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Analytic Besov spaces, approximation, and
closed ideals
Hafid Bahajji-El Idrissi and Hamza El Azhar

In memory of the late Brahim Bouya (1977-2020)

Abstract. In this paper, we give a complete description of closed ideals of the Banach algebraBs
p ∩ λα ,

where Bs
p denotes the analytic Besov space and λα is the separable analytic Lipschitz space. Our result

extends several previous results in Bahajji-El Idrissi and El-Fallah (2020, Studia Mathematica 255,
209–217), Bouya (2009, Canadian Journal of Mathematics 61, 282–298), and Shirokov (1982, Izv. Ross.
Akad. Nauk Ser. Mat. 46, 1316–1332).

1 Introduction

Let D be the open unit disc of the complex plane C, and let T ∶= ∂D be the unit circle.
Let dA (resp. dm) be the normalized Lebesgue measure on D (resp. T). The space of
analytic functions on D is denoted by Hol(D).

The Hardy space Hp, 1 < p < ∞, is the space of analytic functions f on D such that

∥ f ∥p
H p ∶= sup

0≤r<1
∫ T∣ f (rζ)∣pdm(ζ) < ∞.

For 1 < p < ∞ and 0 ≤ s < 1, let Bs
p be the analytic Besov spaces given by

Bs
p ∶= { f ∈ Hol(D) ∶ Bs

p( f ) ∶= ∫
D

∣ f ′(z)∣p(1 − ∣z∣2)(1−s)p−1dA(z) < ∞} .

It is well known that Bs
p is a subspace of the Hardy space Hp (see [2]).

Note that the classical Dirichlet space D corresponds to p = 2 and s = 1/2. In the
standard notation, the weighted Dirichlet spaces D1−2s = Bs

2 with 0 < s < 1/2. Note
also that H2 = B0

2 . Various facts about Hardy and Dirichlet spaces can be found
in [8, 10, 12].

The disc algebra A(D) consists of continuous functions on D that are analytic on
D. For α ∈ (0, 1), the separable analytic Lipschitz algebra λα is given by

λα ∶= { f ∈ A(D) ∶ ∣ f (z) − f (w)∣ = o(∣z −w∣α) as ∣z −w∣ tends to 0}.
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Endowed with the norm,

∥ f ∥α = ∥ f ∥∞ + sup
z ,w∈D,z≠w

∣ f (z) − f (w)∣
∣z −w∣α ,

where ∥ f ∥∞ = sup
z∈D
∣ f (z)∣, and λα is a Banach algebra.

The problem of the description of closed ideals of Banach algebras of analytic
functions has been considered by several authors (see, for instance, [3, 7, 14–16, 19]).
Let X ⊂ A(D) be a Banach algebra, and let I be a nontrivial closed ideal of X. The
inner factor of I will be denoted by θI. The zero set of I, denoted by EI, is given by

EI = {z ∈ T ∶ f (z) = 0, ∀ f ∈ I} .

We say that a closed ideal I of X is standard if

I = J(θI , EI),

where J(θI , EI) ∶= { f ∈ X ∶ f∣EI
= 0, and f ∈ θIX}.

It is known that for the algebras A(D), λα , and Bs
p , where p > 1 and 1

p < s < 1, all
closed ideals are standard [16, 18, 19]. However, for the Banach algebra Bs

p ∩ A(D),
equipped with the canonical norm, it is still unknown if such result remains true,
even for p = 2 and s = 1/2. This problem is related to the Brown–Shields conjecture
(see [10, 11, 13]).

In the sequel, we consider the Banach algebra Bs
p ∩ λα equipped with the norm

∥ f ∥Bs
p∩λα ∶= Bs

p( f )1/p + ∥ f ∥λα , f ∈ Bs
p ∩ λα .

In this paper, we prove that all closed ideals of the algebra Bs
p ∩ λα are standard.

Namely, we have the following theorem.

Theorem 1.1 Let 1 < p < ∞, and let 0 < s < 1. If I is a nontrivial closed ideal of Bs
p ∩

λα , then

I = { f ∈ Bs
p ∩ λα ∶ f∣EI

= 0, and f ∈ θIB
s
p ∩ λα}.

Note that the present result is only known for a limited range of indices, specifically
for p = 2 and s ∈ (0, 1/2] (see [3, 7]). More useful remarks are given in Section 4.

