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LIMIT THEORY FOR U-STATISTICS UNDER GEOMETRIC AND
TOPOLOGICAL CONSTRAINTS WITH RARE EVENTS

TAKASHI OWADA,∗ Purdue University

Abstract

We study the geometric and topological features of U-statistics of order k when the
k-tuples satisfying geometric and topological constraints do not occur frequently. Using
appropriate scaling, we establish the convergence of U-statistics in vague topology,
while the structure of a non-degenerate limit measure is also revealed. Our general result
shows various limit theorems for geometric and topological statistics, including per-
sistent Betti numbers of Čech complexes, the volume of simplices, a functional of the
Morse critical points, and values of the min-type distance function. The required vague
convergence can be obtained as a result of the limit theorem for point processes induced
by U-statistics. The latter convergence particularly occurs in the M0-topology.
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1. Introduction

The main focus of this paper is to examine the geometric and topological features of
U-statistics when the geometric configuration of a point cloud does not occur frequently. Let
Xn = {X1, . . . , Xn} ⊂R

d, d ≥ 2, be a random sample, and let (rn) be a sequence of positive
numbers such that rn → 0 as n → ∞. A geometric graph G(Xn, rn) is an undirected graph with
a vertex set Xn and edges [Xi, Xj] for all pairs Xi, Xj ∈Xn such that ‖Xi − Xj‖ ≤ rn, where ‖·‖
denotes the Euclidean norm. The monograph [30] by Penrose covers a range of related topics,
including subgraph counts, the vertex degree, the clique number, and the formation of a giant
component. As seen in the monograph, many of the geometric statistics can be represented as
U-statistics. Namely, for every n, k ≥ 2,

T (1)
k,n :=

∑
Y⊂Xn,|Y |=k

Hn(Y), (1.1)

where |Y| is the cardinality of a point set Y in R
d and Hn : (Rd)k →R is defined as

Hn(x1, . . . , xk) = H(r−1
n x1, . . . , r−1

n xk), x1, . . . , xk ∈R
d

Received 26 May 2021; revision received 15 March 2022.
∗ Postal address: Department of Statistics, Purdue University, West Lafayette, 47907, USA. Email address:
owada@purdue.edu

© The Author(s), 2022. Published by Cambridge University Press on behalf of Applied Probability Trust.

314

https://doi.org/10.1017/jpr.2022.39 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2022.39
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jpr.2022.39&domain=pdf
https://doi.org/10.1017/jpr.2022.39


Limit theory for U-statistics 315

for some symmetric and translation-invariant map H : (Rd)k →R. Additionally, we can also
consider a certain variant of (1.1), defined by

T (2)
k,n :=

∑
Y⊂Xn,|Y |=k

Hn(Y)1{‖y − z‖ ≥ rn for all y ∈Y and z ∈Xn \Y},

where 1{·} denotes an indicator function. This is of particular importance when we are exam-
ining k-tuples Y ⊂Xn, which not only satisfy geometric conditions implicit in Hn but are also
separated from the other points in Xn. In Section 2 we provide a more general definition of T (i)

k,n
for i = 1, 2. If one takes

H(x1, . . . , xk) = 1{G({x1, . . . , xk}, 1) ∼= �}, xi ∈R
d, (1.2)

where � is a connected graph with k vertices and ∼= means graph isomorphism, then T (1)
k,n rep-

resents the number of subgraphs isomorphic to � (with radius rn) and T (2)
k,n counts the number

of connected components isomorphic to �. In addition to the random geometric graph setup,
many of the functionals in stochastic geometry, such as intrinsic volumes of intersection pro-
cesses, the volumes of simplices, can be treated under the framework of U-statistics [2, 6,
22, 24, 31]. Additionally, T (i)

k,n can also arise when examining random geometric complexes.

For example, with an appropriate choice of H, T (i)
k,n can be used to dictate the behavior of

topological invariants of a geometric complex [3, 4, 17, 29].
The limiting behavior of T (i)

k,n depends crucially on the decay rate of rn as n → ∞. If rn is

chosen such that nkrd(k−1)
n → ∞ as n → ∞, it then follows that E

[
T (i)

k,n

]→ ∞. This implies
that the geometric configuration of k-tuples relating to Hn asymptotically occurs infinitely
many times. Then T (i)

k,n obeys a central limit theorem:

T (i)
k,n −E

[
T (i)

k,n

]√
Var

(
T (i)

k,n

)
converges weakly to a standard normal random variable. Last et al. [24] and Reitzner and
Schulte [31] established the rate of convergence in normal approximation in terms of the
Wasserstein distance and the Kolmogorov distance, via the Malliavin–Stein method together
with Palm calculus for a Poisson point process. The monograph [23] by Last and Penrose pro-
vides details of this line of research. Furthermore, Blaszczyszyn et al. [2] derived asymptotic
normality of geometric statistics (not necessarily U-statistics) when the input process exhibits
fast decay of correlations. In the context of random topology, proving the asymptotic normal-
ity of the simplex counts, which themselves are U-statistics, will be a crucial step in deriving
the central limit theorem for topological invariants, such as the Euler characteristic and Betti
numbers [17, 21, 29, 35]. If rn decays more slowly, such that nkrd(k−1)

n → c, n → ∞, for some
c ∈ (0, ∞), the k-tuples that satisfy the geometric conditions in Hn will occur less frequently.
Then E

[
T (i)

k,n

]
tends to a finite positive constant as n → ∞. In particular, if one takes Hn as in

(1.2), T (i)
k,n converges weakly to a Poisson random variable as n → ∞, that is, for all integers

� ≥ 0 and i = 1, 2,
P
(
T (i)

k,n = �
)→ P(Poi(νk) = �), n → ∞, (1.3)

where ‘Poi(νk)’ stands for a Poisson random variable with mean νk ∈ (0, ∞). In research relat-
ing to random topology, Kahle and Meckes [17] and Owada and Thomas [29] proved that
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the Betti number of a geometric complex converges weakly to the difference of time-changed
homogeneous Poisson processes on the real half-line. Furthermore, Decreusefond et al. [6]
provided the rate of convergence of a point process induced by U-statistics in terms of the
Kantorovich–Rubinstein distance.

The main aim of this paper is to explore the limiting behavior of T (i)
k,n when the k-tuples

satisfying the geometric conditions in Hn are even less likely to occur. Specifically, we assume
that rn decays to 0 at a faster rate: nkrd(k−1)

n → 0 as n → ∞. It then follows that

P
(|T (i)

k,n| ≥ ε
)→ 0, n → ∞

for all ε > 0. In this setting, we aim to detect a sequence (vn) that grows to infinity, so that(
vnP

(
T (i)

k,n ∈ ·), n ≥ 1
)

(1.4)

converges to a non-degenerate limiting measure. Since (1.4) is not a sequence of probability
measures, weak convergence as in (1.3) can no longer be used. Alternatively, by exploiting the
notion of vague convergence (see [19] and [32]), we show that in the space of Radon measures
on [−∞, ∞] \ {0},

vnP
(
T (i)

k,n ∈ ·) v→ μk, n → ∞, (1.5)

where
v→ denotes vague convergence and μk is a non-null limit measure with μk({±∞}) = 0.

From (1.5), one can deduce, from the perspective of vague topology, the exact rate (up to the
scale) of the probability that T (i)

k,n becomes non-trivial (i.e. non-zero). Furthermore, the limit

μk is expected to dictate the geometric and topological structure of T (i)
k,n which still remains

in the limit. In the literature of random topology (not necessarily related to random geometric
complexes), one of the key focuses is how rapidly each homology group appears and disappears
[5, 9, 16, 18, 34]. In the same spirit, we replace T (i)

k,n in (1.5) with the (persistent) Betti numbers
and explore the rate of vn, as well as the structure of μk. See Section 3.1 for more details.

From a technical viewpoint, the articles most relevant to this study are those of Fasen and
Roy [8] and Hult and Samorodnitsky [14]. In these papers the authors established large devi-
ations for point processes based on a stationary sequence with heavy-tailed marginals and
non-trivial dependency. Using the same approach as applied in these papers, the required vague
convergence in (1.5) can be derived from the limit theorem for the sequence(

vnP

( ∑
Y⊂Xn,|Y |=k

δHn(Y) ∈ ·
)

, n ≥ 1

)
, (1.6)

where δx denotes the Dirac measure at x ∈R. The point process in (1.6) is a random element
into the space of Radon point measures, but this space is not locally compact. Accordingly, the
convergence of (1.6) can no longer be treated in the vague topology. Alternatively, we aim to
demonstrate the limit theory for (1.6) in the so-called M0-topology. This notion was first devel-
oped by Hult and Lindskog [13] and has been used extensively, especially in extreme value
theory, for the study of regular variation of stochastic processes [8, 14, 25, 33]. Proposition 4.1
gives a more precise statement of this result. After completing the limit theorem for (1.6), this
paper proceeds to show (1.5) by means of a continuous mapping theorem for M0-convergence,
as well as by using various approximation arguments.

