
ON THE PROJECTIVE CENTRES OF CONVEX CURVES 
PAUL KELLY AND E. G. STRAUS 

1. Introduction, We consider a closed curve C in the projective plane 
and the projective involutions which map C into itself. Any such mapping 7, 
other than the identity, is a harmonic homology whose axis rj we call a pro­
jective axis of C and whose centre p we call an interior or exterior projective 
centre according as it is inside or outside C.1 The involutions are the generators 
of a group T, and the set of centres and the set of axes are invariant under T. 
The present paper is concerned with the type of centre sets which can exist 
and with the relationship between the nature of C and its centre set. 

If C is a conic, then every point which is not on C is a projective centre. 
Conversely, it was shown by Kojima (4) that if C has a chord of interior 
centres, or a full line of exterior centres, then C is a conic. Kojima's results, 
and in fact all the problems considered here, have interpretations in Hilbert 
geometries. If C is convex and x and y are points interior to C, then the line 
77 = x X y cuts C in points a and b, and the Hilbert distance defined by 
h(xy y) = J log R (a, b;x>y)\ induces a metric on the interior of C. An involution 
4> leaving C invariant preserves this distance and hence is a motion of the 
Hilbert plane onto itself. If the centre p of <£ is inside C, then the motion is a 
reflection in the point p. If p is outside C, then the motion is a reflection in 
the Hilbert line carried by the axis 77. When C is a conic, then the Hilbert 
geometry is the Klein representation of hyperbolic geometry. Thus Kojima's 
results imply that a Hilbert geometry is hyperbolic if it possesses reflections 
in every point of a line, or reflections in every line of a pencil. 

In §2 we determine the convex closed curves which admit a continuous 
group of projective transformations and hence the plane Hilbert metrics with 
a continuous group of isometries. In §3 we apply these results in order to 
sharpen and extend Kojima's characterizations. In §4 we consider curves with 
discontinuous transformation groups generated by projective involutions. 
Finally, in §5, we extend our results to higher dimensional projective spaces. 

2. Curves which are invariant under a continuous group of pro­
jective transformations. In this section we wish to characterize the closed 
convex curves in the projective plane which permit infinitesimal projective 

Received July 7, 1959. 
^ h e s e terms are justified by the fact that each interior projective centre is an affine centre 

if the corresponding axis is taken as the line at infinity, while the axis corresponding to an 
exterior centre becomes an affine axis (the locus of midpoints of parallel chords) if the exterior 
centre is at infinity. For an application of this concept see (2). 
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PROJECTIVE CENTRES OF CONVEX CURVES 569 

transformations onto themselves, and hence the Hilbert geometries which 
permit connected continuous groups of isometries. 

For this purpose we first determine the orbits of points under one-dimensional 
continuous subgroups of the projective group. Every such subgroup can be 
represented by G = {exp (tA)\ — oo < t < oo } where A is a 3 X 3 matrix. 

By suitable choice of co-ordinates we can reduce A to one of the following 
forms (over the complex field) 

0 0 \ 
(i) A = [0 b 0 ] , exp(L4) = 

0 cl 

(ii) , 4 = 1 0 a - ib 0 ) , exp (tA) = 
0 cl 

1 (A 
(iii) A = I 0 a 0 1, exp.(tA) = 

0 cl 

la 1 0 \ 
(iv) A = ( 0 a 1 1, exp (tA) = 

\0 0 a / 

where a> b, c are real. 
Ca^e (i). The orbit of (x0, Jo) is x = x0e (a_c)S y = yoe(b~c)t which is 

affine equivalent to one of the convex arcs 

y = xm, 0 < x < oo, — 1 < m < 1 

or a single point. 
Case (ii). A suitable complex affine transformation yields the real orbit 

x = e(a~c)'[x0cos it — yo sin bt], y = e(a~c)t [XQ sin bt + yo cos bt\. This is the 
affine equivalent of a circle if a = c and of a spiral r — eKd if a ^ c. The 
degenerate orbit is a single point. 

Case (iii). The orbit is 

x = e(
a-c)t(xo + *y0), y = e (a~c)^o. 

This is affine equivalent to 
x = y log y, 0 < y < oo ; 

with the full line, the half-line and the point as degenerate orbits. 

Case (iv). The orbit is 

f
2 

x = xo + ty0 + --, y = yo + t 

which is the affine equivalent of the parabola x = y2. 
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A closed curve which admits a one-dimensional group of projective trans­
formations must consist entirely of orbits of its points under that group. We 
thus obtain the following. 

