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BOUNDS FOR A LINEAR DIOPHANTINE PROBLEM
OF FROBENIUS, II

YEHOSHUA VITEK

1. Introduction. Let 4 = {aq, ay,...,a.} be a set of relatively prime
integers such that 0 < ap < a4y < ... < ay, = n. Let ¢(4) denote the smallest
integer such that, for N = ¢(A4), the equation

aexo + a1+ ...+ ax, =N

should always have a solution in nonnegative integers.

For s =1 it is well known that ¢(«y, «;) = (¢g — 1)(ey — 1) but for
s = 2 the problem of determining ¢ is difhcult.

Schur [1] was the first to give an upper bound

(1) ¢(4) = («o — (e, — 1).
Lewin [3] proved that for s = 2,
(2) o) = [3(n — 2)7],

where [x] stands for the greatest integer <x. This bound is sharp for s = 2
only, and Lewin conjectured that in general, ¢(4) =< [(n — 2)(n — s)/s].

Support to Lewin’s conjecture was given by Erdos and Graham, who
proved [2].

(3) ¢(4) = 2[a/(s+ Dlagy —ae+1 < 202/(s + 1),
In this paper we shall prove

THEOREM 1. Let «y < a1 < ... < ay = n be relatively prime positive integers
such that w = s(s — 3). Then:

@) olay,...,uy) < n?/s.

The restriction, n = s(s — 3) is probably not essential. Yet, in Lewin’s

conjecture, # must be large enough with respect to s, since for example
$(2,4,5,6,7) =4>[(7T—4)(T7 — 2)/4)].

Bound (4) is not the best possible one, but it cannot be improved beyond
Lewin’s conjecture since

o(n,n — 1, (s — Dn/s, (s — 2)n/s, ..., n/s) = (n—2)(n — s)/s.

There is one advantage of (1) over (2), (3), and (4). It considers the
influence of «, which may be rather small and reduce ¢(A4) significantly.
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A step in this direction was done in [6]. It was proved there that if A con-
tains at least two non-zero residues modulu «, then:

() ¢(4) = [a/2](as — 2).

The second purpose of this paper is to go further in this direction and to
prove (using the notation «|b for « divides b):

THEOREM 2. Let ao < a1 < ... < ay be relatively prime positive integers,
having different residues mod . If, for every divisor r of ay such that r < s and
r X's, the number of residues mod ao/r in {ay, . .., a5} 1s not 1 + [s/r], then

(6) ¢((ZOy e yas) = [“0 -2+ S)/S]((L.‘. - S)'

This bound is achieved by the arithmetic sequence g, ¢y + d, ..., ao +
sd = ag, in case that ¢y = 1 (mod s) or d = 1, (see [5]).

Observe that the condition: “For every divisor 7 of a,"’, etc., is always valid
for s = 2, thus providing a shorter proof for Theorem 1 in [6]. Further, this
condition is satisfied in “most’’ cases. Bound (6) is always valid if ¢y = 3a,.

Finally we shall prove for s = 3

THEOREM 3. Let ay < a1 < a2 < as = n be relatively prime positive integers.
Then

o(ag, ay, as, az) < [(n — 2)(n — 3)/3].

2. Some lemmas. Let G be an abelian finite group, and let 4, B be subsets
of G. Let |A| denote the cardinality of A4, and 4 + B denote the set
{a +bla € A,b € B}. Thus, 2F 4 stands for 4 + ... + A, k times.

Then by a theorem of Mann, proved in (4], we have: If for every proper
subgroup H of G, |A + H| = |A| + |H| — 1, then for every subset B of G,
for which 4 + B # G, we have |4 + B| 2 |4| + |B| — 1.

Henceforth, such a subset 4, which satisfies |4 + H| = |4| + |H| — 1 for
every proper subgroup H, will be said to satisfy Mann's Condition, or briefly
M.C. Using induction we immediately obtain:

LemMma 1. Let G be an abelian finite group. Let A, A" be subsets such that
|A| = s + 1, and A satisfies M.C. in G. Then

[A" + >t 4] 2 min{|G], |4] + ( — 1)s}.
In particular, setting A’ = A we have >' A = G, for | = 1 + [(|G|] — 2)/s].
Let ¢ be a positive integer. Let J, denote the group of residues modulo g,
the members of which are the integers {0,1,...,q — 1}. Let E be a set of
nonnegative integers. Then E, denotes the set of residues mod g of the
elements of . Thus E, is a subset of J, and its elements are also integers.

