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Introduction. We introduce certain n X n matrices with integral elements 
that constitute a free semigroup with identity and generate the n-dimensional 
unimodular group. In terms of these matrices we define a certain sequence of 
^-dimensional vectors, which we show is the natural generalization to n 
dimensions of the Fibonacci sequence. Connections between the generalized 
Fibonacci sequences and certain Jacobi polynomials are found. The various 
basic identities concerning the Fibonacci numbers are shown to have natural 
extensions to n dimensions, and in some cases the proofs are rendered quite 
brief by the use of known theorems on matrices. 

The results presented in this paper were obtained in the course of an attempt 
to generalize the notion of continued fractions to higher dimensions. Other 
results of that attempt will be presented in another paper. 

The author wishes to thank Professors R. P. Gosselin, W. W. Sawyer, and 
the referee for helpful suggestions. 

1. A free monoid that generates the unimodular group. Throughout 
this paper, F(S) denotes the free monoid over the set S. The elements of F{S), 
called words in the alphabet 5, are represented as finite (possibly empty) 
sequences of elements of the set S. The operation of F (S) is concatenation; 
Wi * W2 denotes the word resulting from the concatenation of the words Wi 
and PF2. The empty word is denoted by 0. If W is a word of length 1 consisting 
of the single element P £ S, we write W = P. 

We always take the set 5 to be the set of elements of one of the symmetric 
groups Sn {n — 1, 2 , . . .). The elements of Sn may be represented as permutations 
of the set { 1 , . . . , n}. Throughout this paper, E denotes the identity permutation, 
and T denotes the permutation defined by T(J) = n + 1 — j (j = 1, . . . , n). 
For all Plt P2, P in Sn, Pi P2 is defined by (P1P2) (j) = Pi(Pi{j)) and P~l 

denotes the inverse of P . 
We use dJln

+ to denote the ^-dimensional unimodular group, whose elements 
are the n X n matrices M with integral elements and determinant 1. The 
n X n identity matrix is denoted by In. To denote the element in the ith row 
and j th column of a matrix M, we always write (M; i,j), thus avoiding elaborate 
subscript notations later. 

With each word W 6 F(Sn) we associate a matrix M(W) £ Wln
+ in the 

following way : 
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FIBONACCI SEQUENCE 3 3 3 

l, ifP-^KP-'O'), (1) If P € Sn, then (M(P) ; i, j) = ^ .f p _ 1 ( .} > p _ 1 ^ 

(2) If Wi, W, € ^GS,), then M{W1*Wi) = M(^ i )Af (^2) . From (2) it 
follows that -M"(0) = In. From (1) we see that M(E) is upper triangular with 

ww=«-{i: !!*ïj: 
One also sees from (1) that 

(M(P);P(i),P(j)) = (M(E);i,j). 

Since det M(E) = 1 and since M(P) is obtained from M(E) by applying the 
permutation P both to the rows and to the columns, det M(P) = 1, and hence, 
by (2), det M(W) = 1 for all W G ¥{Sn). 

For the inverse matrices we have 
f 1, îîj = h 

[ 0, if 7 ^ i and j 3̂  ? + 1. 

{{M(P))-i;P(i),P(j)) = ((M(E))-i;i,j). 

Let Zw denote the set of ordered w-tuples of integers. Rn denotes the set of 
ordered n-tuples of real numbers. For u £ Zn (or Rn)y we write 

u = (u(l), . . . , u(n)). 

For w, t; G Zw (or Rn), we write w > z> to express that 

u(i) > z;(i) (i = 1, . . . , «). 

H u ^ v and w ^ y, we write u > v. Denoting the 2th row of a matrix M by 
p(M; i) and the jth column of M by K(M;J), we may write 

p(M;i) = ( ( M ; i , l ) f . . . , ( M ; i , n ) ) 

and 

K ( M ; J ) = ( ( M ; l , j ) , . . . , ( M ; n , i ) ) . 

If jp = PV, P e 5„ F 6 F(S„), then 

p(M(W0;t) = Zp(M(v);k), 

where the sum extends over all k such that P~x (i) < P~x (k). Since the elements 
of M( F) are non-negative and since each row of M( V) has at least one positive 
element, the rows of M(W) satisfy 

(3) p(M(W);P(l)) > p{M(W);P{2)) > ...> P(M(W);P(n)). 

Similarly, the columns are seen to satisfy 

(4) K(M(W);P(n)) > K(M(W);P(n - ! ) ) > . . . > K(M(W); P(l)). 
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THEOREM 1. The mapping that associates with each W G F(Sn) the matrix 
M (W) is a semigroup isomorphism from the free monoid F(Sn) into the unimodular 
group Tin-

Proof. From (2) above, it follows that the mapping is a homomorphism. To 
show that the mapping is one-one, we argue by induction on the length of 
the word W. Since the only word of length 0 is the empty word, it is vacuously 
true that distinct words of length not exceeding 0 have distinct matrices 
associated with them. Now let k > 1 and assume that distinct words of length 
not exceeding k — 1 have distinct matrices associated with them. Let 
W = P * F be a word of length k and let U be a word of length not exceeding 
k such that M(U) = M(W). Since M{W) ^ In, U has the form Q * F, where 
Q Ç Sn and Y G F(Sn), and we may write 

M(U) = M(Q)M(Y) = M(P)M(V) = M(W). 