The nontrivial part of the proof of Theorem 1.1 is the inclusion J(θI , EI) ⊂ I. All
the difficulties are overcome in two major steps.
(1) Establish that functions g ∈ J(θI , EI) that decay rapidly to 0 as we approach

EI, belong to I. The set of such functions is denoted by J0(θI , EI). This step is
achieved by a spectral synthesis theorem, which is proved with a careful analysis
of the properties of the annihilator I⊥. We omit the proof here (more details can
be found in [6, 19]).

(2) Prove that J0(θI , EI) is dense in J(θI , EI).
The combination of these two steps gives the required inclusion and the consequences
mentioned above.

Below, we proceed to prove the second point. Taking advantage of the method,
based on cutoff functions, introduced in [3] and on an adequate expression of the
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Analytic Besov spaces, approximation, and closed ideals 261

norm of Bs
p ∩ λα due to Dyakonov and Boe (see [5, 9]), we provide an approximation

theorem for this class of algebras. For more details, see Section 3.
Throughout the paper, we use the following notation:

• A ≲ B means that there is a constant C such that A ≤ CB.
• A ≍ B means both A ≲ B and B ≲ A.

2 Equivalent norms and cutoff functions

2.1 Equivalent norms

Given a function f ∈ L1(T), we denote by P( f ) the Poisson integral of f on T,

P( f )(z) ∶= ∫ T f (ζ)dμz(ζ), (z ∈ D),

where dμz(ζ) ∶= 1−∣z∣2
∣ζ−z∣2 dm(ζ).

For f ∈ H1 and z ∈ D, write

Ψ( f , z) ∶= P(∣ f ∣)(z) − ∣ f (z)∣,

and

Φ( f , z) ∶= ∫
T

∣∣ f (ζ)∣ − P(∣ f ∣)(z)∣dμz(ζ).

For 1 < p < ∞ and 0 < s < 1, the norm in Bs
p can be expressed only in terms of the

modulus of functions. Namely, we have

∥ f ∥p
Bs

p
≍ ∣ f (0)∣p + ∫

1

0
{∫

T

(Ψ( f , rζ)p +Φ( f , rζ)p) dm(ζ)} (1 − r)−(ps+1)dr.

(2.1)

In particular, if 2 ≤ p < ∞ and 0 < s < 1/2, then we get

∥ f ∥p
Bs

p
≍ ∣ f (0)∣p + ∫

1

0
{∫

T

Ψ( f 2 , rζ)p/2dm(ζ)} (1 − r)−(ps+1)dr.

These formulas were stated in [5, 9].
In what follows, we will use an equivalent norm in λα given in [3]. For any f ∈ λα ,

we have

∥ f ∥λα = ∥ f ∥∞ + sup ζ1 ,ζ2∈T,ζ1≠ζ2

∣∣ f (ζ1)∣ − ∣ f (ζ2)∣∣
∣ζ1 − ζ2∣α

+ sup z∈D
Ψ( f , z)
(1 − ∣z∣)α .

Let f ∈ H1 be an outer function, and let θ be an inner function. It is clear that, for
z ∈ D,

Ψ( f , z) = Ψ(θ f , z) + ∣ f (z)∣(1 − ∣θ(z)∣) ≤ Ψ(θ f , z),(2.2)

and

Φ( f , z) = Φ(θ f , z).(2.3)
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It follows from (2.2) that

∥ f ∥λα ≤ ∥θ f ∥λα .(2.4)

As a consequence of (2.2)–(2.4), the algebra Bs
p ∩ λα possesses the F-property.

Namely, if θ f ∈ Bs
p ∩ λα , then

f ∈ Bs
p ∩ λα and ∥ f ∥Bs

p∩λα ≲ ∥θ f ∥Bs
p∩λα .

The involved constant depends only on s, p, and α.

2.2 Cutoff functions

Let f , g be two outer functions. Let f ∧ g, f ∨ g be the two outer functions asso-
ciated with ∣ f ∣ ∧ ∣g∣(e i t) ∶=min(∣ f (e i t)∣, ∣g(e i t)∣) and ∣ f ∣ ∨ ∣g∣(e i t) ∶=max(∣ f (e i t)∣,
∣g(e i t)∣), respectively. Namely, for z ∈ D,

f ∧ g(z) = exp(∫ T

e i t + z
e i t − z

log(∣ f ∣ ∧ ∣g∣(e i t))dm(e i t)) ,

and

f ∨ g(z) = exp(∫ T

e i t + z
e i t − z

log(∣ f ∣ ∨ ∣g∣(e i t))dm(e i t)) .

