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In this work, the shape of a bluff body is optimized to mitigate velocity fluctuations
of turbulent wake flows based on large-eddy simulations (LES). The Reynolds-averaged
Navier—Stokes method fails to capture velocity fluctuations, while direct numerical
simulations are computationally prohibitive. This necessitates using the LES method
for shape optimization given its scale-resolving capability and relatively affordable
computational cost. However, using LES for optimization faces challenges in sensitivity
estimation as the chaotic nature of turbulent flows can lead to the blowup of the
conventional adjoint-based gradient. Here, we propose using the regularized ensemble
Kalman method for the LES-based optimization. The method is a statistical optimization
approach that uses the sample covariance between geometric parameters and LES
predictions to estimate the model gradient, circumventing the blowup issue of the adjoint
method for chaotic systems. Moreover, the method allows for the imposition of smoothness
constraints with one additional regularization step. The ensemble-based gradient is first
evaluated for the Lorenz system, demonstrating its accuracy in the gradient calculation
of the chaotic problem. Further, with the proposed method, the cylinder is optimized to
be an asymmetric oval, which significantly reduces turbulent kinetic energy and meander
amplitudes in the wake flows. The spectral analysis methods are used to characterize the
flow field around the optimized shape, identifying large-scale flow structures responsible
for the reduction in velocity fluctuations. Furthermore, it is found that the velocity
difference in the shear layer is decreased with the shape change, which alleviates the
Kelvin—Helmholtz instability and the wake meandering.
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1. Introduction

The turbulent wake of bluff bodies is a canonical flow that exists widely in engineering
applications. The wake flows can produce unsteady loads on the bluff body due to
boundary layer separation and vortex shedding (Patnaik & Wei 2002; Choi, Jeon &
Kim 2008; Rashidi, Hayatdavoodi & Esfahani 2016). It not only causes severe structural
vibration on the cylinder, but also generates significant turbulent noises from vortex
evolution. Therefore, it is of practical interest to mitigate these detrimental effects from
turbulent wakes.

Shape optimization is one extensively used passive control approach to mitigating
turbulent wakes (Mohammadi & Pironneau 2009), without requiring extra energy inputs
(Min & Choi 1999; Cattafesta & Sheplak 2011). It is often achieved with the adjoint-based
approach that uses adjoint variables to characterize the gradient of objective functions
and guide the optimization of geometric parameters. Specifically, the equation of the
adjoint variables can be derived with integration by parts from the primal equation, e.g.
the Reynolds-averaged Navier—Stokes (RANS) equation, and further solved to provide the
gradient of the objective function with respect to the geometric parameters (Dhert, Ashuri
& Martins 2017). However, the accuracy of the RANS method depends highly on the
turbulence model, which often leads to large predictive discrepancies when encountered
with flow separation, e.g. behind the bluff body, due to the model inadequacy (Xiao
& Cinnella 2019). Moreover, the RANS-based shape optimization is not applicable
for specific purposes associated with turbulent fluctuation, including turbulent wake
mitigation. That is because the fluctuating information is lost with ensemble averaging in
the RANS equation, and has to be modelled with empirical assumptions. For instance,
the turbulent kinetic energy (TKE), characterized by root mean square of velocity
fluctuations, is estimated by solving the corresponding transport equation, in which the
dissipation rate term is constructed in an ad hoc manner. Hence the predicted TKE is
often considered an operating parameter for the eddy viscosity estimation, intrinsically
different from experimental measurements. For these reasons, scale-resolving simulations,
e.g. large-eddy simulations (LES) and direct numerical simulations (DNS), are needed for
shape optimization to mitigate the turbulent wake of bluff bodies. In this work, we focus on
the LES-based method for the following reasons. On the one hand, LES can be performed
at relatively low computational costs in contrast to DNS. On the other hand, LES can
accurately predict velocity fluctuations by resolving spatiotemporal scales of turbulent
flows (Bodony & Lele 2005; Zhu, Wu & He 2022), which is a necessity to construct
the objective function for mitigating wake instability.

The difficulty in the LES-based shape optimization lies in the sensitivity analysis
of the predicted turbulence statistics with respect to the geometric parameters. The
conventional adjoint method often leads to local instability in the gradient solution for
the LES-based optimization, due to the chaotic nature of turbulent flows (Lea, Allen
& Haine 2000; Blonigan et al. 2016). Specifically, the LES resolve various scales of
flow structures, and capture the chaotic dynamics of turbulent flows with the well-known
butterfly effects. That is, a small variation of the initial condition results in large changes
in the LES predictions of instantaneous flow fields. This ill-conditioned issue can lead
to the blowing up, i.e. divergence to infinity, in computing gradients of the long-time
averaged model outputs, including the TKE. Besides, the adjoint-based sensitivity analysis
can be limited by considerable storage requirements for solving unsteady adjoint equations
(Mani & Mavriplis 2008), because the adjoint method requires the previously computed
instantaneous flow fields to be available at each time step (Nadarajah & Jameson 2007).

1001 A31-2


https://doi.org/10.1017/jfm.2024.1090

https://doi.org/10.1017/jfm.2024.1090 Published online by Cambridge University Press

LES-based shape optimization with ensemble Kalman method

This storage requirement can be alleviated by using dynamic checkpointing techniques
(Wang, Moin & laccarino 2009). Nevertheless, the blowup issue still severely limits the
utility of the adjoint method for chaotic systems, e.g. turbulent flows.

Various approaches have been introduced to address the difficulties of sensitivity
analysis for chaotic systems. For instance, the least squares shadowing method (Wang,
Hu & Blonigan 2014) is proposed by regularizing the ill-posed inverse problem with
the closest trajectory to a pre-specified reference one. Also, one can remedy the blowup
gradient by taking sample averaging of adjoint sensitivity over short trajectories (Lea
et al. 2000; Ni & Wang 2017). The feasibility of such an ensemble-averaged adjoint
sensitivity has been demonstrated (Chandramoorthy et al. 2019) for chaotic systems
that can provide reasonably accurate gradients but at a poor convergence rate. Besides,
gradient-free methods, such as genetic programming and pattern search methods (Holst
& Pulliam 2001; Marsden et al. 2007), have been introduced for chaotic problems
to circumvent the difficulties of the adjoint methods. However, these methods would
be computationally prohibitive to optimize high-dimensional geometrical parameters,
compared to gradient-based approaches. Hence it is of significant interest to develop
feasible gradient-based methods for LES-based shape optimization.

The stochastic approximation method (Lai 2003) can provide numerical gradients of
complex systems with random samples, which includes the Kiefer—Wolfowitz algorithm
(Kiefer & Wolfowitz 1952), the simultaneous perturbation stochastic approximation
(SPSA) method (Spall 1992), and ensemble-based sensitivity analysis (Ancell & Hakim
2007; Torn & Hakim 2008), among others. These methods differ mainly in the sample
numbers and the gradient approximation scheme. For instance, the Kiefer—Wolfowitz
algorithm and the SPSA method estimate the model gradient in a finite difference
scheme with only two samples. The difference between the two methods is that the
Kiefer—Wolfowitz method draws samples by perturbing only one direction, while the
SPSA method disturbs all directions simultaneously. In contrast, the ensemble-based
sensitivity method draws multiple samples from a multivariate Gaussian distribution
along all directions, and estimates the gradient with a linear regression formula. The
ensemble-based method can be more robust for finding the gradient-descent direction than
other gradient approximation methods (Chen, Oliver & Zhang 2009; Li & Reynolds 2011;
Michelén-Strofer, Zhang & Xiao 20215).