The rows of M(U) are the same as those of M(W), and using (3) above, we 
obtain Q = P. It follows that M(Y) = M(V), and by our induction hypo­
thesis Y = V. We now have 

U = Q*Y = P*V = W, 

and we may conclude that distinct words of length not exceeding k have 
distinct matrices associated with them. 

THEOREM 2. The matrices M(W), W G F(Sn), generate the unimodular group 

mn
+. 
Proof. It is known (2, 6) that %)ln

+ is generated by the transvections 
V(h, k) (h = 1, . . . , n; k = 1, . . . , n\ h ^ k). These are defined by putting 
V(hy k) = 1 if i = j or if i = h and j = ky and V(h, k) = 0 otherwise. For 
n = 2, the transvections are just the matrices M(P), P Ç 52. For n > 2 it 
will be sufficient to express a single transvection, say 17(1, 2), in terms of the 
M(W) and their inverses; by symmetry, every transvection V(h, k) has a 
similar expression. If r, s, t are the numbers 1, 2, 3 in some order, let 

P(r,s,t) e Sn 

be defined as follows : 

P(r , s, t) (i) = n + 1 - i for i = 1, . . . , n - 3; 

P(r,s,t)(n - 2) = r; 

P(r,s,t)(n - 1) = s; 

P(r,sft)(n) = t. 

Then a calculation shows that 

M(P(3, 1, 2))[M(P(2, 3, 1 ) ) ] -W(P(1 , 2, 3))[M(P(1, 3, 2))]-» = F( l , 2). 
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Remark. Appel and Djorup (1) have recently proved that a group generated 
by a free subsemigroup need not be free. Our Theorems 1 and 2 provide 
another demonstration of this fact. 

2. The n -dimensional analogue of the Fibonacci sequence. 

THEOREM 3. The n elements of each column K(M(W);J) (j = 1, . . . , n) of 
the matrix M(W), W £ F(Sn) are relatively prime non-negative integers. Con­
versely, every n-tuple of relatively prime non-negative integers occurs as a column 
of a matrix M(W), W £ F(Sn). Similar statements hold for rows. 

Proof. Since each M(W) is a product of a finite number of the M(P), 
P £ 5„, the elements of M(W) are non-negative integers. Since det M(W) = 1, 
the elements of any column are relatively prime. 

To prove the converse, we proceed by induction on the greatest integer h 
in the given n-tuple of relatively prime non-negative integers. If h = 1, then 
the given n-tuple occurs as a column of some M(P), P £ Sn. Now let h > 1 
and suppose that every n-tuple of relatively prime non-negative integers whose 
greatest integer does not exceed h occurs as a column of a matrix M(W)7 

W G F(Sn), and let (c(1 ) , . . . , c(n)) be an n-tuple of relatively prime non-
negative integers whose greatest integer is h + 1. Let P Ç Sn be such that 
c(P(l)) > . . . > c(P{n)). Then c{P{\)) = h + 1 and the last non-zero integer 
in the list (c(P(l)), . . . , c(P(n))) does not exceed h. Thus the n integers 

c(P(l)) - c(P(2)), . . . , c(P(n - 1)) - c(P(n)), c(P(n)) 

are relatively prime non-negative integers, and the greatest of them does not 
exceed h. By our induction assumption, there exists V £ F(Sn) such that these 
integers are the elements of a column of M{V). Then (c(P(l)), . . . , c(P(n))) 
is a column of the matrix M(E)M(V) = M(E * V). 

If W G F(Sri), W = Qi * Ç2 * • . . * G„ Q,Ç. Sn, define PW Ç F(Sn) by 
PW = (PQi) * (PQ2) * . . . * (PQr). One then sees that 

(M(PW);P(i)9P(j)) = (M(W);iJ). 
Therefore (c(l), . . . , c(n)) is a column of the matrix M(P(E * V)). 

It remains to be shown that similar statements hold for rows. Since M(PT) 
is the transpose of M(P), if W = P i * . . . * Pr and Z = (P r T) * . . . * (Pi P), 
then M(Z) is the transpose of M(W), and an n-tuple occurs as a row of M(Z) 
if and only if it occurs as a column of M(W). This completes the proof of the 
theorem. 

DEFINITION. An n-tuple of relatively prime non-negative integers is called a 
primitive n-tuple. By the depth of a primitive n-tuple we mean the length of the 
shortest word W G F(Sn) such that the matrix M (W) contains the n-tuple as a 
column. An n-tuple v is called a maximal primitive n-tuple of depth d if v is 
primitive and of depth d and there is no primitive n-tuple u of depth d such 
that u > v. 
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DEFINITION. An n-tuple v = (v(l), . . . ,v(n)) is called positive if all of its 
components v(i) are positive, descending if v(l) > . . . > v(n), and ascending if 
v(l) < . . . < vin). 

THEOREM 4. If v = (v(l), . . . , v(n)) is a maximal primitive n-tuple of depth 
d and P 6 Sn, then vP = (v(P(l)), . . . ,v(P(n))) is also a maximal primitive 
n-tuple of depth d. 