THEOREM 1. The convex closed curves in the projective plane which are 
invariant under a connected continuous group of projective transformations are 
projective equivalents of one of the following: 

1. Two straight lines. 

2. A curve consisting of the two arcs y = xm, x > 0 and y = — axm, x > 0, 
a > 0 and their common endpoints, where 0 < m < 1. {For m — \ this case 
includes the differentiable union of two conical arcs; and, in particular, the 
come.) 

3. A curve consisting of the arc y = xm, x < 0 (0 > m < 1), the line segment 
x — 0, y < 0; and the segment on the line at infinity which corresponds to non-
positive slopes. {For m — \ this includes the triangle^) 

4. A curve consisting of the arc y = x log x, x > 0 and the segment x = 0, 
0 < y < œ. 

3. Curves whose projective centres have limit points which are not 
on the curve. If the projective centres {pi} of C have a limit point p $ C 
then the corresponding projective involutions {7*} of C have a limit involution 
7 whose centre is p. Hence C admits the projective transformations {7*7} 
which approach the identity. In other words C admits a connected continuous 
group of projective transformations. 

THEOREM 2. If the projective centres of a closed convex curve C have a limit 
point not on C then one of the following cases holds: 

1. C is a conic and all points not on C are projective centres of C. {This includes 
two lines as a degenerate case which admits all points of the plane as projective 
centres.) 

2. C is the union of arcs of two different conies with common endpoints which 
are points of differentiability of C {This includes the case in which one of these 
arcs degenerates to two tangent line segments from a point to the other arc). Here 
the projective centres consist of the points exterior to C on the line of the common 
chord of the two conical arcs. 

3. C is the union of a conical arc and the chord joining its endpoints {this 
includes the triangle for a degernerate conical arc). Here the projective centres 
consist of the points on the line of the chord exterior to the chord. In the case of the 
triangle all points on the three lines which are not on the three sides are projective 
centres. 

In order to prove this theorem we first establish the following extension of 
Kojima's results. 

LEMMA 1. Let a and b be two points on the {convex) closed curve C so that all 
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points on the line a X b which are exterior to C are projective centres of C. Then 
either 

(i) C is differentiable at a and b and the two arcs of C with endpoints a, b 
are conical arcs (one of which may be degenerate), or 

(ii) the segment a, b is on C and the other arc of C with endpoints a, b is 
conical (possibly degenerate). 

Proof. For any exterior point x on a = a X b the involution yx inter­
changes a and b, so both are regular points or both are corner points. If they 
are corner points then the two one-sided tangents at a and the two at b cannot 
be four distinct lines for then they would determine a quadrilateral, two of 
whose vertices would have to be invariant under every yx, which would imply 
that all 4>x had a common axis. Thus, in this case, one of the one-sided tangents 
at a coincides with one of the one-sided tangents at b. In other words,2 the 
segment (a, b) lies on C. Next, let co be a one-sided tangent at an arbitrary 
point p of C, p $ (a, b). If x = a X co is exterior to C then yx leaves p and w 
fixed. Because yx interchanges two arcs at p, it also interchanges the half 
tangents at p, so both must coincide with œ. The only case in which a X o> 
is not exterior to C is the case in which it is one of the points a, b and therefore 
one arc of C with endpoints a, b consists of the line segments (a, p), (b, p). 

Thus we have the following alternatives. Either C is everywhere different-
iable; or C has a single corner point p (j* a, b) in which case it contains the 
line segments (p, a) and (p, b), or C has two corner points, in which case 
these corner points are the points a, b and C contains the segment (a, b)f 
or C has three corner points, in which case it is a triangle. 

In case C is not a triangle, let y be a point on a differentiate arc Cajh of C 
with endpoints a, b and CUyb ^ (a, b). There exists a unique conic Ky which 
passes through y and is tangent to œa at a and ub at b, where wa, co& are the 
one-sided tangents to Ca>b at its endpoints. Let x = a X ooy where uy is the 
tangent to C at y, then yx leaves y, C and Ky invariant and hence wy is tangent 
to Ky. Now the family of conies tangent to oia and co6 at a and b has no proper 
envelope. Hence Ca,b must be an arc of one of the conies of that family. 

Proof of Theorem 2. Since our hypothesis implies that C admits a contin-
ous group of projective transformations we need only consider the cases 
enumerated in Theorem 1 : 

Case 1. Obvious. 