Ensemble-based sensitivity analysis (Ancell & Hakim 2007) has been employed for
gradient approximation of chaotic systems. The method estimates model gradients from
the statistical perspective, in stark contrast to the adjoint method, which derives the
gradient from the dynamic perspective. Specifically, the adjoint method solves the
dynamical equation, i.e. the adjoint equation, to estimate the gradient information, while
the ensemble method uses the sample covariance of the model inputs and time-averaged
outputs to achieve this goal. In doing so, the statistics of chaotic solutions are used to
characterize the model gradient, which can vary continuously with the system parameters,
and circumvent the blowup issue of local adjoint sensitivity. The ensemble Kalman method
(Evensen 2009; Iglesias, Law & Stuart 2013) is a statistical inference approach that uses
the ensemble-based gradient and Hessian to achieve second-order optimization (Luo 2021;
Zhang et al. 2022b). This method and its variants have been used for the stochastic closure
modelling of chaotic systems (Mons, Du & Zaki 2021; Schneider, Stuart & Wu 2022)
and the state estimation of turbulent flows (Colburn, Cessna & Bewley 2011; Labahn
et al. 2020). Furthermore, Lorente-Macias, Bengana & Hwang (2023) pioneered using
the ensemble-based method to optimize a cylinder shape in laminar flows under a noisy
environment, with remarkable success. Also, Jahanbakhshi & Zaki (2023) used the method
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to optimize roughness elements for delaying the transition occurrence of hypersonic flows.
The above-mentioned works focus mainly on the laminar and transitional flows, and the
method warrants further investigation for shape optimization in transitional and fully
developed turbulent flows.

In this work, the ensemble Kalman method is used to optimize a cylinder shape
to mitigate the turbulent wakes behind the bluff body based on LES. To the authors’
knowledge, it is the first attempt to use the ensemble method for LES-based shape
optimization. Moreover, the regularized variant of the ensemble Kalman method (Zhang,
Michelén-Strofer & Xiao 2020; Zhang, Xiao & He 2022q) is used to avoid unsmooth
bluff bodies by penalizing the spatial variation of the geometry. Although the ensemble
Kalman method has been applied for the optimization of chaotic problems, the feasibility
of the ensemble-based sensitivity analysis has not been fully analysed. Here, we assess the
accuracy of the ensemble-based gradient in the classic Lorenz system with comparison to
the adjoint-based gradient. We show that the ensemble-based method can circumvent the
blowup issue and provide usable gradients for chaotic systems with small sample sizes.
Further, the method is used to mitigate the turbulent wakes by optimizing the cylinder
shape, demonstrating its feasibility for LES-based shape optimization.

The rest of this paper is organized as follows. The shape optimization problem and
the ensemble-based methodology are presented in § 2. The results of the ensemble-based
sensitivity analysis and the shape optimization are shown in § 3, with discussions on
the optimization process and the physical mechanism involved. Finally, conclusions are
provided in § 4.

2. Problem formulation

2.1. Optimal shape design with LES
The turbulent flow over a bluff body is solved using the LES module of the Virtual
Flow Simulator code. The capability of the code for simulating turbulent wakes has
been validated extensively using wind tunnel measurements (Yang et al. 2015). The

governing equations are the filtered incompressible Navier—Stokes equations in curvilinear
coordinates, which can be formulated as

K104
LU _ (0 o D gﬁ%)_li p) _ 19y
7 o ‘J( asf(U“’”pasf(J oet) oo\ 7 ) poei)

2.1)
where i, j, k, [ € {1, 2, 3} are the tensor indices, and & I are the curvilinear coordinates
related to the Cartesian coordinates x; by the transformation metrics éli = 9&'/dx;.
Additionally, 7 denotes the Jacobian of the geometric transformation, U’ = (5; /Tu
is the contravariant volume flux with u; as the velocity in Cartesian coordinates, u
is the dynamic viscosity, p is the fluid density, g = S/ Slk are the components of the
contravariant metric tensor, and p is the pressure. In the momentum equation, tj; is
the subgrid-scale stress, which is computed using the dynamic Smagorinsky model
(Smagorinsky 1963; Germano et al. 1991). That is,

T — %Tkkslj = —2v,.§1j, (2.2)
1001 A31-4
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where élj is the filtered strain rate tensor, and v; is the eddy viscosity. It is formulated as
v = C;A% S, 2.3)

where Cj is the model coefficient calculated adaptively based on the Germano identity

(Germano et al. 1991), |§| = ,/291]-5‘1]-, and A is the filter size.

The governing equations are discretized on a structured curvilinear grid. A
second-order-accurate central differencing scheme is used for the spatial discretization,
and a second-order fractional step method (Ge & Sotiropoulos 2007) is used for
the temporal integration. The momentum equation is solved with the matrix-free
Newton—Krylov method (Knoll & Keyes 2004). The pressure Poisson equation is solved
to satisfy the continuity constraint, using the generalized minimal residual method with an
algebraic multi-grid acceleration (Saad 1993).

In this work, the curvilinear immersed boundary method (Gilmanov & Sotiropoulos
2005; Ge & Sotiropoulos 2007) is used to emulate the effects of the bluff body on the
surrounding flows. In this method, the surface of the solid body is discretized using
unstructured triangular meshes superposed on the background grid. The background grid
nodes are categorized into the fluid nodes and the solid nodes, according to their relative
location to the body. Specifically, the solid nodes inside the body are excluded from the
simulation, while the fluid nodes located in the fluid but with at least one neighbour node
in the solid body are identified as the immersed boundary nodes. For wall-resolved LES,
the velocity at the immersed boundary nodes is interpolated from the fluid nodes and the
boundary in the wall-normal direction. Using the immersed boundary method, the velocity
fields of the wake flow can be predicted well with mesh refinement around the bluff body,
which has been validated in the literature (Parnaudeau et al. 2008; Yang et al. 2015; Zhou
et al. 2022). In this work, the TKE behind the bluff body is used to characterize the velocity
fluctuation of the turbulent wake. As such, we aim to find the optimal geometric shape that
can minimize the LES-predicted TKE in the wake.

The spatial-averaged TKE at the near-weak region is used as the optimization objective
to indicate the unsteadiness of the wake flow. Specifically, the TKE averaged over a
prescribed wake area 2 is formulated as

1
K = —/// k(x,y,z)dxdydz,
Vv 2

to+T

. _ = 2 = 2 = 2
with k= ) ((u(t) D)% + () — )% + (W) — W) )dt,

(2.4)

where V is the total volume of the prescribed domain £2, x,y,z represent the
streamwise, transverse and spanwise coordinates, and u, v, w indicate the velocity along
the x, y, z directions, respectively. The TKE is calculated with the LES-predicted velocity
components over a sufficiently long time 7. The operation - indicates the time-averaged
quantities at specific spatial locations. Further, we consider a forecast model K = M|a],
where a is the control vector for the shape geometry, K is the spatial-averaged TKE
within the prescribed areas of the wake flows, and M is the model operator that maps
the geometric parameter a to the objective quantity K. The model forecast involves three
successive steps: (1) generating the cylinder shape with the geometric parameter a; (2)
conducting the LES with the generated cylinder geometry; and (3) post-processing the
LES-predicted flow field to obtain the spatial-averaged TKE K. The quadratic objective

1001 A31-5


https://doi.org/10.1017/jfm.2024.1090

https://doi.org/10.1017/jfm.2024.1090 Published online by Cambridge University Press

X.-L. Zhang, F. Zhang, Z. Li, X. Yang and G. He

function weighted by a prescribed parameter R can be written as
Jo = I Mlalllz, 2.5)

where ||v||f‘ = v?/A for scalar quantity v, and ||v||% = vA~ T for vector quantity v. In
this work, we use a scalar quantity, i.e. spatial-averaged TKE, as the objective M [a]. Note
that the present method can be extended straightforwardly to a vector objective quantity,
e.g. spatial-varying TKE at different locations. The shape optimization amounts to finding
optimal geometric parameters a such that the spatial-averaged TKE K is minimized.

