Received 10 May 2024
Revised 01 July 2025
Accepted 02 July 2025

Corresponding author
Simon Schleifer
schleifer@mfk.fau.de

©The Author(s), 2025. Published by
Cambridge University Press. This is
an Open Access article, distributed
under the terms of the Creative
Commons Attribution-
NonCommercial-ShareAlike licence
(http://creativecommons.org
licenses/by-nc-sa/4.0), which
permits non-commercial re-use,
distribution, and reproduction in any
medium, provided the same
Creative Commons licence is used
to distribute the re-used or adapted
article and the original article is
properly cited. The written
permission of Cambridge University
Press must be obtained prior to any
commercial use.

Des. Sci., vol. 11, €30
journals.cambridge.org/dsj
DOI: 10.1017/dsj.2025.10019

me\ Design Society
a worldwide community

2 CAMBRIDGE

» UNIVERSITY PRESS

Design Science

Use case identification of natural
language system requirements with
graph-based clustering

Simon Schleifer ', Adriana Lungu®, Benjamin Kruse®, Sebastiaan van Putten?,
Stefan Goetz "' and Sandro Wartzack

' Engineering Design, Friedrich-Alexander-Universitit Erlangen-Niirnberg, Erlangen, Germany
*Technical Development, AUDI AG, Ingolstadt, Germany

Abstract

Due to the ever-increasing complexity of technical products, the quantity of system
requirements, which are typically expressed in natural language, is inevitably rising. Model-
based formalization through the application of Model-based Systems Engineering is a
common solution to cope with rising complexity. Thereby, grouping requirements to use
cases forms the first step towards model-based requirements and allows to improve the
understanding of the system. To support this manual and subjective task, automation by
artificial intelligence and methods of natural language processing are needed. This contri-
bution proposes a novel pipeline to derive use cases from natural language requirements by
considering incomplete manual mappings and the possibility that one requirement con-
tributes to multiple use cases. The approach utilizes semi-supervised requirements graph
generation with subsequent overlapping graph clustering. Each identified use case is
described by keyphrases to increase accessibility for the user. Industrial requirement sets
from the automotive industry are used to evaluate the pipeline in two application scenarios.
The proposed pipeline overcomes limitations of prior work in the practical application,
which is emphasized by critical discussions with experts from the industry. The proposed
pipeline automatically generates proposals for use cases defined in the requirement set,
forming the basis for use case diagrams.

Keywords: Model-based Systems Engineering (MBSE), Natural Language Processing
(NLP), Overlapping Graph Clustering, Requirements Engineering, Use Case Identification

1. Introduction

The automotive industry faces new challenges such as connected and autonomous
vehicles (Pérez-Moure et al. 2024), which inevitably lead to an increased complex-
ity in the development. A possible source of so-called system requirements is a
System of Systems (SoS) in the domain of transportation (Wilking et al. 2024),
which can comprise other road users, such as micro-mobility solutions like
e-scooters, and charging infrastructure. Additionally, system requirements directly
originate from stakeholders such as users, governments in the form of regulations
(Pohl & Rupp 2021) and legacy projects, see Figure la.

The usage of natural language requirements is still the predominant solution to
apprehend these requirements because of their accessible comprehension and their

1/22

https://doi.org/10.1017/dsj.2025.10019 Published online by Cambridge University Press

https://orcid.org/0009-0004-4178-2739
https://orcid.org/0000-0002-0326-9158
https://orcid.org/0000-0002-0244-5033
mailto:schleifer@mfk.fau.de
http://creativecommons.org/licenses/by-nc-sa/4.0
http://creativecommons.org/licenses/by-nc-sa/4.0
http://journals.cambridge.org/dsj
https://doi.org/10.1017/dsj.2025.10019
https://doi.org/10.1017/dsj.2025.10019

Design Science

Transportation
System of

O)
|
<1

(

Use case -
1

diagrams

[}
N -

Stakeholder

Regulations

K e e
Behaviour
[}
= | modelling _ _ _
(a) (b) ()

Figure 1. Sources of system requirements (a) as a basis for product development
(b) highlighting the use case identification on the system level as the focus of this
article (c).

flexibility (Pohl & Rupp 2021). In industrial practice, however, problems arise due
to the ambiguity of natural language requirements. Even if the requirement
formulation coincides with standardized templates, heterogeneous phrases are
observed. In addition, multilingual requirements specifications are common in
globally operating companies. These problems limit the applicability of natural
language requirements. The use of formal models instead of textual requirements
helps to avoid these problems. This is referred to as model-based requirements and
characterized by more formal and consistent representations compared to natural
language (Mordecai & Dori 2017). In addition, there are advantages through an
improved understanding of requirements, their traceability, and a targeted system
decomposition (Salado & Wach 2019).

Model-based Systems Engineering (MBSE) is one solution for the automotive
industry to master the increasing complexity. As this industry traditionally worked
with natural-language requirements, the utilization of model-based requirements
often marks the starting point for consistent documentation and usage of the
system requirements throughout the product development process.

The V-model structures the MBSE activities (Walden et al. 2015) by describing
a holistic methodology for the product development of complex products. For this,
the left thigh breaks down the system vertically into different levels comprising
subsystems and system elements, see Figure 1b. The Requirements-Functions-
Logical-Physical approach (RFLP) (Kleiner & Kramer 2013) is used for horizontal
decomposition on each system level (Krog et al. 2022). This overall decomposition
is followed by the implementation at the tip of the V-model. The right thigh then
describes the integration (Verein Deutscher Ingenieure 2021). This article deals
with the system level. The vehicle is an example for the focussed level in the context
of an SoS, whereas the brake system forms a subsystem of the vehicle system.

Requirement engineers acquire new requirements specifications from stake-
holder demands and legacy specifications, for example. Next, the system architect
uses these requirements specifications to generate a formalized view of the system.
The identification of use cases is usually the first step for systems architects when
utilizing model-based requirements in the context of MBSE, see Figure 1c. This
step creates a link between a large body of system requirements without a clear
structure and system use cases (Walden et al. 2015). A use case, for example,
‘unlock vehicle’, is described by a set of natural language system requirements and
is part of the requirement viewpoint of RFLP. Subsequent steps, such as the
generation of use case diagrams and behaviour modelling define the transition

2/22

https://doi.org/10.1017/dsj.2025.10019 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2025.10019

Design Science

to and, respectively, the functional viewpoint itself. The concept of use cases is
important, as it establishes an unambiguous understanding of the system func-
tionalities from a user’s perspective. Thereby, relations between different use cases
ensure a proper system understanding (Pohl & Rupp 2021).

The identification of use cases described in natural language requirements is a
task of Requirements Engineering (RE) that is perceived as time-consuming for
complex products like vehicles, and thus, offers potential for automation. The
system architect can be supported with the help of Artificial Intelligence (AI) in
combination with Natural Language Processing (NLP). Beyond that, the applica-
tion of AI approaches is increasing in the field of RE. This includes AI-based
pipelines for requirements elicitation, classification, and analysis (Dalpiaz & Niu
2020), supporting the product developer in general.

This publication contributes towards model-based requirements by providing
a formalization and grouping pipeline that derives use cases based on the require-
ments specification on the system level. The remainder of this article is structured
as follows: Section 2 illustrates the background and related work in this field.
Section 3 presents the research need and resulting research question of the
publication. Section 4 proposes a novel Al-based pipeline to solve this demand.
Section 5 demonstrates the results of the pipeline with datasets from the industry. A
critical discussion of the results is provided in Section 6. Lastly, Section 7 gives a
summary and an outlook for future work.

2. Background and related work

The application of Al in RE is versatile and utilizes a broad variety of different NLP-
based methods. Against this background, the following sections introduce relevant
methods of NLP and related research work relevant for this article.

