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1. Normal operators. Given a point set E on an open Riemann surface V 
we denote by H{E) the space of functions u harmonic in open sets 0(u) 
containing E. Let Vo be a regular region of V with border a, and consider 
restrictions / to a of functions in H (a). For V\ = V — Vo, an operator L from 
H (a) to H(V\) is, by definition, normal if 

(1) Lf=f on a, 

(2) L(ci / i + c2f2) = ciL(f!) + c2L(f2), 

(3) i l = 1, 

(4) L/ > 0 for/ > 0, 

(5) J« *dLf = 0. 

For general properties of normal operators we refer to Ahlfors (1), Ahlfors 
and Sario(2), Oikawa (5, 6), Rodin (7), Sario (8, 9, 10), Sario, Schiffer, and 
Glasner (11), Sario and Weill (12), and Weill (13). 

Let 12 be a regular region with border (3n such that Vo C Œ. For a given / 
denote by u^ the harmonic function in Î2 C\ Vi with uQ\a = / , UQ\/3Q = const, 
Ja *dun = 0. As 12 exhausts V, uQ tends to a harmonic limit u = Lif on V\, 
where L\ is a normal operator. Using Royden's compactification we shall first 
show (Theorem 1) that a normal operator L is L\ if and only if, in a sense, 
Lf is constant on the ideal boundary of V. 

2. Principal functions. The principal function problem consists in con­
structing, for a given 5 Ç H(Vi) and given L, a function p Ç H(V) such that 

(6) p\Vi = s + L(p-s\a). 

It is known that the condition 

(7) j *ds = 0 

is necessary and sufficient for the solvability of the problem (9). The solution, 
called the principal function, is unique up to an additive constant. The function 
5 is interpreted as having a singularity on the ideal boundary of V and is 
called the singularity function. 
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We shall show that for any given V and s with (7) the existence of the 
principal function corresponding to L\ can be proved by the method of or­
thogonal projection (Theorem 2). It should be noted here that an inequality 
of the Poincaré type (Lemma 3) takes the place of the Harnack inequality 
in the existence proof. It is hoped that our study, methodological in nature, 
will also pave the road to the solution of the main problem, the construction 
of principal forms in Riemannian spaces. 

Reference is made here to the recent interesting Research Announcement 
by Browder (3). Although there were some technical difficulties in applying 
his approach to prove earlier results or to extend them in the original direction, 
his Announcement threw new light on the entire principal function problem 
and was indeed the immediate incentive to the present study. 

3. Weyl's lemma. We denote by T = T(V) the space of real measurable 
1-forms co on F with 

J co A *co < oo. 
v 

With the inner product 

(«i, w2) = I wi A *co2 

and the norm ||co|| = V(co, co), T becomes a Hilbert space. Let IV be the 
subspace of T of continuous exact differentials: 

r.1 = {#|/€ c^tO.d/e r}. 
The closure of IV in T is denoted by Te. We also consider the space T^1 of 
continuous exact differentials with compact supports in V, i.e. 

Then I^o1 C I \ and we denote by r e 0 the closure of T^1 in T. We shall use 
Weyl's lemma in the following form (2): 

LEMMA 1. If an element a in Y e is orthogonal to T^1, then there exists a function 
u in HD(V) such that a = du, and vice versa. 

4. Royden's boundary. A real-valued continuous function / o n F is said 
to be a continuous Dirichlet function if there exists an co in T ( V) such that 

J v o) A coo = —jvfduo 

for any C2-form co0 on V with compact support; we set co = df. Denote by 
R(V) the family of continuous Dirichlet functions on V and by RQ(V) the 
subfamily of functions with compact supports in V. F o r / , g £ R(V) we set 

P(f, g) = \W - dg\\ + É 2-"supXn | / - g\- (1 + | / - g | ) - \ 
n=l 
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where {Kn} is an exhaustion of V. Endowed with p, R{V) is a complete metric 
space. LetRs(V) be the closure oi R$(V) in R(V) in terms of this metric p. 

The Royden compactification V* of V is the compact Hausdorff space with 
the following two properties: (a) it contains V as its open and dense subspace 
such that every function in R(V) can be extended continuously to F* with 
infinite values admitted; (b) R(V), considered as a family of functions on V*, 
separates points in V*. The compact set P = V* — F is the Royden boundary 
of V. The set 

Ô = {p e V*\f(p) = 0 for every/ Ç Ri(V)} 

is a compact subset of p. We call 5 the Royden harmonic boundary of F. For 
details and fundamental properties of these concepts we refer to (4). 