Case 2. If m ^ \ then the origin and the point at infinity are distinguished 
by the fact that they either are not points of analyticity or that they are points 
of zero curvature. That is to say, any involution must permute the origin and 
the point at infinity between themselves. Thus all interior centres are on the 

2If C is not assumed convex, the points a,b may be cusps formed by arcs with common one­
sided tangents at a, b. 
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(positive) x-axis; and the exterior centres are either on the (negative) x-axis 
or the point at infinity of the ;y-axis. 

Now the curve permits the affine transformations x —> to, y —> tmy, t > 0. 
Thus if (x0, 0) is a projective centre then so is (too, 0) for all t > 0. If x0 > 0, 
then, by Kojima's theorem, C would be a conic and if Xo < 0 then, by Lemma 
1, C would consist of conical arcs. 

The point at infinity on the ;y-axis is a projective centre if and only if the 
x-axis is a Euclidean axis of symmetry. In other words, if and only if a = 1. 
To sum up: If a curve in this case is not the union of two conical arcs, then it 
has at most one (exterior) projective centre. If m = \ and a = 1, then C 
is a conic. If m = J and a 7e 1, then C is the union of two conical arcs and 
all points on the negative x-axis are projective centres of C. 

Case 3. If m — 1 and C is a triangle then the situation is obvious. If 
m T* 1 then every projective mapping of C onto itself must permute the 
origin and the point at infinity on the x-axis among themselves and must leave 
the point at infinity on the ;y-axis fixed. Thus all projective centres must be 
exterior (since an involution of C which corresponds to an interior centre 
can have no fixed points) and lie on the negative x-axis. As in Case 2 we see 
that if there is one centre then all points on the negative x-axis are centres 
and by Lemma 1 we have m = \ so that C is the union of a conical arc and 
a degenerate conical arc which is differentiate at the common endpoints. 

Case 4. Any involution must preserve the straight line segment on this 
curve. Thus there can be no interior projective centre and an exterior pro­
jective centre would have to lie on the (negative) ^-axis. 

Now the curve admits the affine transformations x —•» to, y —» ty + (t log t)x, 
t > 0; so that if (0, 3>o) is a projective centre then so is (0, tyo) for all t > 0. 
In other words, if there is a projective centre then all points on a supporting 
line which are not on the curve are projective centres. By Lemma 1 this 
would imply that the arc y = x log x, x > 0 is a conical arc. 

To sum up: A curve of Case 4 has no projective centres. 
It is easy to see that the only non-convex closed curves whose projective 

centres have a limit point not on C are the unions of two conical arcs with 
common one-sided tangents at their juncture. 

4. Projective centres of general convex plane curves. 

THEOREM 3. If there are two centres po and pi interior to C, then there is 
an infinite sequence {pn}, n = 0 , ± l , d = 2 , . . . , of interior centres on the 
line po X pi. The points of intersection of C and po X pi are the two limit points 
of the sequence, 

£_œ = lim pn 

and 
p.» = lim pn, 

n-^oo 
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and C is differentiable at these points. If C is not a conic then its curvature has 

a singularity of the second kind at p-œ and pœ. 

Proof. Let the involutions corresponding to po and pi be 70 and 71. Then 
they generate the centre sequence [pn) and the corresponding sequence of 
involutions {7,,} ; n = 0, ± 1, ± 2, . . . , defined recursively by 

In — 7rc-lYn-27w-l I r> Q A . In ~ 7n+l7n+27n+l \ M 1 O 

( n = 2, 6, 4, . . . ; ( w = —1, — 2 . . . . 
Pn = Pn-27n-l ) Pn = Pn+27n+l J 

Because the involutions yt are motions of the Hilbert plane defined by Cy 

the Hilbert distance between any two successive centres in the ^ or in the 
p-i subsequence is the same. Thus , in the Hilbert sense, the pi and p-i se­
quences correspond to the points obtained by start ing with po and pi and 
then repeatedly stepping off the distance h(po, pi) in the two directions along 
the line respectively. Hence one sequence converges (in the topology of the 
projective plane) to a and the other to b, and these points are in some order 
the points p-m and pm. 

