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QUANTIZATION AND GROUP REPRESENTATIONS
R. CRESSMAN

1. Introduction. A quantization of a fixed classical mechanical system is
firstly an association between quantum mechanical observables (preferably
self-adjoint operators on Hilbert space) and classical mechanical observables
(i.e. real-valued functions on phase space). Secondly, a quantization should
permit an interpretation of the correspondence principle that ‘classical me-
chanics is the limit of quantum mechanics as Planck’s constant approaches
zero’. With these two underlying precepts, Section 2 states the four basic
requirements, I to I'V, of a quantization along with an additional requirement
V that characterizes the subclass of special quantizations. These requirements
are then illustrated by the Weyl correspondence that gives a 1-1 association
between functions on phase space and operators in the case of a single particle
with one degree of freedom. This example has a beautiful interpretation, out-
lined in Section 3, in terms of Kirillov theory [9; 12; 13] of representations of
nilpotent Lie groups—specifically of the Heisenberg group.

With the Weyl correspondence as a guide, this paper develops a theory of
quantization by means of representation theory of Lie groups. For the classical
mechanical systems considered, phase space is an orbit in the coadjoint repre-
sentation of a real Lie group . The quantization is not unique, but depends on
the representation used.

If F is a connected, simply connected nilpotent Lie group, the Kirillov map
between orbits and irreducible representations of % produces a special quanti-
zation given in Section 3. Although the association is in general not 1-1 as
it is for the Heisenberg group, the family of operators needed for the cor-
respondence principle is sufficient to determine the function on the orbit
uniquely (Theorem 4.3). The method of Section 3 can be generalized to other
Lie groups. Section 5 and 6 examine the quantizations obtained in this manner
of the sphere and the upper-half plane respectively.

Both Kostant [10] and Berezin [4] propose a general theory of quantization
of orbits. In each case a 1-1 association is first constructed and then a
representation of ¥ is extracted. In this sense, their viewpoint is the opposite
to the one adopted here. However, the spirit of this paper is very close to [4]
and, indeed, the two definitions of a quantization are essentially the same. In
this regard, the valuable criticisms and suggestions of Dr. W. Rossmann must
also be acknowledged for their contribution to the final version of this paper.
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2. Definition of quantization. A classical mechanical system is a sym-
plectic manifold (4, ) consisting of a real differentiable manifold # together
with a closed nondegenerate two form w on.#. Let C*(.#) denote the set of
C® complex-valued functions on.#. C*(.#) is a commutative algebra under
pointwise addition and multiplication of functions and a Lie algebra under the
Poisson bracket { , } defined by w[1].

With reference [4] in mind, we define a quantization of (-4, w).

Definition 2.1. Let Ay be a family of algebras with involution over the com-
plex numbers indexed by a set E of positive real numbers that has 0 as a limit
point. Let &/ be an involutive subalgebra of the direct product of the A4,’s.
An element of &7 is then a map F defined on E such that F(\) is in 4,. Algebra
operations are defined componentwise and the same symbols are used in.%7 as
in A\. Specifically, if F and G are in ./ and « is a complex number, then
(@F + G)Y(\) = aF(\) + GO\, (F+G)(\) = F(N\) * G(\) and F*(\) = F(O\)*
are also inZ . &7 is a quantization of (M, «) if the following hold.

I. Whenever F and G are in.%7 so is the map A — (1/A)(F(\) * G(\) —
G(\) * F(\)). This element is denoted (1/N\)(Fx G — G x F).

I1. There is an algebra homomorphism ¢ from.%/ into C®(.#) that takes
multiplication in.%/ into pointwise multiplication of functions in C*(.#) and
involution into complex conjugation.

IT11. The homomorphism satisfies ¢((1/N)(F*x G — G * F)) = i{¢(F), ¢(G)}
where ¢ = +/—1.