The remainder of this paper is structured as follows. Section 2 presents the limit theorems
for T (i)

k,n under a more general setup. Section 3 applies our general result to deduce the limit
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theory for geometric and topological statistics, including persistent Betti numbers of Čech
complexes, the volume of simplices, a functional of the Morse critical points, and values of the
min-type distance function. All the proofs are deferred to Section 4.

Before commencing the main body of the paper, let us add a few more comments on our
setup. First, we assume that the density f of Xn is a.e. continuous and bounded. We can obtain
the same result under a weaker assumption that∫

(Rd)k
f (x)2k−2 dx < ∞.

However, we have decided to impose stronger assumptions in order to avoid technical argu-
ments relating to moment convergence, which necessarily involves the density f . Second, we
observe that the same result can be obtained even if a random sample Xn is replaced by a
Poisson point process Pn := {X1, . . . , XNn}, where Nn is Poisson-distributed with mean n,
independent of (Xi). In this case, one needs to use Palm calculus (see e.g. [30, Section 1.7])
when computing the moments of T (i)

k,n. Finally, we remark that establishing a more general limit
theory for a (discrete time) process Xn with non-trivial dependency remains a topic of further
research. Indeed, Fasen and Roy [8] and Hult and Samorodnitsky [14] examined a moving
average process and derived a series of large deviation results in the form of (1.5) and (1.6).
In such cases, the structure of the limit μk becomes more complicated, reflecting a significant
amount of clusters induced by a moving average process. In the case of Poisson limit theorems,
a similar line of research can be found in [27], which studied the asymptotic behavior of Betti
numbers generated by a moving average process.

2. Main limit theorem

We take a random sample Xn = {X1, . . . , Xn} ⊂R
d, d ≥ 2, with density f , and a sequence

of (non-random) radii rn → 0, n → ∞, such that nkrd(k−1)
n → 0 for some k ≥ 2. Assume that

f is a.e. continuous and bounded, that is, ‖f ‖∞ := ess supx∈Rd f (x) < ∞. Fix m ≥ 1 and let
H : (Rd)k →R

m be a measurable function satisfying the following conditions.

(H1) H is symmetric about permutations, i.e. H(x1, . . . , xk) = H(xσ (1), . . . , xσ (k)) for all xi ∈
R

d and every permutation σ of {1, . . . , k}.
(H2) H is translation-invariant, i.e. H(x1, . . . , xk) = H(x1 + y, . . . , xk + y) for all xi, y ∈R

d.

(H3) H is locally determined, i.e. there exists L > 0 such that H(x1, . . . , xk) = 0 whenever
diam(x1, . . . , xk) ≥ L, where diam(x1, . . . , xk) = max1≤i,j≤k ‖xi − xj‖.

(H4) H is integrable in the sense of∫
(Rd)k−1

‖H(0, y1, . . . , yk−1)‖ dy < ∞.

We also define a scaled version of H by

Hn(x1, . . . , xk) := H(r−1
n x1, . . . , r−1

n xk), xi ∈R
d. (2.1)

Given a subset Y of k points in R
d, a finite point set Z ⊃Y in R

d, and t = (t1, . . . , tm) ∈
[0, ∞)m, we define

c(Y,Z; t) = (1{‖y − z‖ ≥ ti for all y ∈Y and z ∈Z \Y})m
i=1. (2.2)
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In particular, the ith component of (2.2) requires that each point in Y must be distance at least
ti from all the remaining points in Z \Y . Moreover,

G(Y,Z; t) := H(Y) ◦ c(Y,Z; t), (2.3)

where ◦ means the Hadamard product: for two matrices A = (aij) and B = (bij) of the same
dimension �1 × �2, A ◦ B represents an �1 × �2 matrix with (i, j) element given by aijbij. For
Y = (y1, . . . , yk) ∈ (Rd)k and a ∈R, we write aY = (ay1, . . . , ayk). We then define

cn(Y,Z; t) := c
(
r−1

n Y, r−1
n Z; t

)= (1{‖y − z‖ ≥ rnti for all y ∈Y and z ∈Z \Y})m
i=1, (2.4)

and

Gn(Y,Z; t) := G
(
r−1

n Y, r−1
n Z; t

)= Hn(Y) ◦ cn(Y,Z; t). (2.5)

The primary objective of this paper is to examine the behavior of

T (1)
k,n :=

∑
Y⊂Xn,|Y |=k

Hn(Y) and T (2)
k,n :=

∑
Y⊂Xn,|Y |=k

Gn(Y,Xn; t). (2.6)

For the rigorous description of the asymptotic theory of (2.6), one needs the following notations
and concepts. Our main references are [19] and [32]. First, let E := (R)m \ {0} = [−∞, ∞]m \
{0} with 0 = (0, . . . , 0) ∈R

m, and let M+(E) be the space of Radon measures on E, and Mp(E)
denotes the space of Radon point measures on E. Note that Mp(E) is a closed subset of M+(E)
in the vague topology; see Proposition 3.14 in [32]. Define C+

K (E) to be the collection of non-
negative and continuous functions on E with compact support. For ηn, η ∈ M+(E), we say that
ηn converges vaguely to η, denoted by ηn

v→ η in M+(E), if it holds that∫
E

g(x)ηn(dx) →
∫

E
g(x)η(dx) for all g ∈ C+

K (E).

Now we can state our main theorem. The proof is deferred to Section 4.1.

Theorem 2.1. Under the assumptions above, for each i = 1, 2, we have(
nkrd(k−1)

n

)−1
P
(
T (i)

k,n ∈ ·) v→ Ckλ
{
y ∈ (Rd)k−1 : H(0, y) ∈ ·} in M+(E), n → ∞,

where

y = (y1, . . . , yk−1) ∈ (Rd)k−1, Ck := (k!)−1
∫
Rd

f (x)k dx,

and λ is the Lebesgue measure on (Rd)k−1.

The U-statistics T (1)
k,n is associated with k-tuples satisfying the geometric conditions implicit

in Hn, while T (2)
k,n adds an extra constraint that the points in Y must be distance at least a constant

multiple of rn from the remaining points in Xn \Y . Despite such a difference, Theorem 2.1
indicates that the behaviors of T (i)

k,n, i = 1, 2 are asymptotically the same. In other words, the

extra restriction imposed on T (2)
k,n is asymptotically negligible, whenever rn decays so fast that

nkrd(k−1)
n → 0 as n → ∞.
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3. Geometric and topological applications

In this section we use Theorem 2.1 to deduce the limit theory for geometric and topo-
logical statistics satisfying conditions (H1)–(H4). Throughout this section we assume that
Xn = {X1, . . . , Xn} is a random sample in R

d, d ≥ 2, with density f , and let (rn) be a sequence
of connectivity radii with rn → 0 as n → ∞. Furthermore, f is assumed to be a.e. continuous
and bounded. Denote λ to be the Lebesgue measure in a given dimension. All of the proofs are
provided in Sections 4.2–4.4. All the examples here are more or less concerned with a Čech
complex defined on Xn with connectivity radius rn.

Definition 3.1. Given a set X = {x1, . . . , xn} of points in R
d and a positive number r > 0, we

define a Čech complex Č(X , r) as follows.

• The 0-simplices are the points in X .

• The p-simplex [xi0, . . . , xip ], 1 ≤ i0 < · · · < ip ≤ n, belongs to Č(X , r) if

p⋂
�=0

B(xi� , r/2) = ∅,

where B(x, r) is a d-dimensional closed ball of radius r centered at x ∈R
d.

3.1. Persistent Betti number

Our first application is concerned with the persistent Betti number. Because of the recent
development of topological data analysis, the (persistent) Betti number has been intensively
studied as a basic topological invariant representing, roughly, the creation and destruction of
topological cycles of various dimensions [4, 12, 15, 17, 20, 36, 37]. First we define a family(

Č
(
r−1

n Xn, t
)
, t ≥ 0

)= (Č(Xn, rnt), t ≥ 0) (3.1)

of Čech complexes over a scaled random sample r−1
n Xn. Note that (3.1) constitutes a nested

sequence of Čech complexes satisfying monotonicity property Č(Xn, rns) ⊂ Č(Xn, rnt) for all
0 < s ≤ t < ∞.