Hence (E,), has a meaning, where p is some positive integer. If p|g then
clearly (E,), = E,.
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Let p be a positive integer. We denote the set of all nonnegative integral
multiples of p by (p). With this notation, any subgroup of J, is given by
(q/7), = 10,q/r,2q/r, ..., (r — 1)q/r}, where r is a divisor of ¢. (Saying
divisor we always mean a proper one, neither 1 nor ¢.)

In terms of these notations, we now redefine M.C. as follows: A subset E
of J, satisfies M.C. if and only if |E + {(¢/r),] = |E| + 7 — 1, for every
divisor 7 of ¢. Note that the + operation in E + (g/r), is modulo g.

In the following Lemmas 2-6 we shall be concerned with a subset £ of J,
such that |E| = s+ 1, 0 € E and gcd(q, E) = 1. The notation ged (g, E)
stands for the greatest common divisor of the nonzero elements of {¢} \J E:

LeMmMA 2. Let v be a divisor of q. Then:
(i) [E+ {g/r)e| = r|Ey/7]
(i) |E+ (g/r),) <s+rifand onlyif |E,;,] £ 1+ (s — 1)/r.
Hence, E satisfies M.C. in J, if and only if |E,,| > 1+ (s — 1)/r, for
every divisor v of g.
(i) If |[Egpl €14+ (s = 1) /rthenr < s,r&¥sand |E,;| = 1+ |s/r].
(iv) E satisfies M.C. in J, if and only if |E, ;| # 1 + [s/r] for every
dwisor v of q such that v < s, r {s.

Proof. (i) E + {q/r), is a union of cosets of the quotient group J,/{q/7),.
This group is isomorphic to J,;, and each coset corresponds to a residue
modulo ¢/r. Hence |E 4 {q/r),| = 7| E, |-

(ii) Follows directly by (i).

(iii) Ifr < s werenot true, then we would have |E, .| £ 1+ (s — 1)/r < 2.
But then zero would be the only residue mod ¢/r in A, contradicting the
assumption ged(q, E) = 1.

The two remaining arguments are due to the inequality: | + {(¢/r),] =
|[E| > s. Together with (i) this implies s/r < |E,| S 14+ (s — 1)/r <
1+ s/r. |E,;;| is an integer, hence r £ s and |E,,,| = 1 + [s/r].

(iv) This is an immediate consequence of (ii) and (iii).

We shall study now (Lemmas 3-6) the subset E in case that it fails to
satisfy M.C. These lemmas are not necessary for the proof of Theorem 2.

LEMMA 3. Let v be a divisor of q satisfying |E + (q/r),] < s + r. By Lemma 2
we then have |E,;,| = 1 + [s/r]. Define Nand pby \ = s — r[s/rland p + 1 =
|[E M {g/r)|. Then:

() 1=sxsp=sr—1
(i1) For each nonzero member of E,,,, there are in E at least r — p + \
elements, congruent to it mod q/r.

Proof. Clearly, p =7 — 1 and by Lemma 2, A\ = 1. To prove the rest,
denote E,;;, = {0, b1, ..., bsn}. Let n; be the number of elements of I£ that
are congruent to b; mod ¢/r. Then we have: [E| = p + 1 4 3 [¥/1 ;. Setting
|E| =s+1=r[s/r]+ X+ 1 we obtain X4 2191 (r —n,) = u. Since

n; £ r, this proves N < pand 7; = ¥ — p + X\ and the proof is completed.
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The result p = 1, proved in Lemma 3, means that if |E + (¢/7),] < s +r
then E contains nonzero elements of (g¢/r). But we need more than that.
Actually we need that the members of E M {g/r) should generate the whole
subgroup (g/r),. This happens if and only if ged(q, E M {g/r)) = q/r.

LemMA 4. If E does not satisfy M.C. in J,, then there is a divisor r of q such
that

) Bl =14 (= 1)/r and (i) ged(g, EMN{g/r)) = q/r.

Proof. There is, by Lemma 2 (ii), some divisor p of ¢ such that |E,,| =
1+ (s — 1)/p. Clearly, gcd(q, E M {(q/p)) = hq/p where k is some divisor of
p. We denote » = p/h and intend to prove that r satisfies arguments (i) and
(i1).