IV. Given two distinct points x;, x; in .#, there is an F € %7 such that
¢ (F) (x1) 5= o(F) (x2).

Definition 2.2. Suppose every 4, is a subalgebra of bounded operators on a
Hilbert space. As w is nondegenerate there is a natural volume element dm
on# formed from w [1]..%7 is called a special quantization if there is a family of
positive constants ¢, such that, for all F € &7, F(\) is a trace class operator
in A, and

V.lim oy Tr (F(\)) = f o (F)dm.
A0 M

The motivation for the above conditions is best explained by the funda-
mental example of a quantization. For a single particle moving on a line, phase
space is the plane R? with position and momentum coordinates (g, p). The
Poisson bracket is {f, g} = (9f/dq) (dg/dp) — (df/dp)(dg/dq). 1f h is a fixed
real-valued Hamiltonian function and f a function of the observables ¢ and p,
we have the equation of motion [1]

@y L=y

The quantization is the one originally suggested by Weyl [15]. As an element
N € E is interpreted as Planck’s constant divided by 2w, E comprises all
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positive real numbers. Asin [2; 3], let 4, be all operators on L2(R) of the form
T(Q, NP)f where f is in the Schwartz space . (R?) of rapidly decreasing test
functions on the plane and

@) TPy =5 | F1a ) exn (a0 + iphP)dadp.

In this formula, exp (igQ + 1p(\P)) is the unitary operator given by Stone’s
theorem from the essentially self-adjoint operators Q and NP on L?(R) that
denote the multiplier x and the differential operator —i\ d/dx respectively.
& is the usual Fourier transform. Let .o/ be the algebra generated (generate
always means in the sense of condition I) by the maps F,(\) = T°(Q, \P)f for
some f € % (R?) and let ¢ be the extension of ¢ (F;) = f. That ¢ is well-defined
and produces a special quantization can be readily deduced from [3]. The trace
is given by

@3) Tr () = 555 | 1 p)iad

Condition II is a mathematical formulation of the statements ‘Planck’s con-
stant measures the extent to which the operators fail to commute’ and ‘real-
valued functions correspond to self-adjoint operators (observables)’. To in-
terpret III, let & be a fixed real-valued Hamiltonian function with H =
T(Q, NP)h. The dynamical equation in the Heisenberg picture [11] of fixed
states and varying observables is

dB i
= = (HB — BH).

Formally, applying ¢ and condition I1I, we have essentially (2.1); namely,

@%B_) = 1i{¢(H), ¢(B)} = {¢(B), h}.

Together, conditions I1 and III give an appropriate translation of the cor-
respondence principle. Condition IV insures that phase space does not ‘‘col-
lapse’” in the quantization. This is of little significance in the quantization of
orbits through representations but would play a role if covering spaces of
orbits were to be quantized (see section 5 of [10]). The physical impact of V
lies in the correspondence of classical and quantum statistical mechanics
[7; 11]. It is mathematically relevant to the problem of obtaining functions
from operators. That is, if F € %7, let f(r ) be the unique function satisfying

5 f SN @ p)f (g, p)dgdp = Tr (FOF,(N)

for all f € ¥ (R?). Then f(py is in %7 (R?) and, in fact, 7(Q, N\P)fwn = F(N).
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3. Quantization of orbits—nilpotent Lie groups. Let ¥ be any real
Lie group with Lie algebra & of dimension #. Let & be any orbit in the co-
adjoint representation that represents % as linear transformations acting on
the vector space &’ of all real-valued linear functionals of ®. This action pro-
duces a natural non-degenerate 2-form w on @ [5; 10; 12; 13]. The classical
mechanical system (&, w) include such examples as the plane in Section 2 and
the sphere and Lobachevskii plane in [4].

In order to generalize (2.2), some preliminaries are required. Let [x, ¥]
denote the Lie bracket of two elements of &. Let (x, I) be the canonical bi-
linear form ® X & — R denoting the linear functional / applied to x. If dx is
a fixed but arbitrary translation invariant measure on ®, there is a unique
measure d/ on O such that the Fourier inversion formula is valid. Formally,
for functions on ¢, the Fourier transform is

Fix) = (%)m f@, F(1)e = 0dy

and the inversion formula is

@ = (517;)"/2 f@ff(x)ei(”’)dx~

The measures can be realized by picking a basis {ey, . . . , ¢,} of &, identifying &
with R”, setting dx equal to Lebesgue measure and d! Lebesgue measure on ¢’
with respect to the dual basis {e/, ..., ¢,’}. The Fourier transform establishes a
homeomorphism between . (&) and . (&)—the spaces of rapidly decreasing
test functions on the vector spaces ¢’ and & respectively.