Now we fix a non-negative integer k and let Zk(Č(Xn, rnt)) be the kth cycle group of
Č(Xn, rnt), and let Bk(Č(Xn, rnt)) be the kth boundary group of the same complex. Then
Hk(Č(Xn, rnt)) := Zk(Č(Xn, rnt))/Bk(Č(Xn, rnt)) is the kth homology group, representing the
elements of (non-trivial) k-dimensional cycles, which can be interpreted as the boundary of a
(k + 1)-dimensional body. The kth Betti number

βk,n(t) := dim Hk(Č(Xn, rnt)) = dim
Zk(Č(Xn, rnt))

Bk(Č(Xn, rnt))
, t ≥ 0, (3.2)

denotes the rank of Hk(Č(Xn, rnt)). Loosely speaking, (3.2) counts the number of
k-dimensional cycles in Č(Xn, rnt). Moreover, (3.2) can be extended to the kth persistent Betti
number, defined by

βk,n(s, t) := dim
Zk(Č(Xn, rns))

Zk(Č(Xn, rns)) ∩ Bk(Č(Xn, rnt))
, 0 ≤ s ≤ t < ∞. (3.3)

More intuitively, (3.3) represents the number of k-dimensional cycles that appear in (3.1)
before time s and remain alive at time t. Clearly βk,n(t, t) reduces to the ordinary Betti number
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in (3.2). Readers wishing to have a more rigorous coverage of these algebraic topological
notions may refer to [7], [11], and [26].

To provide a precise setup for the theorem below, we restrict the range of k to
{1, . . . , d − 1}, while taking m ≥ 1 and 0 ≤ si ≤ ti < ∞ for i = 1, . . . , m. For (x1, . . . , xk+2) ∈
(Rd)k+2 and r > 0, we define

hr(x1, . . . , xk+2)

:= 1

{{
k+2⋂

j=1,j =j0

B(xj, r/2) = ∅ for all j0 ∈ {1, . . . , k + 2}
}

∩
{

k+2⋂
j=1

B(xj, r/2) = ∅
}}

.

(3.4)

Here (3.4) requires that a point set {x1, . . . , xk+2} in R
d forms a single k-dimensional cycle

with connectivity radius r. Furthermore, we let

H({x1, . . . , xk+2}; s, t) := (hsi (x1, . . . , xk+2)hti(x1, . . . , xk+2))m
i=1, (3.5)

where s = (s1, . . . , sm) and t = (t1, . . . , tm). It is then easy to check that H satisfies conditions
(H1)–(H4). The theorem below derives the exact rate (up to the scale) of a probability that the
kth persistent Betti number becomes non-zero, when nk+2rd(k+1)

n → 0 as n → ∞.

Theorem 3.1. Assume that nk+2rd(k+1)
n → 0 as n → ∞. Then, as n → ∞, we have(

nk+2rd(k+1)
n

)−1
P((βk,n(si, ti), i = 1, . . . , m) ∈ ·)

v→ Ck+2λ
{
y ∈ (Rd)k+1 : H({0, y}; s, t) ∈ ·} in M+([0, ∞]m \ {0}), (3.6)

where y = (y1, . . . , yk+1) ∈ (Rd)k+1, 0 = (0, . . . , 0) ∈R
m, and Ck+2 is given in Theorem 2.1.

Additionally, for ui ≥ 0, ui = 1, i = 1, . . . , m, with max1≤i≤m ui > 0, we have, as n → ∞,

P(βk,n(si, ti) ≥ ui, i = 1, . . . , m)( n
k+2

)
P(hrn (X1, . . . , Xk+2) = 1)

→
(∫

(Rd)k+1
h1(0, y) dy

)−1

λ
{
y ∈ (Rd)k+1 : hsi (0, y) hti(0, y) ≥ ui, i = 1, . . . , m

}
. (3.7)

Note that the limit in (3.7) is equal to 0 whenever max1≤i≤m ui > 1. As a direct consequence
of (3.7), we obtain that for every ai ∈ {0, 1}, i = 1, . . . , m with

∑m
i=1 ai ≥ 1,

P(βk,n(si, ti) = ai, i = 1, . . . , m)( n
k+2

)
P(hrn (X1, . . . , Xk+2) = 1)

→
∫

(Rd)k+1

∏m
i=1{aihsi (0, y)hti(0, y) + (1 − ai)(1 − hsi (0, y)hti(0, y))} dy∫

(Rd)k+1 h1(0, y) dy
, n → ∞.

We observe that hsi (0, y)hti(0, y) = 1 if and only if the point set {0, y} = {0, y1, . . . , yk+1} ∈
(Rd)k+2 forms a single k-cycle before time si, such that this cycle is still alive at time ti.
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3.2. Volume of simplices

We next consider an application to the volume functional of simplices. Fix d ≥ 2 and 1 ≤
k ≤ d. For (x1, . . . , xk+1) ∈ (Rd)k+1, let

[x1, . . . , xk+1] =
{

k+1∑
i=1

aixi : ai ≥ 0,

k+1∑
i=1

ai = 1

}
be the k-simplex spanned by x1, . . . , xk+1. Furthermore, Vk([x1, . . . , xk+1]) denotes its
k-dimensional volume. By slightly abusing notation, we write Vk(Y) = Vk([y1, . . . , yk+1])
for Y = (y1, . . . , yk+1) ∈ (Rd)k+1. The objective of this section is to explore the asymptotic
behavior of

Fk,n :=
( ∑
Y⊂Xn,|Y |=k+1

Vk(Y)bi1

{⋂
y∈Y

B(y, rnTi/2) = ∅
})m

i=1

,

where bi ≥ 0 and Ti > 0 for i = 1, . . . , m. If one takes bi = 0, the ith component of Fk,n rep-
resents the k-simplex counts of a Čech complex Č(Xn, rnTi). In the case of bi = 1, the ith
component of Fk,n represents the total volume of these k-simplices. Furthermore, if k = 1 and
bi = 1, the ith component of F1,n is the total edge length in a random geometric graph with
radius rnTi.

The corollary below investigates the probability that each component of the scaled Fk,n

exceeds a positive constant when nk+1rdk
n → 0 as n → ∞.

Corollary 3.1. Assume that nk+1rdk
n → 0 as n → ∞. Then, as n → ∞,(

nk+1rdk
n

)−1
P
((

r−kbi
n

)m
i=1 ◦ Fk,n ∈ ·)

v→ Ck+1λ{y ∈ (Rd)k : H(0, y) ∈ ·} in M+([0, ∞]m \ {0}), (3.8)

where y = (y1, . . . , yk) ∈ (Rd)k, 0 = (0, . . . , 0) ∈R
m, and

H(0, y) :=
(

Vk([0, y1, . . . , yk])bi1

{
B(0, Ti/2) ∩

k⋂
j=1

B(yj, Ti/2) = ∅
})m

i=1

. (3.9)

Furthermore, for all ui > 0, i = 1, . . . , m, we have as n → ∞,

P
((

r−kbi
n

)m
i=1 ◦ Fk,n ∈∏m

i=1 [ui, ∞)
)( n

k+1

)
P
(⋂k+1

j=1 B(Xj, rn/2) = ∅)
→ λ

{
y ∈ (Rd)k : Vk([0, y])bi ≥ ui, B(0, Ti/2) ∩⋂k

j=1 B(yj, Ti/2) = ∅, i = 1, . . . , m
}

λ
{
y ∈ (Rd)k : B(0, 1/2) ∩⋂k

j=1 B(yj, 1/2) = ∅} .

(3.10)

3.3. Morse critical points and values of min-type distance function

To understand the topology of random Čech complexes, Bobrowski and Adler [3] proposed
an approach based on an extension of Morse theory to ‘min-type’ distance functions. For a
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finite set Z of points in R
d, we define a distance function dZ : Rd → [0, ∞) by

dZ (x) := min
z∈Z

‖x − z‖, x ∈R
d. (3.11)

Since dZ is not differentiable, the classical definition of critical points does not apply to dZ .
Nevertheless, one can still extend a notion of critical points, as well as their Morse critical
index, to the min-type distance function as in (3.11) by means of an approach in [10]. More
precisely, following the notations and definitions in [3], we say that c ∈R

d is a critical point of
dZ with index 1 ≤ k ≤ d, if there exists a set Y ⊂Z of k + 1 points, such that:

(i) the points in Y are in general position,

(ii) dZ (c) = ‖c − y‖ for all y ∈Y , while dZ (c) < ‖c − z‖ for all z ∈Z \Y ,

(iii) c ∈ conv◦ (Y), where conv◦ (Y) represents an interior of a convex hull spanned by the
points in Y .

By virtue of the nerve lemma (see e.g. [1, Theorem 10.7]), for each r > 0, the sublevel set
dXn (−∞, r] is homotopy equivalent to a Čech complex Č(Xn, 2r). By the standard application
of Morse theory as well as the nerve lemma, Bobrowski and Adler [3] justified that given a
sequence rn → 0, n → ∞, the number of critical points of dXn with index k, such that their
critical values are less than rn, behaves very similarly to βk−1(Č(Xn, 2rn)). A similar analysis
was conducted in [36], in the case when a set of points are sampled from a stationary point
process. Additionally, Bobrowski and Mukherjee [4] studied a more general case for which
random points are supported on an �-dimensional manifold M⊂R

d (� < d).
In this setting, we aim to study the asymptotic theory of

Sk,n :=
( ∑
Y⊂Xn,|Y |=k+1

R(Y)bi1{γ (Y) ∈ conv◦(Y), R(Y) ≤ rnTi, U (Y) ∩Xn = ∅}
)m

i=1

,

where bi ≥ 0 and Ti > 0, i = 1, . . . , m. Moreover, γ (Y) denotes a critical point of dXn with
index k, generated by the points in Y , R(Y) is its critical value, and U (Y) is an open ball
in R

d with radius R(Y) centered at γ (Y). If bi = 0, the ith component of Sk,n represents the
number of critical points of index k with critical values less than rnTi. In the case of bi = 1, the
ith component of Sk,n represents the sum of those critical values. The corollary below gives
the rate of a probability that the appropriately scaled Sk,n is asymptotically non-trivial when
nk+1rdk

n → 0 as n → ∞.