From the collinearity of the centres pn, it follows t h a t the axes 7]t belong to a 
pencil together with their limit lines rj-.m and rjœ, which are lines of support to 
C a t p-^ and pm respectively. Each conic which is tangent to r)_œ and rjœ a t 
p-œ and pœ respectively in an invariant of all yn. Let ^ ~ b e the family of these 
conies. Then for each q on C, q 9e a, b, the sequence of points qn = q<t>„ lies 
on the (unique) conic KQJ which is in *S and passes through q, and the sequence 
has p-œ and pœ for its only limit points. T h e arc A of C, with ends q and 
qioli and which does not contain pœ, determines C completely. Let Ki be 
the maximal conic of ̂  whose interior does not intersect A, and let K2 be 
the minimal conic of ̂  which contains A. Then C lies entirely exterior t o 
Ki and interior to K2. Since Kx and K2 have common tangents a t p-œ amd pœ, 
these tangents must also be tangents to C. 

Finally, if C is not a conic then Ki ̂  K2 and C intersects every conic of ^ 
between Ki and K2 infinitely often in every neighbourhood of p^œ and of 
pœ. Thus , in every such neighbourhood the curvature of C oscillates between 
t h a t of Ki and t ha t of K2. 

In a completely analogous manner we can prove the following. 

T H E O R E M 4. If there are two exterior centres po, pi of C so that po X pi is 
a secant of C, then there is an infinite sequence \pn\ n = 0, ± 1, ± 2, . . . , 
of exterior centres on poXpi. The points of intersection of C and po X pi are 
the two limit points of the sequence, 

p.œ = lim pn 

and 

pœ = lim pn 
n-^co 
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and C is differentiable at these points. If the arc of C on either side of po X pi 
is not conic {possibly degenerate) then its curvature has a singularity of the 
2nd kind at p-œ and pœ. 

For the sake of completeness we prove the following theorem which is 
well known, though possibly not in this formulation (1 , p. 190). 

T H E O R E M 5. If the set of centres of C is finite, then the number of centres is 
odd. There is at most one interior centre and the exterior centres are collinear on 
a line which does not intersect C. In other words, the finite subgroups, of the plane 
projective group, which are generated by involutions are isomorphic to the groups 
of symmetry of the regular polygons. 

Proof. If the number of centres is finite, then by Theorems 3 and 4 there 
cannot be two interior centres nor two exterior centres whose line intersects C 
or is a line of suppor t to C. In any case, there cannot be exactly two centres, 
for then each would have to lie on the axis of the other. Bu t tha t , in turn , is 
the condition for the product of their involutions to be an involution, or, wha t 
is the same thing, for the two axes to intersect in a third centre. 

Next suppose t h a t pi and pi are the only exterior centres on the line 
pi X p2- This line cannot intersect C, so the axes 771 and 772 intersect a t an 
interior centre po. Any third exterior centre pz is not on pi X pi and hence 
its axis 773 does not pass through p0. Then 73 carries po to a second interior 
centre, contrary to hypothesis. 

W e have thus proved t h a t there is exactly one (interior or exterior) centre, 
or there are exactly one interior and two exterior centres, or every line through 
two exterior centres also passes through a third exterior centre. Bu t the last 
condition applied to a finite set (here the exterior centres) is known to imply 
t h a t the set is collinear. 

T o see t ha t the number of centres is odd, we consider first the case in which 
an interior centre po exists, and pi, p2, . . . , pj\ j > 3, are the exterior centres 
which obviously lie on 770. Then po lies on r]t, i = 1, 2, . . . , j . Since pi is on 
770 and po is on 771, the intersection 770 X ni is an exterior centre, say p2. Under 
71, the points pi and p2 are fixed and the remaining j — 2 exterior centres are 
interchanged in pairs, hence j — 2 is even and the to ta l number of centres 
j + 1 is odd. 

Next, suppose there is no interior centre. Then the point in which 77! inter­
sects the line of exterior centres cannot be itself a centre. Under 71 the point 
pi is fixed and the remaining j — 1 centres are interchanged in pairs, hence 
7 — 1 is even and j is odd. 

T h e centre sets thus described are, up to projective transformations, the 
centre sets of the regular polygons. 

A subset of a centre set is independent if, in the corresponding subset of 
involutions, no one of the t ransformations can be generated by the remaining 
involutions. We now consider the extent to which independent reflections can 
exist in non-hyperbolic Hilbert geometries. 
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THEOREM 6. There exist closed convex curves which are not conies and which 
have infinitely many independent projective centres. In fact, for every closed convex 
curve S, there exists a closed convex curve C with infinitely many independent 
projective centres and which coincides with S except for a portion of arbitrarily 
small linear measure. 