The following inequalities were obtained in [3, 4], for z ∈ D:
• Ψ( f ∧ g , z) ≤ Ψ( f , z) +Ψ(g , z).
• Ψ( f ∨ g , z) ≤ Ψ( f , z) +Ψ(g , z).
• Ψ( f ∧ f σ , z) ≤ σ 2Ψ( f , z), σ ≥ 1.

The main purpose of this section is to show that Φ satisfies also these inequalities.
For this end, we will use the following identity several times:

1
2

Φ( f , z) = ∫
�( f )
(∣ f (ζ)∣ − P(∣ f ∣)(z))dμz(ζ) = ∫

�c( f )
(P(∣ f ∣)(z) − ∣ f (ζ)∣)dμz(ζ),

(2.5)

with �( f ) ∶= {ζ ∈ T ∶ ∣ f (ζ)∣ ≥ P(∣ f ∣)(z)} and �c( f ) ∶= T ∖ �( f ).

Theorem 2.1 Let f , g ∈ H1 be two outer functions and z ∈ D. Then, we have
(i) Φ( f ∧ g , z) ≤ Φ( f , z) +Φ(g , z),
(ii) Φ( f ∨ g , z) ≤ Φ( f , z) +Φ(g , z), and
(iii) Φ( f ∧ f σ , z) ≤ σΦ( f , z), σ ≥ 1.

As a consequence of the previous theorem and the formula (2.1), we obtain the
following corollary.

Corollary 2.2 Let 1 < p < ∞, and let 0 < s < 1. Let f , g ∈ Bs
p be two outer functions

and z ∈ D. Then, we have
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(i) ∥ f ∧ g∥Bs
p ≲ ∥ f ∥Bs

p + ∥g∥Bs
p ,

(ii) ∥ f ∨ g∥Bs
p ≲ ∥ f ∥Bs

p + ∥g∥Bs
p , and

(iii) ∥ f ∧ f σ∥Bs
p ≲ σ 2∥ f ∥Bs

p , σ ≥ 1.
The involved constants depend only on s and p.

Proof Write A ∶= {ζ ∈ T ∶ ∣ f (ζ)∣ ≥ ∣g(ζ)∣} and Ac ∶= {ζ ∈ T ∶ ∣ f (ζ)∣ < ∣g(ζ)∣}. Let
z ∈ D.
(i) Note that

�c( f ∧ g) ∩ A ⊂ {ζ ∈ A ∶ ∣g∣ ≤ P(∣g∣)(z)} = �c(g) ∩ A,

and

�c( f ∧ g) ∩ Ac ⊂ {ζ ∈ Ac ∶ ∣ f ∣ ≤ P(∣ f ∣)(z)} = �c( f ) ∩ Ac .

Thus, from the identity (2.5), we have

Φ( f ∧ g , z) = 2∫
�c( f∧g)∩A

(P(∣ f ∧ g∣)(z) − ∣g∣) dμz

+ 2∫
�c( f∧g)∩Ac

(P(∣ f ∧ g∣)(z) − ∣ f ∣) dμz

≤ 2∫
�c(g)∩A

(P(∣g∣)(z) − ∣g∣)dμz + 2∫
�c( f )∩Ac

(P(∣ f ∣)(z) − ∣ f ∣)dμz

≤ 2∫
�c(g)
(P(∣g∣)(z) − ∣g∣)dμz + 2∫

�c( f )
(P(∣ f ∣)(z) − ∣ f ∣)dμz

= Φ(g , z) +Φ( f , z).

(ii) As above, we can see that

�( f ∨ g) ∩ A ⊂ �( f ) ∩ A and �( f ∨ g) ∩ Ac ⊂ �(g) ∩ Ac .

By the same argument used in the proof of (i), we get (ii).
(iii) Let σ ≥ 1. Suppose P(∣ f ∣)(z) ≥ 1. On the one hand, from (2.5), we have

Φ( f ∧ f σ , z) = 2∫
�c( f∧ f σ)

(P(∣ f ∧ f σ ∣)(z) − ∣ f ∧ f σ ∣)dμz

≤ 2∫
�c( f∧ f σ)∩{∣ f ∣<1}

(P(∣ f ∣)(z) − ∣ f σ ∣)dμz

+ 2∫
�c( f∧ f σ)∩{∣ f ∣≥1}

(P(∣ f ∣)(z) − ∣ f ∣)dμz

≤ 2σ ∫
�c( f∧ f σ)∩{∣ f ∣<1}

(P(∣ f ∣)(z) − ∣ f ∣)dμz

+ 2∫
�c( f∧ f σ)∩{∣ f ∣≥1}

(P(∣ f ∣)(z) − ∣ f ∣)dμz .

