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TAMING THE ‘ELSEWHERE’: ON EXPRESSIVITY
OF TOPOLOGICAL LANGUAGES

DAVID FERNÁNDEZ-DUQUE

Abstract. In topological modal logic, it is well known that the Cantor derivative is more
expressive than the topological closure, and the ‘elsewhere’, or ‘difference’, operator is more
expressive than the ‘somewhere’ operator. In 2014, Kudinov and Shehtman asked whether the
combination of closure and elsewhere becomes strictly more expressive when adding the Cantor
derivative. In this paper we give an affirmative answer: in fact, the Cantor derivative alone can
define properties of topological spaces not expressible with closure and elsewhere. To prove this,
we develop a novel theory of morphisms which preserve formulas with the elsewhere operator.

§1. Introduction. Topology can be described as the qualitative study of space, and
as such it is not surprising that it often serves as the foundation for spatial reasoning.
One way to think about topological spaces is as pairs (X, i) consisting of a set X
and an operator i : ℘(X ) → ℘(X ) satisfying iX = X , i(A ∩ B) = iA ∩ iB , and iA ⊆
A ∩ iiA. The set iA is the interior of A, and the intuition is that it should not contain
points on the boundary of A: if we think of A as an orange, we can think of iA as the
same orange without its peel. If A = iA, we say that A is open; open sets are those
that do not contain any of their boundary points. The interior operator admits a dual
‘closure’ operator, denoted, c , defined by cA = X \ i(X \ A); if A is now the peeled
orange, cA would be the original orange with its peel.

McKinsey and Tarski [14] already observed that the topological closure and interior
could be used to provide semantics for modal logic. In this setting, a proposition ϕ is
interpreted as a region �ϕ� ⊆ X , and �ϕ is interpreted as its interior i�ϕ� (see Section
3 for formal definitions). If we moreover add a universal modality ∀, where ∀ϕ is true
iff ϕ covers the entire space X [15], then we obtain a modal framework in which all
spatial relations of RCC8 may be expressed [16]: for example, ∀(p → �q) states that
the region �p� is non-tangentially contained within the region �q�.

However, the closure and universal modality are not the only primitive operations
one can use for this style of spatial reasoning. McKinsey and Tarski [14] also noted
that the Cantor derivative gives rise to an alternative interpretation of modal logic. For
A ⊆ X , we define dA to be the set of points x ∈ X such that x ∈ c(A \ {x}); dA is
also called the set of limit points of A. Dually, we may define x ∈ pA if x ∈ i(A ∪ {x}):
this is the set of points that have a punctured neighborhood contained in A. Modal logic
based on the Cantor derivative does not validate the reflexivity property �p → p,
making it an attractive model of belief, rather than knowledge. Logics of the Cantor
derivative have been studied extensively (see e.g., [3, 4, 12]), particularly in the context
of scattered spaces, which have applications to the logic of provability [1, 2, 5].
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Fig. 1. Order relations between different spatial languages: an arrow L → L′ indicates that
L < L′. Our main result is that L� �≤ L� �=, thus establishing that the diagram is complete: all
reductions are already indicated in the figure.

The universal modality also comes with a ‘punctured’ variant in the elsewhere,
or difference, modality [�=] [8], studied in a topological context in e.g., [7, 9]. Here,
[�=]ϕ holds on x if ϕ is true in every point, aside from possibly x. There are some
compelling reasons for considering the punctured variants as primitive, rather than
the ‘unpunctured’ ones: for example, we may easily define ∀ϕ := ϕ ∧ [�=]ϕ. In fact, the
punctured variants are strictly more expressive.

To make this precise, note that eachM ⊆ {�,�, [�=],∀} gives rise to a propositional
modal language LM . We omit set-brackets and also brackets around �=; for example,
L� �= denotes the language with modalities � and [�=]. All modalities are definable in
terms of these, so it is rarely useful to consider more than two modalities at once. One
question that arises when designing a language for formal topological reasoning is how
the different combinations of modalities compare with respect to expressive strength.