For each d (d = 0, 1, 2, . . .) there is exactly one descending primitive n-tuple 
that is maximal of depth d. Denoting it by <t>n,d ,we have 

0ntO = K(M(E);1), <t>nti = K(M(E * T);n), 

(t>nf2 = K(M(E* r * £ ) ; l ) , <j>n,z = K(M(E* T*E* T)\n) 

Letting Qn denote the n X n matrix such that (Qn ; i, j) = 1 for i + j < n + 1 
and (Qn\ ij) = 0 for i + j > n + 1, we have Q2 = M(E)M(T) and 

<t>n,d+l ~ Qn <l>n,d> 

Proof. To prove the first assertion, we simply observe that if u > vP, then 
uP-1 > v. 

The proof of the second assertion is by induction and is based on the following 
observations. (1) If u is a primitive n-tuple of depth d + 1, then there exist 
a primitive n-tup\e v of depth d and P G Sn such that u = M(P)v. (2) If 
u > v, then for every P Ç Sn we have M(P)u > M(P)v, since all elements of 
M(P) are 0's or l 's and one of the rows of M(P) consists entirely of l 's. 
Therefore M(P)v is not maximal of depth d + 1 unless v is maximal of depth 
d. (3) If v is positive, then M(P)v is positive and no two of its components are 
equal. (4) There is only one maximal primitive w-tuple of depth 1 and it is 
positive (in fact, all of its components are l 's). (5) As a consequence of the 
preceding observations, any maximal primitive w-tuple of depth d > 2 is 
positive and has no two of its components equal. 

For depth d — 0 the maximal descending primitive n-tuple 

v = (v(l), . . . , v(n)) 

is given by v(l) = 1, v(2) = . . . = v(n) = 0 . For depth d = 1 it is given by 
v(l) = . . . = v(n) = 1. Now suppose that d > 1 and that for each depth not 
exceeding d there is exactly one maximal descending primitive n-tuple of that 
depth. Let v be a maximal descending primitive w-tuple of depth d + 1. Then 
we must have v = M(P)u for some P Ç Sn, where u is maximal of depth d. 
Then u is positive and in order that v be descending we must have P = E, 
v = M(E)u. Now it is easily seen that in order for v to be maximal, u must be 
ascending. By the induction hypothesis and the first assertion of the theorem, 
there is exactly one maximal ascending primitive w-tuple of depth d. Thus u 
is uniquely determined. Hence v is also uniquely determined and the proof of 
the second assertion is complete. In what follows, we shall frequently use <t>d 

instead of <j>n,d to denote the maximal descending primitive n-tuple of depth d. 
(We shall also write Q for Qn, etc.). 
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If fa = (fail), . . . , fa(n)) = K(M(W);J), then the maximal ascending 
primitive w-tuple of depth d, obtained by reversing the components of <j>d} is 
equal to K(M(TW); T(j)) = K(M(TW); n + 1 - j). Therefore 

fa+1 = M(E)K(M(TW); n + 1 - j) = K(M(E * (TW));n + 1 - j ) , 

and proceeding step-by-step, we obtain 

fa = K(M(E);1), 

fa = K(M(E* (TE));n + 1 - 1) = K(M(E* T);n), 

fa = K(M(E* (T(E* T));n + 1 - n) = K(M(E * T * E); 1), 

tf>3 = K(M(E* (T(E* T*E)));n + 1 - 1) = K(M(E* T*E* T);n), 

and so on. 
Since <£rf+i = M(E)K(M(TW); n + 1 — j ) , the ith component of <f)d+1 

satisfies 

fc+i(0 = Ê ( W ) ; *'. *) (M(rwo ; *, n + 1 - j) 

= E (Af( IW);»+l -»» ,«+l - i ) 
n+l—i n+l—i 

= E (M(rwO;r(«),ro'))= E (M(W0;«,i) 

= E &(»») = E (Q;i,k)<t>d(k). 

Thus fo+i = <2</>d. 
Finally, we note that 

(Q2;iJ)=È(Q;i,k)(Q;k,j) 
k=l 
min (n+1— * .n+1— j) 

= E i 
= mm(n + 1 — i, n + 1 — j), 

while 

(M(E*T);i,j) = E (M(E);i,k)(M(T)\kJ) 

= E i-
A:=max(î,i) 

= w + 1 — max(i, j ) , 

so that Q2 = M(E)M(T). The proof of Theorem 4 is now complete. 

Table I lists the values of fatd for n = 1,2, 3, 4, and d < 6. 
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TABLE I 

= 4 

d = 0 d = l d = 2 d = 3 d=4 d = 5 J = 6 

(1) (1) (1) (1) (1) (1) (1) 

G) (Î) G) G) G) (D 

If n = 2, the components of </>ntd are just the numbers in the Fibonacci 
sequence. Indeed, if the problem concerning the breeding of rabbits considered 
by Leonardo of Pisa in 1202 is stated so that it asks for the successive distri­
butions of the total population of rabbit pairs into adult pairs and newborn 
pairs, then the answer to the problem is provided by the sequence 4>2td. The 
reader will not find it difficult to formulate analogous population distribution 
problems that are answered by the sequences cj>ntd with n = 3, 4, . . . . 