Proof. First, to illustrate our method, we give an example of such a curve. 
On the x-axis, we pick a sequence of disjoint intervals [uu Vt], i = 1, 2, . . . , 
so that Ui < Vi < u2 < V2 < . . . . On the parabola y = x2, let the points U\ 
and Vt have the co-ordinates {uit ut

2) and (vu vt
2) respectively. Let 71 be an 

involution of the parabola which interchanges the inside and the outside of 
the arc {Uu Vi), and let V be the group which such involutions generate. The 
centre of yt may be any interior point of the chord UtVi of the parabola, or 
it may be the intersection point of the tangents to the parabola at Ui and Vt. 

We now construct a curve C to consist of two parts C and C". The first 
part C is the union of arbitrary convex arcs Ci with end points Vi-i, Ut, 
i = 1,2, . . . , 

Vo = Km Vu 
i->co 

subject to the restriction that if the arcs {V t-i, Ut) of the parabola are re­
placed by the arcs Cu then the resulting curve is still closed and convex in 
the projective plane (an especially simple example is that in which d is 
chosen as the straight line segment from Vt-i to Ui). The remainder of C, 
namely C", is defined by the images of C under T. 

To show that C is a connected convex curve, we project the parabola onto 
the x-axis from the point at infinity on the ^-axis. To the projectivity 7 in 
T there then corresponds a one-dimensional projectivity y' of the x-axis onto 
itself. The mappings yf form a group V which is generated by 7 / , i = 1, 2 . . . . 
It is easily verified that 7 / is either an inversion in a one-dimensional circle, 
or is such an inversion followed by a reflection on a point. In either case, 7 / 
interchanges the interior and exterior of the interval [uu vt]. 

Let R denote the points outside all the intervals [uu Vt]. If x is interior 
to R, then the image of x under any mapping in r ' , other than the identity, 
lies inside one of the open intervals (ui} vt), hence Tf is a properly discon­
tinuous group. The set R is a fundamental region. From the theory of dis­
continuous groups it follows that the images of R under Tf fill the intervals 
[ut, Vi] without gaps or overlap. Since R is the projection of C and the T 
images of C project to the V images of R, it follows that C is a connected 
curve. The convexity of the arcs of C is preserved by T. Since the parabola 
remains convex when its arcs (F*_i, Ui) are replaced by those of C', it will 
still remain convex when the arcs (VV_iy, Uty) are replaced by those of 
C'y, for any 7 in V. Repeating this argument, we find that the curve 
C(7 (1\ 7 ( 2 \ • • • , 7(n)), which consists of C \J C 7

(1 ) U . . . \J Cy^ on the 
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arcs (Vi-\y{j\ Ua{j)), and of the parabola elsewhere, is convex. Thus it 
follows that the curve 

C = lim C( 7
( 1 \ 7 ( 2 \ . . . , 7(M)) 

W->oo 

is convex. But if T = (Y (1 ), Y (2 ) , . . . , y(n\ . . . .), then this curve is precisely 
C = C \J C". 

We now proceed with the proof of the general case. Let S be a closed convex 
curve which is not a polygon. Then there exists an infinite sequence of disjoint 
arcs {(Ut, Vf)} of 5 which are either not straight line segments or there are 
lines of support to 5 at Ut and Vi whose union does not contain the arc 
(Uu Vi) and so that the total length of the arcs (U u Vi) is arbitrarily small. 
If 5 is a polygon then we first replace it by a curve S which is not a polygon 
and coincides with 5 except on arcs of arbitrarily small total length. 

To each (Uu Vi) we associate a projective involution yt such that y t either 
has the line at = Ut X Vt as its axis and its centre is X* X uu where X* and 
Hi are lines of support to S at U% and V\ respectively, or else yt has its centre 
interior to 5 on the interval (Uu Vï) and interchanges \ t and uu The triangle 
Ai formed by ou^uVu which contains the arc (Uu Vi), has the property 
that Â  Pi Ay is empty, for i 9e j . The yt are therefore independent, since y t 

maps a point of S not in the union of the arcs (Uj, Vj) into A .̂ Finally, let 
r be the group generated by the mappings yt. 