We first claim that |E, | = |Enl £ 1+ B(|E,,| — 1). Indeed, there are
at most % different elements in £;,,,, having the same nonzero residue mod ¢/p,
whereas those elements of E which divide ¢/p, divide kg/p too, and therefore
contribute only one member to E,,/,.

Now we obtain:

Egl ST+ R(Eml —1) =1+ (o/r)01+ (s —1)/p— 1)
14+ (s—1)/r,

which proves (i). Since (ii) is obvious, the lemma is completed.

A

LEMMA 5. Let rp be a divisor of q satisfying:
(i) ged(g, EMN{g/r)) = q/r and (i) ged(q/r, £,y N (/7)) = q/7p,
Then
ged (g, EM{g/rp)) = q/7p.

Proof. Let ¢ be a divisor of ged(q, E M {g/rp)). Then t|gcd(q, E M {g/7)),
hence by (i) t|(g/r). It follows that ¢ divides any integer if and only if it divides
its residue mod ¢/r. In particular, the assumption ¢| (£ M (g/rp)) implies that
t(Eq;r M q/7p) so that by (ii) we have £|(g/rp). On the other hand

(g/rp)|ged(q, EE M {q/rp)), hence ged(g, EM (g/rp)) = q/7p.

LEMMA 6. Let v be @ maxwmal divisor of q satisfying:
() [Egrl 14 (5= 1)/r and (i) ged(g, EN {g/r) = q/r.
Then E,,,, being a subset of J,;» satisfies M.C.

Proof. Suppose that the lemma is not true. Then, by applying Lemma 4 to
E,;; we obtain for some divisor p of ¢/7:

(a) I(Eq/r)q/rp' =1+ (’th! - 2)/Py

and

(b) ged(q/r, E,r M (q/7p)) = q/7p.
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Note that the role of ¢ in Lemma 4 is taken here by ¢/r, and that of r is taken
by p. Thus, |E,;] — 1 comes here instead of s there.

We shall prove that r satisfies assumptions (i) and (ii) of the lemma, in
contradiction to the maximality of 7.

By (a) and (i) we have |Eg | =14+ Q0+ (—1)/r—2)/p <1+
(s — 1)/rp. On the other hand, assumption (ii) of this lemma, together with
(b) imply, by Lemma 5, that gcd(q, E M {(g/7p)) = q/7p.

LEMMA 7. Let D = {0,dy,dy, . .., d,} bea subset of J,, such that gcd(r, D) = 1.
Then Y, *D = J,.

Proof. We argue thatif 3* D 5 J,then > @ D # > «+! D. Indeed, > "' D =
>« D s J,implies that D is not a generating subset of J,, in contradiction to
the assumption ged (7, D) = 1. The lemma follows immediately.

LeEmMmA 8. Let F = { fo,f1,...,f:} be a set of positive integers such that
ged(F) = 1 and q € F. Let X be a set of nonnegative integers, all of them ex-
pressible as 3 i_o a; fi, a; > 0, such that X, = J,. Then

¢(F) Emax X — ¢+ 1.

Proof. Let y be an integer, ¥ =2 max X — ¢ + 1. By assumption, there is
an integer x € X satisfying x = y(mod ¢). Since y + ¢ > max X, we have
x < y. Hence,y = B¢ + x, 8 = 0 and since x = Y o, f;, the lemma follows.

3. Proof of the main theorems.

Theorem 1. Denote {ao, ...,as} = A, and consider the subset 4, of J,. The
proof breaks down into two cases.

Case I. A, satisfies M.C. in J,. Applying Lemma 1, we deduce that
StA4, = J, whilel = 1 + [(n — 2)/s]. Consequently the set

X = (TS| Titai £ 1+ [(r — 2)/s), @i 2 0}
satisfies X, = J,, and by Lemma 8 we obtain
o(ag,...,as) Emax X —n+1
S A4+ m—-2)/s)(n—1) —n+ 1< n?/s.

Case II. A, does not satisfy M.C. Then, by Lemma 4 (setting 4, = E,
n = q), there is a (maximal) divisor 7 of # such that

[Ap;]l £ 14 (s —1)/r and ged(n, 4, N {n/r)) = n/r.