A general analysis of the situation is given in [10] (see Section 3). In particular, it
is known (and follows from the above discussion) that L� �= is reducible to L� �=, in
the sense that any class of topologies definable in the former is already definable in
the latter. Kudinov and Shehtman ask whether the reduction is strict, in the sense that
converse fails. The aim of this paper is to give an affirmative answer to the latter. In
fact, we show that already L� cannot be reduced to L� �=.

We prove this by considering a variant of the local 1-componency property, which
states that if x ∈ U and U is open, then there is a neighborhood N ⊆ U of x such
thatN \ {x} is connected. This property holds on e.g., R2 but not on R, and it implies
the validity of the formula Kur := �(�p ∨ �¬p) → �p ∨�¬p. Kudinov [9] showed
that Kur itself is definable in L� �=, in the sense that there is a formula Kur� �= of this
language such that for any topological space X, X |= Kur if and only if X |= Kur� �=.
However, in Section 7 we also show that a mild variant of this property, �Kur, is not
definable in terms of � and [�=]. Intuitively, �Kur states that local 1-componency may
only fail on a discrete set of points. To prove that this formula is not expressible in L� �=,
in Section 6 we first introduce a new notion of morphism for the difference modality.

A global variant of 1-componency can also be considered; the space X is globally
1-component if for any x ∈ X , X \ {x} is connected. Kudinov and Shehtman also
exhibit a variant of Kur which holds on globally 1-connected spaces, and use it to
separate the L� �= logics of the real line and the circle S1. They also claim that every
L�∀ formula valid on the real line is valid on the circle, but this does not seem to
follow immediately from their argument, so in Section 5 we provide a detailed proof.
This completely settles all reducibility relations between the languages considered (see
Figure 1).
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146 DAVID FERNÁNDEZ-DUQUE

§2. Topological spaces. In this section we briefly recall some background from
topology, particularly the notion of Cantor derivative on a topological space.

Definition 2.1 (topological space). A topological space is a pair (X, �), where X is a
set and � is a subset of ℘(X ) that satisfies the following conditions:

• X,∅ ∈ �;
• if U,V ∈ �, then U ∩ V ∈ �;
• if U ⊆ �, then

⋃
U ∈ �.

The elements of � are called open sets, and the complement of an open set is called a
closed set.

We will notationally identify X with (X, �), which in this paper will not lead to
ambiguity as all topologies we consider come from the Euclidean spaces Rn or their
subspaces. Perhaps the most familiar example of a topological space is the real line R,
where U ⊆ R is open iff it is a (possibly infinite) union of intervals of the form (a, b).
More generally, each space Rn comes with a topology where U is open iff whenever
x ∈ U , there is ε > 0 such that ‖x – y‖ < ε implies that y ∈ U (where ‖ · ‖ is the
standard Euclidean norm). Each space Rn is connected: recall that if X is a topological
space andC ⊆ X , we say that C is connected if wheneverC ⊆ A ∪ B withA,B disjoint
and open, it follows that C ∩ A = ∅ or C ∩ B = ∅.

If X,Y are topological spaces, a function f : X → Y is continuous if f–1(B) is
open whenever B ⊆ Y is open, and open if f(A) is open whenever A ⊆ X is open. A
continuous and open map is an interior map.

The fundamental operation on topological spaces we are interested in is the Cantor
derivative.

Definition 2.2 (Cantor derivative). Let (X, �) be a topological space. Given S ⊆ X ,
the Cantor derivative d of S is the set dS of all limit points of S, i.e., x ∈ dS if and only
if, whenever x ∈ U ∈ �, it follows that (U ∩ S)\{x} �= ∅.

GivenA,B ⊆ X , it is not hard to check that the Cantor derivative satisfies d∅ = ∅,
d (A ∪ B) = dA ∪ dB , and ddA ⊆ A ∪ dA. The topological closure ofA ⊆ X can then
be defined as cA = A ∪ dA, or, directly, as the intersection of all closed sets containing
A. Both the Cantor derivative and topological closures admit duals, the punctured
interior given by pA = X \ d (X \ A) and the interior iA = X \ c(X \ A). The latter
is also definable as the union of all open sets contained in A, while the former has the
property that x ∈ pA iff there is some open set U such that x ∈ U ⊆ A ∪ {x}. We say
that A contains a punctured neighborhood of x.

