the
projection, and it is expressed as [25]:

̃x(k) =ΦHx(k)=̃ΦHxin(k) + ΦHxn(k), (13)

where Φ = ΦH = I − C1CH
1 denotes the projection matrix. C1

comprises N eigenvectors associated with N largest eigenvalues of
the desired covariance matrix R̂s.

Substituting (13) into (6), the sample covariance matrix R̃
absent of the desired signal components can be expressed as:

̃R = 1
K

K

∑
k=1

̃x(k)x̃H(k)

= ΦHR̂Φ,
(14)

where R̃ is obtained from the signal sample covariancematrix ̂R by
projecting.

Substituting (13) into (14), it follows that:

̃R = 1
K

K

∑
k=1

̃x(k)x̃H(k)

=̃ΦH(R̂in + �̂�2
nI)Φ

=̃ΦH ̂RinΦ + �̂�2
nΦ

HΦ,

(15)

where ΦHR̂inΦ and �̂�2
nΦ

HΦ denote interference and noise compo-
nents, respectively. �̂�2

n represents the actual noise power, which is
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estimated byM − L − 1 smallest eigenvalues of the signal sample
covariance matrix R̂.

According to [23], ΦHR̂inΦ=̃R̂in can be drawn. Then, R̂in
can be defined as ΦH ̂RΦ − �̂�2

nΦ
HΦ=̃R̂in by combining (13) and

(14). However, the interference covariance matrix R̂in is unprecise
because the projection operation brings a high potential for induc-
ing numerous errors.Therefore, the inaccurate interference covari-
ance matrix ̂Rin is aimed to estimate the powers of the individual
interference. Therefore, the estimated interferences power P̃in are
expressed as [25]:

̃Pin = ( ̃AH
i ̃Ai)−1 ̃AH

i R̂in ̃Ai( ̃AH
i ̃Ai)−1, (16)

where the diagonal elements of the estimated interferences power
P̃in stand for the corresponding interferences powers. ̃Ai =
{â1, ̂a2, ⋯ , ̂aL} denotes the estimated SVs of interferences obtained
via the samemethod as desired signal SV estimation. ̂𝛼t represents
the interference SV.

Based on the interferences power ̃Pin and corresponding SVs
Ãi, the precise interference-plus-noise covariance matrix R̃in+n is
expressed as:

R̃in+n = ̃Aidiag(P̃in) ̃AH
i + �̂�2

nI. (17)

Consequently, the beamformingweight vector as the label of the
presented approach wlabel is obtained by:

wlabel =
̃R−1
in+n ̂as

̂aHs R̃−1
in+nâs

. (18)

Training and testing of proposed RAB-RCNN

Generation of training data

Apparent, the signal sample covariance matrix ̂R is a conjugate
symmetric matrix, so the upper or lower triangular part of the
signal sample covariance matrix R̂ is rearranged into a vector r:

r = [R̂12, ⋯ , R̂1M, R̂23, ⋯ ,
R̂2M, ⋯ , ̂R(M−1)M]

, (19)

where ̂Ri,j denotes the (i, j)th element of the signal sample covari-
ance matrix R̂. r ∈ ℂM(M−1)/2×1 stands for a complex-valued
vector.

Afterward, to enhance the convergence, the (19) is normalized
by norm definition:

rn = r
‖r‖2

. (20)

By taking the real and imaginary part of rn, as the input to the
network the input z ∈ ℂM(M−1)×1 of the RAB-RCNN is given by:

z = [Re{rn1}, Im{rn1}, ⋯ ,
Re{rnM(M−1)/2}, Im{rnM(M−1)/2}], (21)

where rnp , p = 1, ⋯ ,M(M − 1)/2 represents the pth element of rn.
Re{⋅} denotes the real part. Im{⋅} stands for the imaginary part.

The beamforming weight vector wlabel ∈ ℂ2M×1 which is the
label of the RAB-RCNN is formed as follows:

wlabel = [Re{wlabel
1 }, Im{wlabel

1 }, ⋯ ,
Re{wlabel

M }, Im{wlabel
M }].

(22)

Via collecting signal samples located at different DOAs and
SNRs, the training data are given, that is, {(zq,wlabel

q ), q =
1, 2, … ,Q}, in which Q is the number of training samples.