LEMMA 2. Let u be a function in HD(Vi) such that du can be continued to all 
of V so as to be a \-form œ in Te0(V). Then u is finitely continuous on 

Vi \J P = V* - Vo 
and a constant on 8. 

Proof. We take a smaller boundary neighbourhood V\ with V\<Z. Vi, if 
necessary, to assume that u 6 HD(Vi). Then we can continue u to F as a 
function u0 in Cl(V). Clearly u0 6 R(V); thus u0 is continuous on V* and a 
fortiori u is continuous on V\ \J p, with infinite values admitted. If F G 0G, 
then 0 = 0, HD(V\) = HB(Vi), and the assertion is trivial. Therefore we 
may assume that V (? 0G. 

Since R(V) = HD(V) + RÔ(V), there exists a function v 6 HD(V) such 
that ^o — fl 6 -^«(F). Then d(u0 — v) £ T e0 and consequently dv Ç re0 . By 
Lemma 1, dv is orthogonal to T^1 and hence to re0. In particular, 

||d»||2 = (dv,dv) = 0, 

which means that u0 — const £ R8(V), or u0 = u = const on 8. By the 
maximum principle, u is finitely continuous at 0. 

5. A character izat ion of theLi -opera to r . We can now give a characteri­
zation of the operator L± in terms of the Royden compactification: it is a 
normal operator such that L\f is finitely continuous at the Royden boundary 
P and a constant cf on the Royden harmonic boundary 8 for every / in H (a). 
Explicitly, we have for a given u £ H{V\): 

THEOREM 1. Necessary and sufficient for L\U = u is that u satisfies the fol­
lowing conditions: 

(8) u is finitely continuous on V\ \J P, 

(9) u is a constant on 8, 

(10) f *du = 0. 
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Proof. If F € OG, the properties Uu = u and (8) are each equivalent to 
u e HB(Vi) = HD(Vi), which includes (10). Condition (9) is trivially 
satisfied by every u in H(V\) because <5 = 0. Thus, we have only to consider 
the case V £ 0G. 

First assume that U u = u. Let { Un}n=o be an exhaustion of V by regular 
regions, with Uo = F0. For / in 11(a), let Snf be the harmonic function in 
Ûn — Uo with continuous boundary value 0 on dUn and / on a = d Vo = d Uo. 
Let /o G Cl(Ûo) such that So = S on a. We set S ' n / = 5 n / on Ûn - [/<>, 
5'n/ = /o on £/0, and S'w / = 0 on V — Un. Then S ' n / € Ro(V) and since 

HdC^/) - d(S'n+mf)\\> = \\d(S'nf)\\> - \\d(S'n+mf)\\\ 

we see that {S'nS\n=i converges to a function, say S'/, on V in the p-metric. 
Hence S J € HD(Vi), Sf\a = / , 5 / is continuous on Fi U 0, and Sf = 0 on 5. 
Moreover | |d(S'n/) —• d (Sf) 11 F l —> 0 as w —> <», and S'w / converges to 5 / 
uniformly in compact sets of Vi = V\ VJ a. It follows that 

(11) Hm f *d(Snf) = f *^(5/). 

Let Î̂ W be harmonic in Ûn — Z7o with wn\dUo = 1, ze;n|a = 0. Similarly let 
w be continuous on V\ \J /? and harmonic in Fi with boundary value 1 at 5 
and 0 at a. By the same argument as above, \\dw'n — dw\\Vl —> 0 as n —» œ, 
and «/n converges to «/ uniformly in compact sets of Fi = F i U a ; here we 
set w\ = wn on Ûn — Uo and w'n = 1 on V — C7n. We have 

I 2 , , 

Hence 

J *dwn = — *dwn = — ||dw'n|. 

(12) lim \ *dwn = \*dw= - l i m ||dw'n||?n = - | W | 2 < 0. 

If we put 

L^f = Snf - ( j a *d(Snf) / £ *dwn) wni 

then U{n)S is constant on d Un and 

fa*d(Un)f) =0. 
Thus by the definition of L x / , Lxf = lim„ Li<n>/ on F. Using (11) and (12), 
we obtain the representation 

(13) Uf = sf-\ja *d(sf) I £ *dw) w' 
By the properties of Sf and w, Uf is continuous on V\ U /3 and a constant on 
5. Thus, in particular, u = Liu satisfies (8), (9), and (10). 
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Conversely assume that u satisfies these three conditions. As above, the 
same is true of Li u and of v = u — Li u. Let v = c on 8. Then v = cw and, 
by (12), we must have c = 0. Therefore v = 0 on Vx. 