Since the days of Luca Pacioli and Kepler, considerable attention has been 
paid to the limit of the ratio of successive numbers of the Fibonacci sequence, 
which is J ( l + y/5) and which may be described as the ratio of the diagonal 
of a regular pentagon to its side. In our notation, this is 

lim (<fe(l)/*d(2)), 

with n — 2. That analogous descriptions of the limiting ratios are possible in 
all of the higher-dimensional cases n = 3, 4, 5, . . . as well is the substance of 
the following theorem. 

THEOREM 5. Let nbea positive integer. Let (0œ( l) , . . . , <j>œ(n)) bea descending 
n-tuple of positive real numbers that are proportional to the n different lengths of 
diagonals of a regular (2n + l)-gon. Then the components of the n-tuples <t>d 

have limiting ratios given by 

lim (<t>d{i)/4>d{j)) = <t>œ(i)/^(j)' 
rf-»oo 

Proof. We have <j>d = Qdcj>oy where Q is the matrix described in Theorem 4, 
and we begin by finding the characteristic polynomial of that matrix. Letting 
Dn(\) = det (Qn — X7W), we find by direct calculation that 

£>iO) = 1 - X, 
D2(\) = - 1 - X + X2, 
Di(\) = - 1 + X + 2X2 - X3, 
DA(\) = 1 + X - 3X2 - 2X3 + X4. 
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For n > 3 we can obtain a recursion formula for Dn. We begin by expressing 

Dn{\) = 

1 - X 1 
1 1 - X 
1 1 

1 
1 

1 - X 

1 

T-H
 

T-H
 

1 1 0 
1 0 0 

1 1 1 . . - X 0 0 
1 1 0 . . 0 - X 0 
1 0 0 . . 0 0 

as the sum of two determinants, whose first rows are 1, 1, 1, . . . , 1, 1, 1 and 
— X, 0, 0, . . . , 0, 0, 0 respectively, and whose other rows are the same as those 
of Dn(\). In the first of these determinants, we subtract the first column from 
each of the other columns. We then expand each of these determinants by the 
first row, obtaining 

Dn(\) = ( - 1 ) -

X 0 
0 X 

0 
1 

0 0 . . 
0 1 . 
1 1 . . 

. 1 + X 
1 
1 

1 1 
1 + X 1 

1 1 + X 

1 - X 1 
1 1 - X 

1 
0 

0 
0 

1 1 . . - X 0 0 
1 0 . . 0 - X 0 
0 0 0 0 - X 

Reflecting the first determinant with respect to its secondary diagonal and 
expanding the second determinant by its last row, we obtain 

Taking £>0(X) = 
We introduce 

Dn(\) = ( - îy^zw-x) + X2A,_2(X). 
1, we make this recursion formula hold for n > 2. 

£„(X) = (-l)^+»<*Dn((-in), 

and the recursion formula takes the simpler form 

E„(X) + £»_i(X) + X2£B_2(X) = 0. 

https://doi.org/10.4153/CJM-1966-036-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1966-036-0


340 GEORGE N. RANEY 

The solution of this recursion formula is known (3; 7). It has the form 

JE»(X) = c1p
n + c2q

n
f 

where p + q = — l,pq = \2
y 

ci = (Ei - q)/{p - q), and c2 = (p - E^/ip - q). 

From this one obtains 

(5) (p - q)En = -X*(/>»-i - çT1) + Ei(Pn ~ 3"). 

The solution of the equations p + q = — 1, pq = X2 is given by p = \eiv
f 

q = \e~iy
y where 2 cos y = — 1/X. We may now write 

(X sin y)En = — Xw+1 sin(w — l)y + £i(Xw sin ny). 

Using Ei/X = ( —1 — X)/X = 2 cos y — 1, we readily obtain the equation 

„ /AW sin(w + l)y — sin ny cos(w + i)y 
-t in/A = ~ : = T~ • 

sin y cos %y 
By shifting the angle, we can relate this to the Dirichlet kernel. In fact, we 
have 

77 A * ( -1 )* sin(n + \)x 
sin %x 

where y = x + ir and 2 cos x = 1/X. 
Now let us introduce polynomials Zn(u) {n = 0, 1, 2, . . .) defined so that 

7 , 0 x s h i p + \)x 
Zn(2 COS # ) = ~. : — . 

v y sin \x 
From the equation J£W(X) = ( — 1)WXWZW(1/X) we obtain 

Dn{\) = (-l)n(n+1 /«XwZn((-l) , ,X-1). 
I t now follows that the roots of Dn(X) are real and distinct. They are the 

numbers 

(-ir  
2cos(2&7r/(2w+ 1)) 

These roots may also be written 

(-ir+i 

( i = l »). 

2cos((2m - l)ir/(2n + 1)) 

The characteristic root of the matrix Qn whose absolute value is greatest is 

and by 

( - 1 ) m 

Xi = ô 7̂  777 r ~ m iîn = 2m is even 
2 cos(2w7r/(4m + 1)) 

( - l ) 2 m - 1 

Xi = - jz jT-A TTT , it n = 2m + 1 is odd. 
2cos(2ra7r/(4m — 1)) 
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In either case Xi is positive and equal to 1/2 co$(nir/(2n + 1)), which is jus t 
the ratio of the longest diagonal to the side in a regular (2n + l)-gon. 