2.2. Geometric parametrization of bluff bodies

The geometry of the bluff body is parametrized to reduce the dimension of control
vector a. We follow the work of Lorente-Macias et al. (2023) in the geometric formulation,
which uses the Fourier bases to construct the geometry of the bluff body within the fluid
flow. Specifically, the radius of the cylinder is defined with a set of Fourier bases as

N
H0) = ap + Z a;cos(if), with@ € [0, 2x]. (2.6)

i=1

The coefficients a are unknown parameters to be optimized that involve all the control

parameters {ai}f.V: o- and N is the number of the bases. Further, the streamwise and
transverse coordinates of the control points can be obtained with

X =r(@)cosf and y.=r(0)sinb, (2.7a,b)

respectively. The cylinder shape is uniform in the spanwise direction. With this
formulation, the dimension of the geometric parameters can be reduced significantly, and
the Fourier bases can enforce the smoothness of the generated geometry by truncating the
high-order bases.

The cylinder shape should conform to different constraints to ensure the well-posedness
of the optimization problem. In this work, the following constraints are imposed.

(i) Fixed volume. It is mandatory for the cylinder shape to have a fixed volume. Given
that the cylinder shape is uniform in the spanwise direction, the fixed volume
constraint can be reduced to a fixed cross-sectional area of the cylinder. This is a
hard equality constraint for shape optimization, which can be formulated as

1 27 T N
A= 5/ r(0)%d0 = mal + 5 > at. (2.8)
0 i=1

(i) Avoid negative radius. This constraint is required to have a geometrically
well-defined shape. Such an inequality constraint is achieved by bounding the basis
coefficients as va: 1 ai2 < B. The parameter is set as B = 0.04 in this work by
following the work of Lorente-Macias et al. (2023). Values of B that are too small
would limit possible solutions to the vicinity of the initial circular shape.

(iii) Avoid large streamwise length. This is to avoid an extremely long slender body,
significantly varying the characteristic Reynolds number compared to the initial
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shape. It is achieved by constraining (6 = 0) + r(6 = 7) < C, which is equivalent
to

a+a+---+a+-+ay < CJ2. (2.9)

The parameter C is set as 1.5 in this work. Values of the parameter C that are too
large may result in long slender bodies, while values that are too small lead to bluff
bodies with large transverse widths that can increase velocity fluctuations in the
wake compared to the baseline circular cylinder. Hence the value of parameter C is
chosen to allow relatively large streamwise lengths and avoid long slender bodies
that significantly vary the characteristic Reynolds number.

These hard constraints mentioned above should be satisfied by any feasible solutions and
imposed in different ways depending on the constraint types. For the equality constraint of
fixed volumes, we implement the constraint by determining the coefficient ag with ag =

\/ (1/mA — % Zf\lzl al.z. In doing so, only the parameters {ai}f.\’: | need to be optimized. As
for the inequality constraints, they can be expressed generally as ¢(a) < b, and enforced

by scaling the geometric parameters with a shifting function as in Huang, Schneider &
Stuart (2022):

& (q) = NG 0@)
¢(a)

With the shifting function @ (a), the geometric parameters that lead to ¢»(a) > b can be
scaled linearly to have the bounded value, i.e. ¢(a) = b. As such, the inverse problem
amounts to finding an optimal parameter a that can minimize the objective quantity, i.e.
K = M[®(a)].

Except for the hard constraints, smoothness regularization should be imposed to avoid
the occurrence of large geometric variations. The geometry is smoothed by penalizing the
gradient of the radius » with respect to the angle 6, i.e. G[a] = dr(f)/df. This is a soft
constraint that allows it to be violated as long as the objective function can be reduced
significantly. The cost function with the regularization term is formulated as

(2.10)

Jr = |Hlallz + |Glalll%, 2.11)

where H is a composite operator of the model operator M and the shifting functional
operator @. The first term in the cost function is the objective term that measures
the spatial-averaged TKE with the geometric parameter a, and the second term is the
regularization term that measures the smoothness of the cylinder shape. The matrix Q
is used to weight the regularization term. In this work, we specify the precision matrix

W= Q! to adjust the strength of the smoothness constraint. To minimize the cost
function efficiently, its gradient is required to guide the optimization, i.e.

dJr / - /
=" [a) "R~ H[a] + (G'[a]) "W Gla]. (2.12)

In this formula, H'[a] is the model gradient of the predicted TKE to the shape parameters,
and G'[a] is the sensitivity of the regularization term, which can be derived based on the
geometric formulation. Hence it is crucial to provide the accurate gradient H'[a] of the
TKE prediction with respect to the parameter for the LES-based shape optimization.
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2.3. Ensemble-based sensitivity analysis for shape optimization

In this work, the ensemble-based approach is introduced to estimate the gradient of the
LES prediction from a statistical perspective. The ensemble-based method draws samples
of uncertain quantities from a prescribed normal distribution, e.g. N'(0, 5.2), based on
Monte Carlo techniques. The ensemble of samples can be expressed as a = {am}l‘m’lzl,
where M is the sample size. The standard deviation is set as o, = 0.05 based on our
sensitivity study in this work. Further, the sample statistics of the system inputs and outputs
are used to estimate the required sensitivity. For an ensemble of samples, the sensitivity
of the ensemble-mean value of the forecast metric H[a] to the analysis variable a is

determined by (Torn & Hakim 2008)

H'[a] = cov(H[a], a) P!, (2.13)

where cov indicates the covariance of the two random variables, and P is the sample
covariance of a. The covariance matrix P of the geometric parameters is computed with
the random samplesas P = (1/(M — 1))(a— a)(a — al. Essentially, the method uses the
normalized cross-covariance between the model parameters and the model predictions to
indicate the model sensitivity H'[a].

The ensemble-based gradient can be derived based on the Taylor expansion. Specifically,
the LES prediction H[a] can be expanded around the sample mean as (Evensen 2018)

Hla] ~ H[a] + H'[a]l(a — a). (2.14)

The high-order terms are neglected by assuming mild or moderate model nonlinearity. In
doing so, the gradient can be approximated with the linear regression as

H'la] ~ (H[a] — H[a])(a—a) "', (2.15)

where the linearization assumption is considered to have H[a] ~ H[a]. These assumptions
suggest using samples of geometric parameters with small variances to compute the
ensemble-based gradient. The samples with large variances may have strong nonlinearity
in the mapping between the geometry parameters and the LES prediction, which can
provide incorrect gradient-descent direction and lead to divergence of the optimization
process. The ensemble-based gradient can be further reformulated as

H'la]l = (H[a] — H[al)(a—a)"(a—a)") ' (a—a)"! =cov(H[al, @) P~'. (2.16)

It leads to a formula identical to (2.13) that estimates the model gradient with the
cross-covariance between the uncertain parameters a and the model predictions H[a].
However, such gradients would provide unusable gradients (Michelén-Strofer et al. 2021b)
due to the inverse of the rank-deficient matrix P. On the other hand, the error covariance
matrix P can be in high dimension, the inverse of which would be computationally
prohibitive. Therefore, the ensemble-based gradient is often pre-multiplied by the
covariance matrix P as (Michelén-Strofer et al. 2021b)

P(H'[a))T = cov(a, H][a]). (2.17)

As such, the pre-multiplied covariance matrix can confine the estimated gradient within
the subspace spanned by these samples, alleviating the ill-conditioned issues (Schillings
& Stuart 2017).