2.1. Methods

The presented pipeline builds upon fundamental concepts of NLP and Al Thus,
Section 2.1.1 introduces the concept of embeddings, which are used to represent
natural language in a vector format. The fundamentals of clustering, which can be
used to group requirements, are presented in Section 2.1.2. In addition, Sec-
tion 2.1.3 introduces an NLP method to increase the accessibility of natural
language documents.

2.1.1. Embeddings
Word or sentence embeddings are a common way to formalize natural language
requirements into a machine-readable format by a vector representation. Accord-
ing to Jurafsky & Martin (2023), early embedding models are so-called static, as
each word is represented by a fixed embedding which is learned once. This includes
the Term Frequency-Inverse Document Frequency (TF-IDF) model that consists
of two parts. The first part (TF) counts the frequency of a word within a document.
The second part (IDF) assigns greater weight to words that appear in fewer
documents. The combination results in a sparse vector, which represents the
TF-IDF embedding.

A more sophisticated static embedding model is the skip-gram algorithm,
which is part of word2vec (Mikolov et al. 2013). In contrast to TF-IDF, word2vec

3/22

https://doi.org/10.1017/dsj.2025.10019 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2025.10019

Design Science

results in a dense vector. The embeddings are trained by considering the neigh-
bouring words of the target word (Jurafsky & Martin 2023).

Contextual embedding models are characterized by having a distinct vector for
each meaning of a word (Jurafsky & Martin 2023). Such word embeddings can be
derived from the Bidirectional Encoder Representations from Transformers
(BERT) model by Devlin et al. (2019). The model is based on a bidirectional
transformer encoder architecture. To use a BERT model for a specific task, it can be
fine-tuned based on pre-trained parameters (Devlin et al. 2019). The output of the
BERT model is the word embedding and a special token that comprises the
embedding for a given input sentence (Jurafsky & Martin 2023).

Sentence-BERT (SBERT) by Reimers & Gurevych (2019) builds upon BERT
and specializes in sentence embeddings. Therefore, a Siamese network architecture
is utilized. SBERT embeddings have a fixed length. SBERT can also be fine-tuned to
a specific task-like information retrieval or document clustering. (Reimers &
Gurevych 2019).

The latter task requires a similarity measure to evaluate two sentences based on
their embeddings. Cosine similarity is a common metric for this purpose. Math-
ematically, it is equal to the normalized dot product of two vectors or embeddings,
respectively (Jurafsky & Martin 2023).

In the context of RE, embeddings are used to represent linguistic and semantic
information for further automated processing (Sonbol et al. 2022). In this context,
highly similar embeddings could indicate redundant requirements.

2.1.2. Clustering

The use of clustering algorithms is a common approach to finding structures in
vector data, such as embeddings. It is an unsupervised Al method in which a
distance metric is used to determine whether two points belong together. The aim
is to seek an assignment in which the distance within a cluster is minimized, whilst
maximizing the distance between different clusters (Ertel 2017). There are algo-
rithms that assign data points exclusively to one cluster, whereas overlapping
clustering allows to assign a single data point to multiple clusters (Fortunato
2010). The cluster count is either known in advance or estimated by heuristic
methods during the clustering process (Ertel 2017).

As many structures can be described as graphs, dedicated research exists to
determine clusters within graph data. A graph consists of nodes and edges
connecting the nodes. If all edges are unordered pairs, the graph is undirected.
In a weighted graph, each edge is assigned a weight (Schaeffer 2007). Similar to
clustering of vector data, graph-based clustering aims to find structures in which
nodes have a high probability of belonging together. It is especially common in the
tield of bioinformatics and network analysis (Fortunato 2010).

Altaf-Ul-Amin et al. (2006) propose a graph-based clustering algorithm to
identify protein interactions. It is applied to an undirected graph and utilizes
weights. The edge weights represent the number of shared neighbours of connected
nodes and are merged individually for each node. This approach can be expanded
to generate overlapping clusters. Further, the clustering algorithm can be adapted
to graphs from other domains apart from protein interaction.

In contrast, Shchur & Giinnemann (2019) develop their algorithm for domain-
independent applications from the outset. The focus is on overlapping clustering of

4/22

https://doi.org/10.1017/dsj.2025.10019 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2025.10019

Design Science

undirected unweighted graphs. The algorithm is called Neural Overlapping Com-
munity Detection (NOCD). For this, a Graph Neural Network (GNN) is utilized.
The GNN uses a matrix representation of the non-clustered graph as input and
outputs a threshold-based clustering of the nodes.

Often, there exists some labelled data that can be integrated in the clustering
process, which leads to Semi-Supervised Clustering (SSC). It complements the
unlabelled data of traditional clustering. A common way to represent the labelled
data is pairwise must-link and cannot-link constraints (Cai et al. 2023). Zhao et al.
(2012) propose an SSC algorithm for document clustering. The algorithm can deal
effectively with the interference of clusters but is not overlapping according to the
before given definition.

Different metrics are available to evaluate the results from clustering. Accord-
ing to Amigo et al. (2009), intrinsic metrics are best suited for an unlabelled dataset.
Here, intra- and inter-cluster similarity are investigated without reference to
ground truth data. For a dataset with ground truth, extrinsic metrics can be utilized.
This usually requires manual effort for labelling the dataset. Extended BCubed
(Amigd et al. 2009) is an evaluation metric considering overlapping clustering. The
metric comprises a precision and a recall value. Precision decreases if more clusters
than necessary are identified. This equals more information than in the ground
truth data. The recall decreases if items with multiple labels are not represented in
multiple clusters. This means that too little information was created. The F-score is
the harmonic mean of precision and recall.

The application of clustering plays an important role in Al-based RE because it
can be used to structure large requirements specifications (Sonbol et al. 2022).

2.1.3. Keyphrases
Keyphrases can be used to make clusters of natural language data more accessible,
as they provide a context. In general, there are supervised and unsupervised
keyphrase extraction methods (Ajallouda et al. 2022). The advantage of an
unsupervised method is that no labelled training data is necessary. However, the
accuracy is usually lower than that of supervised approaches (Schopf et al. 2022).
The process of keyphrase extraction comprises the identification of candidate
keyphrases, usually by utilizing Part-Of-Speech (POS)-tagging (Ajallouda et al.
2022). Grootendorst (2020) introduces a word n-gram-based framework to extract
keyphrases. Here, the ranking of candidates is based on an SBERT model. Schopf
et al. (2022) expand this approach by using POS-tagging for the extraction part.
This results in the unsupervised PatternRank model

The primary benefit of RE is the improved accessibility of requirement sets with
unknown content. This is achieved by describing them based on their core aspects

2.2. Related work

In RE, NLP is applied to a large variety of different tasks. Among others, Sonbol
et al. (2022) provide a comprehensive literature review concerning different
scenarios of NLP-based methods in RE. The authors identify five general tasks
comprising management, modelling, extraction, quality, and analysis. The last task
comprises most of the contributions and is further subdivided into traceability,
classification, semantic role labelling, and clustering.

5/22

https://doi.org/10.1017/dsj.2025.10019 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2025.10019

Design Science

A first approach in the field of clustering is proposed by Casamayor et al.
(2012). The authors propose a semi-automatic framework for grouping function-
ally related requirements within the scope of software engineering. For this,
methods of text mining are used to identify architectural elements that result in
the responsibilities of the system. As similar responsibilities should be imple-
mented in one conceptual component, an unsupervised clustering algorithm is
applied. Hence, this publication contributes to a functional decomposition of a
requirements specification.

Similarly, Misra et al. (2016) extract topics of a requirements specification to
enhance the system understanding by decomposition. However, the natural lan-
guage requirements are pre-processed and represented by a simple vector space
model. Latent semantic analysis measures the similarity between requirements and
extracts themes from the requirements specification. A clustering step assigns
every natural language requirement to one or more identified themes.