Corollary 3.2. Assume that nk+1rdk
n → 0 as n → ∞. Then, as n → ∞,(

nk+1rdk
n

)−1
P
((

r−bi
n

)m
i=1 ◦ Sk,n ∈ ·)

v→ Ck+1λ
{
y ∈ (Rd)k : H(0, y) ∈ ·} in M+([0, ∞]m \ {0}), (3.12)

where y = (y1, . . . , yk) ∈ (Rd)k and

H(0, y) := (R(0, y1, . . . , yk)bi1{γ (0, y1, . . . , yk) ∈ conv◦(0, y1, . . . , yk),

R(0, y1, . . . , yk) ≤ Ti})m
i=1. (3.13)
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Moreover, for all 0 < ui ≤ Tbi
i , i = 1, . . . , m,

P
((

r−bi
n

)m
i=1 ◦ Sk,n ∈∏m

i=1 [ui, ∞)
)( n

k+1

)
P(R(X1, . . . , Xk+1) ≤ rn)

→ λ
{
y ∈ (Rd)k : γ (0, y) ∈ conv◦(0, y), u1/bi

i ≤ R(0, y) ≤ Ti, i = 1, . . . , m
}

λ{y ∈ (Rd)k : R(0, y) ≤ 1} . (3.14)

4. Proofs

4.1. Proof of Theorem 2.1

The main machinery for our proof is a certain asymptotic result of point processes induced
by the statistics in (2.6). More precisely, we consider the point processes

N(1)
k,n :=

∑
Y⊂Xn,|Y |=k

δHn(Y) and N(2)
k,n :=

∑
Y⊂Xn,|Y |=k

δGn(Y,Xn; t), (4.1)

where δz denotes the Dirac measure at z ∈R
m.

For the rigorous description of the asymptotic behavior of (4.1), we need the following
concepts. The main references here are [13], [14], and [25]. Recall first that the vague topology
on Mp(E) is metrizable as a complete, separable metric space. The metric that induces the vague
topology is called the vague metric, and its explicit form is given in the proof of Proposition
3.17 of [32]. Let ∅ ∈ Mp(E) be the null measure that assigns zeros to all Borel-measurable
sets in E, and let B∅,r denote an open ball of radius r > 0 centered at ∅ in the vague metric.
Let M0 =M0(Mp(E)) denote the space of Borel measures on Mp(E), the restriction of which
to Mp(E) \ B∅,r is finite for all r > 0. Moreover, define C0 = C0(Mp(E)) to be the space of
continuous and bounded real-valued functions on Mp(E) that vanish in the neighborhood of ∅.
Given ηn, η ∈M0, we say that ηn converges to η in the M0-topology, denoted by ηn → η in
M0, if it holds that ∫

Mp(E)
g(ξ )ηn(dξ ) →

∫
Mp(E)

g(ξ )η(dξ ) for all g ∈ C0.

The proposition below reveals the required asymptotics of (4.1). The result may be of
independent interest. It can actually parallel Theorem 4.1 of [14] and Theorems 3.1 and 4.1
of [8], the authors of which studied large deviations for point processes based on a sta-
tionary sequence with heavy-tailed marginals and non-trivial dependency. As in the case of
Theorem 2.1, the limits of N(i)

k,n, i = 1, 2 coincide with one another, due to the fact that the
indicator cn at (2.4) tends to 1 as n → ∞.

Proposition 4.1. Under the assumptions in Theorem 2.1, for each i = 1, 2, we have(
nkrd(k−1)

n

)−1
P
(
N(i)

k,n ∈ ·)→ Ckλ
{
y ∈ (Rd)k−1 : δH(0,y) ∈ ·} in M0, n → ∞. (4.2)

Before commencing the proof, we observe that Mp(E) is not locally compact; thus, unlike
Theorem 2.1, the convergence in Proposition 4.1 cannot be treated in terms of vague topology.
In contrast, the theory of M0-topology requires only that the underlying space be complete
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and separable. Since Mp(E) is complete and separable (see Proposition 3.17 in [32]), one can
exploit M0-topology as an appropriate topology for the convergence in Proposition 4.1.

Proof of Proposition 4.1. Since the proofs of the two statements are very similar
in nature, we prove the case i = 2 only. Given U1, U2 ∈ C+

K (E) and ε1, ε2 > 0, define
FU1,U2,ε1,ε2 : Mp(E) → [0, 1] by

FU1,U2,ε1,ε2 (ξ ) = (
1 − e−(ξ (U1)−ε1)+)(1 − e−(ξ (U2)−ε2)+),

where (a)+ = a if a ≥ 0 and 0 otherwise, and

ξ (U�) =
∫

E
U�(x)ξ (dx) for � = 1, 2.

It is elementary to check that FU1,U2,ε1,ε2 ∈ C0.
For ease of description, we introduce several shorthand notations: for � ≥ 1 and n ≥ 1, let

I�,n = {i = (i1, . . . , i�) ∈N
� : 1 ≤ i1 < · · · < i� ≤ n} (4.3)

be the collection of ordered �-tuples of positive integers. Given a random sample Xn =
{X1, . . . , Xn} ⊂R

d, we write

Xi = (Xi1 , . . . , Xi� ), i = (i1, . . . , i�) ∈ I�,n. (4.4)

Using these notations, we denote

ηn(·) := (
nkrd(k−1)

n

)−1
P
(
N(2)

k,n ∈ ·)= (
nkrd(k−1)

n

)−1
P

( ∑
i∈Ik,n

δGn(Xi,Xn; t) ∈ ·
)

, (4.5)

η(·) := Ckλ
{
y ∈ (Rd)k−1 : δH(0,y) ∈ ·}. (4.6)

According to Theorem A.2 in [14], the required statement follows if one can show that

ηn(FU1,U2,ε1,ε2 ) → η(FU1,U2,ε1,ε2 ) as n → ∞,

for every U1, U2 ∈ C+
K (E) and ε1, ε2 > 0. For each � = 1, 2, U� has compact support in E, so

there exists ζ > 0 such that

2⋃
�=1

supp(U�) ∩R
m ⊂ {x ∈R

m : ‖x‖ > ζ } (4.7)

(supp(U�) denotes the support of U�). Define

�n :=
2∏

�=1

(
1 − exp

{
−
[ ∑

i∈Ik,n

U�(Gn(Xi,Xn; t)) − ε�

]
+

})
;

then we have

ηn(FU1,U2,ε1,ε2 ) = (
nkrd(k−1)

n

)−1
E[�n]

= (
nkrd(k−1)

n

)−1
E

[
�n1

{ ⋃
i∈Ik,n

{‖Gn(Xi,Xn; t)‖ > ζ }
}]
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= (
nkrd(k−1)

n

)−1
E

[
�n1

{ ⋃
i∈Ik,n

{‖Gn(Xi,Xn; t)‖ > ζ,

‖Gn(Xj,Xn; t)‖ ≤ ζ for all j ∈ Ik,n with j = i}
}]

+ (
nkrd(k−1)

n

)−1
E

[
�n1

{ ⋃
i∈Ik,n

⋃
j∈Ik,n,

j =i

{‖Gn(Xi,Xn; t)‖ > ζ, ‖Gn(Xj,Xn; t)‖ > ζ }
}]

=: An + Bn. (4.8)

We first show that Bn tends to 0 as n → ∞. Since 0 ≤ �n ≤ 1 and ‖Gn(Xi,Xn; t)‖ ≤ ‖Hn(Xi)‖
for all i ∈ Ik,n, we have

Bn ≤ (
nkrd(k−1)

n

)−1 ∑
i∈Ik,n

∑
j∈Ik,n,

j=i

P(‖Hn(Xi)‖ > ζ, ‖Hn(Xj)‖ > ζ )

= (
nkrd(k−1)

n

)−1 ∑
i∈Ik,n

∑
j∈Ik,n,
|i∩j|=0

P(‖Hn(Xi)‖ > ζ ) P(‖Hn(Xj)‖ > ζ )

+ (
nkrd(k−1)

n

)−1
k−1∑
�=1

∑
i∈Ik,n

∑
j∈Ik,n,
|i∩j|=�

P(‖Hn(Xi)‖ > ζ, ‖Hn(Xj)‖ > ζ )