1001 A31-8


https://doi.org/10.1017/jfm.2024.1090

https://doi.org/10.1017/jfm.2024.1090 Published online by Cambridge University Press

LES-based shape optimization with ensemble Kalman method

2.4. Ensemble Kalman method with regularization for shape optimization

In this work, the ensemble Kalman method (Iglesias er al. 2013; Evensen 2018) is
used for the LES-based shape optimization to mitigate turbulent wakes. It employs the
ensemble-based sensitivity analysis to circumvent the difficulty of the adjoint method in
code development and gradient estimation for chaotic systems. In addition, smoothness
regularization is needed to constrain the optimized cylinder. Here, the regularized
ensemble Kalman method (Zhang et al. 2020) is used to impose such regularization.
Specifically, the cost function with the regularization term G[a] can be written as

J = [Ha % 4+ 1Gla™ 1% + et — a'||3, (2.18)

where i indicates the iteration step (and the last term is used to avoid large variations
between adjacent update steps), and R is a scaled identity matrix with the weight parameter
R. The weight parameter R is prescribed as 10~* based on our sensitivity study. Too
large values would lead to the ignorance of the objective term in the cost function and
the convergence to the initial shape. Too small values can result in large update steps
and further optimization divergence as the linearization assumption does not hold in the
ensemble-based gradient. To minimize the cost function (2.18), the update scheme can be
derived (Zhang et al. 2020) by searching for the zero-gradient point. Specifically, with the
ensemble-based gradient, the update scheme can be formulated as

i =d— PG ad) WGld], (2.19a)
at! =& — P(H'[a')T (H'[a') P(H'[a'])T + R) ™ HI&), (2.19)

where G'[a] is the gradient of the smoothness measure to the geometric parameters.
Readers are referred to Zhang et al. (2020) for details of the derivation. In the first step,
the regularized shape parameters a are obtained by penalizing the geometric variation
with the gradient G'[a] conditioned by the sample variance. The gradient G'[a] of the
penalty term with respect to the geometric parameters can be obtained based on the
geometric formulation. The second step is similar to the Kalman update scheme but uses
the regularized parameters instead. This step aims to reduce the LES-predicted TKE,
which can be derived by using the gradient and Hessian information of the cost function
(Luo 2021; Zhang et al. 2022b).

In the regularized ensemble Kalman method, the ensemble-based gradient is used to
estimate the Kalman gain matrix based on (2.17) and

H'la]l P (H'[a])T = cov(H[a], H][a]). (2.20)

The covariance between the geometric parameter and the model prediction is used to
indicate the gradient-descent direction. That means that for the negative correlation
between the geometric parameter and model prediction, the ensemble method reduces
the predicted TKE by increasing the value of geometric parameters. On the contrary, for
the positive correlation, the method would decrease the value of geometric parameters
a to mitigate the turbulent wake. The gradient of the smoothness regularization can
be obtained straightforwardly for differentiable geometric parametrization, as used in
this work, i.e. G'[a] = bT. For complex geometric formulation without available analytic
gradients, it can also be estimated with the ensemble-based gradient by reformulating
as P(G’ [a)T = cov(a, Gla]). That is, one can use the covariance between the geometric
parameters and the smoothness measure to estimate the gradient for the smoothness
regularization, without requiring explicit derivatives.
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The regularization term needs to be weighted to avoid detrimental effects on the
objective quantities. The precision matrix W is used to weigh the regularization term. We
follow the conventional regularized ensemble Kalman method, and formulate the weight

matrix as
X

~ IPIIF

w, (2.21)

where ||P||r is the Frobenius norm of the matrix P, and W is normalized such that its
largest diagonal element is 1. We use the identity matrix as the normalized precision
matrix W in this work. With this formula, the magnitude of W can be adjusted dynamically
based on ||P||r with x kept constant. In doing so, only the correlation information of the
samples is preserved, which overcomes the detrimental effects of sample collapse on the
regularization term. This also makes it intuitive to choose the algorithmic constant .
During the first few iterations, a large penalty parameter x can lead to the regularization
term being dominant, and consequently the TKE evaluation being ignored. For this reason,
the parameter x is modelled using a ramp function as

X (i) = 0.51 (tanh (%) n 1) . (2.22)

The parameter A is the maximum value of x, and i denotes the iteration step. The
parameters s and d control the slope of the ramp curve and are chosen to be 5 and 2,
respectively, by following the conventional regularized ensemble Kalman method (Zhang
et al. 2020). The procedure of the shape optimization using the regularized ensemble
Kalman method is presented in Appendix A. The method is implemented in the publicly
accessible code DAFI (Michelén-Stréfer, Zhang & Xiao 2021a).

We note that the observation augmentation can also be used to enforce the smoothness
constraint. It is achieved by taking the smoothness regularization as additional fictitious
observations b'a = 0. Further, with the augmented observation, the update scheme of the
ensemble Kalman method can be written as

a™ =da — P(H.[a]) " (cov(H,la'], Hala']) + Ry) ™ Hala'l. (2.23)

The augmented observation data form a two-dimensional zero vector, which is omitted in
the formula. The observed quantity H,[a] can be formulated as

‘Hlal
The corresponding observation error covariance R, and model gradient 7/ [a] are written
as
R 0 H'la]
R, = |:0 Q] and H,[a] = [ o7 :| , (2.25a,b)
respectively.

3. Results and discussion
3.1. Ensemble-based sensitivity for chaotic Lorenz attractors

Here, we first examine the accuracy of the ensemble-based gradient for the Lorenz
system, with comparison to the conventional adjoint-based gradient. The Lorenz system
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is simplified mathematically to represent atmospheric convection, and is widely used for
numerical validation of novel predictive methods (Schneider ef al. 2022; Hunt, Kostelich
& Szunyogh 2007) for chaotic systems. The governing equation of the Lorenz system can
be formulated as

dx ( )

— =o0(y—x),

dr Y

dy

= oy — v — 3.1
5 =Py (3.1)
dz

a_xy—ﬁz,

where x,y, z are the system state evolving with time ¢, and o, p, 8 are the system
parameters. The evolution of the state z along with the time ¢ is presented in figure 1(a)
with two sets of parameters, i.e. 0 =10, B =8/3, p =28 and o =10, B = 8/3,
p = 27.9, showing the severe sensitivity of the trajectory to the parameter p. Moreover,
the trajectory of the state typically transits into different types of attractors by varying the
parameter p as shown in figure 1(b). For example, for p = 8 and 18, the trajectory leads
to the fixed point attractor. For p = 28 and 38, the Lorenz system leads to the strange
attractor where the motion is aperiodic and highly sensitive to small changes in the initial
condition. Despite the transition, the time-averaged value

1 T
(z) = lim —/ zdt (3.2)
T—o0 0
increases almost linearly as the parameter p increases, as shown in figure 1(b). It suggests
that the slope of (z) is a smooth-varying, single-valued function of p over a wide range
of values of p (Lea et al. 2000). At approximately p = 24, a discontinuity exists, likely
due to the transition of attractors from transient chaos to strange attractor (Strogatz 2018).
The gradient d(z)/dp should be almost 1 in a wide range of the parameter p, except in the
neighbourhood of p = 24. Therefore, we assess the ensemble-based sensitivity analysis

method in the accuracy of the estimated gradient d(z)/dp.

Figures 1(c) and 1(d) show the gradient d(z)/dp estimated with adjoint and
ensemble-based sensitivity analysis, respectively. Here, the adjoint-based method is
performed as a comparison to the ensemble-based method. The adjoint method is
implemented in the open-source library DiffEqSensitivity.jl (Rackauckas & Nie 2017),
which computes the model derivatives with the auto-differentiation technique. It has been
investigated (Lea et al. 2000) that the adjoint method leads to the blowing up of the
solution due to the severe sensitivity of output (z) to the parameter p. Our results reproduce
that the adjoint method provides an extremely large gradient in the chaotic regime, as
presented in figure 1(c). It demonstrates that the adjoint-based method is not able to
provide usable gradients for the optimization of chaotic systems. The ensemble-based
gradient is calculated as

diz)
< = cov((@), p)/var(p). (3.3)
0

The computed ensemble-based gradients over different values of p with 100 samples are
shown in figure 1(d). It is demonstrated that the ensemble-based sensitivity analysis is
capable of providing accurate gradient information for the chaotic system. Specifically,
the gradient is accurate for the parameters o < 23. In the neighbourhood of p = 24, the
magnitude of the gradient dips slightly as the transition from the fix-point attractor to
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Figure 1. The results of the ensemble-based sensitivity analysis for the Lorenz system. (a) The state trajectory
z(#) with different parameters p. (b) The evolution of the time-averaged output (z) with the parameter p. The
attractors with different parameters p are also plotted. (c,d) The estimated gradients d(z)/dp with the adjoint
and ensemble-based sensitivity analysis methods, respectively. The red circles in panel (d) indicate the gradient
calculated by finite difference with the interval Ap = 1.