Mokammel et al. (2018) describe a framework beginning with the automated
extraction and refinement of requirements. This is followed by a clustering step.
For this, a keyword-requirement matrix is established and processed with latent
semantic analysis. Similar requirements are then clustered with K-Means. Add-
itionally, the clusters are named based on the previously created matrix. Parallel to
this, a second matrix containing the cosine similarity of requirement pairs is
created and used to analyse the similarity further.

Salman et al. (2018) use clustering to decompose large requirement documents
to distribute smaller groups of requirements to different development teams. For
this, each requirement is pre-processed by removing frequent words and converted
into a vector space model. A simple count-based vector representation is used for
this purpose. Agglomerative hierarchical clustering combined with cosine simi-
larity is applied to retrieve the clusters. The optimum number of clusters is
automatically determined.

In addition, Giille et al. (2020) aim to increase the accessibility of crowd-
sourced user stories. For this, topic modelling is utilized and allows for deriving
requirements from user stories more easily. The authors report best results with a
combination of word2vec embeddings, as a more sophisticated embedding model
compared to the previous approaches, and word mover’s distance (Kusner ef al.
2015) as a similarity measure.

Furthermore, Kochbati et al. (2021) cluster related user stories, which are high-
level descriptions of requirements. Similar to Giille et al. (2020), the word2vec
model calculates word embeddings, which are combined to requirement embed-
dings by a scoring function that also computes the pairwise similarity of require-
ments. Based on this, hierarchical agglomerative clustering is utilized with an
automated determination of the optimum number of clusters. Additionally, heur-
istics are established to derive use case diagrams from the clustered user stories,
whereas each user story leads to a single use case within the diagram.

Lastly, Bisang et al. (2022) aim to identify redundant natural language require-
ments and thereby contribute to the research topic of finding similar requirements.
The authors focus on requirements that are formulated in different languages. For
this, multilingual language models are compared with the combination of machine
translation and a monolingual embedding model. The results indicate a better
performance of multilingual language models. This is potentially explained by very
specific words and formulations in the requirement domain.

6/22

https://doi.org/10.1017/dsj.2025.10019 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2025.10019

Design Science

3. Research question and methodological approach

The importance of MBSE is growing steadily in the automotive industry and other
sectors. A possible approach starts with Model-based Requirements Engineering
(MBRE). Here, an early step is modelling the system context based on provided
requirements specifications, for example, from previous stakeholder analysis, in
the form of use case diagrams. Each use case documents a system functionality and
identifies relationships to both actors, external systems, and other use cases. By this,
the overall system understanding is increased. For this, it is necessary to decompose
the requirements specification (Pohl & Rupp 2021). Thus, the identification of use
cases from interrelated natural language requirements is an important task in
industrial application (Schleifer et al. 2024).

As shown in the previous section, there are different approaches within the
context of this overall challenge. The initial deployment of semi-automatic
approaches such as Casamayor et al. (2012) has been followed by an increasing
utilization of AT methods. For example, Kochbati et al. (2021) propose a pipeline
from natural language requirements to use case diagrams using word embeddings
and clustering. The conceptual framework of Schleifer et al. (2024) aims to cover
the context modelling by use case diagrams specific for the automotive industry.
This framework consists of two steps. The first step is the analysis and structuring
of the given requirements specification, that is, the use case identification. This
highlights the importance of decomposing requirements specifications into use
cases. This step is followed by the derivation of the use case diagram with its
relationships, see Figure 2.

Nevertheless, neither of the previously introduced approaches fully covers the
complexity of the industrial demand, which arises when identifying use cases from
natural language requirements. In globally operating companies, it is common that
the requirements are not monolingual, as it is typically required by language
models of NLP. To this point, the automatic identification of use cases from
multilingual requirements specifications has not been considered. Requirements
on the system level often have varying levels of detail and are potentially non-
atomic. This means that a single requirement can address multiple aspects of
functionality. This requires a non-exclusive mapping. By that, one requirement can
be grouped into multiple use cases and contributes to each of them. Following the
example proposed in Schleifer et al. (2024), the requirement ‘The vehicle shall
provide a remote unlock functionality’ contributes to two use cases, namely ‘unlock
vehicle’ and ‘keyless access’. Existing approaches neglect this necessity. Further, a
suitable approach for industrial applicability must be able to work with engineering
knowledge from ongoing development. In this publication, available development

= rl-
L -==--+»{Formalization Distinction Derivation of H *
relationships

use case-defining

Requirements v and behaviour Use case
specification | [Allocation of Grouping of defining FRs Derivation of diagram
related NFRs related FRs use case elements
Analysis and structuring Derivation of use case diagram

Figure 2. Framework for use case diagram derivation according to Schleifer et al. (2024) including Functional
Requirements (FRs) and Non-Functional Requirements (NFRs).

7/22

https://doi.org/10.1017/dsj.2025.10019 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2025.10019

Design Science

knowledge is understood as manually created mappings between requirements and
use cases. In the early stages of development, this information is sometimes already
available due to transfers from earlier development or preliminary manual work.
However, these mappings are most likely incomplete. Additionally, an approach
with industrial applicability must work both in an unsupervised and semi-
supervised manner. Existing approaches are either supervised or unsupervised,
though. Consequently, there are currently two major challenges that have to be
overcome:

« Non-exclusive grouping of requirements in use cases, and
« Incorporation of available development knowledge, if existing.

This leads to the following research question:

How can Al-based methods of NLP be used to overcome the current challenges
in identifying use cases from a natural language requirements specification?

To address this question, this publication proposes a novel modular Al-based
pipeline with two main steps. First, methods from NLP are used to establish a
requirements graph. If prior knowledge exists, it is integrated into the graph and
serves as semi-supervision. Second, an overlapping graph clustering algorithm is
applied to derive potential use cases. The accessibility is increased by providing
keyphrases to each use case. The pipeline is implemented as a prototype and tested
with different sets of input requirements from the given automotive use case to
validate its applicability. The results are evaluated on the basis of different levels of
existing supervision of ongoing development. Further, manual analysis by experts
from the industry is conducted.

Throughout the following sections, an automotive case study illustrates the
individual steps of the proposed pipeline. The subject of this study is a requirements
specification belonging to a sample feature called ‘passenger comfort’. This specifi-
cation comprises 61 requirements. Excerpts of the resulting use cases can be found in
Table 1 on page 16, as this feature also serves for the concluding experiment.

4. Pipeline

With reference to the research gap stated in Section 3, a comprehensive pipeline for
identifying potential use cases described in a system requirements specification is
proposed. Figure 3 illustrates the successive steps, which are briefly presented in
this paragraph and further elaborated in the following subsections.

At the beginning (refer to Section 4.1), as part of the pre-processing, it is
necessary to remove syntax errors from the natural language requirements speci-
fication to get a more homogeneous input document. This step includes the
translation in case of multilingual requirements to receive a monolingual set of
requirements. Afterwards, Section 4.2 describes the representation of each require-
ment by a node in the requirements graph. The information enclosed in the
natural language requirements is extracted and formalized with the help of an NLP
pipeline. This includes the fine-tuning of pre-trained language models, the gener-
ation of sentence embeddings for each requirement, and the determination of
similarities based on the embeddings. This results in edges linking the require-
ments. If available, the graph is supplemented by edges based on existing devel-
opment knowledge. This comprises an early, incomplete state of manual mapping
of functionally related requirements from current development projects. In order

8/22

https://doi.org/10.1017/dsj.2025.10019 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2025.10019

Design Science

Table 1. Extract of the results of a feature without extensive ground truth data

Use case 1

Keyphrase

Operate the passenger seat

Req. 1

Req. 2

Req. 3

The vehicle system must offer the user the possibility to adjust the
longitudinal position of the front passenger seat.