≤ (
nkrd(k−1)

n

)−1
n2k

P(‖Hn(X1, . . . , Xk)‖ > ζ )2

+ (
nkrd(k−1)

n

)−1
k−1∑
�=1

n2k−�
P(‖Hn(X1, . . . , Xk)‖ > ζ,

‖Hn(X1, . . . , X�, Xk+1, . . . , X2k−�)‖ > ζ )

= (
nkrd(k−1)

n

)−1
n2k

(∫
(Rd)k

1{‖Hn(x1, . . . , xk)‖ > ζ }
k∏

i=1

f (xi) dx

)2

+ (
nkrd(k−1)

n

)−1
k−1∑
�=1

n2k−�

∫
(Rd)2k−�

1{‖Hn(x1, . . . , xk)‖ > ζ,

‖Hn(x1, . . . , x�, xk+1, . . . , x2k−�)‖ > ζ }
2k−�∏
i=1

f (xi) dx

=: Cn + Dn.
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Performing the change of variables by xi = x + rnyi−1, i = 1, . . . , k (with y0 ≡ 0) together with
the translation invariance of H as well as (2.1),

Cn = (
nkrd(k−1)

n

)−1
n2k

(
rd(k−1)

n

∫
Rd

∫
(Rd)k−1

1{‖H(0, y1, . . . , yk−1)‖ > ζ }

× f (x)
k−1∏
i=1

f (x + rnyi) dy dx

)2

≤ (‖f ‖∞)2k−2nkrd(k−1)
n

(∫
(Rd)k−1

1{‖H(0, y1, . . . , yk−1)‖ > ζ } dy
)2

.

By property (H3) of H, the integral in the last term is finite. Since nkrd(k−1)
n → 0 as n → ∞,

we obtain Cn → 0, n → ∞. Next, turning to Dn, we change the variables by xi = x + rnyi−1,
i = 1, . . . , 2k − � (with y0 ≡ 0), to obtain that

Dn =
k−1∑
�=1

(
nkrd(k−1)

n

)−1
n2k−�rd(2k−�−1)

n

∫
Rd

∫
(Rd)2k−�−1

1{‖H(0, y1, . . . , yk−1)‖ > ζ,

‖H(0, y1, . . . , y�−1, yk, . . . , y2k−�−1)‖ > ζ } f (x)
2k−�−1∏

i=1

f (x + rnyi) dy dx

≤
k−1∑
�=1

(nrd
n)k−�(‖f ‖∞)2k−�−1

∫
(Rd)2k−�−1

1{‖H(0, y1, . . . , yk−1)‖ > ζ,

‖H(0, y1, . . . , y�−1, yk, . . . , y2k−�−1)‖ > ζ } dy.

By property (H3) of H, the integral in the last term is again finite. As nrd
n → 0, n → ∞, we can

obtain Dn → 0, n → ∞, which concludes that Bn → 0, n → ∞, as desired.
Returning to An in (4.8), we observe that({‖Gn(Xi,Xn; t)‖ > ζ, ‖Gn(Xj,Xn; t)‖ ≤ ζ for all j ∈ Ik,n with j = i}, i ∈ Ik,n

)
are disjoint. Hence we can see from (4.7) that

An := (
nkrd(k−1)

n

)−1 ∑
i∈Ik,n

E
[
�n1{‖Gn(Xi,Xn; t)‖ > ζ,

‖Gn(Xj,Xn; t)‖ ≤ ζ for all j ∈ Ik,n with j = i}]
= (

nkrd(k−1)
n

)−1 ∑
i∈Ik,n

E

[
2∏

�=1

(1 − exp{−(U�(Gn(Xi,Xn; t)) − ε�)+})

× 1{‖Gn(Xi,Xn; t)‖ > ζ, ‖Gn(Xj,Xn; t)‖ ≤ ζ for all j ∈ Ik,n with j = i}
]
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= (
nkrd(k−1)

n

)−1 ∑
i∈Ik,n

E

[
2∏

�=1

(1 − exp{−(U�(Gn(Xi,Xn; t)) − ε�)+})
]

− (
nkrd(k−1)

n

)−1 ∑
i∈Ik,n

E

[
2∏

�=1

(1 − exp{−(U�(Gn(Xi,Xn; t)) − ε�)+})

× 1
{ ⋃

j∈Ik,n,j =i

{‖Gn(Xi,Xn; t)‖ > ζ, ‖Gn(Xj,Xn; t)‖ > ζ }
}]

.

=: En − Fn,

Repeating the same argument as that for proving Bn → 0, n → ∞, it is not hard to see that
Fn → 0 as n → ∞. Assuming without loss of generality that 0 ≤ t1 ≤ · · · ≤ tm < ∞, we divide
En into two terms:

En = (
nkrd(k−1)

n

)−1 ∑
i∈Ik,n

E

[
2∏

�=1

(1 − exp{−(U�(Gn(Xi,Xn; t)) − ε�)+}) cn,m(Xi,Xn; t)

]

+ (
nkrd(k−1)

n

)−1 ∑
i∈Ik,n

E

[
2∏

�=1

(1 − exp{−(U�(Gn(Xi,Xn; t)) − ε�)+})

× (1 − cn,m(Xi,Xn; t))

]

=: In + Jn, (4.9)

where cn,m(Xi,Xn; t) denotes the mth element of cn(Xi,Xn; t) (see (2.4)). Of the last two terms,
we show that Jn is negligible as n → ∞. Indeed, by (4.7) and ‖Gn(Xi,Xn; t)‖ ≤ ‖Hn(Xi)‖, we
see that

Jn ≤ (
nkrd(k−1)

n

)−1 ∑
i∈Ik,n

E
[
1{‖Hn(Xi)‖ > ζ }(1 − cn,m(Xi,Xn; t))

]
. (4.10)

Then the right-hand side of (4.10) is equal to(
nkrd(k−1)

n

)−1 ∑
i∈Ik,n

E
[
1{‖Hn(Xi)‖ > ζ }E[1 − cn,m(Xi,Xn; t) |Xi]

]
(4.11)

= (
nkrd(k−1)

n

)−1 ∑
i∈Ik,n

E

[
1{‖Hn(Xi)‖ > ζ }

(
1 −

(
1 −

∫
B(Xi;rntm)

f (z) dz

)n−k)]

= (
nkrd(k−1)

n

)−1
(

n

k

) ∫
(Rd)k

1{‖Hn(x1, . . . , xk)‖ > ζ }

×
(

1 −
(

1 −
∫
B({x1,...,xk};rntm)

f (z) dz

)n−k) k∏
i=1

f (xi) dx.
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In the above, B(Xi; rntm) represents the union of balls of radius rntm around the points in
Xi = {Xi1 , . . . , Xik}, that is,

B(Xi; rntm) :=
k⋃

�=1

B(Xi� , rntm).

By the change of variables xi = x + rnyi−1, i = 1, . . . , k (with y0 ≡ 0) and the translation
invariance of H, the last expression in (4.11) becomes

(
nkrd(k−1)

n

)−1
(

n

k

)
rd(k−1)

n

∫
Rd

∫
(Rd)k−1

1{‖H(0, y)‖ > ζ }

×
(

1 −
(

1 −
∫
B({x,x+rny1,...,x+rnyk−1};rntm)

f (z) dz

)n−k)
f (x)

k−1∏
i=1

f (x + rnyi) dy dx

≤ (‖f ‖∞)k−1

k!
∫
Rd

∫
(Rd)k−1

1{‖H(0, y)‖ > ζ }

×
(

1 −
(

1 −
∫
B({x,x+rny1,...,x+rnyk−1};rntm)

f (z) dz

)n−k)
f (x) dy dx, (4.12)

where y = (y1, . . . , yk−1) ∈ (Rd)k−1. For every x ∈R
d and y = (y1, . . . , yk−1) ∈ (Rd)k−1,

lim
n→∞

(
1 −

∫
B({x,x+rny1,...,x+rnyk−1};rntm)

f (z) dz

)n−k

= lim
n→∞

(
1 − rd

n

∫
B({0,y};tm)

f (x + rnv) dv

)n−k

= exp

{
− lim

n→∞ (n − k)rd
n

∫
B({0,y};tm)

f (x + rnv) dv

}
,

so that

nrd
n

∫
B({0,y};tm)

f (x + rnv) dv ≤ nrd
n‖f ‖∞

∫
B({0,y};tm)

dv → 0, n → ∞.

Hence we have obtained(
1 −

∫
B({x,x+rny1,...,x+rnyk−1};rntm)

f (z) dz

)n−k

→ 1, n → ∞. (4.13)

Now the dominated convergence theorem, as well as property (H3) of H, ensures that the last
expression in (4.12) goes to 0 as n → ∞. Thus Jn → 0 as n → ∞.