From any vertex of a regular (2n + l )-gon there emanate 2n diagonals; 
here we are counting the sides among the diagonals. Two of these diagonals 
have length « ^ ( l ) and they are the equal sides of an isosceles triangle whose 
base has length ^ ( w ) and whose base angles are equal to nw/(2n + 1). I t 
follows t ha t 

* œ ( n ) = 2*0 O(l)cos(»,r/(2» + 1)), 

or, equivalently, t ha t 0 œ ( l ) = \i<t>œ(n). 
Parallel to each diagonal of length <j>œ(k) (k — 1, . . . , n — 1) there is a 

diagonal of length <t>œ(k + 1). These two diagonals are the bases of an isosceles 
trapezoid whose non-parallel sides have length 4>œ(n + 1 — k) and whose base 
angles are equal to UT/ (2n + 1). I t follows tha t 

* » ( * ) . - </>oo(& + 1) =24>œ(n + l - * ) C O S ( » T / ( 2 « + 1)), 

or, equivalently, t ha t 

0 œ (n + 1 - k) = Xi(*œ(*) - 0 œ ( * + 1)) (* = 1, . . . , n - 1). 

Summing, we now have 

n+l—k 

T h u s it is established t h a t ( ^ œ ( l ) , . . . , <t>m{n)) is a characteristic vector of the 
matr ix Qn associated with the characteristic value Xi. 

Calling this vector <f>œ1 we now have only to show t h a t the limiting ratios of 
the w-tuple <t>d as d —» oo are the same as the ratios of the corresponding com­
ponents of <£œ. Here we make use of an a rgument given by Birkhoff (4). 

Since the matr ix Qn is real and symmetric, we may take characteristic 
vectors associated with its n distinct characteristic roots to form an orthogonal 
basis of our w-dimensional vector space. We may take <j>œ as one of the vectors 
of this basis. We now have $ 0 = A<j>œ + ^s where A is positive and \p is 
orthogonal to 4>œ. Now, since all characteristic roots X T* XI have absolute 
values less than t ha t of Xi, we have 

(Ai)-V* = ( X i ) - ^ o = ( X i ) - ^ ^ ^ + *) = A^ + o(l)-+A4>œ, 

as d —* oo. The proof of the theorem is now complete. 

Many further properties of the polynomials Zm and consequently also of 
the polynomials Dn, follow from the equation 

Zn(2u) = 22»(n!)2((2n)!)-1PnA'-*>(«)> 

which relates the Zn to the Jacobi polynomials Pw
(*'~5). These polynomials are 
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specifically mentioned in Szegô (8). In particular, the polynomials Z„ satisfy 
the differential equation 

d[(2 - w)3/2(2 + uy'2Z'n(u)]/du + n(n + 1)(2 - w)1/2(2 + u)~inZn(u) = 0 

and are orthogonal on the interval [ — 2, 2] with respect to the weight function 
w(u) = (2 - w)1/2(2 + M)~1/2. 

THEOREM 6. Let 

c(r) = cn(r) = 2cos(rr / (2» + 1)). 

Then the characteristic vector of the matrix Qn which is associated with the charac­
teristic root ( — l)n+1/c(2k — 1) is given by 

"x(l) 

x(2) 

x(3) 

{c(2(2k - 1)) + c(4(2£ - 1)) + c(6(2k - 1)) + . . . 

+ c(2n(2k- 1))| 

{c(4(2k - 1)) + c(6(2k - 1)) + . . . 

+ c(2n(2k - 1))} 

- { c ( 6 ( 2 * - 1)) + . . . 

+ c(2n(2k- l))j 

_x(«)J L {-l)nc{2n(2k - 1))_ 

If the permutations T, G £ Sn are defined by 

T(k) = n + 1 - k, (1 < k < n), 

r(h\ = i n + 2 ~ 2jfe, (2* < n + 2), 
K) \2k-n- 1, (2k > n + 2), 

then we have, for r — 1, . . . , n, 

x(G(r))/x(r) = c(T(r)(2G(k) - 1 ) ) . 

Proof. Let K = 2k — 1. To establish the theorem we must show that 

m 

Z *0') = a-lT+1/c(K))x(n + 1 - m) (« = 1 n). 

Since, by definition, 

x(i) = ( - i ) , X c ( ' M ) 0" = i . . . . , « ) . 

this can be written 

:(K)Z(-l)}ZcC2iK)= (-l)n+\-l)n+1-m Z c(2»K), 
J==l i=j i—n+l—m 
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or, equivalently, 
m n n 

E Z (-Dm'jc(K)cC2iK) = £ c(2iK). 
3=1 i=j i=w-|-l—m 

Changing the order of summation, we obtain in the left member 

m i n m 

E Z (-Dm-Jc(K)c(2iK) + £ E (-l)m-sc(K)c(2iK). 