The vehicle system shall offer the user the possibility to adjust the
seat height of the front passenger seat.

The vehicle system shall offer the user the possibility to adjust the
side bolster of the driver’s seat.

Use case 2

Keyphrase

Adjust the seat height

Req. 4

Req. 3

The vehicle system shall offer the user the possibility to adjust the
seat height of the driver’s seat.

The vehicle system shall offer the user the possibility to adjust the
side bolster of the driver’s seat.

Use case 3

Keyphrase

Store the last steering column position

Req. 5
Req. 6

Req. 7

The vehicle system shall offer the driver the possibility to adjust the
steering column electrically.

The vehicle system must store the last steering column position used
by the driver.

The vehicle system shall offer the driver the possibility to load the
last stored steering column position.

Requirements
specification

My 0
2l

(] “Provide a m ;ﬂs N
N
keyless Q
Q access” -
System
use cases

Requ1rements Nodes Edges
| preparation ’ I ’ ‘

4.1 Pre- 4.2 4.3
processing Requirements graph Use case identification

Figure 3. Overview of the proposed pipeline for grouping natural language requirements to system use cases.

9/22

https://doi.org/10.1017/dsj.2025.10019 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2025.10019

Design Science

to unify the requirement links, which are automatically derived from the already
existing, explicitly defined ones, a semi-supervised approach is proposed. Subse-
quently, the generated graph allows the use case identification based on require-
ments, which refer to similar functionalities by utilizing an overlapping graph
clustering algorithm (refer to Section 4.3). The results are enriched by a keyphrase
extraction for each cluster, which supports the engineer with the evaluation and the
final use case definition.

4.1. Pre-processing

The necessary pre-processing steps are elaborated in Figure 4. A requirements
specification typically comprises additional attributes and entry types like head-
lines and information items besides the natural language requirement text (Pohl &
Rupp 2021). The input for the pipeline is a filtered requirements specification that
only comprises Functional Requirements (FRs) and Non-Functional Require-
ments (NFRs). These requirements might not strictly adhere to a template. Besides
that, it appears that some requirements contain syntax errors like missing full stops
or misplaced line breaks. An automatic rule-based removal of syntax errors based
on a predefined sentence pattern is part of the proposed framework. The next step
is transforming a potentially multilingual requirements specification into a mono-
lingual one. For this, an automated translation based on Al is utilized. An
available software tool with a domain-specific corpus for the automotive industry
executes the translation. These steps perform better in conjunction with the prior
text clean-up. In addition, a manual random sample check is recommended to
guarantee the quality of the translated requirements. This is the only manual
intervention during the pre-processing and allows early detection of deficiencies if
the automated translation.

For example, a syntactically incorrect requirement formulated in German
might be: ‘Das Fahrzeugsystem muss die letztgenutzte\ nLenksdulenposition des
Fahrers speichern!’. Here, it can be seen that the requirement ends with an
exclamation mark instead of a full stop. \ n’ indicates an unwanted line break.
The pipeline resolves both issues and translates the requirement into English. The
resulting requirement is as follows: ‘The vehicle system shall store the last steering
column position used by the driver.’

4.2. Requirements graph

The generation of the requirements graph forms the essential part of natural
language formalization. Due to the semi-supervised approach of this pipeline,

=
LL AT Automated Random

f .
of syntax translation sample check

Requirements erTors Preprocessed
specification requirements
Legend
@ Al-based b Manual intervention
Figure 4. Detailed view of the pre-processing steps.

10/22

https://doi.org/10.1017/dsj.2025.10019 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2025.10019

Design Science

the requirements graph allows to incorporate available development knowledge in
the form of existing links between functionally related requirements. This infor-
mation is provided to the pipeline as a table. As depicted in Figure 5, the input for
this stage is the preprocessed requirements. The generation of the graph is divided
into node (light blue) and edge (dark blue) definitions. The requirements graph
represents the output of this step and its structure allows to use of different existing
clustering algorithms. This allows to choose existing clustering algorithms tailored
to specific problems. FRs and NFRs are both used as input data for the graph
generation.

4.2.1. Definition of nodes

The left side of Figure 5 illustrates the pipeline steps concerning the definition of
the nodes (light blue) in the requirements graph. First, a pre-trained language
model is loaded. This is the basis for the requirement embeddings. Generally,
publicly available language models are domain-independent as their training
corpus is versatile and accordingly not aligned with automotive system require-
ment formulations. In order to obtain a language model that is better tailored to the
task at hand, fine-tuning of the language model may be carried out. This is only
possible if the ongoing development offers existing knowledge in the form of data,
which can be used to guide the original language model into a more domain-
specific one. The required training data is manually created by the system architect.
Here, links based on functional relations between requirements are drawn and
typically documented in a table view. Such links are likely to exist as part of the
initial manual screening of the requirements specification, or from previous
development projects. To derive the training examples for the fine-tuning step,
two related requirements are paired together. By iterating over the already linked
requirements, the complete training corpus is constructed. This approach reveals
positive training examples only, which correspond to must-link constraints. The
nature of the existing development data (training data) makes it impossible to

iy &5

if not .
Preprocessed ’ Requirements
requirements Sfully connected graph

Pre-trained

language
model

Edges by
language
model
O

Edges by
% knowledge Threshold t, tn

Existing and exploration
development data parameter o

Requirement Create
embedding nodes

Weight
function

Fine-tuning
language
model

Legend
O Noderelated @ Edgerelated @O Semi-supervision b Manual intervention
O SentenceBert @ Multiple Negative Ranking Loss

Figure 5. Formalization of a requirements specification with a requirements graph.

11/22

https://doi.org/10.1017/dsj.2025.10019 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2025.10019

Design Science

derive cannot-link constraints, as a non-existent link between two requirements
does not automatically imply a contradiction. Instead, it is assumed that the
current state of development is not final and additional must-link constraints or
functional similarities can exist, respectively. For this reason, the language model is
fine-tuned with SBERT and the loss function Multiple Negative Ranking Loss
(MNRL), as this loss function is suited for training tasks with only positive
examples in particular. By this, SBERT learns to increase the similarity of embed-
dings corresponding to the pairwise linked requirements from the training corpus.
This results in a language model, which is more suited to represent the domain-
specific characteristics of the requirements specification.

The next step calculates the requirement embeddings. Depending on the
availability of existing development knowledge, either the initial language
model or the fine-tuned one is utilized to transform the natural language
requirement texts into requirement embeddings. SBERT calculates the embed-
dings for each requirement automatically. This results in a dense vector repre-
sentation, which is always of the same dimension, independently of the input
text length. The last step is to create the nodes. Each requirement is represented
by a single node in the requirements graph. The natural language requirement
text, embedding, and the type of the requirement (FR or NFR) are stored as
parameters of the node.

Following the case study, a pre-trained language model is fine-tuned based on
existing links between requirements. For example, requirements 1 and 2 from
Table 1 are already mapped to a common functionality by the system architect.
Afterwards, each requirement text is transformed into an embedding. The require-
ments graph of the case study comprises 61 nodes after this step.

4.2.2. Definition of edges

The edges of the requirements graph represent the functional similarity between
pairs of input requirements. The extent of this similarity can be described further
by edge weights. All edge-related steps are marked in dark blue in Figure 5.

If prior knowledge from existing development data exists, a rule-based
approach is utilized to represent this explicit link between two requirements in
the requirements graph. The edges of knowledge are represented by the edge
weight w, = 1. By this, it is guaranteed that a must-link relation is present in the
requirements graph. In addition, the existing development data influences the
edges drawn by the language model, as they were used for fine-tuning. This leads to
the second source of edges.

