A THEOREM ON AN ANALYTIC MAPPING
OF RIEMANN SURFACES

MINORU KURITA

Recently S. S. Chern [1] intended an aproach to some problems about
analytic mappings of Riemann surfaces from a view-point of differential geo-
metry. In that line we treat here orders of circular points of analytic mapp-
ings. The author expresses his thanks to Prof. K. Noshiro for his kind
advices.

1. In the first we summarise formulas for conformal mappings of Rie-
mannian manifolds (cf. [3], [4]). We take 2-dimensional Riemannian manifolds
M and N of differentiable class C. and assume that there exists a conformal
mapping f of M into N which is locally diffeomorphic. ='We take orthonormal
frames on the tangent.spaces of points of any neighborhood U of M. Then a

line element ds of M can be represented as
ds® = o} + w; (1)

with 1-forms «; and w.. When we choose frames on the tangent spaces of
F(U) corresponding to those on M by the conformal mapping f, we have for
a line element dt of N

dt’ = ot + n} = a’ds’, (2)
where m = adwq, T = AWs3. (a>0) (3)

A form wp; of Riemannian connection of M is defined in U by the relations

dw1 = w2 \ w21, dw: = w1 N\ w2, W= — Wsy. (4)

When we put
dal/a = biv1+ bws, (5)
a connection form m, = — m; of Riemannian connection of N in f(U) is given by
e = wp + brws — b ;. (6)
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In fact we have then by virtue of (3), (4), (5), (6)
dry = m N\ my, dr: = m1 N .
Curvature forms of M and N are given by
Q= — dop = kdS, IIe = — dry = hdT, (7

where k, h are Gaussian curvatures and dS, dT are surface elements of M and
N respectively. By taking exterior differentials of (6) we get

H12= .Qm"‘d(lha)z—bzwx). (8)

Next we put b’ = b + b (9)
and dbi+ by ws1 — bidala + ’;“bzwg = Anwi+ A2 w2

(10)

dbs + by — bedala + %bzah = Z11 + Aoz .

Calculating d(da/a) = d(bjws+ byw2) =0 we have 1 =213, and (1;) are com-
ponents of a symmetric tensor on M.

On the Riemannian manifold M covariant differential (DI, D) of a vector
field with orthogonal components (I, %) is given by Dih=dlh+ Lhwa, Dl
=dh + Lwp, and

_ IxDlg"‘lngl _ Ildlz—lzd11 _
= A, - = Pyl +wm—d(tan

-lﬁ

h

)+ 0 (11)

gives a form on M. §=tan '(L/l) is an angle between the vector (I, %) and
the first axis of the orthonormal frame (cf. [5]). We consider eigendirections
of an arbitrary symmetric tensor field (4;;). At a point where two eigenvalues
are different an eigendirection corresponding to a greater one is determined.

An angle 6 between the eigendirection and the first axis is given by

tan 20 = 25 and (11) reduces to
Al]_lzz
_1 -1 220
T= 5 d(tan Ti1— Ao >+(D12. (12)

Next we take complex frames such that
p=aw+ V-1, 7=w —vV—1aw. (13)

Then (1) and (4) reduce to
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ds® = pp, do=v—-1pAa, (14)

where we have put we =a. Putting

dala=biwi+brwn=co+Cp (15)
we get bi=c+¢, b=V -1(c—¢) (16)
and (8) reduces to

o = Qu+V—1d(co—¢p). (17)

For a symmetric tensor (4;) we put
Q =Anwi+2 Apwr0:+ Anwi =Lo*+2 Mop + Np* (18)
and we get
Au=L+L+2M, ite=V-1(L=L), Je=-L-L+2M

Hence (12) reduces to

o - _.Z.,)JHL (19)

For Q@ = >\ 4ijw;w; corresponding to (;;) defined by (10) we have
7]

Q = (db1+bzw21)u)1+ (db2+b1w12)a)-z - (da/a)2 -+ ’%"bz(u)f'i" u);).

Taking (16) and w; = ; (o+70), w = 7}2/—31 (0 — 9) into consideration we get

Q= (dc~V=lac)p+(de+V—=1ad)s — 0> -&p (20)
When we put dc —v—=1ac=1lp+mp, (21)
we have dé+V—-lac=mp+15.