§3. Topological languages and reducibility. All languages we consider will be
subsets of the full topological language L∗ given by the following syntax in Backus–
Naur form:

ϕ,� ::= p | ¬ϕ | ϕ ∧ � | �ϕ | �ϕ | [�=]ϕ | ∀ϕ.

Sublanguages are indicated with allowed modalities as subindices. We are mostly
concerned with L� and L� �= (we omit brackets around �=). As usual, we use � as a
shorthand for ¬�¬, ∃ as a shorthand for ¬∀¬, and 〈�=〉 as a shorthand for ¬[�=]¬.
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Definition 3.1. A topological model is a pair M = (X, �·�) where X is a topological
space and �·� : L∗ → ℘(X ) is a valuation function assigning a subset of X to each formula
of L∗, satisfying the following recursive clauses:

• �¬ϕ� = X \ �ϕ�,
• �ϕ ∧ �� = �ϕ� ∩ ���,
• ��ϕ� = p�ϕ�,
• ��ϕ� = i�ϕ�,
• �[ �=]ϕ� = {x ∈ X : �ϕ� ∪ {x} = X},
• �∀ϕ� = X if �ϕ� = X , otherwise �∀ϕ� = ∅.

Equivalently, we can write �∀ϕ� = {x ∈ X : �ϕ� = X}; in this way, it becomes
evident that [�=] is a ‘punctured’ version of ∀, much as p is a punctured version of
i . Note that, dually, x ∈ �〈�=〉ϕ� if and only if there is x′ �= x such that x′ ∈ �ϕ�. We
write (M, x) |= ϕ if x ∈ �ϕ�, and M |= ϕ if �ϕ� = X . Similarly,X |= ϕ if (X, �·�) |= ϕ
for every valuation �·� on X, and (X, x) |= ϕ if x ∈ �ϕ� for every valuation �·�. We may
write �·�X instead of �·� when working with more than one topological space.

The general type of question we are concerned with is: Given L,L′ ⊆ L∗, is L′

reducible to L? Intuitively, L′ is reducible to L if every L′-definable class of spaces is
also L-definable. Let us make this precise.

Definition 3.2. Given ϕ ∈ L∗, let C(ϕ) be the class of all topological spaces X such that
X |= ϕ. Say that a class of spaces Ω is definable in L ⊆ L∗ if there is ϕ ∈ L such that
Ω = C(ϕ), and similarly, say that a formula � is definable in L if there is �′ ∈ L such
that C(�′) = C(�).

Then, write L′ ≤ L if every ϕ ∈ L′ is definable in L, and L′ < L if L′ ≤ L but L �≤ L′.
In this case, we say that L′ is (strictly) reducible to L.

Equivalently, L′ ≤ L if every class that is definable in L′ is also definable in L.
Kudinov and Shehtman [10] give an overview of the known facts about reducibility
between sublanguages of L∗. The general picture is represented in Figure 1. The
non-strict inclusions all follow from the definability of � as �ϕ := ϕ ∧�ϕ, and ∀
as ∀ϕ := ϕ ∧ [�=]ϕ. Languages obtained by adding ∀ to � or � are more expressive
because e.g., ∀ is needed to define connectedness [15]. That no language with � is
reducible to one without � follows from results in the current paper, but was already
known for languages without �= since L� cannot distinguish between R and R2 [14]
but L� can [10, 13].

§4. Kuratowski formulas and 1-Componency. Classes of spaces that cannot be
distinguished by the ‘reflexive’ modalities � and ∀ can sometimes be disgintuished
by variants of the Kuratowski formula. For example, the L�-logics of R and R2

differ because L� contains a formula valid on locally 1-component spaces. If X is
a topological space, x ∈ X is locally 1-component if for every neighborhood U of x
there is a neighborhood N ⊆ U of x such that N \ {x} is connected. The space X is
locally 1-component if every point of X is locally 1-component. It is well known and
easy to see that R2 is locally 1-component, but R is not.

Locally 1-component spaces validate the Kuratowski formula

Kur := �(�p ∨ �¬p) → �p ∨�¬p
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148 DAVID FERNÁNDEZ-DUQUE

[11]. This is also well known, but since this is an important element in our own results,
we provide a proof.