SBERT is utilized to derive edges by the language model from the previous
step. A common way to estimate the similarity of two embeddings is the cosine
similarity (Reimers & Gurevych 2019). It calculates the cosine of the angle between
two embedding vectors in their hyperspace. If this results in a value exceeding the
user-defined threshold ¢ for a pair of requirements, then an edge is established
between the two corresponding nodes. The graph is not necessarily fully connected
after iterating over all requirement pairs. However, a fully connected graph is
essential for the subsequent use case identification. For this reason, the threshold
for creating new edges between the nodes of the requirements graph is incremen-
tally decreased until there are no more isolates. A break condition in the form of a
manually chosen minimal threshold t,,;, limits the overall number of edges. If the

12/22

https://doi.org/10.1017/dsj.2025.10019 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2025.10019

Design Science

graph is not fully connected before reaching t,,, remaining isolated nodes are
neglected as they are considered to be too dissimilar to the rest of the requirements
specification. Such requirements need to be complemented manually to the
resulting use cases at the end. The edge weight based on the requirement embed-
dings and the SBERT model is indicated by w,. As the weight w, of the initial edge
creation is retained, the iterative approach does not reduce the weight of existing
edges.

A combination of the two edge weights w, and w, is necessary as most
clustering algorithms consider only one edge weight. For this reason, a weight
function is introduced:

w=a-wy,+(1—a)-w, (1)

By this, a combined edge weight w is calculated. Additionally, the resulting
weights are normalized by division with the largest weight value Wy,y.
Equation (1) introduces the exploration parameter a, which allows the user to
influence the subsequent clustering. By choosing values larger than 0.5, the
combined edge weight emphasizes the rule-based edges from the existing devel-
opment data. Conversely, a focus on the language model results from values for a
smaller than 0.5. This means that even if there is a lot of supervision through
existing development data, its explicit influence can be reduced (o < 0.5) and a new,
explorative mapping based on the language model can be generated. Thus, the
existing knowledge only has an indirect influence on the result through fine-
tuning. For example, the nodes of the case study are connected with the exploration
parameter equal to 0.5 to incorporate existing development knowledge and simi-
larities between embeddings equally.

4.3. Use case identification

Figure 6 illustrates the individual steps of the use case identification. The require-
ments graph serves as input for the clustering step, which corresponds to the
framework step ‘grouping related FR’ depicted in Figure 2. Extending Schleifer
etal. (2024), both FR and NFR are considered here. The clustering itself is not semi-
supervised but takes into account the industrial demand for overlapping clusters.
Thereby, a large number of graph clustering algorithms can be utilized, whereat
most originate from the bioinformatics domain or network analysis. With the help
of keyphrase extraction and ranking, it is possible to increase the accessibility of the
use cases for the system architect. The accessible use case mappings represent the

overall output of the pipeline.
m N m N

2V

Overlapping
clustering

Keyphrase
extraction

Keyphrase
ranking

Requirements System
graph O O use cases
Legend
O Part-of-speech pattern O SentenceBert
Figure 6. Detailed view of the use case identification.
13/22

https://doi.org/10.1017/dsj.2025.10019 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2025.10019

Design Science

4.3.1. Clustering

The pipeline employs an overlapping clustering algorithm to identify use cases
based on the requirements graph. Graph-based clustering algorithms, established in
research fields such as bioinformatics and network analysis, are deemed to be suitable
for this purpose. Since the number of use cases described in a requirement set is
unknown in advance, the clustering algorithm must be able to determine the optimal
cluster count at runtime. This is especially important if existing development data
contributed to the graph generation. In this case, the system architect manually
identified some potential use cases, but there might be additional ones in the
requirement set. Likewise, it can be beneficial to combine some manually identified
use cases. This leads to less clusters than provided for the graph generation as
described in Section 4.2. Further, the clustering algorithm must be based on edge
weights rather than node connectivity, as the edge weights resulting from Equation 1
are an integral part of the pipeline. Otherwise, the manual influence of the explor-
ation parameter a is lost. This parameter allows the system architect to influence the
results of the clustering algorithm without additional training.

The identified clusters, that is, use cases, of the case study are shown in excerpts in
Table 1 and discussed in detail in Section 6. It can be seen that functionally similar
requirements belong to one cluster. As expected, requirements 1 and 2, previously
assigned as examples of existing development knowledge, share a cluster.

4.3.2. Keyphrases

The results of the graph clustering form the basis for identified use cases and are
presented to the system architect. To increase the accessibility and facilitate the
manual examination of the proposed use cases, each cluster is described by multiple
keyphrases. For this, PatternRank (Schopf et al. 2022) is used for keyphrase
extraction from the requirements within a cluster. A custom POS pattern is defined

((<VB>|<VBZ>|<VBP>|<VBD>|<VBG>|<VBN>)
+(<x><JJ>%<NN>+))

The first part matches a single verb in various forms. This is combined with an
optional word of any type, an optional adjective, and one or more nouns. If this
POS pattern is matched in the requirements within the use case, the corresponding
part of the requirement text is extracted as a candidate keyphrase. This can lead to
multiple potential keyphrases for each use case. Thus, the descriptive phrases are
ranked in decreasing order according to their similarity to the natural language
requirements of the use case. The language model from Section 4.2 is used for the
keyphrase ranking. The best matches are presented alongside the use case require-
ments to assist the system architect

The first identified use case of the case study deals with adjusting the passenger
seat of the vehicle. The keyphrase ‘Operate the passenger seat’ improves the
understandability

5. Application

The pipeline is implemented and tested with industrial datasets to evaluate its
performance. Details of the specific implementation, the datasets, and the

14/22

https://doi.org/10.1017/dsj.2025.10019 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2025.10019

Design Science

conducted experiments are given in Section 5.1. The results of the experiments are
presented in Section 5.2 and discussed in Section 6.

5.1. Implementation and datasets

The pipeline is implemented in Python and tested on a laptop with an 11th-
generation Intel i7 processor, 32 GB RAM, and a NVIDIA RTX A3000. A cloud
computing environment is used in the case of labour-intensive fine-tuning of the
language model. The pipeline uses the pre-trained language model ‘all-MiniLM-
L6-v2’ (huggingface 2024) in combination with SBERT (Reimers & Gurevych 2019).
In case of existing development data, the language model is fine-tuned with the
derived training examples over 20 epochs. The clustering algorithm of Altaf-Ul-
Amin et al (2006) is adopted to use the combined edge weight from
Equation (1) instead of deriving edge weights from the neighbouring nodes as
originally. This adoption allows for manual influence on the clustering results by
the exploration parameter a. The implementation by Rossetti et al. (2019) is utilized.
The extraction of keyphrases follows the implementation by Schopf et al. (2022).

Two industrial datasets from the automotive domain are used to evaluate the
pipeline. Each dataset is pre-sorted according to superordinate system function-
alities. By that, a dataset contains multiple use cases, which need to be identified,
from a certain scope of the vehicle system. These are ‘human-machine-interaction’
(dataset 1) and ‘passenger comfort’ (dataset 2) with 125 and 61 requirements,
respectively. The first dataset is completely mapped by a system architect into
20 clusters. 46 out of 125 requirements belong to more than one cluster in this
dataset. This solution corresponds to a possible ground truth data for evaluation.
The second dataset has 39 initially mapped requirements. This equates to roughly
64% manually mapped requirements. To place this semi-supervised scenario closer
to the intended usage, half of these mappings are neglected, which ultimately
results in a semi-supervision ratio of approximately 32%.