From all of the convergence results derived thus far, we have ηn(FU1,U2,ε1,ε2 ) = In + o(1)
as n → ∞. We note that if cn,m(Xi,Xn; t) = 1, then all the other elements in cn(Xi,Xn; t)
are equal to 1, and therefore Gn(Xi,Xn; t) = Hn(Xi). By the conditioning on Xi as in (4.11),
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as well as the same change of variables as in (4.12), we can see that

In = (
nkrd(k−1)

n

)−1 ∑
i∈Ik,n

E

[
2∏

�=1

(1 − exp{−(U�(Hn(Xi)) − ε�)+})cn,m(Xi,Xn; t)

]

= (
nkrd(k−1)

n

)−1
(

n

k

)
rd(k−1)

n

∫
Rd

∫
(Rd)k−1

2∏
�=1

(1 − exp{−(U�(H(0, y)) − ε�)+})

×
(

1 −
∫
B({x,x+rny1,...,x+rnyk−1};rntm)

f (z) dz

)n−k

f (x)
k−1∏
i=1

f (x + rnyi) dy dx. (4.14)

By the continuity of f , it holds that

k−1∏
i=1

f (x + rnyi) → f (x)k−1 as n → ∞ a.e.

Furthermore, the integrand in (4.14) is bounded above by f (x)‖f ‖k−1∞ 1{‖H(0, y)‖ > ζ }, which
is clearly integrable in (x, y) ∈ (Rd)k. Therefore the dominated convergence theorem gives that
as n → ∞,

In → Ck

∫
(Rd)k−1

2∏
�=1

(1 − exp{−(U�(H(0, y)) − ε�)+}) dy = η(FU1,U2,ε1,ε2 ). �

Proof of Theorem 2.1. As in the case of Proposition 4.1, the proofs of the two state-
ments are similar in nature, so we again prove the case i = 2 only. Let 0 < ε < 1, and define
Vε : E → E by

Vε(z1, . . . , zm) = (z11{|z1| ≥ ε}, . . . , zm1{|zm| ≥ ε}).
Next we define a map TVε : Mp(E) → E by

TVε

(∑
j

δxj

)
=
∑

j

Vε(xj).

Below we only consider ε ∈ (0, 1), so that

λ
{
y ∈ (Rd)k−1 : ‖H(0, y)‖ = ε

}= 0. (4.15)

Note that (4.15) holds except at most countably many ε ∈ (0, 1). Now we claim that

ηn ◦ T−1
Vε

v→ η ◦ T−1
Vε

in M+(E) as n → ∞, (4.16)

where ηn and η are defined at (4.5) and (4.6) respectively. Equivalently, we aim to show that∫
Mp(E)

F(TVε (ξ ))ηn(dξ ) →
∫

Mp(E)
F(TVε (ξ ))η(dξ )

for every F ∈ C+
K (E). To show this, by [32, Proposition 3.12] it suffices to verify that

ηn ◦ T−1
Vε

(A) → η ◦ T−1
Vε

(A)
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for all relatively compact sets A ⊂ E with η ◦ T−1
Vε

(∂A) = 0, where ∂A denotes the boundary of
A. According to [13, Theorem 2.4] along with (4.2), we must show

η
(
∂T−1

Vε
(A)

)= 0 and ∅ /∈ T−1
Vε

(A), (4.17)

where ∅ ∈ Mp(E) is the null measure and B denotes the closure of B. For the proof of the first
requirement in (4.17), it is elementary to check that

∂T−1
Vε

(A) ⊂ T−1
Vε

(∂A) ∪DTVε
, (4.18)

where DTVε
is the collection of ξ ∈ Mp(E) such that TVε is discontinuous at ξ . It then follows

from (4.15) and (4.18) that

η
(
∂T−1

Vε
(A)

)≤ η(DTVε
) ≤ Ckλ

{
y ∈ (Rd)k−1 : ‖H(0, y)‖ = ε

}= 0.

Next, suppose for contradiction that ∅ ∈ T−1
Vε

(A). Then there exists a sequence (ξn) ⊂ T−1
Vε

(A)

such that ξn
v→ ∅ in Mp(E). Since TVε is continuous at ∅ with TVε (∅) = 0 = (0, . . . , 0) ∈R

m,
we have TVε (ξn) → 0 as n → ∞. This implies 0 ∈ A, which however contradicts the relative
compactness of A in E.

For ease of description, using the notations in (4.3) and (4.4) we denote

η̃n(·) := (
nkrd(k−1)

n

)−1
P

( ∑
i∈Ik,n

Gn(Xi,Xn; t) ∈ ·
)

,

η̃(·) := Ckλ
{
y ∈ (Rd)k−1 : H(0, y) ∈ ·}.

Then the entire proof will be completed if we can verify that

η̃n(F) → η̃(F), n → ∞,

for every F ∈ C+
K (E). To begin, we bound |̃ηn(F) − η̃(F)| as follows:

|̃ηn(F) − η̃(F)| ≤ |̃ηn(F) − ηn ◦ T−1
Vε

(F)| + |ηn ◦ T−1
Vε

(F) − η ◦ T−1
Vε

(F)| + |η ◦ T−1
Vε

(F) − η̃(F)|.
Because of (4.16), we have

lim sup
n→∞

|̃ηn(F) − η̃(F)| ≤ lim sup
n→∞

|̃ηn(F) − ηn ◦ T−1
Vε

(F)| + |η ◦ T−1
Vε

(F) − η̃(F)|.

It thus remains to demonstrate that

lim
ε→0

|η ◦ T−1
Vε

(F) − η̃(F)| = 0, (4.19)

lim
ε→0

lim sup
n→∞

|ηn ◦ T−1
Vε

(F) − η̃n(F)| = 0. (4.20)
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For the proof of (4.19), note that there exists δ0 > 0 so that supp(F) ∩R
m ⊂ {x ∈R

m : ‖x‖ >

δ0}. We also fix a constant δ′ ∈ (0, δ0/2). Then, for every 0 < δ < δ0/2, we have

|η ◦ T−1
Vε

(F) − η̃(F)| = Ck

∣∣∣∣∫
(Rd)k−1

F(Vε(H(0, y))) − F(H(0, y)) dy

∣∣∣∣
≤ Ck

∫
‖Vε (H(0,y))−H(0,y)‖>δ

|F(Vε(H(0, y))) − F(H(0, y))| dy

+ Ck

∫
‖Vε (H(0,y))−H(0,y)‖≤δ

|F(Vε(H(0, y))) − F(H(0, y))| dy

=: An + Bn.

Since F is bounded, it follows from the dominated convergence theorem and property (H3) of
H that

An ≤ 2‖F‖∞Ck

∫
(Rd)k−1

1{‖Vε(H(0, y)) − H(0, y)‖ > δ} dy → 0 as ε → 0.

Next, turning our attention to Bn, we can see that

Bn = Ck

∫
‖Vε (H(0,y))−H(0,y)‖≤δ,‖H(0,y)‖>δ

′ |F(Vε(H(0, y))) − F(H(0, y))| dy. (4.21)

To show this, suppose that ‖H(0, y)‖ ≤ δ′ < δ0/2. Then F(H(0, y)) = 0, and further,

‖Vε(H(0, y))‖ ≤ ‖Vε(H(0, y)) − H(0, y)‖ + ‖H(0, y)‖ ≤ δ + δ′ < δ0

2
+ δ0

2
= δ0,

which implies that F(Vε(H(0, y))) = 0. From (4.21) we have

Bn ≤ CkωF(δ)λ
{
y ∈ (Rd)k−1 : ‖H(0, y)‖ > δ′},

where
ωF(δ) := sup

x,y∈Rm,‖x−y‖≤δ

|F(x) − F(y)|

is the modulus of continuity of F.
Combining all of these results, we conclude that

lim
ε→0

|η ◦ T−1
Vε

(F) − η̃(F)| ≤ CkωF(δ)λ
{
y ∈ (Rd)k−1 : ‖H(0, y)‖ > δ′}

for all 0 < δ < δ0/2. Finally, letting δ ↓ 0, we find that limε→0 |η ◦ T−1
Vε

(F) − η̃(F)| = 0 as F is
uniformly continuous on R

m.
Next, let us proceed to the proof of (4.20). We fix δ0 and δ′ in the same way as above. Then,

for 0 < δ < δ0/2,

|ηn ◦ T−1
Vε

(F) − η̃n(F)|

= (
nkrd(k−1)

n

)−1

∣∣∣∣∣E
[

F

( ∑
i∈Ik,n

Vε(Gn(Xi,Xn; t))

)
− F

( ∑
i∈Ik,n

Gn(Xi,Xn; t)

)]∣∣∣∣∣
≤ (

nkrd(k−1)
n

)−1
E

[∣∣∣∣∣F
( ∑

i∈Ik,n

Vε(Gn(Xi,Xn; t))

)
− F

( ∑
i∈Ik,n

Gn(Xi,Xn; t)

)∣∣∣∣∣
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× 1
{∥∥∥∥∥ ∑

i∈Ik,n

Vε(Gn(Xi,Xn; t)) −
∑

i∈Ik,n

Gn(Xi,Xn; t)

∥∥∥∥∥> δ

}]

+ (
nkrd(k−1)

n

)−1
E

[∣∣∣∣∣F
( ∑

i∈Ik,n

Vε(Gn(Xi,Xn; t))

)
− F

( ∑
i∈Ik,n

Gn(Xi,Xn; t)

)∣∣∣∣∣
× 1

{∥∥∥∥∥ ∑
i∈Ik,n

Vε(Gn(Xi,Xn; t)) −
∑

i∈Ik,n

Gn(Xi,Xn; t)

∥∥∥∥∥≤ δ

}]

=: Cn + Dn.