By the relation d(da/a) =0 we get m =m.
L and M corresponding to (1;;) defined by (10) are
L=1-¢ M=m. (22)

by virtue of (18), (20), (21).
2. Now we take up Riemann surfaces (complex manifolds of dimension 1)
M and N and an analytic mapping f of a domain D(C M) into N. M and N

can be endowed with Riemannian metrics of constant Gaussian curvature 2
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and % respectively, and the line elements ds and df can be represented in

suitably chosen coordinates z and w as
ds’ = p*dzdz, dt* = ¢ dwdw (23)
with p=(1+k/422)"", q=0+h/4ww)™" (24)

Signs of k and h coinside with those of Euler’s characteristics of M and N.
The analytic mapping f is represented in our coordinates as w = f(z) with an
analytic function f(z). This analytic mapping f induces conformal mapping
in the neighborhood of any point such that f'(z)%0 and we have df’=a’ds’

with

a=(g/p) T (25)
We put o=pdz (26)
then we have ds’ = pp (27)

and a real 1-form a satisfying (14) is given uniquely by
_y—v( _ ologp ologp ,_
a=v=1( _—a-z—dz+7—dz). (28)

Putting f'fl=¢

we get from (25)
dala = d(log q) — d(log p) + %— (Pdz + dz).

Hence by the relations (15), (26) we have

_ologg ,, _2logp 1
pe= "y 7 2z T2 ¥
; ologp _ _ k. ologqg _ _ h _
By virtue of (24) 5. = 1 zp, w = 409 (30)
and so pc= - ﬁivqf'ﬁ- —k—Ep+»-1~<,ﬂ. (31)
4 4 2

Next we have

pldec —V =T ac) =d(pc) —cdp —V—1 ape. (32)

This is equal to pllp+ mp) = p*(Idz+ mdz) by (21), and we get by (31), (26)
(28), (30)
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2, _ k. 0q e_ k., k_0p 1 2090
pl= 4“’a7(7(f') g0+ Ryt ¥ T 2oy,
kE_ 1 k_
( wqf') wqf” (4 zp)2+ 5 ¢+ 204 2P,
. _ 1 _ 2
and so ﬁzl_ﬁ262= ( h wqf) —_ _%uyqf”_i_ .2_501 — (_Z_._zp_pc) .

By the relation (31)

2 2y 1 1
and we get p(l_C)—Q(w—“z—(’O)'
. , 1 2
Putting 0=0¢ — 2 ¢ (33)
1
IS N
we have L=l-c¢= 55 0 (34)

Thus for eigendirections of (1;;) defined by (10) L in (19) is this one.

3. Now we integrate (17). We take a bounded domain D( C M) and assume
that an analytic function f(z) induced from an analytic mapping 7 of D into
N iﬁ any coordinate neighborhood has not a singular point. A property that_
f(2) is stationary (i.e. f'(z) =0) at a point is independent of complex local
coordinates. We take a point pi(i=1,..., s) which is a stationary point and
a small simply connected domain D; about p; with a boundary curve c..
Orientations of the boundary curve ¢ of D and c¢; are determined by that of
D. Now

v=bw—bwi= —y—1(co—¢p) (33)

is a form on D. We integrate (17) and get by Stokes’ theorem

where f* denotes a mapping dual to f of forms on N to those on M and
D=D- ZD, By the relation (31)

v= —V-1(pcdz - pcdz)
=vV- 1(-~q(wdw wdw)—w_b(zdz—zdz)—f- (svdz—tpdz)) (36)

We take local coordinates z and w for which (24) holds good and z=0 and
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w=f(0)=0 at a point. This is possible because the metric (23) is homo-
geneous. Thus when a point p; with a local coordinates z=0 is a stationary

point of an analytic function f(z), we have

f(2)=az"+b62"""+ -+ ..  (ax0, m>1)
L Y m+l b
Thus o=dm = p(m-D+ 2EL. 20 -t (37)

Contracting c¢; to the point p; we get by (36)
lim| v=2r(m—1),
cg

because integrations of the first and the second terms in (36) tend to 0 as =z
does so. We denote m; anew instead of m, and we get
§ renary = ras—| v+223 mi-1). (38)
D D c i