Lemma 4.1. Let X be any topological space and x ∈ X . Then, if x satisfies local
1-componency, it follows that (X, x) |= Kur.

Proof. Assume that x satisfies local 1-componency. To show that (X, x) |= Kur,
assume moreover that �·� is a valuation such that x ∈ ��(�p ∨ �¬p)�. Then, x has
a neighborhood U such that U \ {x} ⊆ ��p ∨ �¬p�; by local 1-componency, we
may assume that U \ {x} is connected (otherwise, choose a suitable U ′ ⊆ U ). Then,
U \ {x} ⊆ ��p� ∪ ��¬p�. Since these two sets are open and disjoint and U \ {x} is
connected, we either have that U \ {x} ⊆ ��p� and x ∈ ��p�, or U \ {x} ⊆ ��¬p�
and x ∈ ��¬p�. Either way, x ∈ ��p ∨�¬p�.

Kudinov and Shehtman [10] use this example to show that Since R2 is locally
1-component, we obtain R2 |= Kur. On the other hand, R �|= Kur, which can be seen
by setting �p� = (0,∞); then, it is readily checked that (R, 0) |= �(�p ∨ �¬p) but
(R, 0) �|= �p because points to the left of 0 do not satisfy p, while (R, 0) �|= �¬p
because points to the right do not satisfy ¬p. Conversely, since there is a surjective,
interior map � : R2 → R given by projecting onto the first component, it follows that
every formula of L� valid on R2 is also valid on R, and hence L� < L�.

Kudinov and Shehtman also point out that L� �= ≤ L� �=, but leave open whether
L� �= < L� �=. One strategy that comes to mind is to show that the class of spaces
validating Kur is not definable in L� �=. However, this idea would not quite work, since
Kudinov [9] exhibits an L� �=-formula that is valid on the same class of spaces as Kur.
Nevertheless, we will see in Section 7 that a slight modification of Kur will do the trick.

A global version of 1-componency can also be defined. We say that x ∈ X is globally
1-component if X \ {x} is connected, and say that X is globally 1-component if every
x ∈ X is globally 1-component. It is easy to see that the circle is globally 1-component
but the real line is not. Globally 1-component spaces satisfy a version of the Kuratowsky
formula, defined by

Kur �= := [�=](�p ∨ �¬p) → [�=]p ∨ [�=]¬p.
The following is then verified along the lines of Lemma 4.1:

Lemma 4.2. Let X be any topological space and x ∈ X . Then, if x satisfies global
1-componency, it follows that (X, x) |= Kur�=.

Since the circle S1 is globally 1-component, it follows that S1 |= Kur�=. The same
valuation we used for Kur shows that R �|= Kur�=, and thus the L� �= logic of the circle
is different from that of the real line.

§5. The circle and the line. Using the formula Kur �=, Kudinov and Shehtman [10]
conclude that L�∀ < L� �= by claiming that every L�∀-formula satisfiable on R is also
satisfiable on S1. Their argument is that there is a surjective local homeomorphism
f : R → S1 given by f(x) =

(
cos(x), sin(x)

)
; however, this fact alone only shows that

every formula valid on the real line is valid on the circle. In this section we fill this gap
by providing a detailed, if somewhat ad hoc, proof.

Our proof is based on the following observation about the topology on the real line.
Given x ∈ R and A ⊆ R, say that x is a limit point of A from the left (or left limit of
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A for short) if for every ε > 0 there is a ∈ A such that x – ε < a < x. Similarly, x is a
right limit of A if for every ε > 0 there is a ∈ A such that x < a < x + ε.

Lemma 5.1. IfA ⊆ R is uncountable, then there is x ∈ A such that x is both a left limit
and a right limit of A.

Proof. First we note that there are only countably many elements of A which are not
left limits, since for every such a ∈ A we can find ε > 0 with A ∩ (a – ε, a) = ∅, hence
using the density of the rationals we can choose qa ∈ Q ∩ (a – ε, a). The assignment
a �→ qa is readily seen to be injective, and since Q is countable, we conclude that only
countably many points of A can fail to be left limits. By the same argument, only
countably many points of A can fail to be right limits, so that uncountably many
points of A must be both left and right limit points of A.