Assume first that m is even. Then the second term vanishes. The first term 
becomes 

(-l)m+i[c(K)c(2K) + c(K)c(6K) + . . . + c(K)c((2m - 2)K)], 

and, using the fact that c(a)c(b) = c(a — b) + c(a + b), we may write it in 
the form 

(~ir^[c(K) + c(ZK) + c(5K) + c(7K) + . . . + c((2m - 1)K)]. 

In the right member we have 

Z c(2iK). 
i=n+l—m 

Since c(a) — —c[(2n + 1)K — a], this may be written 

n 

— X) c((2n + 1 - 2i)K). 
i=«4 1—m 

If we let 5 = 2^ + 1 — 2i, then the right member becomes 

s odd 
l<s<2m-l 

Since ( — l)m = 1 when m is even, the two members now agree. 
Now let m be odd. Then the left member may be written 

[c(K)c(2K) + c(K)c{§K) + . . . + c(K)c(2mK)) 

+ [c(K)c((2m + 2)X) + c(K)c((2m + 4)Z + . . . + c(K)c(2nK)]. 

Again using the addition formula, we put this in the form 

Z c(sK)+ £ c(sK). 
s odd s odd 

1<S<2TM-1 2m+l<s<2n-l 

As in the preceding case, the right member may be put into the form 

Z c(sK). 
U 

Since 

s odd 
Ks<2m-1 

Zn(2 cosx) = sin(n + §)#/sin J# = 1 + 2 ^ cos wx, 
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we have 

Zn(2 cos(2bw/(2n + 1))) = 0 if b & 0 (mod(2« + 1)). 

It follows that 
n 

£ c(2bm) = - 1 if ft ^ 0 (mod(2w + 1)). 

If b = K, we may write 
n n 

X c(2fMK) = - £ c((2» + 1 - 2OT)JC) = - 1 , 

and from this we obtain 

£ c(sK) = 1 ( * = 1 , . . . , » ) . 
s odd 

l<s<2w-l 

Using this result together with the fact that c((2n + 1)20 = —2, we see that 
the left and right members are equal, and the proof of the first assertion is 
complete. 

To prove the second assertion we must show that for each r (r = 1, . . . , n) 

n n 

( - l ) ^ £ c(2iK) = c(T(r)(2G(k) - l ) ) ( - l ) r X ) c(2iK). 

We begin by observing that 

2G(k) - 1 = ± ( 2 » - 46 + 3) (k = 1, . . . , n). 

Since c( — a) = c(a)y this allows us to write 

c(T(r)(2G(k) - 1)) = c((n + 1 - r)(2n - U + 3)). 

Now, since 

(n + 1 - r) (2n - 4& + 3) = (n - r) (2n + 1) + (1 - k) (4w + 2) 
+ ( 2 r - l ) ( 2 j f e - 1), 

we may replace c((w + 1 - r)(2n - 4k + 3)) by ( - l ) w ~ r c((2r - 1)20, and 
our assertion becomes 

(-l)G(r) E c(2iK) = ( - l A ( ( 2 r - l)K)itc(2iK). 
i—G(r) i=r 

In the case n + 2 > 2r, we have G(r) = ^ + 2 — 2r and the assertion 
reduces to 

n n 

Y. c{2iK) = Y c((2r - l)20e(2tK). 

Using the addition formula, we may put the right member into the form 

Ê c((2r + 2i - 1)20 + Z c((2i - 2r + 1)20, 
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and if we split the first term into three parts, the right member takes the form 

£ c(sK) + c((2n + 1)K) + £ c(sK) + £ c(sK). 
s odd s odd s odd 

4 r - l < s < 2 n - l 2 n + 3 < s < 2 - n + 2 r - l l < s < 2 r c - 2 r + l 

Using the fact that c(2n + 1 + a) = c(2n + 1 — a), we may rewrite the 
third term as 

Z c(sK), 
s odd 

2 n — 2 r + 3 < s < 2 » - l 

and , since c((2n + 1)20 : = - 2 and 

s odd 
l < s < 2 n - l 

c ( s K ) = i, 

the right i member reduces to 

.>• odd 
4 r - l < s < 2 n -

c(sK) -- 1 . 

Using the fact that c(a) = — c((2n + 1)K — a), we may replace the left 
member by 

- E c((2n + 1 - 2i)K), 
i=n+2-2r 

and, after changing the index, this becomes 

s odd 
/ - 3 

The desired result now follows and our assertion is proved if n + 2 > 2r. 
In the case ^ + 2 < 2r, we have G(r) = 2r — n — 1 and the assertion to 

be proved becomes 

( - I ) 2 ' " " - 1 £ c(2iK) = (-l)nc((2r - l)K)i, c(2iK). 
i=2r—n—l i=r 

This may be rewritten 

è c((2n + 1 - 2f)X) = £ *((2r + 2* ~ 1)^) + È *((2* ~ 2^ + 1)^) . 
i=2r—n— 1 i = r Z'=T-