the strange attractor. For the parameters p > 24.5, the ensemble-based gradient is close
to the reference, with noticeable oscillation likely due to the sampling errors. We also
test the effect of the sample size on the computed gradient, and the results are detailed in
Appendix B. The results show that the small sample size 10 is sufficient to provide accurate
gradients, which enables it to be feasible for computationally expensive applications
such as LES-based shape optimization. The sample numbers significantly affect the
computational costs for the ensemble-based shape optimization as the method requires
running multiple LES to estimate the model sensitivity on the geometric parameters. In
the following application of shape optimization, we use 10 samples to achieve a balance
between the inversion accuracy and the computational costs. One can increase the sample
numbers to have relatively accurate gradient information, but at significant computational
cost. On the contrary, fewer samples may provide incorrect gradients due to large sampling
errors, leading to divergence in the optimization process. Besides, we emphasize that
the ensemble-based sensitivity analysis method is inherently parallelizable (Kovachki &
Stuart 2019) and does not require intercommunication between samples in LES. Hence
it can have high parallel efficiency as long as sufficient CPU cores are available. Also,
other approaches such as the multigrid method (Moldovan et al. 2021) and the parallel
ensemble Kalman method (Zhang, Zhang & He 2024) can be introduced to accelerate the
ensemble-based optimization process.

1001 A31-12


https://doi.org/10.1017/jfm.2024.1090

https://doi.org/10.1017/jfm.2024.1090 Published online by Cambridge University Press

LES-based shape optimization with ensemble Kalman method

30D (b)

~
Q
~

4D

" T O

200 2D|' 4D

&

1

T N

|
2D 5D 1

Figure 2. (@) Computational domain and (b) mesh refinement for LES of turbulent wakes behind the bluff
body. The orange box indicates the region for calculating the spatial-averaged TKE in the wake. The grey and
green boxes indicate the regions for mesh refinement with different resolutions.

3.2. The LES of turbulent wake behind a circular cylinder

The LES-based shape optimization is performed with the ensemble Kalman method in
this work that employs the ensemble-based sensitivity analysis. The LES of bluff body
flows are conducted in a three-dimensional domain. Figure 2 presents the computational
domain of the wake flow simulations, where x, y and z denote the streamwise, vertical
and spanwise directions, respectively. The computational domain size is Ly x Ly X L, =
30D x 20D x 3.2D, where D is the diameter of the cylinder. In the x—y plane, the origin
of the coordinates is located at the centre of the cylinder. The inlet of the computational
domain is 10D away from the centre of the cylinder, and the outlet is 20D downstream.
The number of grid points is Ny x Ny X N; = 526 x 306 x 49. Around the cylinder, as
depicted by the grey dashed box in figure 2(b), 126 grid points are utilized in both the x-
and y-directions, giving resolution Ax = Ay = 1.6 x 1072D. The mesh cells in the green
dashed box are refined with 161 grid points in the x-direction, and 126 grid points in the
y-direction. The zoomed view around the cylinder is plotted in figure 2(b) to show the
refined region clearly. The grid is stretched gradually to the outlet of the computational
domain in the x—y plane. In the z-direction, the grid is evenly spaced with spatial interval
Az = 0.0667D. As for the boundary condition, in the x-direction, the inflow velocity is
uniform, and a convective condition is applied at the outlet. The boundary conditions in
the y- and z-directions are free-slip and periodic, respectively.

The present work aims to reduce the spatial-averaged TKE within the prescribed region
x € [1D,5D], y € [-2D, 2D] and z € [—1.6D, 1.6D] (see figure 2) by optimizing the
cylinder shape. The reason for selecting this area is twofold. On the one hand, there exist
extensive experimental measurements in this near-wake region for flows over a circular
cylinder, which can be used to validate the accuracy of our LES predictions. On the other
hand, the immersed boundary method is employed in the present work, which does not
resolve the boundary layer and may lead to predictive discrepancies for flows near the
solid surface. Hence the observation quantity is collected in the near-wake region away
from the solid body.

The numerical solver is validated for the flow over a circular cylinder by comparing the
LES prediction with the experimental data. The flow has Reynolds number Re = 3900
based on the cylinder diameter and the freestream velocity Uy, and experimental results
are available to validate the predictive accuracy for this case. The profiles of the mean
velocity and the Reynolds stress at x/D = 1.06, 1.54 and 2.02 are presented in figure 3
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Figure 3. Validation of the LES for turbulent flows over a circular cylinder at Re = 3900.

along with the experimental measurements (Parnaudeau et al. 2008). It can be seen that
both the time-averaged streamwise and vertical velocities have good agreement with
the experimental data. The Reynolds normal stresses (u'u’) and (v'v’) are also well
predicted compared with the experimental measurements. Both 36 and 72 periods of
vortex shedding are used for calculations of turbulence statistics. It shows that 36 periods
are sufficiently long to predict the mean velocity and Reynolds stresses in good agreement
with experimental data, which marginally overestimate the vertical Reynolds normal stress
near the centreline of y/D = 0 and the streamwise Reynolds normal stress within the
shear layer. Increasing the sampling period does not improve the prediction accuracy
significantly. Therefore, we use 36 shedding periods to calculate the TKE in this work
to reduce the computational costs.

3.3. Optimization process

The optimization problem formulated in §2.4 is first solved for the regularization
parameter 4 = 10 and the number of modes N = 50. The number of samples for each
iteration is chosen to be M = 10. Figure 4 shows the evolution of the objective functional
values and the TKE with the iteration. The obtained cylinder shapes at iteration steps of
i=0,2,4,9 are provided, along with the convergence curve. The initial shape is a circular
cylinder that leads to TKE approximately 0.17, while the optimized shape is an asymmetric
oval body that provides TKE approximately 0.056. After two successive ensemble-based
updates, the cylinder shape at the front part is reduced in vertical width and elongated
in the streamwise length, while the width of the rear part is increased. At the fourth
iteration step, the width of the rear part is reduced, leading to a relatively smooth shape.
After the fifth iteration, the cost value and the TKE almost converge without noticeable
variations. At the final iteration step, the obtained shape becomes smooth and significantly
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Figure 4. Convergence of the cost function and TKE K (4 = 10, N = 50) in the convergence history for
0 < i < 10. The obtained shapes at iteration steps i = 0, 2, 4, 9 are plotted alongside.

reduces TKE in the near-wake region. With the optimal shape, the relative TKE and cost
function are reduced to 0.38 and 0.44, respectively, compared to the circular cylinder. The
slight difference between the TKE and the cost values is due to the increased smoothness
regularization term in the cost function compared to the initial cylinder shape. Also, it
is noticed that after the fourth iteration, the cost value remains nearly constant, while
the spatial-averaged TKE K gets further reduced. This is due to the balance between the
regularization term and the objective term. That is, the objective quantity K is decreased
at the sacrifice of the geometric smoothness, which leads to the almost constant cost
function J. The streamwise length of optimal shapes does not reach the bounded value
C/2 = 0.75 mainly because the ensemble Kalman method searches for the optimal shape
within the subspace spanned with the initial samples (Iglesias et al. 2013). We draw
the initial samples with small variances, which limits the solution space and may not
cover possible optimal shapes with streamwise length 0.75. One can increase the standard
deviation to expand the search space, while it may violate the linearization assumptions in
the ensemble-based sensitivity method and lead to divergence of the optimization.