Next we fix a finite set Σ ⊆ L�∀ closed under subformulas. Our goal is to show that
any formula of Σ that is satisfiable on the real line is also satisfiable on the circle. This
would normally require a surjective interior map1 � : S1 → R, but no such map exists.
Instead, we will use properties of the real line to ‘fudge’ the requirements on � a bit.

Theorem 5.2. Any formula of L�∀ satisfiable on R is also satisfiable on the circle.

Proof. Let ϕ ∈ L�∀ and �·�R be any valuation on R such that �ϕ�R �= ∅. Let Σ be
the set of subformulas of ϕ, and for x ∈ X define Σ(x) = {� ∈ Σ : x ∈ ���R}.

Choose N large enough so that whenever � ∈ Σ and ���R �= ∅, it follows that
���R ∩ [– N,N ] �= ∅; such an N exists since Σ is finite. We claim that there is a set
Σ� ⊆ Σ such that there are uncountably many x <– N with Σ(x) = Σ� ; this follows
readily from the fact that Σ(x) can take only finitely many values and (– ∞, – N ) is
uncountable. LetA� = {x <– N : Σ(x) = Σ�}. Using Lemma 5.1, choose x� ∈ A� such
that x� is both a left and right limit of A� . Similarly, choose Σr such that Ar := {x >
N : Σ(x) = Σr} is uncountable, and let xr ∈ Ar be both a left and right limit of Ar .

By scaling if necessary, we may assume that x� =– 1 and xr = 1 (so that also
N < 1). We may also identify the circle S1 with {(x, y) ∈ R2 : x2 + y2 = 1}, and define
�(x, y) = x. Finally, define �p�

S1 = �–1�p�R.
We claim that for all � ∈ Σ and (x, y) ∈ S1, (x, y) ∈ ���

S1 if and only if x ∈ ���R.
This concludes the proof, given that there is x ∈ [– N,N ] with x ∈ �ϕ�R, so ϕ is
satisfiable on

(
S1, (x,

√
1 – x2)

)
.

The claim follows by induction on the build of �. The case for � = p is immediate,
as are the Boolean cases. Consider � = ∃	. If x ∈ �∃	�R, then there exists z ∈ R such
that z ∈ �	�R, and by our choice of N we may assume that z ≤ N . Thus the induction
hypothesis yields (z,

√
1 – z2) ∈ �	�

S1 and hence (x, y) ∈ �∃	�
S1 . Conversely, if (x, y) ∈

�∃	�
S1 , then there is (z, w) ∈ �	�

S1 , so that z ∈ �	�R by the induction hypothesis.
The most interesting case is that for � = �	. First assume that |x| < 1. Then, � is a

local homeomorphism near (x, y), and standard arguments show that (x, y) ∈ ��	�
S1

if and only if x ∈ ��	�R. So we assume that |x| = 1 (hence y = 0). For simplicity we
further assume that x = 1, with the case for x =– 1 being symmetric.

If (1, 0) ∈ ��	�
S1 , we let U be any neighbourhood of 1. Then, �–1[U ] is a

neighbourhood of (1, 0), so that there is (x′, y′) ∈ �–1[U ] with (x′, y′) ∈ �	�
S1 . Note

that x′ �= 1 (since (1, y) ∈ S1 implies that y = 0), and the induction hypothesis implies
that x′ ∈ �	�R. Since U was arbitrary, 1 ∈ ��	�R.

1 In fact, � should be a d-morphism [10].
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Conversely, assume that 1 ∈ ��	�R and let V be any neighbourhood of (1, 0). By
the geometry of the circle, there is ε > 0 such that if (x′, y′) ∈ S1 and 1 – ε < x′,
then (x′, y′) ∈ U . By assumption, we have that Σ(1) = Σr , and 1 is a limit of Ar
from the left. Hence there is x′ ∈ Ar such that 1 – ε < x′ < 1. Since x′ ∈ Ar , we have
that �	 ∈ Σ(x′), i.e., x′ ∈ ��	�R. Since (1 – ε, x′) is a neighbourhood of x′, there
is z ∈ (1 – ε, x′) with z ∈ �	�R. The induction hypothesis yields (z,

√
1 – z2) ∈ �	�

S1 ,
and since z > 1 – ε we have that (z,

√
1 – z2) ∈ V . Moreover, z < 1, so (z,

√
1 – z2) �=

(1, 0). Since V was arbitrary, we conclude that (1, 0) ∈ ��	�
S1 , as required.