We rearrange the members of A according to their residues mod n,r:
A =Adwm/r, dm/r...dm/r,n |bu, ..., big|bar, o bagl= = —bor, .., bag)s
so that b3 < bja < ... <byy forl1 £j =6, and by Lemma 2, § = [s/r] =
(s — N)/r. The meaning of u and X here, is the same as in Lemma 4: A\ =
s—rls/rl,p+1=[4,MN {n/r).
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Let B denote the subset {din/7,...,dmn/r, n, b1, by, ..., be} of A. Our
purpose is to establish ¢(B) = [n?/s], for n = s(s — 3).
Consider the two sets:

0 ]
X = {; ,By'bfl Z B, £ 1+ [(”/7’—‘2)/9]»51‘20}

1

and

u u
Y:{Z sdm/r Z5i§r—#y51§0}.
T T

We argue that X,,,, = J,,;, and YV, = (n/r),.

Indeed, by Lemma 6, 4,,, satisfies M.C. in J,,, and by Lemma 1 this
implies that > '4,,, = J,,, while Il =1 4+ [(rn/r — 2)/6]. Since obviously
Xopr = 24 Anyr, we have proved X, = Jo)0

To prove Y, = (n/r),, it is enough to prove that > ™ D = J,, where
D = {0,d,,...,d,}. But this is certainly true by Lemma 7, because
ged(r, D) = 1/(n/r) ged(n, 4, N (n/r)) = 1.

Next, since X represents all residues mod n/r and ¥ represents all multiples
of n/r mod #n, we gather that X 4+ Y represents all residues mod »n. Applying
Lemma 8, we find ¢(B) S maxX + max ¥V —n+ 1= [1+ (n/r — 2)/6]
(maxi<;<p bjn) + (r — p)(maxi<i<, di)n/r — n + 1. Since by < byusy — n/r
we have, by Lemma 3(i), by £ n—1) — r —p+XN—Dn/r = (p —
N+ 1)n/r — 1. On the other hand, maxd; < r — land 6 = (s — \)/r so that

¢B) = 1+ (n—2r)/(s = N)((e = X+ Dn/r — 1)
4+ (r—p)—Dn/r—n+1
<A+ (m—=2/(=N)w—N+ n/r
+ = w)r = Dn/r —n=f(\).
Now, remember that by Lemma 4 and Lemma 2(iii), 1 S A S u <7 <,
hence f'(\) = —(n/r)(1 + (n — 2r)(s — p — 1)/(s — N)?) < 0. Thus, f(\)
decreases and
(B) <f(\) =f(1) = ((n=2r)p/(s = 1) + (r = u)(r = 2))n/r = g(u).
g(r) is linear and 1 £ p =< r — 1. It decreases if and only if

n—2r)/(s—1) = r — 2.

In this case, we have for n = s(s — 3):

#(B) <g(l) = ((n—2r)/(s = 1)+ (r = 1)(r = 2))n/r
S(r=2)+ (=10 —2)n/r
=(r—2n=(s—3)n = n?/s.

Otherwise, g(u) increases and ¢ < g(r — 1) = ((n — 2r)(r — 1)/(s — 1) +
(r — 2))n/r.
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There are two cases now to be considered. If s/2 < 7 < s — 1 then

(n—2nn (r—1) (n—=2)n (s—1) )
¢(B) < T -1 . +n< p— . +n=mn"/s.
Otherwise » = (s — 1)/2 and then:
2 2
n r—1, r—2 n_ (s—1)/2-1
¢<B)<s—1' r + r nés—l (s —1)/2
(s —1)/2 —2 n s—2 s—35 n’
T (s —=1)/2 N T +sﬂ1n<s'

where the last inequality holds for n > s(s — 5).
Since ¢(4) = ¢(B), the proof is completed.

Theorem 2. Let A denote the set {aq, ..., as and A" = {aq, ..., as}. By
Lemma 2(iv), 4,, satisfies M.C. in J,,. Hence, by Lemma 1:

1—1
A"o, + 2 A“o

2z min (aq, |4, + (¢ — 1)s) = min (@, Is — « + 1).

We choose [, % such that 0 £ 4 < sand ag = Is — « + 1. Then

= (aog—1-+u)/s="_[(acg — 2+ s)/s]

Now the set X = A" + 271 4 satisfies X, = J,, and max X = a,, -+
((—1asZ2a;—u+ (I — 1)ay, = lay, — u. Hence, by Lemma 8,

d(ag, ... as) Clag—u —ao+ 1 =ua,(ag— 14+ u)/s — (ay— 1 4+ u)
(lag — 1 4+ u)/s)(ay — s) = [{ag — 2 + 5)/s](ay — 5).