Noting that F is bounded, while assuming without loss of generality that 0 ≤ t1 ≤ · · · ≤ tm <

∞, we can bound Cn as follows:

Cn ≤ 2‖F‖∞
(
nkrd(k−1)

n

)−1
P

(∥∥∥∥∥ ∑
i∈Ik,n

Vε(Gn(Xi,Xn; t)) −
∑

i∈Ik,n

Gn(Xi,Xn; t)

∥∥∥∥∥> δ

)

≤ 2

δ
‖F‖∞

(
nkrd(k−1)

n

)−1 ∑
i∈Ik,n

E
[‖Vε(Gn(Xi,Xn; t)) − Gn(Xi,Xn; t)‖]

= 2

δ
‖F‖∞

(
nkrd(k−1)

n

)−1 ∑
i∈Ik,n

E
[‖Vε(Gn(Xi,Xn; t)) − Gn(Xi,Xn; t)‖ cn,m(Xi,Xn; t)

]

+ 2

δ
‖F‖∞

(
nkrd(k−1)

n

)−1 ∑
i∈Ik,n

E
[‖Vε(Gn(Xi,Xn; t)) − Gn(Xi,Xn; t)‖

× (1 − cn,m(Xi,Xn; t))
]

=: En + Fn,

where cn,m(Xi,Xn; t) was defined in (4.9). Of the last two terms, we have that as n → ∞,

Fn ≤ 4

δ
‖F‖∞

(
nkrd(k−1)

n

)−1 ∑
i∈Ik,n

E[‖Hn(Xi)‖(1 − cn,m(Xi,Xn; t))] → 0, (4.22)

where the last convergence is obtained by repeating the same argument as that for proving that
(4.10) converges to 0 as n → ∞. For the asymptotics of En, recall that Gn(Xi,Xn; t) = Hn(Xi)
whenever cn,m(Xi,Xn; t) = 1. Therefore

En ≤ 2

δ
‖F‖∞

(
nkrd(k−1)

n

)−1 ∑
i∈Ik,n

E[‖Vε(Hn(Xi)) − Hn(Xi)‖]

= 2

δ
‖F‖∞

(
nkrd(k−1)

n

)−1
(

n

k

)

×
∫

(Rd)k
‖Vε(Hn(x1, . . . , xk)) − Hn(x1, . . . , xk)‖

k∏
i=1

f (xi) dx.
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Making the change of variables by xi = x + rnyi−1, i = 1, . . . , k (with y0 ≡ 0) and using the
translation invariance of H,

En ≤ 2‖F‖∞(‖f ‖∞)k−1

δk!
∫

(Rd)k−1
‖Vε(H(0, y)) − H(0, y)‖ dy → 0 as ε → 0, (4.23)

where the last convergence is obtained as a consequence of the dominated conver-
gence theorem and condition (H4) of H. Combining (4.22) and (4.23), we conclude that
limε→0 lim supn→∞ Cn = 0. Next, the same reasoning as in (4.21) yields that, for every
0 < δ < δ0/2,

Dn = (
nkrd(k−1)

n

)−1
E

[∣∣∣∣∣F
( ∑

i∈Ik,n

Vε(Gn(Xi,Xn; t))

)
− F

( ∑
i∈Ik,n

Gn(Xi,Xn; t)

)∣∣∣∣∣
× 1

{∥∥∥∥∥ ∑
i∈Ik,n

Vε(Gn(Xi,Xn; t)) −
∑

i∈Ik,n

Gn(Xi,Xn; t)

∥∥∥∥∥≤ δ,

∥∥∥∥∥ ∑
i∈Ik,n

Gn(Xi,Xn; t)

∥∥∥∥∥> δ′
}]

≤ ωF(δ)
(
nkrd(k−1)

n

)−1
P

(∥∥∥∥∥ ∑
i∈Ik,n

Gn(Xi,Xn; t)

∥∥∥∥∥> δ′
)

≤ ωF(δ)

δ′
(
nkrd(k−1)

n

)−1 ∑
i∈Ik,n

E[‖Hn(Xi)‖]

≤ ωF(δ)(‖f ‖∞)k−1

δ′k!
∫

(Rd)k−1
‖H(0, y)‖ dy. (4.24)

Therefore, for every 0 < δ < δ0/2,

lim
ε→0

lim sup
n→∞

|ηn ◦ T−1
Vε

(F) − η̃n(F)| ≤ ωF(δ)(‖f ‖∞)k−1

δ′k!
∫

(Rd)k−1
‖H(0, y)‖ dy.

The rightmost term above tends to 0 as δ ↓ 0 because F is uniformly continuous. Now the
entire proof has been completed. �

4.2. Proof of Theorem 3.1

Before starting the proof of Theorem 3.1, we will introduce a certain lemma that gives the
upper and lower bounds of the kth persistent Betti number in (3.3). Before stating the lemma,
we need to recall the notations (4.3) and (4.4).
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Lemma 4.1. (Lemma 4.1 in [28].) Under the assumptions of Theorem 3.1, we have, for all
0 ≤ s ≤ t ≤ ∞,∣∣∣∣∣βk,n(s, t) −

∑
i∈Ik+2,n

hrns(Xi) hrnt(Xi)

× 1{‖y − z‖ ≥ rnt for all y ∈Xi and z ∈Xn \Xi}
∣∣∣∣∣≤

(
k + 3

k + 1

)
Lrnt,

where
Lrnt :=

∑
i∈Ik+3,n

1{Č(Xi, rnt) is connected}.

Moreover, for all 0 < t < ∞,(
nk+2rd(k+1)

n

)−1
E[Lrnt] → 0, n → ∞. (4.25)

Proof of Theorem 3.1. We first define a scaled version of H in (3.5) by

Hn({x1, . . . , xk+2}; s, t) = H
({

r−1
n x1, . . . , r−1

n xk+2
}
; s, t

)
= (hrnsi (x1, . . . , xk+2) hrnti(x1, . . . , xk+2))m

i=1, xi ∈R
d.

For a subset Y of k + 2 points in R
d and a finite point set Z ⊃Y in R

d, define c(Y,Z; t) and
cn(Y,Z; t) as in (2.2) and (2.4) respectively. Analogously to (2.3) and (2.5), we also define

G(Y,Z; s, t) := H(Y; s, t) ◦ c(Y,Z; t),

Gn(Y,Z; s, t) := G(r−1
n Y, r−1

n Z; s, t) = Hn(Y; s, t) ◦ cn(Y,Z; t).

Since Theorem 2.1 yields

(
nk+2rd(k+1)

n

)−1
P

( ∑
i∈Ik+2,n

Gn(Xi,Xn; s, t) ∈ ·
)

v→ Ck+2λ
{
y ∈ (Rd)k+1 : H({0, y}; s, t) ∈ ·} in M+([0, ∞]m \ {0}),

(3.6) will follow, provided that for every F ∈ C+
K ([0, ∞]m \ {0}),

(
nk+2rd(k+1)

n

)−1
E

[
F(βk,n(s, t)) − F

( ∑
i∈Ik+2,n

Gn(Xi,Xn; s, t)

)]
→ 0, n → ∞, (4.26)

where
βk,n(s, t) := (βk,n(si, ti))

m
i=1.

As in the proof of Theorem 2.1, we fix δ0, δ′ > 0 so that

supp(F) ∩ [0, ∞)m ⊂ {x ∈ [0, ∞)m : ‖x‖ > δ0}
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and δ′ ∈ (0, δ0/2). Then, for every 0 < δ < δ0/2, the absolute value of (4.26) is bounded by

(
nk+2rd(k+1)

n

)−1
E

[∣∣∣∣∣F(βk,n(s, t)) − F

( ∑
i∈Ik+2,n

Gn(Xi,Xn; s, t)

)∣∣∣∣∣
× 1

{∥∥∥∥∥βk,n(s, t) −
∑

i∈Ik+2,n

Gn(Xi,Xn; s, t)

∥∥∥∥∥> δ

}]

+ (
nk+2rd(k+1)

n

)−1
E

[∣∣∣∣∣F(βk,n(s, t)) − F

( ∑
i∈Ik+2,n

Gn(Xi,Xn; s, t)

)∣∣∣∣∣
× 1

{∥∥∥∥∥βk,n(s, t) −
∑

i∈Ik+2,n

Gn(Xi,Xn; s, t)

∥∥∥∥∥≤ δ

}]

=: An + Bn.