We conclude that L� �= �≤ L�∀, and thus L�∀ < L� �=. Note that our argument relies
heavily on properties of the circle and the real line. In contrast, the next section provides
a rather general treatment for showing that validity for formulas with �= is preserved
between topological spaces.

§6. Morphisms for the difference modality. The semantic clauses for �= are preserved
by bijections, in the following sense. Suppose that f : X → Y is a bijection and p is
a variable, and �·�X , �·�Y are valuations on the respective spaces satisfying �p�X =
f–1�p�Y . Then, given x ∈ X , x ∈ �〈�=〉p�X iff f(x) ∈ �〈�=〉p�Y . In general, if f fails
to be surjective it is easy to find counterexamples to the latter equivalence. However,
if f is surjective but fails to be injective, the only way to have x ∈ �〈�=〉p�X but f(x) �∈
�〈�=〉p�Y is if f(x) is the only point of Y satisfying p and, moreover, there is x′ �= x
such that f(x′) = f(x). In this case we say that f(x) is p-unique (and x is not). It
suffices for f to be injective with respect to unique points for it to preserve the semantic
conditions for 〈�=〉 (and hence [�=]): below, we make this precise.

Definition 6.1. Let X, Y be topological spaces and U ⊆ Y . Say that f : X → Y is U-
injective if for each u ∈ U ,f–1(u) is a singleton. If f is interior, surjective and U-injective,
we say that f is a U-morphism.

Let (Y, �·�Y ) be a topo-model, Σ a set of formulas. For a formula ϕ, say that y ∈ Y is
ϕ-unique if �ϕ� = {y}, and Σ-unique if it is ϕ-unique for some ϕ ∈ Σ. Let U(Σ) be the
set of Σ-unique points. We define a Σ-morphism to be a U(Σ)-morphism.

Recall that any function f : X → Y defines a valuation �·�X on X by setting
�p�X = f–1�p�Y and extending recursively to complex formulas.

Lemma 6.2. If Σ ⊆ L� �= is closed under subformulas and single negations andf : X →
Y is a Σ-morphism, then for every ϕ ∈ Σ, �ϕ�X = f–1�ϕ�Y .

Proof. Induction on formulas, with only the case for [�=]ϕ being non-standard.
If f(x) �∈ �[�=]ϕ�Y , there is y′ �= f(x) such that y′ �∈ �ϕ�Y . Since f is surjective, y′ =
f(x′) for somex′ ∈ X , which since f is a function satisfiesx′ �= x. By the IHx′ �∈ �ϕ�X ,
so x �∈ �[�=]ϕ�X .

For the other direction, iff(x) ∈ �[�=]ϕ�Y , let x′ �∈ �ϕ�X ; we must prove that x′ = x
to conclude that x ∈ �[�=]ϕ�X . Note that if y ∈ �¬ϕ�Y it follows that f(x) = y, given
that f(x) ∈ �[�=]ϕ�Y . By the induction hypothesis, f(x′) �∈ �ϕ�Y , which by the above
yields f(x) = f(x′) ∈ �¬ϕ�Y . Thus �¬ϕ�Y = {f(x)}, and f(x) is ¬ϕ-unique. But,
f is Σ-injective, so f(x) = f(x′) yields x = x′, as required.

Note that if Σ is finite, there can be only finitely many Σ-unique points. This will allow
us to give a criterion for when, given any valuation �·�Y on Y, there is a Σ-morphism
f : X → Y . Below, we write A ⊆fin B to indicate that A is a finite subset of B.
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Fig. 2. The space X looks like the shadow of an infinite braid.

Definition 6.3. If X,Y are topological spaces, we write X � Y if for every U ⊆fin Y
there is a surjective, U-injective interior map f : X → Y .