The semi-supervision ratio r is introduced to describe the experiments carried
out. Here, r denotes the percentage of mapped requirements in the requirements
specification. This ratio is extended to the simulated semi-supervision ratio #y, to
describe the application of completely mapped datasets. Then, 7y, is the ratio of
used training pairs that are incorporated during the generation of the requirements
graph. This allows to use of metrics like extended BCubed for evaluation whilst
only considering a fraction of supervision in the pipeline.

Three individual experiments are carried out based on this concept, see
Figure 7. Experiments (a) and (b) examine the influence of the exploration

Exp.) Input) > Proposed Al-pipeline > > Results) Evaluation
(a % Toim =~ 20%, & = [0;1 Metri
am ~ 20% @ = [0;1] ml?ﬁ |8 Metries

Dataset 1 >

(b) N Tsim ~ 50%, a = [0;1] - Izg Metrics
System
~ 320 = se cases i i
Dataset 2 _P[T 32%, a =05 u % Discussion

Figure 7. Overview of the conducted experiments (Exp).

15/22

https://doi.org/10.1017/dsj.2025.10019 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2025.10019

Design Science

= F-Score
Overlap
Lost regs.
Clusters

parameter a. Dataset 1 serves as input, and the extent of simulated semi-
supervision is set to 7y, =20% and ry, =50% for experiments (a) and (b),
respectively. The resulting system use cases are evaluated by extrinsic metrics.
Experiment (c) investigates the pipeline with dataset 2, and thus, without ground
truth data. The exploration parameter is set to & =0.5. The results are evaluated
manually by discussion with experts.

5.2. Experimental results

The resulting metrics for experiments (a) and (b) are shown in Figure 8. The value
range of the exploration parameter « is plotted on the x-axis in both cases. Four
evaluation metrics are derived from the results, beginning with the F-Score as the
harmonic mean of extended BCubed precision and recall. Next, the ratio of
resulting overlapping requirements to ground truth overlaps is considered. In
addition, the percentage of requirements that are lost during the clustering step
is calculated. Lastly, the ratio between identified clusters by the pipeline and to
ground truth number of clusters is used to evaluate the experiments.

Experiment (a) with 20% simulated semi-supervision shows an F-Score
between 0.7 and 0.6 up to a = 0.5 with a significant drop to 0.4 for larger values
of a. The ratio between actual and ground truth overlapping requirements is
between 0.4 and 0.2 decreasing with larger a values. The ratio of requirements
that are lost by the clustering algorithm increases from approximately 10% for o =
0 to 20% o = 1. Lastly, the ratio of identified clusters is around 0.8 for a =[0;0.4],
which means less clusters than in the ground truth data. The cluster count enlarges
with increasing a up to 1.4 of the ground truth cluster count.

Experiment (b) incorporates 50% simulated semi-supervision. The results
show a stable F-Score metric around 0.8 for the entire value range of a. The ratio
of overlapping requirements is between 0.2 and 0.4 which corresponds with less
overlap than in the ground truth data. The ratio of lost requirements during the
clustering step is generally low but increases up to approximately 0.1 for larger
values of a. The ratio of the number of identified clusters compared to the ground
truth number of clusters is smaller than 1 for all values of a, meaning that less use
cases are derived. However, an increase with increasing « is noticeable.

Experiment (a): 7, ~ 20 % o Experiment (b): rg, =~ 50 %

1.4+ '

1.21 08 eS|

1.0 1
© o 0.6
= 0.81 =
= =
= 0.6 -\ = 0.4

0.4

0.2 1
0.2 A
0.0 T T T T 0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Exploration parameter « Exploration parameter «

Figure 8. Metrics for a feature with extensive ground truth data for two different scenarios: 7, ~ 20% and
Tsim ~ 50% simulated semi-supervision ratio.

16/22

https://doi.org/10.1017/dsj.2025.10019 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2025.10019

Design Science

In experiment (c), the pipeline was tested on the second set of requirements
(dataset 2) without comprehensive ground truth data in the form of a finished
manual use case identification. Thus, it was applied in the intended manner. The
evaluation for the last experiment is based on an open discussion with experts from
the industry. The input requirements specification used was thoroughly examined
before assessing the resulting use case clustering. Any drawbacks of the pipeline
were duly noted and are discussed in the next section. Excerpts of the results of this
experiment can be seen in Table 1. Here, the industrial requirements specification
is clustered by the proposed pipeline according to use cases. Three of five use cases
are shown with exemplary requirements for each cluster.

6. Case study and discussion

This section provides a thorough examination of the implications of the findings
from the proposed pipeline. First, the task of identifying use cases described in
interrelated natural language requirements is a complex task, and thus, can not be
measured solely by a single extrinsic metric. Unlike classification or clustering
problems with unambiguous ground truth, assigning requirements to use cases is
more complex. There are various possible functional groupings. For instance, in
the automotive context, requirements can be grouped based on vehicle function-
alities or operating modalities. The fact that different requirement groupings are
possible means that a lower result in the F-Score against a potential ground truth
standard does not necessarily equate to poor performance. For this reason, an
additional manual assessment of the resulting clustering is carried out in a second
step. Nevertheless, the results from Figure 8 help to assess the functionality of the
pipeline in general.

For experiment (a) with rg, ~20%, that is, consideration of little existing
development data, a shift towards larger values for a, and thus, focusing existing
mappings, leads to a decreasing F-Score. Conversely, this shows the positive
influence of the requirements embeddings created by the SBERT model. If the
amount of prior knowledge increases (ry, ~ 50%), this decrease is absorbed and
results in a stable F-Score measure. The demand for overlapping clusters is an
essential contribution of this pipeline. By reviewing the ratio between ground truth
overlaps and clustered overlaps, it becomes apparent, that the pipeline results in
too little overlapping requirements in both cases 7, &~ 20% and r, ~ 50% as the
corresponding metric is smaller than 1, see Figure 8. In the second scenario, this
gap is decreasing for larger values of o, which shows that adding labelled data
increases the performance if the focus of the pipeline is set on manually drawn links
between requirements. This gap can potentially be reduced by adapting the
hyperparameters of the exerted clustering algorithm by Altaf-Ul-Amin et al.
(2006) or utilizing different algorithms. A crucial observation is that up to 20%
of the requirements are lost during clustering. This is most likely caused by the
functionality of the clustering algorithm. For this reason, different clustering
techniques could further increase the performance of the pipeline. Up to now, lost
requirements during the use case identification step result in additional work. The
system architect has to manually assign the remaining requirements to the pro-
posed clusters afterwards. Lastly, the number of identified clusters is either too
small or exceeds the ground truth data. Especially for scenario 7y, =20% a
significant step around a=50% can be observed. Since the extended BCubed

17/22

https://doi.org/10.1017/dsj.2025.10019 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2025.10019

Design Science

metric favours cluster quality over quantity, the parallel decrease of the F-Score can
be explained. The trend towards convergence for increasing o in scenario r, =
50% shows that a focus on prior knowledge with simultaneously more supervision
leads to better results of the pipeline proving the applicability. In general, the results
can be adjusted towards the specific needs by testing different hyperparameters and
clustering algorithms.

As mentioned earlier, a sole focus on ground truth data from one possible
clustering result is not sufficient. For this reason, Table 1 shows extracts of the
identified use cases for a different set of requirements concerning passenger
comfort functions. The results were discussed with experts from the industry.
The pipeline results in a use case clustering by passenger seat (use case 1), driver
seat (use case 2), and steering column (use case 3). The first two use cases show
excerpts of the associated requirements, whereas the third use case is shown
completely. The keyphrase indicates the scope of the passenger seat correctly for
the first use case. For use case 3, the keyphrase hints correctly at the steering
column. In case of the second use case, the keyp hrase is not suitable to assist the
system architect with an appropriate headline. Here, the keyphrase suggests a
resulting mapping by seat movements instead of different seating areas within the
vehicle. The assignment of requirement 3 in use case 1 is incorrect based on the
given scope. However, the requirement is clustered to use case 2, which concerns
the driver’s seat, as well. When analysing the requirements as a whole, it becomes
clear that no overlapping allocation is necessary for this specific requirement set.
With a few exceptions, this is recognized correctly by the algorithm. Use case 3 is an
example of a complete and correctly assigned cluster. It contains all requirements
concerning the steering column. Requirements 1 and 6 illustrate a problem when
utilizing an Al-based translation tool. In the automatic translation, the German
signal word ‘miissen’ was correctly translated as ‘must’, but a domain-specific
characteristic was not taken into account. It is common to use the verb ‘shall’
instead (Dick et al. 2017).