Let us restrict our attention to the case of a connected, simply connected
nilpotent Lie group %. The exponential map, exp: & — %, is a diffeomor-
phism such that dx induces left (and right) invariant Haar measure on ¥.
To every orbit, there is a unique irreducible unitary representation of %
[9; 12; 13]. To quantize @, notice that (1/\)@ = {1/\)I:1 € O} is also an
orbit if X\ is in the set E of all positive real numbers. Consider the irreducible
representations U, given by the family of orbits (1/A) . Let A, be all opera-
tors of the form

n/2
@1) Tof = ( 217r) f@fof(x) Un (exp x)dx

where f € (&) and M, is the dilation Myf(l) = f(\). (The dilation is
present to move the function up to the orbit (1/\)@.) Let %/ be the algebra
generated (subject to requirement I) by the maps

F,(N\) = .

Let ¢ be defined on the generators by ¢(F,) = fs, the restriction of f to 0.
As is seen in Section 4, ¢ is well-defined and can be extended to the homomor-
phism of a special quantization of &.
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Remark 1. A subtle notational change from Section 2 has occurred in that f
is no longer a function on the manifold. To produce an operator from a func-
tion on @, it is first necessary to extend it to all of &’ in a suitable manner.
In general, the operator will depend on the extension chosen.

Remark 2. A few comments are in order to interpret the quantization in
Section 2 in terms of Kirillov theory. & is the 3 dimensional Heisenberg group
with Lie algebra spanned by {eo, €1, €2} and brackets [eq, e1] = e, [e1, €] =
[eqs, eg] = 0. The orbits in & are either

1) planes indexed by N whose first coordinate with respect to the dual basis
is the non-zero constant 1/X, or

ii) single points in the plane with first coordinate zero.

The quantization of Section 2 is the same as the quantization of the orbit of
index 1 given in this section. Indeed, for f € ¥ (®'), the operator T\f of (3.1)
is actually 7°(Q, \P)f where f(q, p) = f(1, q, p). The important feature of the
Heisenberg group that is missing in general is that the method of extending a
function from the orbit to all of &’ is irrelevant since the same operator is
always produced.

Remark 3. For the special quantizations of this section, requirement V can
be exploited to realize the clements of A, as tempered distributions. If F € .&/
and X € E are fixed, consider the map . (&) — Cgiven by f — o\ Tr (F(\) T f).
This defines a continuous linear functional on % (), so there is a unique
tempered distribution kxyy € % (®') such that ¢n Tr (FON)TLSf) = ke (f)
(the right side is the action of the distribution on the test function). Varying
F over &/, we obtain for each \ an algebra of tempered distributions. These
algebras play the role of the algebras of differentiable functions on the orbit
used in the term ‘‘special quantization’’ present in [4]. In fact,

Im Aoy (f) = lim o Tr (FON)DVf) = f o (F)fdm.
A0 A0 0

Therefore, given F € .7, limy,¢ k) exists in the distributional sense and is
the measure ¢ (F)dm that is supported on .

4. Proofs. The purpose of this section is to demonstrate the claims made
implicitly in Section 3. The terminology is that of Section 3.

PROPOSITION 4.1. ¢ is well-defined on the generators of <7 .

Proof. Suppose F, is the zero element of &7. Obviously, it is enough to show
that f(ly) = 0 for a fixed but arbitrary Iy € €. The form of the representations
U, is required. Only an outline is provided here until the kernel function is
presented in (4.1)—for the complete details see [13]. Let § C & be a maximal
subordinate subalgebra of /. That is, ([x1, x2], lp) is identically zero for xy, x»
in h and § is maximal with this property. Then U, is the representation of %
induced by the character ya(exp x) = ¢’/ on exp §). Choose a basis

https://doi.org/10.4153/CJM-1977-126-8 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1977-126-8

QUANTIZATION 1269

{er, ..., e} of & so that {e;, ..., e,]} spans h and {ey, . .., e;} spans a sub-
algebra form = j < n. Let

T = {y = exp~! (exp (bmi1 €my1) ... xXp (ta€r)): t; € Rym < j £ nl.