We now construct the curve C by successive steps. Let Si be the curve 
obtained from 5 by replacing each arc (Uu Vi) by the image under <j>t of the 
complementary arc (Uu Vi)' of 5. We can now repeat this construction 
starting with 5i and the arcs {(Uu V^yj}, i,j = 1, 2, . . . , with the corre­
sponding involutions y^yiyj leading to a curve 52, etc. All the curves Sn are 
convex, and they agree at more and more points so that the length of the 
complement of Sn Pi 5w+i in Sn+i converges to zero. Thus 

C = lim Sn 

exists and is a convex closed curve. Since Sn C\ Sn+i C (Sn-i P\ Sn)yi, and the 

lim Sn Pi Sn+i 

is dense in C, we have 

C = d (lim Sn H S»+i) = Ci[lim (Sn-i H Sn)yi] = Cyt 
n-$co n->oo 

so C has the desired involutions. 

5. Projective involutions in higher dimensional projective spaces. 
The projective involutions of (real) w-dimensional projective space Pn need 
not have "centres." Since the eigenvalues are all d=l the dimensions of the 
characteristic spaces are determined by the signature. If that signature is 
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s = n -\- I — 2k then the characteristic spaces are k — 1 and n — k dimen­
sional, leading to u projective (k — 1) -planes of symmetry." Incase s = ± (ft — 1) 
we again have a projective centre and a projective hyperplane of symmetry . 

While it would not be difficult to obtain a characterization of the orbits of 
points under one-dimensional groups of projective transformations, there is 
no hope of obtaining a simple characterization of the convex closed surfaces 
which admi t a continuous group of projective transformations. So, if we wish 
to obtain results analogous to those of § 2 we have to proceed somewhat 
differently. 

Even the concept of a convex surface in Pn needs some elaboration which 
did not arise in P 2 . In P 2 a closed curve C which separates the space into 
two open regions which are segmentwise connected is the projective equiva­
lent of an affine convex curve (if we include two parallel lines in this des­
cription). T h u s we may use as our definition of projective convexity either the 
property 

(i) C is simple closed so tha t the components of its complement are seg­
mentwise connected, or 

(ii) C is projectively equivalent to a convex closed curve. 
Clearly (ii) implies (i). 

In P 3 these two definitions no longer coincide and Kneser (3) has shown 
t h a t the only surface which satisfies (i) bu t not (ii) is a quadric surface. For 
higher dimensions the situation is not known. We shall use Kneser 's definition 
(i) when we speak of a closed convex surface. 

T H E O R E M 7. A closed convex surface S in Pn has a projective centre p £ S if 
and only if either 

(i) 5 is a convex cone with vertex p; or 
(ii) S consists of two hyperplanes and p is any point on S. 

Proof. We first prove the theorem for n = 2. If we take the axis of p to 
be the line a t infinity then there is an arc of 5 which contains p and has p 
as affine centre. Since a convex arc can be symmetric about one of its points 
only if it is a s t raight line segment, we are left with only two possible cases. 
Ei ther 5 consists of two straight lines through p, or of one straight line through 
p and the line a t infinity. 

For general n we now have t ha t every two-plane through p intersects 5 
either in p alone or in a single straight line or in two straight lines or lies 
entirely in S. T h e 2-planes which contain points on both sides of S, therefore 
always intersect it in two straight lines. Ei ther both of these lines go through 
p, or one goes through p and the other lies in the hyperplane of symmetry , 7r, 
corresponding to p. For reasons of continuity we see t ha t only one of these 
possibilities occurs. In the first case 5 is a cone with vertex p. In the second 
case 5 contains the entire plane w and, since the only convex closed surface 
which contains a hyperplane consists of two hyperplanes, it follows t h a t S 
consists of 7r and a hyperplane through p. 
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THEOREM 8. The projective centres of a convex closed surface S which lie in 
Pn — S form the union of a discrete, relatively closed set of linear manifolds 
(that is, all the points of a &-plane, 0 < k < n, which lie on one side of S). 

If the projective centres have a limit point p in Pn — S then all centres which 
do not belong to the k-dimensional component C/ of p must lie either in that 
part of the plane Pk of Ck which lies on the other side of S than p, or in the 
(n — k — 1)-dimensional plane of intersection of the hyper planes of symmetry 
which correspond to the centres of Cp

k. If there are any centres in Pk — Ck — 5 
then all points of Pk — S are centres. 

Proof. If the projective centres are discrete m Pn — S then the theorem 
is true. Assume now that there is a point p £ S which is the limit point of a 
sequence of projective centres {pi}. 