Summing up, the defined research question in the present contribution can be
answered as follows: The combination of a semi-supervised requirements graph
generation based on sentence embeddings with an overlapping clustering algo-
rithm is a sound basis for meeting practical demands arising when identifying use
cases from natural language requirements specifications. This can be seen at the
external metrics presented in Figure 8. The F-Score is arguably not especially high,
but, due to the absence of a single ground truth solution, a good indicator for a
working pipeline. This initial assessment is confirmed by the manual evaluation of
Table 1. With that, it can be stated that the utilization of Al-based translations is
capable of preserving the functional substance of requirements. Further, the
division into a semi-supervised requirements graph generation and the overlap-
ping clustering allows to utilize existing manual allocations as well as considering
different levels of detail concerning the requirements. In contrast to the existing
research presented in Section 2.2, this pipeline is fully automated and only requires
the user to perform an optional check of the Al-based translation and set the
parameters a, t and t,i,. However, a manual check of the overall results is
recommended. By considering the practical demands for overlap and semi-
supervision, the pipeline is suited to support a system architect to identify use
cases from requirements specifications more efficiently. The combination of a pre-
trained language model with the development knowledge of multiple system

18/22

https://doi.org/10.1017/dsj.2025.10019 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2025.10019

Design Science

architects enables the identification of previously unidentified use cases. In add-
ition, the bias caused by the manual work of individual developers is reduced, as the
knowledge of multiple system architects can be included in the requirements
graph. Furthermore, the pipeline shows good performance even with low compu-
tational resources like an ordinary laptop computer. Each presented experiment
was calculated in <10 min.

Nevertheless, limitations arise due to the industrial dataset. This limits the
replicability of the results for related research. Further, the experimental results
from Section 5 show general limitations of the specific implementation of the
proposed pipeline. The problems relate to the loss of requirements, too few
overlapping requirements and the number of clusters. This can potentially be
avoided by utilizing different clustering algorithms. Initial tests using the clustering
algorithm by Shchur & Giinnemann (2019) show promising results. The loss of
requirements is avoided, and thereby the manual effort is further reduced. In
addition, the number of overlapping clusters comes closer to the ground truth data.
To increase the overall clustering performance, modifications to the requirements
graph are suggested. At this point, the advantages of the graph-based approach
come into effect. Additional sources of knowledge between pairs of requirements
can be easily integrated into the graph as long as a weight-based representation is
possible. An example therefore is a rule-based assessment of the natural language
requirements based on vocabulary or sentence structure. By adopting the weight
function to new information sources, the influence on the clustering algorithm
results is preserved. Further, the division in semi-supervised knowledge represen-
tation and unsupervised overlapping clustering allows to utilize a broad variety of
clustering algorithms and enables profiting from future developments in this
research area. Keyphrases based on POS patterns show promising results in
increasing accessibility. The generation of keyphrases can potentially be enhanced
by utilizing a generative large language model as shown in Song et al. (2024). Lastly,
limitations to the evaluation arise due to the unstructured assessment by experts
from industry. This is sufficient to gain a general understanding of the pipeline’s
capabilities, but lacks in serving as a final evaluation.

7. Conclusion and outlook

The identification of use cases in large sets of natural language requirements is an
important step towards model-based requirements. Until now, meeting the spe-
cific needs outlined above has required a time-consuming manual process. Against
this background, the publication contributes towards the automatic identification
of use cases based on natural language requirements. For this, Al methods are
combined to a novel pipeline. The pipeline is divided into two parts. First, a
requirements graph is established, incorporating prior knowledge from develop-
ment. This step is realized with an SBERT model. Second, overlapping clustering
algorithms identify individual use cases and their corresponding requirements.
The proposed pipeline is complemented by experimental results for two different
sets of requirements. The results confirm the applicability of the pipeline by
meeting the practical demand for handling multilingual requirements, consider-
ation of existing manual assignment, and overlapping clustering of requirements in
use cases. Consequently, this allows for a more comprehensive and less subjective
system understanding by the system architect. The majority of the requirements

19/22

https://doi.org/10.1017/dsj.2025.10019 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2025.10019

Design Science

specification is automatically converted in use case proposals with only a little
manual work remaining. In general, the pipeline forms the basis for the subsequent
use case diagram generation and behaviour modelling. For the latter, activity
diagrams are used to detail the behaviour described in the use case.

Besides that, need for further research emerge. The modular design of the
pipeline allows to use of other clustering algorithms, which potentially eliminate
current limitations. Extensions to the methodological basis of the pipeline are
conceivable. Based on the results obtained by clustering, it could be analysed
whether the requirements fully describe the respective use case. This includes
preconditions, main and alternative scenarios, as well as postconditions (Pohl &
Rupp 2021). A proposal for potential gaps in the use case specification could be a
step towards a generative Al in this field.

Acknowledgements

The authors would like to thank AUDI AG for supporting and funding the research
project.

References

Ajallouda, L., Fagroud, F., Zellou, A. & Benlahmar, E. 2022 A systematic literature review
of Keyphrases extraction approaches. International Journal of Interactive Mobile
Technologies (IJIM) 16 (16), 31-58.

Altaf-Ul-Amin, M., Shinbo, Y., Mihara, K., Kurokawa, K. & Kanaya, S. 2006 Develop-
ment and implementation of an algorithm for detection of protein complexes in large
interaction networks. BMC Bioinformatics 7 (1), 207. https://doi.org/10.1186/1471-
2105-7-207

Amigo, E., Gonzalo, J., Artiles, J. & Verdejo, F. 2009 A comparison of extrinsic clustering
evaluation metrics based on formal constraints. Information Retrieval 12 (4), 461-486.

Bisang, U., Briinnhdufler, J., Liinnemann, P., Kirsch, L. & Lindow, K. 2022 Evaluate
similarity of requirements with multilingual natural language processing. Proceedings of
the Design Society 2, 1511-1520.

Cai, J., Hao, J., Yang, H., Zhao, X. & Yang, Y. 2023 A review on semi-supervised clustering.
Information Sciences 632, 164—200.

Casamayor, A., Godoy, D. & Campo, M. 2012 Functional grouping of natural language
requirements for assistance in architectural software design. Knowledge-Based Systems
30, 78-86.

Dalpiaz, F. & Niu, N. 2020 Requirements engineering in the days of artificial intelligence.
IEEE Software 37 (4), 7-10.

Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. 2019 BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding (No. arXiv:1810.04805). arXiv.
https://doi.org/10.48550/arXiv.1810.04805

Dick, J., Hull, E. & Jackson, K. 2017 Requirements Engineering. Springer International
Publishing.

Ertel, W. 2017 Introduction to Artificial Intelligence, Undergraduate Topics in Computer
Science. Springer International Publishing.

Fortunato, S. 2010 Community detection in graphs. Physics Reports 486 (3-5), 75-174.
Grootendorst, M. 2020 KeyBERT: Minimal Keyword Extraction with BERT. Zenodo.