It is easy to check that if Σ is finite and X � Y , then for any valuation on Y there
is a Σ-morphism f : X → Y . It follows that if X � Y , then every L� �=-formula valid
on X is valid on Y.

Lemma 6.4. Define

X = {(x, y) ∈ R2 : |y| ≤ | sin(x)|}
(see Figure 2). Then, every formula of L� �= valid on X is valid on R.

Proof. It suffices to check that X � R. Let U ⊆fin R. Without loss of generality, we
may assume that U consists of multiples of �; otherwise, apply a homeomorphism
g to R so that g(U ) consists of multiples of �, which is possible since U is finite.
Let f : X → R be given by f(x, y) = x. Then f is clearly a surjective interior map,
and it is U-injective because if x ∈ U then x is a multiple of �, so sin(x) = 0 and
f–1(x) = {(x, 0)}. It follows that any L� �=-formula valid on X is valid on R.

Remark 6.5. Unlike other notions of topological morphisms, the relation X � Y is
not witnessed by a single map, but rather, the existence of a suitable map fU for each
finiteU ⊆ Y . However, it is possible to gather these maps into a single object (fU )U⊆finY ,
and view the latter as a form of topological morphism tailored for logics with �=. We will
call such collections of functions �= -morphisms.

§7. A L� �=-undefinable property. Recall that Kur = �(�p ∨ �¬p) → (�p ∨
�¬p) is the Kuratowski formula [11], and is valid on locally 1-component spaces
by Lemma 4.1. Note that Kur is expressible in L�, since � is definable in terms of �.
Our space X does not validate Kur, but it does validate an approximate version.

Lemma 7.1. �Kur is valid on X but not on R.

Proof. Let �·�X be any valuation on X. To see that it validates �Kur, note that if
(x, y) ∈ X, then any small-enough neighbourhood N of (x, y) has the property that if
(x′, y′) ∈ N \ {(x, y)}, then x′ is not a multiple of �. But it is easy to see that any small-
enough punctured ball around (x′, y′) is connected (see Figure 2), so (x′, y′) ∈ �Kur�X,
and thus N witnesses that (x, y) ∈ ��Kur�X.

To see that �Kur is not valid on R, let �·�R be such that

�p�R = {x ∈ R : ∃n ≥ 0 s.t. 2–2n–1 < x < 2–2n}.

Then, any punctured neighborhood U of 0 contains a point of the form x = 2–2n–1 for
large-enough n. But N = (2–2n–2, 2–2n) is a neighborhood of x, and all points in N to
the right of x satisfy p, hence �p, and all points in N to the left of x satisfy ¬p, hence
�¬p. Thus x ∈ ��(�p ∨ �¬p)�R. However, neither x ∈ ��p�R nor x ∈ ��¬p�R, so
x /∈ �Kur�R. Since U was arbitrary, it follows that 0 /∈ ��Kur�R.
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However, by Lemma 6.4, we have that any L� �=-formula valid on X is also valid on
R, so no L� �=-formula defines the same class of spaces as �Kur. We thus obtain the
following.

Theorem 7.2. The language L� is not reducible to L� �=.

As a corollary, we obtain that L� �= < L� �=.

§8. Concluding remarks. We have closed the most prominent question left open by
[10] in the comparison of topological modal languages by establishing thatL� �= < L� �=:
in fact, we showed that L� �≤ L� �=. We also closed a gap in the proof that L� �= �≤ L�∀.
However, our main contribution is arguably a notion of topological morphism which
preserves formulas with the difference modality. Unlike related morphisms for similar
languages, preservation of formulas with [ �=] requires not only one map, but a family
of maps indexed by the finite subsets of the codomain.

One interesting line of inquiry opened by �=-morphisms is that of succinctness:
Fernández-Duque and Iliev [6] show that despite being less expressive, L� is more
succinct than L� for certain formulas. Similar results could hold for L� �= vs. L� �=, and
would require a refined notion of �=-morphisms.

Finally, we remark that interior maps do not always preserve formulas with �:
more restrictive maps, sometimes called d -morphisms, are needed. By combining
d -morphisms with �=-morphisms, it would be possible to exhibit classes of spaces
which are not distinguished by L� �=, thus establishing non-trivial limitations for the
expressive power of the full topological modal language.
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