I' may be identified with the set of representatives of the right cosets of ¥
with respect to exp §). The operator 7Tf is a Hilbert-Schmidt operator on
L?(T')—the space of functions on T that are square integrable with respect to
the measure on I' coming from dt,; . .. dt,. The kernel of 73 f, a function on
I' X T,is

n/2
(4.1) (2—-1”) fbg" Myf(exp™ ((exp 7)™ exp x exp 7'))xa (exp x)dx.

In particular, if F, is zero, then for all y € T and \ € E,

_ -1 i
j; fﬁ,f()\l)e 1(exp~1(expzexpy), 1) ez(z, 10 /) dldx = 0.
H

Fixy = tp418me1 + . . . + te, and vary v with X to obtain

_ -1
ﬁ) f@,f(l)e i(exp~1(exp(Az)exp(A tm +1em +1)...exp(\ tnen)) /A, D) ei(z.lo) dldx = 0.

Since ¥ is nilpotent, exp~! (exp z; exp 2») is a polynomial in zi, z, whose first
terms by the Campbell-Baker-Hausdorff formula [8] are

(4.2) exp~! (exp z1exp 22) = z1 + 22 + 3[z1,22] + . ..
Thus, as A\ — 0,

\]; f@,f(l)e—i(z-H/yl) ei(z,lo) dldx = 0.

Decompose & into a direct sum &' @ &' asl = [y + Iy where (y, ;) = 0 for
all y in the span of {e,;1, ..., ¢,} and (x, ;) = 0 for all x in §). Then

0= f@,e_“”"”fh o ) e e dlddl,
2 h 1

Fourier inversion on ) yields, with lo = lo; -+ lp2 as the decomposition of I,

0 = f@ e (1o 4 1y)dl.

As y is arbitrary in the dual of &', f(lpx 4+ I2) = 0 for all [, € &,. In particu-
lar, f(lor + lo2) = f(lo) = 0.

It is clear from the Heisenberg group that, in general, the function can only
be determined on & by the family F,. In this sense, Proposition 4.1 is the best
possible result.

LEmMMA 4.2. Given I € 9/, there is a family of functions fy contained in
(&) such that
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i) FO\) = Thfy and
ii) im0 f converges in the topology of S (®') to a function f,.

Proof. 1t suffices to show that, first, the result is true for F, and, second, if
Fand G satisfy the propertiessodo F * Gand (1/\) (F* G — G x F). The result
is trivial for F,with fy = f.

a) Suppose F(\) = Thfi and G(\) = Thgr. Then
F*G()\) = T)\f)\T)\g)\

_ (%) | #3007 M) s exp  exp y)apa

Thus F* G(\) = T)hy where F Iy (y) is

(43) (21; )"” f@ Fho) g;gx(exp—‘ (exp (—xm exp <xy)>) e

By (4.2),

n/2
(4.4) lxigfhx(y) = (%) f@ffo(x)fgo(y — x)dx.

The convergence is clearly in % (®), so the Fourier transform establishes the
result.
b) Similarly (1/\)(Fx G — G x F) = T)k\ where % ky\(y) is

(&) forsotfraforton mm)

_grg)‘(exp_1 (exp )\i exp (—}\x)))}dx.

If dx is Lebesgue measure with respect to {ey, ..., €,},x = D1 X, isin O,
and « is a function on &, let D,u denote the derivative >_; x; du/dx;. With this
notation, by (4.2),

: L\ .
(4.5) ImFk\(y) = (“2") f Ffo(x) (Di—an-F g0) (y — x)dx.
A0 T ®
Again, the convergence is in ¥ (®).
THEOREM 4.3. For F as in Lemma 4.2, define ¢ (F) = foi0. ¢ 15 well-defined.

Proof. Suppose F = Thfx = Thgy for two families such that fy, — f, and
o — goin (). Then T (fr — g) is the zero operator for each \. The argu-
ment in the proof of Proposition 4.1 remains valid with fy — g\ in place of f.
Thus (fo — go) (L) = 0for any ly € @. Thatis, ¢ is well-defined.