We first prove relative closure by showing that p itself is a projective centre. 
To any point a not on S we can associate the locus 2^ as follows. Let X be any 
line through q which intersects S in the points a, b and let q\ be the harmonic 
conjugate of q with respect to a, b. Then 2Ç is the locus of all q\. 

Now g is a projective centre if and only if Sg is planar. Since 2Q is clearly 
a continuous function of q for all q $ 5* it follows that 

2P = lim 2pi 

is planar. 
Let yt and y be the involutions with centres pt and p respectively. The 

centres of the central involutions in {ji, y} all lie on the line p X pu and 
are the images of p and pt under the transformations {yyi). Since 77* —> 1, 
the identity map, as pi—>p we see that the projective centres cover the 
line p X pi "more and more densely" in a neighbourhood of p as pt—*p, 
and that therefore p is an interior point of a segment of centres on any limit 
line of the lines p X pi- The endpoints of a segment of centres on such a 
limit line are themselves limit centres and therefore interior to a segment 
of centres on the line unless they lie on 5. Thus a limit line X of the lines 
p X Pi consists entirely of projective centres if X does not intersect S; if X 
meets S in a single point then all other points of X are projective centres; if 
X meets S in two points then all points in the open component /x of X — 5 
which contains p are centres. The other component \x (if any) of X — S may 
contain no projective centre, but if it contains one centre p' then p' can be 
invariant under at most one of the involutions defined by the centres in \x. 
Hence p' is itself a limit point of centres and all points of X except X Pi S 
are projective centres. 

Now let p' $ X be a projective centre in Pn — S. The discussion in the 
proof of Theorem 2 shows that the orbit 0P> of p' under the group generated 
by the centres of X is either a full conic, or a conic with one point removed, 
or an open conical arc with endpoints a, b (6 X Pi 5), or a conic with the 
points a, b removed, or just p'. The last possibility occurs only if p' lies in 
the intersection of the planes of symmetry of all the centres on X. In all other 
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cases the segments of the tangent lines of (V which lie on the same side of 5 
as Op' consist of centres. T h u s the set of centres has interior points in the 
two-plane TT = p' X A and all points of TT which are on the same side of S as 
p' are centres. If p and p' are on different sides of S then all points of T — S 
are projective centres. 

This completes the proof of our theorem. 

I t is easy to see tha t in case the centres have a limit point in Pn — S most 
of the cases described in Theorem 8 can occur. However there are the following 
exceptions. 

T H E O R E M 9. The closed surface S is quadric in each of the following cases. 
1. The projective centres fill one component of pn — S. 
2. The projective centres fill a hyper plane pn~l — 5 . 
3. The projective centres in pn — S have two non-coplanar components with 

sum of dimensions n — 1. 

Proof. By induction on n, if n = 2 then Cases 1 and 2 follow immediately 
from Theorem 2. In Case 3 the two components must be one- and zero-
dimensional respectively. In other words there is a line segment (a, b) of 
centres and a centre p not on a X b. By Theorem 8 we know tha t p is the 
point of intersection of the axes of symmetry corresponding to the centres of 
{a, b) and therefore a X b is the axis of p. By Theorem 2, the curve 5 consists 
either of two conical arcs with endpoints a, b and differentiable a t a, b, or of 
one conical arc and the segment (a, b)' complementary to (a, b). Since 5 has 
the line a X b as axis of symmetry the second case is excluded and the first 
case possible only if 5 is a conic. 

Now consider any hyperplane pn~l which intersects 5 in a convex closed 
surface S'. The projective centres which lie in pn~l (and hence are centres 
of S') fill one of the components of pn~l — S' in Case 1, and in Case 2 they 
fill an (n — 2)-plane pn~2 — Sf. Thus in these cases every plane section of 
5 is quadric and hence S is quadric. 

In order to prove Case 3 we first need a lemma. 

LEMMA 2. If the centres of S have a k-dimensional component lying in the k-plane 
Pk, then every (k + 1)-plane Pk+l through Pk intersects S in a surface S', so that 
each component of S' — Pk is quadric (that is lies in a quadric surface). If Sf — Pk 

has more than one component, then Sf is differentiable on Sf r\ Pk. 