If D is compact and n-leaved covering surface of f(D), we have

#A(f(D))=Z(D) + > (mi-—1), (39)

where 7 means Euler’s characteristic. This is Hurwitz’'s formula. Our deriva-
tion of this formula is closely related to that of Chern’s (cf. [1]). A difference
lies in the point that » in (38) which is defined by (35) has an intrinsic
meaning on M and dv = 4(log a)dS, where 4 means a Laplacian operator.
4. Next we integrate (19) for L given by (34). We take a domain D and
assume that it contains stationary points p;(I=1,..., s) and points g;j(j=1,
.., r) at which #(2) =0. We call these g; circular points of our mapping.
This definition is independent of local coordinates. ®#(z) =0 is equivalent to an
ambiguity of eigendirections of the tensor (1;;). We take small simply con-
nected domains D; and E; containing the points p; and ¢; and bounded by curves
¢i and e¢; respectively. Then by orientations of the boundary ¢ of D and ¢;, e;

corresponding to an orientation of D we get from (19)
fcr—zijjcir_;jejrr'jpfdrz —jD’de’ (40)

where D'=D - >)D;— >1E;. We take local coordinates z in M and w in N
in such a way that z=0 at p; and f(0) =0. We have by virtue of (19) and
(34)

https://doi.org/10.1017/50027763000002439 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000002439

A THEOREM ON AN ANALYTIC MAPPING OF RIEMANN SURFACES 155

50;'7: \/—jl—scz(% - %) + fi“.

When we contract ¢; to the point p;, the second term on the right side

vanishes, because j a= da = — SD kdS, and we get
Cci D¢ . i

limLir = lim—‘%l S(“;” ~ "‘%)'

Around a stationary point we have

f(D=az"+b2"" 4 - - - (ax0, n>1)
Then <p=—§_,"~—_—._:~(n_1+.’%£%z+...>
0=¢ - é«go?: - '”;;lg(z)Jr s
where glz)=1+ 722-32 + .-
Hence %g = ( - g + %L)dz
and so 1im§qr=2n. (41)

Next we consider circular points ¢;. Taking a local coordinate z such that

z=0 at g; we can put
O=az"+b2""+ - -, (@a=0)

We call #» an order of the circular point ¢;. This is independent of local

coordinates, as is seen below in (42). We have in this case

ab _(n .
R
o . dD
and when we contract e¢; to g;, we get llm5 0 =2nmy—1
e
and so Iim\ r= —nan (42)

ej

We denote » at g; as n; anew and we get by (40), (41), (42)

jcr~2ns+n;m= Lda= - SDka'S. (43)
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If M is compact and f is an analytic mapping of M into N, we get for Euler’s
characteristic (M)

1) =5~ 5 Sy (44)

by virtue of Gauss-Bonnet’s formula 2 zX(M) = Sude. Thus we have got a

final result.

TueoreMm. We assume that M and N are closed Riemann surfaces endowed
with Hermitian metrics of constant curvature, and f is an analytic mapping of
M onto N, of which the number of stationary points is s and the orders of

circular points are ni(j=1, ..., r). Then we have the relation (44).

Finally we give an interpretation of the relation ® =0, which means a
vanishing of a Schwarzian derivative of f(z). We consider a circular point
and take a local coordinate z in M and w in N for which (24) holds good and

z2=0 at the point and also w= f(0) =0. Then we can put

f2)=az+ bl +c+ ---. (a%0)
A RN 2b A
Hence ‘p"'f/ =@2b+6¢cz+ )"E(l‘f-“a—z—l- )
2b 6¢ 45
=S+ )
> 2
and so (D=—2~(c— —Z—)%—O\Z)-

0(0) =0 means ¢ =b*/a and then

f(z)=az(1+ 3-z+(—§—z)2+ <. -)= ag—izz +0(z").

Thus f(z) is a linear fractional function with disregard to terms of order
greater than 3.

We have named a circular point the point at which @ =0, namely an
eigendirection of the mapping is ambiguous. About twenty years ago A.
Fialkow and K. Yano studied a conformal transformation for which (4;) is a
multiple of a unit matrix and Yano called it concircular because it transforms
a Riemannian circle into a same. A circular point is a one at which f is

nearly concircular.
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