The effects of the regularization parameter A on the optimal shape are investigated
to show the capability of the regularized ensemble Kalman method in enforcing the
smoothness constraint. Different regularization parameters ranging from 0 to 100 are
tested to reduce the TKE in wake flows by optimizing the shape of the bluff body. The
optimization results are presented in figure 5. For regularization parameters equal to zero,
i.e. without smoothness constraints, the proposed method is degraded into the conventional
ensemble Kalman method, which provides a rough shape while the TKE of the wake flow
can be greatly reduced to approximately 0.062. Increasing the parameter to A = 1, the
shape is smoothed and leads to TKE 0.065. With 4 = 5, the obtained shape becomes close
to the optimized shape with 4 = 10 and provides the spatial-averaged TKE 0.060. Further,
with large regularization parameters, e.g. 4 = 100, the regularization term would dominate
the cost function and provide a shape almost identical to a circular cylinder, resulting in a
relatively large TKE of the wake flows, approximately 0.11. For regularization parameters
equal to 10, the optimized shape becomes a smooth oval, and the TKE can be further
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Figure 5. Optimal cylinder shape for different values of the regularization parameter A (N = 50) and the
corresponding prediction of TKE: (a) shape versus 4, and (b) K versus A.

lowered to 0.056, compared to other regularization parameters. Based on this observation,
we choose the regularization parameter 10 to ensure the smoothness of the optimized
cylinder throughout the present study.

We also examine the convergence of the optimized shape in terms of the number of
Fourier modes N in figure 6. Different numbers of modes ranging from 30 to 60 are used
to construct the shape geometry of the bluff body. Our results show that using different
Fourier modes can provide very different shape geometries. Specifically, for N = 30, the
optimized shape is a short oval, which leads to the spatial-averaged TKE in the prescribed
wake region being 0.068. Increasing to 40 modes, the optimized shape is similar to that
with the first 30 modes, while the TKE is reduced to approximately 0.059. In contrast,
with 50 modes, the optimized shape is elongated, with the reduced width in the vertical
direction, which decreases the TKE to approximately 0.056, compared to the optimal
shapes with 30 and 40 modes. Further increasing the mode number to 60, the optimized
shape and the predicted TKE do not vary much from that with 50 modes. It is observed
that the spatial-averaged TKE K is slightly increased compared to the results with 50
modes. That is likely because the high-order Fourier bases are introduced, which leads to
a relatively large regularization term in the cost function. Therefore, the objective term in
the cost function is slightly sacrificed to have a smooth geometry. The results examine the
convergence of the optimal shape in terms of the number of Fourier modes at 50. From
this observation, we use 50 Fourier modes in the present study.

We test two different initial shapes to examine the robustness of the proposed shape
optimization method. One is constructed by slightly perturbing the baseline optimum,
i.e. the optimized shape with a circular cylinder as the initial geometry. The other is
constructed with a; = as = —0.1, ap ~ 0.49, and the rest of the parameters zero, which
leads to a relatively unsmooth geometry. The slightly perturbed shape is obtained by
adding random noises in the coefficients of the first five Fourier modes of the baseline
optimized shape. The added noise is drawn from a zero-mean normal distribution with
standard deviation 0.005. The initial and optimized shapes with the predicted TKE fields
are shown in figure 7. With the slightly perturbed initial shape, the method can provide
an identical shape to the baseline optimum, and the spatial-averaged TKE is reduced from
0.059 for the initial shape to 0.056 for the optimized shape, which examines the robustness
of the optimal shape in this case. The unsmooth initial shape leads to similar optimal
geometries with the baseline that can reduce the TKE in the wake region significantly.
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Figure 6. Optimal cylinder shape for different numbers of the Fourier modes N (1 = 10) and the
corresponding predictions of TKE: (@) shape versus N, and (b) K versus N.
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Figure 7. Optimal cylinder shape for different initial shapes and the corresponding predictions of TKE fields.
The baseline indicates the optimized shape with the circular cylinder as the initial shape.

Specifically, the spatial-averaged TKE is reduced from 0.207 for the initial shape to
0.061 for the optimized shape. However, the rear part has slight differences from the
baseline, as shown in figure 7(d). Such differences may be caused by the local minima
of the optimization problem. We note that the ensemble-based method also suffers from
the local minima issue (Zhang et al. 2020) as in other gradient-based approaches, e.g.
the adjoint-based method. That is because the ensemble method approximates the local
gradient to guide the optimum search, which has difficulty in escaping local optima unless
delicate constraints are imposed. On the other hand, the method searches for the optimal
solutions within the subspace spanned by limited initial samples. The sampling errors
also have detrimental effects on the search for the global optimum. Increasing sample
numbers can expand the search space and alleviate the local minima issue but at significant
computational cost. Alternatively, the resampling technique (Kovachki & Stuart 2019) can
be introduced to break the constraint of initial samples. However, this is out of the scope
of the present work, and needs to be further investigated in future studies.
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Figure 8. Optimal cylinder shape for different Reynolds numbers, and the correspondmg predictions of TKE
fields.

We examine the effect of the sampling time 7 for computing the spatial-averaged TKE
K on the optimized shape. Increasing sampling time to 72 shedding periods has no effects
on TKE predictions, as shown in figure 3, which would result in an identical shape with
the baseline case due to the converged model prediction. To this end, we test a relatively
shorter sampling time, i.e. 18 shedding periods, with which the LES makes relatively poor
TKE predictions compared to the experimental data. The ensemble method can also lead
to an optimized shape similar to the baseline with the reduced sampling time. The plots
are omitted as the optimized shape is close to the baseline result with sampling time 36
shedding periods. This suggests that the reduced sampling time can also characterize the
sensitivity of the turbulence intensity with respect to the shape changes. Further decreasing
the sampling time to 9 shedding periods would provide severe discrepancies in the TKE
prediction, and incorrect gradient-descent directions, which can lead to the divergence of
shape optimization based on our numerical investigation. Regarding the starting time fy
for the TKE calculation, it is set as the initial time for all LES. We use the flow field
before the geometry update as the initial condition for the LES at the next optimization
step. Increasing the starting time 7y would cause additional computational costs and have
no great effect on the TKE prediction due to the sufficiently long sampling time used in
this work.

Finally, we investigate the effects of the Reynolds numbers on the optimized cylinder
shape. Two Reynolds numbers different from the baseline Re = 3900 are tested. One
18 Re = 4000, close to the baseline case, and the other is Re = 2000, much less than
the Reynolds number of the baseline. The optimized shape with the different Reynolds
numbers is shown in figure 8. For flows with Reynolds number Re = 4000, the optimized
cylinder shape is very close to the obtained shape in the flow with Re = 3900 due to the
similar flow physics. The spatial-averaged TKE is reduced to 0.066 with the optimized
shape. For Reynolds number Re = 2000, the optimal shape is relatively less slender than
the baseline case, and the spatial-averaged TKE can be reduced to 0.058. This seems
consistent with the observation of Lorente-Macias et al. (2023) that more slender cylinder
bodies can be optimized in flows with high Reynolds numbers, likely due to the relatively
pronounced effects of the inertial force.

3.4. Optimal cylinder

The optimal cylinder geometry is obtained with the regularized ensemble Kalman method
as presented in § 2. We compare the wake flow field between the optimal cylinder and the
baseline circular cylinder. Figure 9 presents the contours of the TKE and the Reynolds
normal stresses, i.e. (u'u’) and (v'v’), with the baseline circular cylinder and the optimal
oval cylinder. It shows that the Reynolds normal stress and the TKE are reduced noticeably
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Figure 9. Comparison of (a—c) the circular shape and (d—f) the optimized shape in the predicted TKE and
Reynolds normal stresses.

with the optimal shape, compared to the initial circular cylinder. In particular, the circular
cylinder leads to large magnitudes of TKE in the near-wake region. In contrast, the
optimal shape significantly reduces the TKE K downstream of the bluff body. As for
the Reynolds normal stress (u'u’), there exist two axisymmetric fluctuating areas behind
the bluff body. The optimal shape shows a significant reduction in the magnitude of the
velocity fluctuation, and shifts the severely fluctuating areas downstream in the streamwise
direction. The width of the area with large velocity fluctuation (u'u’) is decreased with the
optimized shape. Similarly, the Reynolds normal stress (v'v’) is reduced in magnitude and
slightly moves downstream in the wake region. The width of the region with noticeable
turbulent fluctuations is also reduced compared to the baseline results for the circular
cylinder. Also, it is noted that the maximum value of (v'v’) is located at the centreline,
while that of the streamwise velocity fluctuations is located symmetrically at both sides of
the centreline.