20/22

https://doi.org/10.1017/dsj.2025.10019 Published online by Cambridge University Press

https://doi.org/10.1186/1471-2105-7-207
https://doi.org/10.1186/1471-2105-7-207
https://doi.org/10.48550/arXiv.1810.04805
https://doi.org/10.1017/dsj.2025.10019

Design Science

Giille, K., Ford, N., Ebel, P., Brokhausen, F. & Vogelsang, A. 2020 Topic modeling on user
stories using word mover’s distance. In Proceedings — 7th International Workshop on
Artificial Intelligence and Requirements Engineering, AIRE 2020, IEEE pp. 52-60.

huggingface 2024 Sentence-transformers/all-MiniLM-L6-v2, https://huggingface.co/sen
tence-transformers/all-MiniLM-L6-v2.

Jurafsky, D. & Martin, J. H. 2023 Speech and language processing: An introduction to
natural language processing, computational linguistics, and Speech Recognition with
Language Models. 3rd https://web.stanford.edu/~jurafsky/slp3/ed3book.pdf

Kleiner, S. & Kramer, C. 2013 Model based design with systems engineering based on RFLP
using V6. In Smart Product Engineering, pp. 93—102. Springer.

Kochbati, T., Li, S., Gérard, S. & Mraidha, C. 2021 From user stories to models: A machine
learning empowered automation, In Proceedings of the 9th International Conference on
Model-Driven Engineering and Software Development (Vol. 10), pp. 28—40. SCITE-
PRESS — Science and Technology Publications.

Krog, J., Sahin, T. & Vietor, T. 2022 Towards a systems engineering methodology for
architecture development of vehicle concepts. In Proceedings of NordDesign 2022. 12.
The Design Society.

Kusner, M., Sun, Y., Kolkin, N. & Weinberger, K. 2015 From word Embeddings to
document distances. In Proceedings of the 32nd International Conference on Machine
Learning, pp. 957-966. PMLR.

Mikolov, T., Chen, K., Corrado, G. & Dean, J. 2013 Efficient Estimation of Word
Representations in Vector Space (No. arXiv:1301.3781). arXiv. http://arxiv.org/abs/
1301.3781

Misra, J., Sengupta, S. & Podder, S. 2016 Topic cohesion preserving requirements
clustering. In Proceedings — 5th International Workshop on Realizing Artificial Intelli-
gence Synergies in Software Engineering, RAISE 2016, New York, NY, USA: Association
for Computing Machinery pp. 22-28.

Mokammel, F., Coatanéa, E., Coatanéa, J., Nenchev, V., Blanco, E. & Pietola, M. 2018
Automatic requirements extraction, analysis, and graph representation using an
approach derived from computational linguistics. Systems Engineering 21 (6), 555-575.

Mordecai, Y. & Dori, D. 2017 Model-based requirements engineering: Architecting for
system requirements with stakeholders in mind. In 2017 IEEE International Systems
Engineering Symposium (ISSE), pp. 1-8. IEEE.

Pérez-Moure, H., Lampon, J. F. & Cabanelas, P. 2024 Mobility business models toward a
digital tomorrow: Challenges for automotive manufacturers. Futures 156, 103309.

Pohl, K. & Rupp, C. 2021 Basiswissen Requirements Engineering: Aus- Und Weiterbildung
Nach IREB-Standard Zum Certified Professional for Requirements Engineering Foun-
dation Level. dpunkt.verlag.

Reimers, N. & Gurevych, I. 2019 Sentence-BERT: Sentence Embeddings using Siamese
BERT-Networks (No. arXiv:1908.10084). arXiv. https://doi.org/10.48550/
arXiv.1908.10084

Rossetti, G., Milli, L. & Cazabet, R. 2019 CDLIB: A python library to extract, compare and
evaluate communities from complex networks. Applied Network Science 4 (1), 1-26.

Salado, A. & Wach, P. 2019 Constructing true model-based requirements in SysML.
Systems 7 (2), 19.

Salman, H., Hammad, M., Seriai, A.-D. & Al-Sbou, A. 2018 Semantic clustering of
functional requirements using agglomerative hierarchical clustering. Information
9 (9), 17.

Schaeffer, S. 2007 Graph clustering. Computer Science Review 1 (1), 27—64.

21/22

https://doi.org/10.1017/dsj.2025.10019 Published online by Cambridge University Press

https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://web.stanford.edu/~jurafsky/slp3/ed3book.pdf
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781
https://doi.org/10.48550/arXiv.1908.10084
https://doi.org/10.48550/arXiv.1908.10084
https://doi.org/10.1017/dsj.2025.10019

Design Science

Schleifer, S., Lungu, A., Kruse, B., van Putten, S., Goetz, S. & Wartzack, S. 2024
Automatic derivation of use case diagrams from interrelated natural language
requirements. In Proceedings of the 18th International Design Conference (Vol. 4),
Cambridge University Press (CUP), pp. 2725-2734.

Schopf, T., Klimek, S. & Matthes, F. 2022 PatternRank: Leveraging pretrained language
models and part of speech for unsupervised keyphrase extraction. In Proceedings of the
14th International Joint Conference on Knowledge Discovery, Knowledge Engineering
and Knowledge Management (IC3K 2022) - KDIR; ISBN 978-989-758-614-9; ISSN 2184-
3228, SciTePress, 243-248. DOI: 10.5220/0011546600003335

Shchur, O. & Giinnemann, S. 2019 Overlapping community detection with graph neural
networks. In Deep Learning on Graphs Workshop, KDD. http://arxiv.org/abs/
1909.12201

Sonbol, R., Rebdawi, G. & Ghneim, N. 2022 The use of NLP-based text representation
techniques to support requirement engineering tasks: A systematic mapping review.
IEEE Access 10, 62811-62830.

Song, M., Geng, X., Yao, S., Lu, S., Feng, Y. & Jing, L. 2024 Large language models as zero-
shot keyphrase extractors: A preliminary empirical study.

Verein Deutscher Ingenieure, 2021 Development of mechatronic and cyber-physical
systems (No. ICS 03.100.40, 31.220.01, 39.020). Beuth.

Walden, D. D., Roedler, G. J., Forsberg, K., Hamelin, R. D., Shortell, T. M. & Inter-
national Council on Systems Engineering, eds 2015 Systems Engineering Handbook: A
Guide for System Life Cycle Processes and Activities, 4th ed., Wiley.

Wilking, F., Horber, D., Schleifer, S., Behringer, M., Miehling, J., Goetz, S. & Wartzack,
S. 2024 Utilization of MBSE models for a micro-mobility solution in the context of
system of systems. In 2024 19th Annual System of Systems Engineering Conference
(SoSE), IEEE pp. 24-29.

Zhao, W., He, Q., Ma, H. & Shi, Z. 2012 Effective semi-supervised document clustering via
active learning with instance-level constraints. Knowledge and Information Systems 30
(3), 569-587.

22/22

https://doi.org/10.1017/dsj.2025.10019 Published online by Cambridge University Press

https://doi.org/10.5220/0011546600003335
http://arxiv.org/abs/1909.12201
http://arxiv.org/abs/1909.12201
https://doi.org/10.1017/dsj.2025.10019

	Use case identification of natural language system requirements with graph-based clustering
	1. Introduction
	2. Background and related work
	2.1. Methods
	2.1.1. Embeddings
	2.1.2. Clustering
	2.1.3. Keyphrases

	2.2. Related work

	3. Research question and methodological approach
	4. Pipeline
	4.1. Pre-processing
	4.2. Requirements graph
	4.2.1. Definition of nodes
	4.2.2. Definition of edges

	4.3. Use case identification
	4.3.1. Clustering
	4.3.2. Keyphrases

	5. Application
	5.1. Implementation and datasets
	5.2. Experimental results

	6. Case study and discussion
	7. Conclusion and outlook
	Acknowledgements
	References