The last inequality comes from the fact that y − xσ ≤ σ(y − x) for x ∈ [0, 1] and
y ≥ 1. On the other hand, one can remark that

�c( f ∧ f σ) ∩ {∣ f ∣ ≥ 1} ⊂ �c( f ) ∩ {∣ f ∣ ≥ 1} ,
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and

�c( f ∧ f σ) ∩ {∣ f ∣ < 1} ⊂ �c( f ) ∩ {∣ f ∣ < 1} .

Hence, by considering these inclusions in the previous inequality, we obtain

Φ( f ∧ f σ , z) ≤ 2σ ∫
�c( f )∩{∣ f ∣<1}

(P(∣ f ∣)(z) − ∣ f ∣)dμz

+ 2∫
�c( f )∩{∣ f ∣≥1}

(P(∣ f ∣)(z) − ∣ f ∣)dμz

≤ σΦ( f , z).

This completes the proof in the case where P(∣ f ∣)(z) ≥ 1. Now, consider the
case P(∣ f ∣)(z) < 1. Remark that we have

�c( f ∧ f σ) ⊂ {∣ f ∣ < 1}.

Here, we discuss two cases. First, we assume that P(∣ f ∧ f σ ∣)(z) ≤ [P(∣ f ∣)(z)]σ .
We have �c( f ∧ f σ) ⊂ �c( f ) and

[P(∣ f ∣)(z)]σ − ∣ f ∣σ ≤ σ(P(∣ f ∣)(z) − ∣ f ∣) on �c( f ∧ f σ).

The inequality comes from the elementary inequality xσ − yσ ≤ σ(x − y) for
0 ≤ y ≤ x ≤ 1. Indeed,

Φ( f ∧ f σ , z) = 2∫
�c( f∧ f σ)

(P(∣ f ∧ f σ ∣)(z) − ∣ f σ ∣)dμz

≤ 2∫
�c( f∧ f σ)

([P(∣ f ∣)(z)]σ − ∣ f ∣σ) dμz

≤ 2σ ∫
�c( f∧ f σ)

(P(∣ f ∣)(z) − ∣ f ∣)dμz

≤ σΦ( f , z).

Finally, suppose that [P(∣ f ∣)(z)]σ ≤ P(∣ f ∧ f ∣σ)(z). Note that �( f ∧ f σ) ⊂
�( f ). Thus, by the identity (2.5), we have

Φ( f ∧ f σ , z) = 2∫
�( f∧ f σ)

(∣ f ∧ f σ ∣ − P(∣ f ∧ f σ ∣)(z))dμz

≤ 2∫
�( f∧ f σ)

(∣ f ∧ f σ ∣ − [P(∣ f ∣)(z)]σ)dμz

= 2∫
�( f∧ f σ)∩{∣ f ∣≥1}

(∣ f ∣ − [P(∣ f ∣)(z)]σ)dμz

+ 2∫
�( f∧ f σ)∩{∣ f ∣<1}

(∣ f ∣σ − [P(∣ f ∣)(z)]σ)dμz

≤ 2σ ∫
�( f )∩{∣ f ∣≥1}

(∣ f ∣ − P(∣ f ∣)(z))dμz

+ 2σ ∫
�( f )∩{∣ f ∣<1}

(∣ f ∣ − P(∣ f ∣)(z))dμz

= σΦ( f , z).
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The second inequality comes from the two elementary inequalities

y − xσ ≤ σ(y − x), (x , y) ∈ [0, 1] × [1,+∞[,

and

xσ − yσ ≤ σ(x − y), 0 ≤ y ≤ x ≤ 1.

The proof is complete. ∎

3 Approximation theorem

Let p > 1, and let s, α ∈ (0, 1). The aim in this section is to provide an approximation
theorem for Bs

p ∩ λα .
Let f ∈ Hp be an outer function, and let θ be an inner function. It was mentioned

in [1] that

Ψ(θ(1 ∧ f ), z) ≤ Ψ(θ f , z), z ∈ D.

By combining (2.3) and Theorem 2.1, we can easily get

Φ(θ(1 ∧ f ), z) ≤ Φ(θ f , z), z ∈ D.

By considering both of inequalities together with (2.1), we obtain

∥θ(1 ∧ f )∥Bs
p ≲ ∥θ f ∥Bs

p .