These arguments are based on the fact that every function in HD(Vi) takes 
its maximum and minimum on a U 8. 

6. Fundamental inequality. Before embarking on the existence proof by 
the method of orthogonal projection we need the following lemma; it plays a 
role in our proof of equal importance to the g-lemma in (9). 

LEMMA 3. Let co be a fixed continuous 1-form defined on a such that 

J« co = 0. 

Then there exists a constant c depending only on Vo and co such that 

(14) I </>J < c I dcj> A *d<£ 

for every 4> Ç Cl(V,) C\ C(70). 

Proof. First we note that we have only to prove (14) for <j> in H{ V0) H C(Vo). 
In fact, for <j> G C1(VQ) we let h^ be the harmonic function in V0 with con­
tinuous boundary value <j> at a = dVo. Since 

I dh+ A *dh+ < I d(j> A *d4> 

and 

I h+ co = 0CO, 

the validity of (14) for h^ gives that for $. We therefore may and will assume 
in the following that <t> € H(V0) H C(70). 

Let Zo be a fixed point in Vo and let go(z, z0) be Green's function on Vo. 
We put 

r(«) = exp(-go(z,z0)), dd(z) = — *dg0(», *o), 

and form Green's star domain V'o of go(2, 0o) on Vo. Explicitly V\ is obtained 
from Vo by removing all closures of Green's lines issuing from the branch 
point of go(z, Zo) in Vo- Then r(z)eie(z) maps Fro onto a unit disk with a finite 
number of radial slits issuing from some point in the disk different from the 
origin and terminating at the unit circumference in a one-to-one and conformai 
fashion, a corresponding to the unit circumference. Fix a positive number a 
such that 0 < 2a < 1 and {z\z G F0, r(z) < 2a} is the disk in V0. We write 
<t>r(0) = <f>(reie), which can be considered as an element in L2(0, 2w) with norm 
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First assume that </>(s0) = 0. Except for a finite number of values 6, 

<t>(eie) - <t>{aeie) = f ~ <t>(reie)dr. 
Ja dr 

By Schwarz's inequality, 

| * i W - *«(0)|2< f \-~<l>(reie) \rdr- ( r^dr. 

Hence on integrating both sides over (0, 2w) and on observing that 

dr 
4>(reie) < 

dr 
4>(rei6) + r~ 

dd 
4>(reie) = jgrad <j>\2, 

we obtain 

(15) S»l — 4>a\2 < A / l o g ^Vl d<j> A *d0. 

Let *<t>(z) be the conjugate harmonic function of <f>(z) in \z — z0| < 2a such 
that *<t>(z0)

 = 0- Consider the analytic function /(s) = <j>(z) + i*<l>(z) in 
\z — 2o| < 2a. Since/(zo) = 0, we have 

«Jzn 

and thus 

l*(*)l < I/OOI < l*-*ol max | / ' ( 2) | 
lz—zo Ka 

for \z — z0| < a. In particular 

(16) | *a (0) | 2 <a 2 m a x | / (s) | 2 . 
I z—zol<a 

As |/ '(z)|2 is subharmonic in |z — ZQ\ < 2a, 

i/'(Z)i2 < (« 2 r ! f i/'(f)i2^7, 

for z in \z — z0\ < a, with f = £ + i^. Since \f (Ç)\2d£dr} = d<j> /\ *d<j> in 
|s — f | < a, we conclude that 

This with (16) gives 

and therefore 

(17) 

| / ' ( 2) | 2 < (TTO2)-1 f d<t>A *d4>. 
J Va 

ka(0)i2 < TTX f rf*A *d<t> 

\4>a\*< V 2 I d<t> A*d<j>. 
7 "Va 
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Since |<£i|2 < |0i — 4>a\i + W2, we infer from (15) and (17) that 

J
»27T /» 

\<t>(ete)\2dd < a d<f>A*d<t> 
0 •/vo 

where c\ = 2 + log a - 1 depends only on F0. By a piecewise analytic represen­
tation of a with parameter 6, co can be expressed as co = Çl(6)dd on a. Here 
$2(0) is bounded, say |Q(0)| < 62, and piecewise continuous on a, with c2 

depending only on co on Vo. By Schwarz's inequality and (18) we obtain 

J
1 -» I 2 I s*2ir I 2 

4>J = *(** ' ) • Û(0)c20 
a I I t/o I 

J» 2 T /»27T 

|*(c") | sdfl- |fi(0)|2<Z0 
0 t / o 

J»2TT 

0 

where c = Ci • c2
2 depends on co and Vo. 