Splitting the left member and changing indices, we put this in the form 

E c(sK)+ £ c(sK) 
s odd « odd 

l < s < 2 n - 2 r + l 2 w - 2 r + 3 < s < 4 w - 4 r + 3 

£ c(siC) + E c(sK). 
5 odd à odd 

Ar-l<s<2n+2r-l l<s<2n-2r+l 

Now the desired result follows from the fact that c(4n + 2 — a) = c(a). This 
completes the proof of Theorem 6. 
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Remark, The characteristic root ( — l)n+1/c(2k — 1) will be Xi, the charac­
teristic root whose absolute value is maximum if we take G(k) = 1. Looking 
at the formula 

x(G(r))/x(r)=c(T(r)(2G(k)-l)) 

for this value of k, we see that as r successively assumes the values 1 , 2 , . . . , 
n — 1, n, the right member successively assumes the values c(n)y c(n — 1), 
. . . , c(2), c(l). As r varies monotonically, the right member varies mono-
tonically, but G(r) does not vary in such a simple fashion. In fact, the permuta­
tion G is associated with a certain folding, which we may describe in geometric-
intuitive terms as follows. Cut out of paper an isosceles triangle P 0 Pn P'n 
with equal sides P 0 Pn and P 0 P'n and with the angle P'n P 0 Pn equal to 
w/(2n + 1). On the side PoPn mark points Pi , P2 , . . . , Pn-i satisfying the 
conditions that 

(1) the distances P0 Pi , P i P2, P2 P3, . . • , Pn-i Pn are proportional to the 
numbers 0œ ( l ) , 0œ(2), 0œ(3), . . . , *œ(») , 

(2) Po P i < Po P2 < Po P3 < . . . < Po P„. 

In similar fashion mark points P 1, P 2, . . • , P'w-i on the side P 0 P'w. Fold 
the paper triangle (accordion style) backward on the edge P i P' i , forward on 
the edge PiP'i, backward on the edge PzP'%, etc. If the resulting pleated 
object is flattened down into a plane figure, then the marked points all lie on 
a circle and are, in fact, the vertices of a regular (2» + l)-gon. The cyclic 
arrangement of the marked points on the circle is given by 

Po, P2, P4, PÔ, • • • » P5, Pdi Pi, P ' i , • • • , P'h P 2. 

One readily sees that the numbers 2, 4, 6, . . . , 5, 3, 1, the subscripts on the 
P 's other than P0 , are just the numbers 

T-lGT(l), T~lGT(2), T-iGTQ), . . . , T~^GT(n - 2), 

T~lGT(n - 1), T-iGTin), 

and in this way we gain some understanding of the role of the permutation G 
for the particular k chosen. Presumably, for other values of k similar pictures 
involving folding can be constructed. 

Theorems 5 and 6 lead one to suspect that in higher dimensions n = 3, 4, 5, 
. . . , the sequence 0O, 0i, <t>2, • • • plays a role analogous to that played by the 
Fibonacci sequence in dimension n = 2. This suspicion is strengthened by the 
fact that the identities of Lucas and of Simson for the Fibonacci numbers 
have simple generalizations to higher dimensions that are expressed in terms 
of the sequence 0O, $1, 02, . . . . If the numbers /0 , / 1 , /2 , . . . of the Fibonacci 
sequence are defined by the recursion formula f0 = 0,/1 = 1,/A + fk+i = /*+2, 
Lucas's identities read : 

fin — fn-lfn + fn fn+li fïn+1 ~ fr? + fn+l2-
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A slightly more general identi ty which is known is 

J m = Jk+ljm~k ~T Jkfm—k—1* 

Simson's identi ty reads fn-ifn+i ~ fn2 = ( ~ l ) w -

T H E O R E M 7 (generalization of Lucas's identities). If m and n are non-negative 

integers, then (0m, <f>k) — 0m_Hfc(l), where (0m, <f>k) denotes the inner product 

T,j<t>m(j)<t>k(j)> 1 <j <n. 

Proof. Since Q is a symmetric matrix, we have 

( 0 m , <t>k) = ((?"0O, (?*0o) — (00, Qm+k<t>o) = (00, 0m+fc) = 0m+fc(l)-

T H E O R E M 8 (generalization of Simson's identity). The determinant of the 
n X n matrix whose columns (from left to right) are <j>k, <j>k+i, . . • , <t>k+n-i is equal 
to ((-l)n^n-1)/2)kifn & 3 (mod 4), and to (~l)((-l)n^n-l)l2Y if n = 3 (mod 4). 

Proof. S tar t ing with the n X n matr ix whose columns (from left to right) 
are 0O, 0i , . . . , <t>n-i and applying elementary row and column transformations 
t ha t do not alter the determinant , one readily obtains a matrix ( a 0 ) in which 
atj = 1 if j is odd and i = (j + l ) / 2 , a ^ = 1 if j is even and i = n + 1 — ( j /2 ) , 
and an — 0 otherwise. One then easily calculates t ha t the de terminant of this 
matr ix is 1 if n ^ 3 (mod 4) and — 1 if n = 3 (mod 4). T o obtain the matr ix 
whose columns are <j)k, <j>k+i, . . . , 4>k+n-i from the matr ix whose columns are 
0o, 0i , . . . , 0n-i, o n e need only apply the matr ix Qfc. T h e theorem then results 
from the observation tha t in dimension n the determinant of the matr ix Q 
is (-1)»<*-1»2. 