THEOREM 4.4. ¢ satisfies the requirements of a special quantization.
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Proof. a) Since the Fourier transform takes convolution into multiplication,
equation (4.4) insures that ky(I) = fo(l)go(l). In other words, that ¢(F x G) =

o (F)e(G).
b) For requirement III, the concrete form of the Poisson bracket is re-
quired. Choose a basis {ej, ..., e,} of ®. Define the structure constants as

[es, e;] = Spq Ciffer. For f, g in & ('), their restrictions to ¢ have bracket

- x, Of og
{wagW} - ’L,;k CW lk al al

where [ is decomposed relative to the dual basis. The interested reader can
verify this from the explicit form of w in [5] and the general method of con-
structing Poisson brackets from two forms [1].

The right hand side of (4.5), with x = (x5, ..., %) andy = (y1, .. ., Y),
becomes
1L\ AF,
(2—) [71w = cuyn 228 £ (y — xyix.
T © i, 5.k
Since C;* = —C;/* the product y«, can be replaced by (y; — x;)x,. Taking

derivatives and polynomials past the Fourier transform, we obtain

(27r) f 2 C”k‘/(—’ afo)( )'/(—153— —ilkgo))(y—x)dx.

Therefore limy_ & (1), for I € O, is

@o) i T B OTE W —ilfue g +i T 6 g

But >, Ci./f = 20 (lex, 51, &) — tr (ad e;) where the trace is taken of the
linear transformation ad x(y) = [«, y]. For nilpotent groups, tr (ad x) = 0 for
all x. Therefore ¢ ((1/N)(F+x G — G F)) = i{¢(F), ¢(G)}.

c) By [9], 7,f is a trace class operator and there is a constant ¢, such that

li

C\ Tr (T)\f) = L f]@ am.

It is also noted in [9] that dm is a tempered distribution. Thus, if F(\) = T3\ f
as in Lemma 4.2,

lim ¢y Tr (F(A\)) = lim fpr dm = qu(F)dm.
A0 A0 Yo 0

Remark. A crude attempt to carry out the program of Section 3 for orbits of
general Lie groups is to take U, as the left regular representation U of ¥ on
L2(%, du) for each N € E. Here du is the left invariant Haar measure whose
pullback under the exponential map is p(x)dx, p being an analytic function
near the origin 0 of & with p(0) = 1. As the exponential map is only a local
diffeomorphism, operators are formed from functions f such that # f ¢ C;*(®)
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(i.e. # fis a C” function with compact support). As in (3.1) set

4.7 hf = (él;)n/ f@fﬂﬁf(x) Ulexp x)K (x)dx.

Requirement V must be abandoned because T f is a convolution operator on
the group [3]. With only the asymptotic requirements I-IV to satisfy, we may
introduce the factor K (x) that is a real-valued continuous function analytic
near the origin and K(0) = 1. Let A, be the algebra of bounded operators
generated by 7\f and .27 be generated by the maps

A\ = Ivf.

By means of group convolution, the analogue of Lemma 4.2 becomes the state-
ment that for every F € .9/ there is a Ny > 0 such that there is a family of
functions fy for 0 < N\ < N satisfying

i) F\) = Thfn where Z fi € Co™(©),

i) Ffy = Ff, as A — 0 in the topology of C,*(®), and

iii) given two families satisfying i) and ii), say fy and gy, then fy = g\ for A
sufficiently small.
¢ is then defined as ¢(F) = fo0. It is clearly well-defined by property iii)
above.

An indication that ¢ is a quantization follows. Notice that the support of
F Myf is {\x: x is in the support of Z f}. If X is so small that exponential
coordinates may be used and that K, p are positive analytic, the expression
for# hn(y) in (4.3) changes to

(ﬁL)"ﬂ ﬁ%ffﬂx)g‘-g)\(exp_l (exp (—Ax) exp )\y))

2w A

K (exp™ (exp (=) exp Ay)) (M)

X K() plexp (exp (—aw) exp ) I
On taking the limit as N\ — 0, this becomes exactly (4.4) since K (exp~! (exp
(—Xx) exp \y))/K(\y) and the similar expression involving p are analytic
functions of y for small N whose derivatives with respect to y all go to zero
uniformly in compact sets as N\ — 0 while the functions themselves approach
1 uniformly. Likewise the right-hand side of (4.5) is altered, after allowing for
the modular function to eliminate right multiplication in the group, to

n/2
(4.8) (,l_) ﬂ“ffo(x){D[*x,y]fgo(y —x) — tr (ad x).Z go(y — x)}dx.