The contours of the mean streamwise and vertical velocities are provided in figure 10.
This shows that the isoline of streamwise velocity with the optimal shape is relatively
narrowed compared to the initial cylinder. The optimal shape mainly reduces the width
of the separation region in the vertical direction, and the separation point does not vary
much compared to the initial cylinder. In particular, the length of flow separation is similar
between the optimal and initial cylinders, which are extended to x/D = 2. The isoline of
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Figure 10. Contour plots of the circular cylinder and optimized shape in (a,b) the predicted mean streamwise
velocity and (c,d) the vertical velocity. The white line indicates the separation region.

u = 0 is plotted to visualize the separation bubble, which shows that the maximum width
of the bubble size is noticeably reduced from approximately 0.6 to 0.4. From the isoline of
the vertical velocity, we can also observe such shrinkages of the flow separation with the
optimal shape.

We plot the velocity and TKE along profiles at different stations for quantitative
comparison between the optimal and initial shapes. Figure 11 shows the TKE and mean
velocity difference along profiles from x/D = 1.0 to x/D = 5.5 with interval 0.5. The
mean velocity difference is calculated with the time-averaged streamwise velocity u and
the mainstream velocity Up as AU = u — Up. The TKE with the optimal shape is reduced
significantly in the near-wake region, and gradually becomes similar to the baseline flows
downstream. The velocity loss of the baseline circular cylinder is larger than that of the
optimal shape in the near-wake region, and becomes similar for x/D > 4. At the locations
x/D = 1.0 and 1.5, the maximum velocity in the shear layer is reduced with the optimal
shape, compared to the initial cylinder. The fluids experience velocity acceleration due to
favourable pressure gradients on the front part of the cylinder. The flow acceleration is
alleviated with optimal shape, which reduces the shear-layer flow velocity compared to
that with the baseline circular cylinders.

Further, we investigate the amplitude of wake meandering with the optimal shape.
The wake meandering can be characterized by the standard deviation oy of the wake
centreline as presented in figure 12. It can be seen that the standard deviation of the
wake centreline with the optimal shape is much lower than with the circular cylinder.
In the near-wake region at approximately x/D = 1, the optimal shape leads to the wake
meandering at standard deviations lower than 0.02, while the circular cylinder gives a
relatively high standard deviation 0.08. Also, with the circular cylinder, the meandering
intensity of the wake is increased almost linearly along the x-coordinates, while the optimal
shape leads to relatively mild increases in oy.. Further approaching downstream, e.g. at
approximately x/D = 4, the mitigation of the wake oscillation becomes more pronounced
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Figure 11. Plots of TKE and streamwise velocity difference AU = u — Uj, along profiles, with comparison

between the baseline circular cylinder and the optimal oval.
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Figure 12. The standard deviation of the wake centreline, with comparison between the initial and optimized
cylinders.

with the optimal shape. Specifically, with the optimal shape, the wake centreline meanders
at standard deviation oy = 0.4, which is lower than the o, = 0.54 of the circular cylinder.
Afterwards, the reduction of the wake meandering is almost unchanged between the two
shapes, with a difference of approximately Aoy./D = 0.14.

The mitigated wake meandering with the optimal shape can also be examined by the
instantaneous spanwise vorticity. Figure 13 shows the instantaneous spanwise vorticity w,
with a comparison between the initial and optimal cylinders. The maximum width of the
first spanwise vortex is approximately 0.7, located at approximately x/D = 1.6. In contrast,
the optimal shape leads to maximum width 0.58 at approximately x/D = 1.4, slightly less
than for the initial shape. Notable differences can be observed at the third vortex further
downstream. The initial shape leads to the maximum width of the third vortex being nearly
2.2 at x/D = 8, while the optimal shape provides that being 1.7 at x/D = 6. The reduced
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Figure 13. Contours of instantaneous spanwise vorticity w,, with comparison of (@) the circular cylinder and
(b) the optimized shape.

width of the shedding vortex leads to the weakened wake meandering, likely due to the
alleviated Kelvin—Helmholtz (KH) instability that will be investigated in § 3.6.

3.5. Spectral analysis of turbulent wakes behind the optimal cylinder

We investigate the flow field of the optimal shape in the frequency domain based on
the spectral analysis methods, including the single-point frequency spectrum and spectral
proper orthogonal decomposition (POD) techniques (Sieber, Paschereit & Oberleithner
2016; Schmidt et al. 2018). The single-point frequency spectrum is used to investigate
the frequency distribution of the velocity-fluctuating energy at different spatial locations.
This is to identify the dominant frequency range at which the wake oscillation is mitigated
significantly. Further, the spectral POD method is used to visualize the spatial modes at
the leading frequency responsible for the wake mitigation.

The TKE is mitigated primarily in the large-scale, low-frequency flow structures. It
is supported by the predicted power spectral density with the circular and optimized
shapes. Figure 14 shows the energy spectrum of transverse velocity at spatial points
x/D =1,3,5,7 along the centreline. The spectral density is computed with the Welch
method. At the point x/D = 1, the magnitude of the spectral density is reduced at a wide
bandwidth of frequency. That is probably because this sensor point is located close to
the bluff body where the KH vortex rolls up and breaks down, fluctuating at various
frequencies. The optimal shape reduces the velocity magnitude within the shear layer,
which mitigates the formation and breakdown of the KH vortex and further velocity
fluctuations at different scales. As the KH vortex evolves further downstream, e.g. at
the location x/D = 5, the spectral density with the optimized cylinder is similar to the
baseline flow at high frequency, and the main difference between the two shapes lies in the
low-frequency range. Given that, the optimal shape mainly reduces the velocity fluctuation
of the large-scale flow structure at low frequencies compared to the flows over the baseline
circular cylinder. Moreover, it is observed that the optimal shape reduces the magnitude of
velocity-fluctuating energy while marginally increasing the leading frequency.

The spectral POD approach (Sieber et al. 2016) is further used to investigate the
large-scale coherent structures of the turbulent wake with the initial and optimized shapes.
The method is the frequency-domain form of POD, which can characterize the leading
frequency and corresponding dominant modes of the wake flows (Schmidt et al. 2018).
Readers are referred to Schmidt & Colonius (2020) for details of the spectral POD method.
We compare the frequency and the spatial mode with the optimal shape and the circular
cylinder, as provided in figure 15. It can be seen that the leading frequency of wake
flows behind the optimal cylinder is increased compared to that of the circular cylinder.
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Figure 14. Single-point spectral density @, of the transverse velocity at different locations, i.e. x/D =1,
3,5, 7, along the centreline downstream, with comparison between the circular and optimized shapes. Here,
D, is the maximum diameter of the cylinder shape.

Specifically, the leading frequency is 0.18 for the circular cylinder, while that for the
optimal shape is 0.26. Although the optimal shape increases the leading frequency, the
magnitude of the spectral POD eigenvalue is significantly reduced compared to the circular
cylinder. Moreover, the optimal shape induces a narrower spatial mode than that of the
initial cylinder, particularly in the far-wake region, as shown in figure 15. The spectral POD
analysis further validates that the optimal shape mainly mitigates the velocity fluctuations
of the large-scale flow structure in the wake flow.