By Markov’s inequality and ‖F‖∞ < ∞,

An ≤ 2‖F‖∞
δ

(
nk+2rd(k+1)

n

)−1
E

[∥∥∥∥∥ βk,n(s, t) −
∑

i∈Ik+2,n

Gn(Xi,Xn; s, t)

∥∥∥∥∥
]

.

For ease of description, we assume that 0 ≤ t1 ≤ · · · ≤ tm < ∞. Then Lemma 4.1 gives that∥∥∥∥∥βk,n(s, t) −
∑

i∈Ik+2,n

Gn(Xi,Xn; s, t)

∥∥∥∥∥
=
{

m∑
j=1

(
βk,n(sj, tj) −

∑
i∈Ik+2,n

hrnsj(Xi) hrntj(Xi)

× 1{‖y − z‖ ≥ rntj for all y ∈Xi and z ∈Xn \Xi}
)2}1/2

≤
(

k + 3

k + 1

){ m∑
j=1

L2
rntj

}1/2

≤ √
m

(
k + 3

k + 1

)
Lrntm .

The last inequality is due to the fact that Lr is non-decreasing in r. By virtue of this bound and
(4.25) in Lemma 4.1,

An ≤ 2
√

m‖F‖∞
δ

(
k + 3

k + 1

)(
nk+2rd(k+1)

n

)−1
E[Lrntm] → 0 as n → ∞.
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Repeating the same argument as in (4.21) and (4.24), one can obtain that

Bn = (
nk+2rd(k+1)

n

)−1
E

[∣∣∣∣∣F(βk,n(s, t)) − F

( ∑
i∈Ik+2,n

Gn(Xi,Xn; s, t)

)∣∣∣∣∣
× 1

{∥∥∥∥∥βk,n(s, t) −
∑

i∈Ik+2,n

Gn(Xi,Xn; s, t)

∥∥∥∥∥≤ δ,

∥∥∥∥∥ ∑
i∈Ik+2,n

Gn(Xi,Xn; s, t)

∥∥∥∥∥> δ′
}]

≤ ωF(δ)
(
nk+2rd(k+1)

n

)−1
P

(∥∥∥∥∥ ∑
i∈Ik+2,n

Gn(Xi,Xn; s, t)

∥∥∥∥∥> δ′
)

≤ ωF(δ)

δ′
(
nk+2rd(k+1)

n

)−1 ∑
i∈Ik+2,n

E[‖Hn(Xi; s, t)‖]

≤ ωF(δ)(‖f ‖∞)k+1

δ′(k + 2)!
∫

(Rd)k+1
‖H({0, y1, . . . , yk+1}; s, t)‖ dy.

Therefore, for every 0 < δ < δ0/2,

lim sup
n→∞

(An + Bn) ≤ ωF(δ)(‖f ‖∞)k+1

δ′(k + 2)!
∫

(Rd)k+1
‖H({0, y1, . . . , yk+1}; s, t)‖ dy.

Finally, the right-hand side converges to 0 as δ ↓ 0. Hence lim supn→∞ (An + Bn) = 0, and we
have established (3.6).

Finally, applying Portmanteau’s theorem for vague convergence (see [32, Proposition 3.12])
to (3.6), we can see that as n → ∞,

(
nk+2rd(k+1)

n

)−1
P(βk,n(si, ti) ≥ ui)

→ Ck+2λ
{
y ∈ (Rd)k+1 : hsi (0, y)hti (0, y) ≥ ui, i = 1, . . . , m

}
(4.27)

for all ui ≥ 0, ui = 1, i = 1, . . . , m, with max1≤i≤m ui > 0. By the customary change of
variables, it is elementary to show that as n → ∞,(

n

k + 2

)
P(hrn (X1, . . . , Xk+2) = 1) ∼ nk+2rd(k+1)

n Ck+2

∫
(Rd)k+1

h1(0, y) dy. (4.28)

Now (3.7) is obtained as a result of (4.27) and (4.28). �

4.3. Proof of Corollary 3.1

Proof. We need to rewrite Fk,n in the notation of Theorem 2.1. First it is easy to show that
H in (3.9) fulfills conditions (H1)–(H4). Letting Hn be defined as in (2.1), one can write

(r−kbi
n )m

i=1 ◦ Fk,n =
∑

Y⊂Xn,|Y |=k+1

Hn(Y).
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Then (3.8) is an easy consequence of Theorem 2.1. Note also that(
n

k + 1

)
P

(
k+1⋂
j=1

B(Xj, rn/2) = ∅
)

=
(

n

k + 1

) ∫
(Rd)k+1

1

{
k+1⋂
j=1

B(xj, rn/2) = ∅
}

k+1∏
i=1

f (xi) dx

=
(

n

k + 1

)
rdk

n

∫
Rd

∫
(Rd)k

1

{
B(0, 1/2) ∩

k⋂
j=1

B(yj, 1/2) = ∅
}

f (x)
k∏

i=1

f (x + rnyi) dy dx

∼ nk+1rdk
n Ck+1λ

{
y ∈ (Rd)k : B(0, 1/2) ∩

k⋂
j=1

B(yj, 1/2) = ∅
}

, n → ∞. (4.29)

Finally, (3.10) can be obtained from (3.8) and (4.29) as well as Portmanteau’s theorem for
vague convergence. �

4.4. Proof of Corollary 3.2

Proof. As in the proof of Corollary 3.1, one needs to reformulate Sk,n in the notation of
Theorem 2.1. First we notice that H in (3.13) satisfies conditions (H1)–(H4). Define Hn by
(2.1), and for a subset Y ⊂R

d with |Y| = k + 1 and a finite Z ⊃Y in R
d,

c(Y,Z) := (1{U (Y) ∩Z = ∅})m
i=1. (4.30)

Note that we have defined (4.30) in a way different from the original definition in (2.2). Then,
unlike the definition in (2.4),

cn(Y,Z) := c(r−1
n Y, r−1

n Z) = c(Y,Z)

does not depend on n ≥ 1. Defining Gn(Y,Z) := Hn(Y) ◦ cn(Y,Z) = Hn(Y) ◦ c(Y,Z) as in
(2.5), we have (

r−bi
n

)m
i=1 ◦ Sk,n =

∑
Y⊂Xn,|Y |=k+1

Gn(Y,Xn). (4.31)

For our purposes we need to apply Theorem 2.1 to (4.31). Before doing so, however, one must
slightly modify the proof of Theorem 2.1 as we have changed the definition of c as in (4.30).
Below, we show that for every x ∈R

d and y = (y1, . . . , yk) ∈ (Rd)k,

lim
n→∞

(
1 −

∫
U (x,x+rny1,...,x+rnyk)

f (z) dz

)n−k−1

= 1. (4.32)

In fact this replaces the argument in (4.13). If (4.32) is established, the remainder of the argu-
ment in the proof of Theorem 2.1 can be altered in a very obvious manner. To show (4.32), we
note that

lim
n→∞

(
1 −

∫
U (x,x+rny1,...,x+rnyk)

f (z) dz

)n−k−1

= exp

{
− lim

n→∞ (n − k − 1)
∫
U (x,x+rny1,...,x+rnyk)

f (z) dz

}
,
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so that

n
∫
U (x,x+rny1,...,x+rnyk)

f (z) dz = n(rnR(0, y))dθd

∫
U (x,x+rny1,...,x+rnyk) f (z) dz

λ(U (x, x + rny1, . . . , x + rnyk))
,

where θd is a volume of the unit ball in R
d. By the Lebesgue differentiation theorem,∫

U (x,x+rny1,...,x+rnyk) f (z) dz

λ(U (x, x + rny1, . . . , x + rnyk))
→ f (x), n → ∞.

Since nrd
n → 0 as n → ∞, we have obtained (4.32).

Now we can apply Theorem 2.1 to get (3.12). Furthermore, by Portmanteau’s theorem for
vague convergence, we obtain that

(
nk+1rdk

n

)−1
P

((
r−bi

n

)m
i=1 ◦ Sk,n ∈

m∏
i=1

[ui, ∞)

)

→ Ck+1λ

{
y ∈ (Rd)k : H(0, y) ∈

m∏
i=1

[ui, ∞)

}
(4.33)

for all 0 < ui ≤ Tbi
i , i = 1, . . . , m. By the same calculation as in (4.29), we can show that as

n → ∞,(
n

k + 1

)
P(R(X1, . . . , Xk+1) ≤ rn) ∼ nk+1rdk

n Ck+1λ
{
y ∈ (Rd)k : R(0, y) ≤ 1

}
. (4.34)

Now (3.14) is a direct consequence of (4.33) and (4.34). �
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