The proof is now completed.

The assumptions of Theorem 2 are easily checked. Yet there are certain
cases in which these assumptions are automatically fulfilled. The case s = 2
has already been mentioned. Another interesting case is the following

COROLLARY. Let ag < ay < ... < a; be relatwely prime positive inlegers such
that ag = 2a,. Then:

(ﬁ(ag, e ey (l’s) = [((1/0 -2 + S)/5] (Ss - S)~

Proof. Let A denote the set {aq,...,a ). Clearly [4,| = 14| = s+ 1,
thus satisfying the first assumption of Theorem 2. Using Lemma 3, we shall
prove that 4, satisfies M.C. in J,,.

Suppose that this is not true. Then we have 7, g, X exactly as in Lemma 3.
Then:

4 = {ao, Qg + dlll()/f’, v, Qo + d,,,(lo/l’, bl, bg, ce ey bs_#},

where b; < bs < ... < by, are the non-multiples of aq/7 in 4.
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Applying Lemma 3 we have:

by (as—r—p+ N— Dag/r £ a,— (r — way/r.

Since @y £ b; this implies ¢y < ay — (r — w)ag/r. On the other hand,
clearly: ay < a5y — pay/r. Summing these inequalities yields: 2a¢ < 2a, — aq,
hence ay < %a, which contradicts the assumptions.

Consequently, 4,, satisfies M.C., and by Theorem 2, the proof is completed.

Proof of Theorem 3. As before, 4 = {ay, ay, as, az}. The proof breaks down
into 7 cases:

Case 1. ay > n/2 and A,, satisfies M.C. in J, . Then, by Theorem 2

¢(4) = [(ao + 1)/3](as — 3)
< [(n—2)/3n—3)= (n—2)(n—3)/3.

Case 2. ap > n/2 and 4, does not satisfy M.C. Then Lemma 2(iii) implies
r = 2 and Lemma 3(i) implies A = u = 1, where 7, u, N are exactly as in
Lemmas 2 and 3. Applying Lemma 3 (ii), we find 4 = {a, 3a¢/2, b, b + a,/2}.
We argue that ¢(4) = ¢(ay, 3¢0/2,0) < ay + ¢(ao/2,b).

Indeed, let x satisfy x = a¢ + ¢(a¢/2,0). Then x = ay + a(ae/2) + B0 =
a1ty + a2(3a¢/2) + B0, where a» is 1 or 0, according to whether « is odd or
even.

Now, observe that }ay + b = #, so that we have,

¢(A) é [ + (%(l() — 1)(b _ 1) = (%(10 —_ I)U) + 1) + 2 < %(l.()b — 2
= la¢(n — %a¢) — 2 = f(ao).

[(ao) increases for ay = n, but we have ¢y £ 3(n — 1), because 3a,/2 € A.
Hence,

d(A) < fER—1)) =2/9n—1)*=2< (n—2)(n — 3)/3,
for n = 6.

Case 8. ay = §n. Then |4, | = 3 and applying bound (5) (see introduction),
we get for n = 5:

¢(A4) = ¢(ao, a1, a2) = [ao/2](a2 — 2)
< [n/4](n —3) = (n — 2)(n — 3)/3.
Case 4. $(n + 1) £ ay £ 5(n — 1), and |4,| = 3. Then applying again
bound (5) we have:
(A=t —-1)n—-2) = (n—2)(n — 3)/3, formn = 6.
Case 5. $(n +1) £ a¢ = 3(n — 1) and [4, ] = 2. Let ao, b be the two

generating members of A. Then the other two must belong to the set
{2a9, ag + b, 20}. Hence, b = n — «, therefore for n = 6,

¢(4) = ¢(ap, b) = (ag — 1)(b — 1)
S(a—1)n—a—-1)=in—-22=n—2)n—3)/3.
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Case 6. aq = in. Then by Schur’s bound (1), ¢(4) = ¢(3n, a1, as)
Gn—1))(n —2) = (n—2)(n — 3)/3.

Case 7. ap £ ¥(n — 1). Again by (1), ¢(4) = E(n—1) -1 —1) <
(n—2)(n — 3)/3.

To complete the proof it should be noted that the only set for n = 5 is
{2,3,4,5} and ¢(2,3,4,5) =2 = 2-3/3.

IIA
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