2

That ¢ provides a quantization follows as in Theorem 4.4, the only difference
being that the unwanted term in (4.6) is cancelled by the trace in (4.8).

5. Quantization of the sphere. After the Remark in Section 4, one is led
to ask what systems do not constitute quantizations. The point is that physi-

https://doi.org/10.4153/CJM-1977-126-8 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1977-126-8

QUANTIZATION 1273

cally relevant quantizations seem to come from irreducible representations of a
Lie group. The difhcult step for these quantizations is to show ¢ is well-defined.
Once this is accomplished, the fact that ¢ satisfies II and I1I is a consequence
of the structure of Lie algebras and the exponential map. In practice, the factor
K in (4.7) is juggled so that requirement V holds [12]. In other words, the
quantization arising from the left regular representation only suggests how ¢
should be defined—the proof must come from the concrete form of the irredu-
cible representations.

As an illustration, consider the example, where the irreducible representa-
tions are well-known, of the real compact semisimple Lie group SU(2) of
2 X 2 unitary matrices with determinant 1. Let II: SU(2) — SO(3) be the
usual covering map onto the rotation group of 3-space. The Lie algebra ® is
spanned by three elements

A AT I B Y It L)

with brackets (e}, es] = e3, [eq, €3] = e; and [e3, e1] = e2. The negative definite
Killing form on ® provides a natural identification of & with &’. Thus orbits
in @ become orbits in & and the Fourier transform takes functions on & into
functions on (. The orbits are spheres centered at the origin and the 2-form w
is invariant under rotations [4].

Let us quantize the sphere & of radius %. The irreducible representations of
SU(2) are indexed by the weight j that takes on all nonnegative integer and
half-integer values. Following [13], it can be shown that the sphere of radius
7 + % corresponds (in the sense of (5.1)) to the representation of weight j. Let
Uy be the representation corresponding to (1/\) . Thus \ is restricted to lie
in theset £ = {1, 3, %,...} and U, is the representation of weight 3 ((1/\)—1).
For Zf ¢ Cy™(O®), set

I 1\%* f o sin (|x|/2)
T = (21r) ®3R3/ Myf(x) Ur(exp x) ]2 dx.
where x = > xq; and |x| = 1/x1% + x2? + x3% Then, there is a constant such

that

(5.1) aTr (W) = ffdm.

The algebra &7 is built from the generators F,(\) = I\f and ¢(F,) = f,.
That this is a quantization follows from

ProrosiTiON 5.1. ¢ is well-defined on the generators F,.

Proof. 1f N = 1/(2j + 1), j an integer, then the representation U, acts on
the space of spherical harmonics # of degree j = 3((1/)\) — 1) [15] by

(Un(exp x)u) (§) = u(II(exp x)&)
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where II(exp x)¢ is the rotation II(exp x) applied to £ € R3. Recall that u is a
complex-valued harmonic polynomial on R? that is homogeneous of degree j.

Suppose Tf is the zero operator for all . Then, in particular, ((Tf)u)
0,0,1) = 0 where u(£1, £, £3) = (§5 — 1£)¥ M= Therefore

0= fmff(x)m(ﬂ(exp Ax) (0,0, 1)) %%\C_l]%@_) i

As\ — 0, by Lemma 5.2

0= f F1x)e™ " dx = £(0,0, }).
R3
It is clear a similar argument will guarantee that f(x) = 0 for all x € .

LEMMA 5.2. With the above notation, let wy (x) = ux(II(exp Mx) (0, 0, 1)). Then
Wy, 15 @ sequence of analylic functions of x that converges uniformly for compact
subsets as N— 0 to the analytic function e™s’>.