Phase of training and testing

During the training phase, the proposed RAB-RCNN approach
is trained to learn a nearly optimal beamforming weight vec-
tor from the vectorized covariance matrix z of the received sig-
nals. The loss function of the proposed RAB-RCNN approach
LRAB−RCNN(wpred,wlabel) is calculated as:

LRAB−RCNN(wpred,wlabel) = 1
2M ‖wpred − wlabel‖22, (23)

where wlabel represents the training label of the proposed RAB-
RCNNmodel. wpred denotes the predicted value.

Summary

The proposed approach is succinctly outlined as follows:

1) Design the presented RAB-RCNNmodel.
2) Obtain received signal samples {xq, q = 1, 2, … ,Q} with

varying SNRs and DOAs.
3) Compute the covariance matrices of the signal samples

{ ̂Rq, q = 1, 2, … ,Q}.
4) Derive samples of the weight vector for beamforming

{wlabel
q , q = 1, 2, … ,Q} by (18).

5) Carry out pre-processing of the samples using equations
(19)–(22), thereby generating the training data.

6) Introduce the training data to facilitate the training of the
presented RAB-RCNN through the use of the loss function
(23).

7) Employ the trained RAB-RCNN to predict the beamforming
weight vector wpred that are nearly optimal.

Simulations

To assess the effectiveness of the RAB-RCNN approach, the uni-
form linear array under consideration consists of M = 10 omni-
directional sensors. The distance between two adjacent antennas
is 𝜆/2, where 𝜆 denotes the wavelength. There are three signals
impinging from the directions 𝜃0 = 1∘, 𝜃1 = 55∘ and 𝜃2 = −69∘.
One is postulated to serve as the desired signal, and others are pos-
tulated to act as interferences, possessing an interference-to-noise
ratio equivalent to 30 dB.

The 100 times Monte Carlo approach is utilized to ensure the
generality of the simulations. Unless otherwise stated, all simu-
lations use the parameters above. For convenience, the existing
methods in [11], [12], [15], and [17] are named as ESB, WCP, CIP,
and CNN, respectively.
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Figure 3. The beampatterns of different approaches under DOA estimation errors.

Mismatch caused by DOA estimation error

In the experiment, a scenario is considered with DOA estimation
error. The random errors of both the desired signal and two inter-
ferences are uniformly distributed in [−4∘, 4∘] for each simulation.
The number of snapshots is fixed at K = 30.

Figure 3 demonstrates the beampatterns of the aforementioned
approaches. From this figure, the WCP method exhibits an unac-
ceptable directional pattern due to its mainlobe shifting and side-
lobe rising. The reason is that the algorithm does not consider the
impact of the desired signal. Fortunately, the presented approach,
the CIP algorithm, and the CNN method suppress interferences
while preserving the desired signal. Additionally, the presented
algorithm has lower nulls than the other algorithms and it also has
lower sidelobes than other approaches.

Figure 4 indicates the SINR curves of the aforementioned
approaches versus the SNR in a range from −5 to 30 dB. It shows
that the presented approach, the CNN approach, and the CIP
approach achieve better capability than the ESB method and the
WCP algorithm. It is also clear that the ESBmethod occurs signifi-
cant performance degradation at the high SNR. It is evident that the
presented RAB-RCNN approach has the higher output SINR than
the same approach based on the CNN method. The reason why
the proposed RAB-RCNN approach outperforms othermethods is
fully leveraging the residual block unit to extract the critical feature
information. When the SNR ≥10 dB, the output SNR of the ESB
algorithm begins to decline, because the signal sample covariance
matrix with the high input SNR contains a strong desired signal,
which leads to the existence of covariance matrix errors so that the
output beamforming performance deteriorates.

The output SINR of the aforementioned approaches is consid-
ered versus the number of snapshots and the simulation result
is shown in Figure 5. The presented approach gets the greater
output SINR compared with the other methods and verifies the
RAB-RCNN is not sensitive to the DOA estimation error.The per-
formance of the ESB approach and the WCP approach is easily
affected by snapshots, so the performance is not satisfactory.

Mismatch caused by sensor position error

In the experiment, the impact of the sensor position error on the
capability of the approaches is researched. The positioning errors

Figure 4. SINR versus SNR under the DOA estimation error.

Figure 5. SINR versus the number of snapshots under the DOA estimation error.

of the sensors are evenly distributed within a specific interval
[−0.025𝜆, 0.025𝜆].