Next consider 0 Ç # ( F 0 ) H C(F0), with not necessarily 0(zo) = 0; then 
<£ = <£ — 0(zo) satisfies <f (zo) = 0. By the above reasoning, 
(19) I <?co < c I ^ A *d<£. 

In view of the assumption 

L 
we have 

I 0CO = I 0CO — (f>(Zo) I CO = (/>. 
* / a * / a t / a t / a 

Obviously d$ = d<j> and substitution in (19) gives (14) for #. 

7. Existence proof by orthogonal projection. We proceed to the proof 
by orthogonal projection of the existence of principal functions: 

THEOREM 2. Let s be a harmonic function on Vi^J a with property (7). Then 
there exists a harmonic function p on V which satisfies equation (6). 

Proof. First we extend 5 to all of the surface F as a function s0 € C2(V). 
For co G Tgo1 we put 

(20) 7 » = - f co A *ds0 = - f 
*/ v *J V 

ds0 A CO. 

This is well-defined because co has compact support and co A *ds0 = ds0 A *co 
is a continuous 2-form with compact support in V. Clearly T gives rise to a 
linear operator on I^o1. 
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We shall show next that T is a bounded linear operator on I^o1. Take a 
regular region W C. V which contains Vo and the support of co G I^o1. Then 

(21) - 7 » = f co A *ds0 + f _ co A *ds0. 
Jvo JW-VQ 

By Schwarz's inequality 

(22) J. A *ds0 < A ds0 A *ds0 • licol 

Since co £ I%o\ there exists a function <j> in Col(V) with its support in W and 
such that co = d<j> on WT. As 

co A *dso = d<t> A *ds0 = d((j>*dso) — <t>d*dso = d((j)*dso) 

in V — Vo and thus in W — Vo, we have by Green's formula 

(23) J _ co A *ds0 = I _ d(<t>*ds0) = I <t>*ds0 = | <t>*ds0. 
JW-VQ JW-VQ JdW+a J a 

By virtue of 

f *dso = f *ds = 0 

and 4> G ^ ( F o ) P\ C(Fo), we can apply Lemma 3 to 

J ^dso 
a 

so as to obtain a constant c depending only on *ds0 and Vo and such that 

I <j)*dso\ K c I d</> A *d<l>. 

Because of d<t> = co and (23) we infer that 

(24) I co A *cis0 
*J W-VQ < v< C CO 

From (21), (22), and (24), we obtain 

(25) |r(co)| <K\\<*\ 

for co Ç r^o1, where 

K = \ A + I dso A *ds0 

depends only on s0 and Vo. 
By the general Hilbert space theory, T can be extended to 

eO — A eO I^n1 
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so as to satisfy (25) again on re0. Since Te0 is self-adjoint, there exists a unique 
element X in re 0 such that 

(26) 7 » = (co, X) 

for co Ç re0. In particular, by (20) and (26), 

(27) f (X + ds0) A *co = 0 

for co Ç T^o1. 
Again let { Un}%=o be an exhaustion of V with £/0 = F0. Although X + ds0 

is not an element of Te(V) in general, we can conclude that 

\ + ds0e Te(Un), 
because 

x e re0(F) c re(F) c ve{un) 
and 50 G C2(Ûn) and hence ds0 € r e ( t / n ) . Since (27) holds for 

co e iv(£4) c iv(n 
there exists by Lemma 1 a qn G HD(Un) such that cig„ = X + ds0 on £/w. 
Clearly dgw+m = dqn on £/w and therefore qn+m = qn + const on f/w. Let cn be a 
constant such that qn+i = qn + cn on £/w and set pi = gi on £7i, pn = qn — cn-\ 
on Un with w > 1. Then pn G HD(Un) and c ^ = X + cis0 on £/"n and pn+m — pn 
on £/«. Thus if we put 

(28) p(z) = £,(*) 

for s in Un, then £(s) does not depend on the choice of Un to which z belongs. 
Therefore/? G H(V) and 

(29) dp = X + <fc0. 

The function u = p — So belongs to C2 ( F) and clearly 

(30) u G H{Vi) 

together with p and s0. Since 

I *dp = f d*d£ = I Ap = 0, 

we have by (7) 

(31) J*du = 0. 

From du = X G Te0, w G HD(Vi), and Lemma 2, it follows that 

(32) u G C(Fi U 0), w = const on 5. 

On applying Theorem 1 to this u, we conclude by (30), (32), and (31) that 
L\ u = u on Vi = F i U a . In view oi u = p — s0 = p — s on aKJ Vi, we 
have Li(p — s) = p — s on Fi, i.e. £ satisfies (6). 
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