3.6. Mechanism of the turbulent wake mitigation

Here, we discuss briefly the mechanism of the turbulent wake mitigation with the optimal
cylinder. The optimized shape is an asymmetric oval with the front part narrower than
the rear part of the cylinder. Based on the predicted flow field, it is found that the
flow field of the optimal cylinder increases the shedding frequency while reducing the
wake-meandering amplitude. The increased shedding frequency is caused by the reduced
diameter of the bluff body. Specifically, the KH frequency is inversely proportional to
the momentum thickness of the shear layer (Prasad & Williamson 1997), which can be
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Figure 15. (a,b) Spectral POD eigenvalue as a function of frequency, and (c,d) the mode at the leading
frequency, with comparison between the circular and optimal shapes. Again, D, is the maximum diameter
of the cylinder shape.

scaled with the width of the bluff body (Bloor 1964). As such, the reduced cylinder
width can decrease the shear layer thickness and further increase the frequency of the
shedding vortex. We examine the thickness of the shear layer in figure 16(a). It shows that
the shear layer thickness with the optimal shape is noticeably reduced compared to the
baseline circular cylinder, which increases the vortex shedding frequency. The shear layer
thickness is defined to be the transverse distance over which the mean velocity difference
varies from 0.01 AU, to 0.99 AU,,, where AU, is the mean velocity difference across the
shear layer (Prasad & Williamson 1997). On the other hand, the reduced wake-meandering
amplitude is likely due to the mild curvature of the optimized shape, which reduces the
velocity difference of the shear layer and alleviates the KH instability. This is supported
in figure 16(b), explicitly showing the velocity difference between the wake centreline
and mainstream with the optimal shape. The weaker velocity deficit of the optimal shape
can be attributed to the favourable pressure gradient when compared with the baseline
flow, as shown in figure 16(c). The experimental data of pressure coefficients (Norberg
1993) are also provided to validate the LES of the flow over the circular cylinder. The
baseline cylinder has a relatively large favourable pressure gradient due to large curvature,
accelerating the shear layer flows, and increasing velocity differences between the wake
and the mainstream. Such large velocity differences can lead to strong KH instability
and velocity fluctuations. In contrast, the optimal shape reduces the favourable pressure
gradient with the mild curvature, which can alleviate the KH instability and the wake
fluctuations by reducing the velocity difference between the wake and the mainstream
flows.

4. Conclusion

This work introduces the regularized ensemble Kalman method for LES-based shape
optimization. The shape of a bluff body is optimized to minimize the TKE in the near-wake
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Figure 16. Characteristics of the shear layer and the pressure coefficient over the azimuthal angle at the
cylinder surface: (a) thickness of the shear layer; (b) velocity difference of the shear layer; (¢) surface pressure
coefficient.

region. The LES are used to predict the velocity fluctuations given the shape variations.
Within the ensemble Kalman method, the ensemble-based sensitivity analysis is used to
compute the gradient of the LES-based TKE prediction with respect to the geometric
parameters to guide the optimization process. Such gradients are estimated based on
sample statistics of geometric parameters and LES predictions, which circumvents the
blowup issue of the conventional adjoint-based gradient for turbulent flows. Moreover, the
smoothness regularization is imposed based on the regularized ensemble Kalman method
to avoid large variations of the optimized shape.

The feasibility of the ensemble-based sensitivity for the chaotic problem is first assessed
in the Lorenz system. Our results examine the accuracy of the ensemble-based gradient,
which effectively avoids the blowup issue of the adjoint-based sensitivity and provides
usable gradients for optimization of chaotic systems with small sample sizes. Further, we
demonstrate the capability of the regularized ensemble Kalman method in optimizing the
cylinder shape based on LES to mitigate the turbulent fluctuation of wake flows. With the
method, the cylinder is optimized to be an asymmetric oval with the width of the rear part
larger than the front. By analysing the flow field between the optimal and baseline circular
shapes, we observe that the optimal shape mitigates the turbulent fluctuations mainly from
the large-scale flow structure. This is achieved by reducing the velocity difference of the
shear layer with a mild curvature of the optimized shape. This mitigates the shear layer
and KH instability, resulting in the reduced magnitude of wake meandering.

The ensemble-based sensitivity is feasible for the LES-based optimization and could
be extended to data-driven subgrid stress modelling (MacArt, Sirignano & Freund 2021;
Novati, de Laroussilhe & Koumoutsakos 2021) and wall modelling (Bae & Koumoutsakos
2022). However, the ensemble-based sensitivity analysis relies on the sample statistics and
tends to encounter sample collapse issues due to limited sample sizes. That is, the samples
converge around the sample mean, which underestimates sample variance and leads to
negligible model gradients. For this reason, the inflation technique may be introduced to
alleviate the sampling errors. On the other hand, the ensemble method requires running
multiple LES to compute the gradient, which would hinder the application to complex
flow scenarios with high Reynolds numbers. Efficient computation of the ensemble-based
gradient is worthy of further investigation.
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Appendix A. Procedure of the ensemble Kalman method for shape optimization

Given the baseline geometric parameters, the standard deviation o, of the initial sample
distribution, and the weight parameter R, the cylinder shape can be optimized by following
the procedure below.

(1) Initial sampling. The samples of geometric parameters are drawn randomly around
the baseline geometric parameters based on the given standard deviation o,. The
normal distribution is considered for each geometric parameter in this work.

(i1) Imposing constraints. The geometric parameter a is constrained to meet prescribed
requirements to have a fixed volume and physically well-defined geometry. Further,
the obtained geometric parameters are regularized to enforce smoothness with the
regularization step based on (2.19a), (2.21) and (2.22).

(iii) Geometric generation. Each sample of the geometric parameter is used to generate
the geometry of bluff bodies by combining with the Fourier bases based on (2.6) and
(2.7a,b).

(iv) The LES-based propagation. For each geometry, the LES are performed to evaluate
the spatial-averaged TKE in the prescribed wake region based on (2.4).

(v) Ensemble-based sensitivity. The covariance between the geometric parameter and
the predicted TKE is used to evaluate the model gradient with respect to the
geometric parameters based on (2.13).

(vi) Kalman-based update. Based on the model prediction, the ensemble-based gradient
and Hessian of the cost function can be obtained, which is used to update the
geometric parameters as (2.190).

The iteration is stopped when the TKE reduces below the noise level based on the
discrepancy principle (Ernst, Sprungk & Starkloff 2015) or the maximum iteration
number is reached. The procedure of the ensemble-based shape optimization is illustrated
schematically in figure 17.

Appendix B. Sensitivity study of sample sizes for the Lorenz system

In this Appendix, we test the effects of the sample sizes on the accuracy of the
ensemble-based gradient for the Lorenz system. The gradient d(z)/dp is estimated with
the ensemble-based sensitivity analysis approach. Different sample sizes, including 10,
100 and 1000, are tested. The estimated ensemble-based gradient at different values of the
parameter p is shown in figure 18. It can be seen that for p < 23, the gradients are similar
with different ensemble sizes, because the Lorenz system is a fixed-point attractor at this
parameter range, which allows very small ensemble sizes, e.g. 10, to capture the linear
mapping between the parameter p and the output (z). For p > 24.5, the estimated gradient
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Figure 17. Schematic of ensemble-based shape optimization for mitigation of wake turbulence: (a) generate
initial samples of geometric parameters; (b) impose hard and soft constraints; (c) generate cylinder shapes given
geometric parameters; (d) predict the TKE in the wake region based on LES; (e) compute the ensemble-based
sensitivity; (f) update the geometric parameters based on the ensemble Kalman scheme.
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Figure 18. The ensemble-based gradient d(z)/dp for the parameters p € [0, 50] with different sample sizes
for the Lorenz system: (a) M = 10, (b) M = 100 and (c¢) M = 1000.

with sample size 10 becomes unsmooth and oscillates around 1. Increasing the sample size
to 100, the ensemble-based sensitivity can alleviate the oscillations and provide relatively
accurate gradients for each parameter p. With sample size 1000, the estimated gradient
can be very close to the reference even in the chaotic regime.
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