T h e next theorem gives a recursion formula satisfied by the n-tuples <j>d. For 
n — 2 this reduces to the familiar recursion formula for the Fibonacci numbers . 

T H E O R E M 9. The characteristic polynomial Dn(\) of the n X n matrix Q is 

given by 

A.(X) = t (n~lt M) (-i)("-^--1)/2(-iyv. 
j=o \ L2JJ / 

Consequently, the n-tuple <\>d satisfies the recursion formula 

/or * = 0, 1, 2, 

Proof. T h e formula for Dn(X) may be derived from equation (5) for En(\), 
used in proving Theorem 5, by expressing the quanti t ies (pn~l — qn~1)/(p — q) 
and (pn — qn)/(p — q) in terms of the elementary symmetric functions p + q 
and pq, and the using p + q = — 1 and pq = X2. Alternatively, one may verify 
t ha t the formula for Dn(\) holds for n = 0 and w = 1, and t h a t it satisfies 
the recursion formula for J9n(X) developed in the proof of Theorem 5. 
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Now, by the Cayley-Hamilton theorem, the matrix Q satisfies its own 
characteristic equation and we have Dn(Q) = 0. I t follows that Dn(Q)4>k = 0 
for k = 0, 1, 2, . . . , and, using the fact that Qj<t>k = <t>k+j, we obtain the 
recursion formula stated in the theorem. 

From the existence of the recursion formula described in Theorem 9 we may 
deduce that in any dimension n, for each of the sequences <£o(V), 4>\(r), . . . , 
<t>a(r)y • • • (r = 1, . . . , n), there is a generating function that is a rational 
function whose denominator is a polynomial closely related to the polynomial 
Dn(\). In fact, we may write 

fi foW = P„At)/tnDn(l/t), 
rf=0 

where pnAt) is a polynomial of degree less than n, to be determined, and where 
tnDn(l/t) may also be written in the form (-l)n(n+»/2Zn((-l)

nt). Careful 
inspection shows that the numerators pn,r(t) are given by the following rule. 
If r = 1, then 

pnAt) = (-iyn-lHn-2)/2zn_2a-iyt). 

if 2 < r < n, then 

pnAt) = (-îyw^-wzjU-iyt), 

where ; = n + 1 — 2r if 2 < r < [(n + l) /2] and j = 2r — n — 2 if 

[(» + l) /2] < r < «. 

Bearing in mind that the original source of the polynomials Z„(u) was the 
expansion of the Dirichlet kernel s'm(n + J)x/sin | x in powers of 2 cos x, we 
replace £ by ( — l ) n 2 cos # and obtain expressions for the generating functions 
in the forms described in the following theorem. 

THEOREM 10. If r = 1, then 

( _ i r T ^ T 7 r s i n ( M + i ) x = g *<(1) ( ( -D 2COSX) . 

Zf 2 < r < n, then 

where 

and 

FirT5=D73sin(n+i)x = to *^W((-1) 2cosx) , 

j = n + i _ 2r if2<r<[(n + l ) /2] 

j = 2r - n - 2 if [(n + l ) /2] < r < ». 

In the familiar case n = 2, this yields a generating function for the 
Fibonacci sequence: 

https://doi.org/10.4153/CJM-1966-036-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1966-036-0


FIBONACCI S E Q U E N C E 349 

s i n ( x / 2 ) / [ - s i n ( 5 x / 2 ) ] = 1 + 1 (2 cos x) + 2 ( 2 c o s x ) 2 

+ 3(2 cos x)3 + 5(2 cos x)4 + . . . , 

the series converging for 2T/5 < x < Sir/5. 

Knowing the generating functions, we would not find it difficult to obtain 
formulas for the numbers <j)d(r) in terms of multinomial coefficients, which in 
dimension n = 2 would reduce to Lucas's formula expressing the Fibonacci 
numbers in terms of the binomial coefficients (5). We shall not, however, 
develop these formulas here. 

Since the denominator of each of the generating functions has the simple 
roots 

tk = ( - 1 ) * 2 cos(2kir/(2n + 1)) (k = 1, . . . , ») , 

we can readily decompose the generating function into partial fractions and 
then expand each of them as a geometric series. I t becomes clear tha t there 
exist constants ATti, . . . , Ar,n such tha t 

Ai to = Ar>1h
d + Ar,2t2

d + . . . + Ar,ntn
d 

holds for all d. For n = 2 this procedure yields the familiar result concerning 

the Fibonacci numbers called Binet 's formula (although it was known to Euler 

and Daniel Bernoulli) : 

ffc = (rfc — ( — T ) ~ * ) / \ / 5 , where r = 2 cos(7r/5). 

Many other known identities concerning the Fibonacci numbers are ulti­
mately based upon the identities considered in this paper; hence, they also 
can be extended to n dimensions. 

Added in proof. Professor V. E. Hoggat t , J r . of San Jose S ta te College has 
recently called our a t tent ion to the 1963 Master ' s thesis of his s tudent B. 
Junge, in which the matr ix Qn and its characteristic roots are studied and some 
divisibility properties of the polynomials Dn(\) are developed. 
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