Proof. For n = 2 the case k = 0 is trivial (as it is for all n) and the case 
k = 1 was t reated in Theorem 2. We now see by induction t h a t the inter­
section of each component of Sf — Pk with any &-plane Qk C Pk+l is quadric 
and hence each component is quadric. If S' — Pk has more than one component 
then S' P \ Qk is differentiable on S' C\ Qk P\ Pk. Bu t a convex (k — 1)-surface 
is differentiable a t a point if it is differentiable in k — 1 independent directions 
a t t ha t point. 
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We now re turn to the proof of Theorem 9. In Case 3 let one component of 
the set of centres be ^-dimensional and the other (n — k — 1)-dimensional. 
Let Pk be the plane of the ^-dimensional component . By Theorem 8 we know 
t h a t every hyperplane through Pk is a projective plane of symmet ry of 5 . Now 
by Lemma 2 every (k + 1)-plane Pk+1 through Pk intersects 5 in a surface Sf 

so t h a t S' — Pk has quadric components . Since Pk is a plane of symmet ry 
of Sf it follows t h a t either S' ^ Pk = 0 or S' C\ Pk is degenerate or S' - Pk 

is not connected. In the last case S' is differentiable on Pk and hence in all 
three cases S' is quadric. By the same a rgument the intersection Sff of 5 with 
any (n — k)-plane through the (n — k — 1)-dimensional component of the 
set of centres is quadric. 

Now one of the surfaces Sf together with one of the surfaces S" determines 
a unique quadric surface 5* whose intersections with the planes Pk+l D Pk 

coincide with Pk+1 Pi S. Hence 5* = 5 and the proof is complete. 
For the sake of completeness we s ta te the following simple consequence 

of Theorems 3 and 4. 

T H E O R E M 10. If a point p on the convex closed surface S is a limit point of 
centres of S which are isolated in Pn — 5 , then the curvature of S has discon­
tinuities in every neighbourhood of p. 

We conclude this discussion with a few comments on surfaces with a finite 
number of projective centres (not on the surface). T h e following is an extension 
of Theorems 3 and 4. 

T H E O R E M 11. If the centres po, . . . , pk on one side of the surface S span a 
k-plane Pk which contains points on the other side of S, then the group generated 
by the corresponding involutions To, • • • , 7^ contains infinitely many centres lying 
in Pk on the same side of S as pi {i = 0, . . . , k). 

Proof. For k — 1 the proof is t h a t given in the proof of Theorem 3. Now 
assume the theorem t rue for dimensions less t han k, so tha t , if Pk contains 
only a finite number of centres of S, then none of the (fe — 1)-planes determined 
by k of the pt contains a point on the other side of S. T h u s S P\ Pk lies in a 
closed simplex with the vertices pt (i = 0, . . . , k). 

If the number of centres in Pk on the side of po were finite then there 
would exist a minimal simplex S in Pk whose vertices are centres of 5 and 
which contains S f~\ Pk bu t contains no other centres of 5 . Now the (fe — 1)-
plane of symmet ry of S C\ Pk which corresponds to a vertex p of 2 must 
intersect the side of 5 P\ Pk which is interior to S. Hence t h a t plane must 
intersect a t least one of the edges pq of S a t an interior point. T h u s the 
image qy of q under the involution on p lies interior to the edge pq, in contra­
diction to the definition of 2 . 

T H E O R E M 12. If the {convex) closed surface S has a finite number of projective 
centres not on S, then the centres on one side span a k-plane Pik, and the corre-
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sponding planes of symmetry intersect in a {n — k — 1)-plane p^ -* - 1 . In a 
similar manner the centres on the other side determine the planes P2

l and P^l~l. 
The planes P\ and P2

l lie entirely in the {closed) opposite sides of S and 
Pi C P2

n-l~1
y i V C PJ*-*-1. Thus the group Y contains the two {not necessarily 

proper) subgroups Ti, T2 which are generated by the centres on one of the sides 
of S and every element of Ti commutes with every element of T2. 

Proof. Let pi Ç Pifc be a centre and let 71 be the corresponding involution. 
Since 71 maps centres into centres we must have P2

lyi = Pi1- Now the only 
planes invariant under 71 are the planes through pi and those contained in 
the hyperplane of symmetry of 71. Since P2

l contains no point on the side 
of S which contains pi it must lie in the plane of symmetry. 

Hence each involution 71 with centre in P-f—and hence every element of 
Ti—leaves all centres in P2

l fixed. This means that every 71 G Ti commutes 
with the involutions which correspond to these centres, and hence that 
7i72 = 727i for al l 71 G Tu y2 G T2 . 
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