Figure 6 indicates the beampatterns of the aforementioned
approaches. Evidently, a smaller sensor position error can incur a
higher sidelobe level for the ESBmethod.The presented algorithm,
the CNN algorithm, and the CIP algorithm can be capable of sup-
pressing interferences, while simultaneously retaining an undis-
torted response toward the target signal. Especially, the proposed
algorithm has lower nulls than the others. This is because that the
presented approach has an outstanding beamforming weight vec-
tor label (18) and the residual block unit can help the proposed
approach to improve the output SINR.

Figure 7 shows the SINR curves of the aforementioned
approaches with the SNR ranging from −5 to 30 dB. The output
SINR curves of the proposed RAB-RCNN algorithm, CNN algo-
rithm, and CIP algorithm gradually increase. It is not difficult to
see that the difference between the output SINR curves of the pro-
posed RAB-RCNN algorithm and the optimal output SNRwireless
is the smallest. The presented figure illustrates that the SINR of
the ESB approach experiences a sharp decline as the input SNR
increases, when the SNR ≥5 dB. The CIP algorithm has the worst
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Figure 6. The beampatterns of different approaches under the circumstance of
sensor position error.

Figure 7. SINR versus SNR under the sensor position error.

performance in the low SNR, and it would not correct the mis-
matched desired signal SV well, and its output SNR needs to be
further improved.

Figure 8 indicates the SINR of the aforementioned methods
versus the number of snapshots at the SNR = 15 dB. Compared
with aforementioned algorithms, the proposed RAB-RCNN has
the highest output SINR with the snapshot changes. This is due
to the deep feature extraction capability of the residual unit in the
presented algorithm.

Computation time and prediction accuracy analysis

Table 1 demonstrates the computation time and prediction accu-
racy of the presented RAB-RCNN approach and several previous
methods. The computation time is the time spent generating the
beamforming weight vectors via feeding 100 covariance matrices
into different approaches. It can be found the computation time
of the presented algorithm is less than the CIP method and WCP
algorithm in Table 1. The proposed approach outperforms the
aforementioned approaches because of its ability to avoid the com-
plex eigenvalue decomposition and matrix inversion processes,

Figure 8. SINR versus the number of snapshots under the sensor position error.

Table 1. Comparing the computation time and prediction accuracy of various
beamforming algorithms

Algorithms Computation time MAE Output SINR (SNR=25 dB)

RAB-RCNN 0.3080 s 0.0037 34.8732 dB

ESB 0.0560 s 0.1405 3.5753 dB

WCP 39.3840 s 0.0830 20.8527 dB

CIP 52.7710 s 0.0713 29.2523 dB

CNN 0.1279 s 0.0080 33.0511 dB

so it can be applied to practical engineering. Additionally, com-
pared with the ESB method and the CNN method, the pro-
posed approach exhibits a slightly longer computation time, but
the performance of the proposed approach is better than them.
Meanwhile, the mean absolute error (MAE) is used as an eval-
uation index of prediction accuracy [26], which represents the
average of the absolute error between the predicted beamform-
ing weight vector and the label. It can clearly be seen that the
well-trained network (RAB-RCNN and CNN) can achieve lower
mean absolute error than other traditional algorithms (ESB, WCP,
and CIP), thus they can perform excellent beamforming predic-
tion ability. However, because of the residual unit, the proposed
RAB-RCNN approach is superior to the CNN in terms of the
output SINR.

Conclusion

When the covariance matrix includes the desired signal and the
desired signal SV mismatches, the beamforming performance will
be degraded. In response to this problem, this paper presents a
RAB-RCNN approach for beamforming. Firstly, the beamforming
{weight vector is obtained by an excellent interference-plus-noise
covariance matrix reconstruction and SV estimation methods.
Then by using it as the beamforming weight vector label of the
proposed approach, the beamforming prediction problem is refor-
mulated as the neural network regression problem. The presented
RAB-RCNN framework automatically learns to reduce the loss
between the nearly-optimal beamforming weight vector label and
predicts the beamforming weight vector. Eventually, because of
the depth extraction ability of the residual unit, the well-trained
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RAB-RCNN can rapidly and precisely predict the beamforming
weight vector without complex matrix operations. Simulations
shows that the presented approach exhibits superior capability
compared to conventional robust beamforming algorithms.
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