Proof. wy(x) = un((I + 24 + (1/2)(NA)2 4+ ...)(0,0, 1)) where I is the
identity matrix on R® and

0 —X1 — X2
4 = X1 0 —X3
Xo X3 0

Therefore wy(x) = (1 4 ihxs 4+ \2(1))*M=D and 1 is an analytic function
that is uniformly bounded in N on compact subsets of x. The binomial expan-
sion implies

l)\mg W) = 1+ ix/2 + % (ix3/2)" 4 ... = €™/

6. Exponential Lie groups—the ‘‘ax 4 b’’ group. Exponential Lie groups
are characterized by the condition that the exponential map is a diffeomorphism
onto the group. The nilpotent groups of Section 3 are exponential. There is
again a method of constructing irreducible representations from orbits [12; 14].
A quantization of the orbit results if the factor K in (4.7) is taken to be the
function K, of [12]. Unfortunately, the operators are not of trace class—
especially if the orbit is not closed.

Rather than carry out the details of the quantization for arbitrary expon-
ential Lie groups, let us explore more fully a simple example. Take for 4 the
“ax + b group of affine transformations on the line [12]. The Lie algebra ®
is spanned by {ey, e} with [e1, ¢2] = e2. Exponential coordinates used globally
on ¥ vyield the following expression for exp—!(exp (x,v) exp (z, w)) in terms of
the chosen basis for ©,

(x 42 (& +2)/(e* = 1)) (€ — Dy/x + ew(e® — 1)/2)).
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The orbits in ¢, relative to the dual basis {e/, e’} are of the following three
types:
i) points on the line spanned by e/,
ii) the (upper) half-plane with positive second coordinate, and
iii) the (lower) half-plane with negative second coordinate.
The invariant measure of ii) is dm = (1/13)dlidl,.

Let us quantize the upper half-plane @. The set E is all positive real num-
bers. The representations U, corresponding to (1/)\) @ is induced by the charac-
ter xa(exp (sez)) = e Explicitly, for € L2(R), Uy is given by

(6.1)  (Ux(exp (x, y)u))(t) = e =DMy (t + x).
For this orbit, K is identically 1, so set for & f € Cy™(®)

6.2) Tif = QL f@ZRZfMAf(x, ¥) Ux(exp (x, y))dxdy.

m™
As usual, & is generated by F;(\) = I\f and ¢(F,) = f,. Combine (6.1)
and (6.2), then substitute x — ¢ for x, to obtain

(@P0O = 3= [ F a4 4 iy

™

= \—/15_; ffoxf(x — 4, (& —e")/Nx — 1))u(x)dx.

In the last integral, & if is the partial Fourier transform Fif(a, b) = (1/4/2x)
ff(z, b)e=***dz. Hence, T\f is the operator on L?(R) with continuous kernel

(6.3) (1/V2Zm)F 1Mf(x — &, (¢ — ') /Mx — 1))

as a function of x and ¢. Since (¢* — e')/N(x — t) is always positive, (6.3) is
identically zero if and only if & 1f(x,7) = 0 for all x € R and all » > 0. That
is, T)f being the zero operator is equivalent to f being zero on all of &. Thus,
not only is ¢ well-defined, but for each \ there is a 1-1 correspondence
between operators in 4, and functions on the upper half-plane. It is interesting
to note that, if 7\f is a positive definite operator of trace class, then (6.3)
implies

Tr (Inf) = A/A/2m) ngTlM)\f(O, e'/?\)dt

_ 1 ; _ L f '
=5 ). Myf(z e'/N)dtdz = 5— . fly, 1) (1/1y)dlydl,.

Requirement V fails simply because the algebras A4, were generated by the

wrong function space. It can be shown that a special quantization will result
if A, is chosen properly.
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If coordinates (p, ¢) are introduced on &, this classical mechanical system
could be a model for a particle whose position coordinate is restricted. A deeper
analysis of the correspondence principle is possible in this case just as in the
1-1 correspondence for the case of the Heisenberg group [3;6]. One initial
feature is that operators (not necessarily bounded) may be defined for more
general functions. As an elementary example, the observables f(p, ¢) = p and
g(p, q) = ¢ become the essentially self-adjoint operators —i\d/dx and ¢ on
L%(R) respectively.
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