Note that

∣∣(1 ∧ f )(ζ1)∣ − ∣(1 ∧ f )(ζ2)∣∣ ≤ ∣∣ f (ζ1)∣ − ∣ f (ζ2)∣∣, (ζ1 , ζ2 ∈ T).

Thus, we finally get

∥θ(1 ∧ f )∥λα ≤ ∥θ f ∥λα .

As a consequence of the above discussion, we obtain the following lemma.

Lemma 3.1 Let f be an outer function, and let θ be an inner function such that θ f ∈
Bs

p ∩ λα . Then, θ(1 ∧ f ) ∈ Bs
p ∩ λα and

∥θ(1 ∧ f )∥Bs
p∩λα ≲ ∥θ f ∥Bs

p∩λα ,

where the involved constant depends only on α, s, and p.

Theorem 3.2 Let f ∈ Bs
p ∩ λα be a function that vanishes on a closed subset E of T.

Then, given a constant M > 0, there exists a sequence ( fn)n≥1 of Bs
p ∩ λα such that

(1) ∣ fn(z)∣ = O(dist(z, E)M), for all n ≥ 1, and
(2) lim

n→+∞
∥ fn f − f ∥Bs

p∩λα = 0.

Proof Let f = θ g ∈ Bs
p ∩ λα/{0}, where θ and g are, respectively, the inner and

outer factors of f. By assumption f vanishes on E. Since λα possesses the F-property,
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then g ∈ λα . Thus, we have

∣g(z)∣ = O(dist(z, E)α).

Let n ≥ 1, and for σ = 1 +M/α, we put fn = 1 ∧ nσ−1 gσ−1. Clearly, we have

∣ fn(z)∣ ≤ nσ−1∣g(z)∣σ−1 = O(dist(z, E)α(σ−1)) = O(dist(z, E)M).

Using Lemma 3.1 and that Bs
p ∩ λα possesses the F-property, we obtain fn ∈ Bs

p ∩ λα .
The sequence f fn = θ(g ∧ nσ−1 gσ−1) converges uniformly to f on any compact subset
of D.

The sequence ( f fn) converges to f in λα (see [3]). It remains to prove that ( f fn)
converges to f in Bs

p . To this end, we write

Φ( f fn , z) = Φ(θ(g ∧ nσ−1 gσ), z)
= Φ(g ∧ nσ−1 gσ , z)

= 1
n

Φ(ng ∧ (ng)σ , z)

≤ σ
n

Φ(ng , z) = σΦ(g , z) = σΦ( f , z).

As a fact of matter, we know from [3] that

Ψ( f fn , z) ≤ σ 2Ψ( f , z).

Hence, we get

Bs
p( f fn) ≤ σ 2Bs

p( f ).(3.1)

Since p > 1, Bs
p is reflexive, and we obtain the desired result using the same argument

stated in [3]. ∎

4 Some remarks

Let α ∈ (0, 1), and the analytic Lipschitz algebra Λα is defined by

Λα ∶= { f ∈ A(D) ∶ ∣ f (z) − f (w)∣ = O(∣z −w∣α) as ∣z −w∣ tends to 0}.

A theorem of Hardy and Littlewood [8, 17] states that, f ∈ Λα if and only if

∣ f ′(z)∣ = O((1 − ∣z∣)α−1), as ∣z∣ → 1− .

So, Λα endowed with the norm

∥ f ∥Λα = ∥ f ∥∞ + sup z∈D(1 − ∣z∣)1−α ∣ f ′(z)∣

is a Banach algebra.
For p > 1 and s ∈ (0, 1). We would like to know under which conditions Bs

p might
be a Banach algebra. Note that if

Bs
p ⊂ Λα , for some α ∈ (0, 1),(4.1)
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then Bs
p becomes a Banach algebra. In this case, Theorem 1.1 gives a complete

description of closed ideals of Bs
p .

The purpose of the following result is to give a sufficient condition to ensure the
inclusion (4.1).

Proposition 4.1 For any p > 1 and s ∈ (0, 1), the following statements hold.
(1) If ps < 1, then Λ 1

p
⊂ Bs

p .
(2) If ps > 1, then Bs

p ⊂ Λ(ps−1)/p .

The following result is known, and we give the proof below for the sake of
completeness.

Let β1 , β1 ∈ (0, 1) such that β1 < β2. Thus, we have Λβ2 ⊂ λβ1 . Taking advantage of
this remark and Proposition 4.1 to obtain the following.

Remark 4.2 For any p > 1 and s ∈ (0, 1), the following statements hold.
(i) If ps < 1 and α ∈ (s, 1), then

Bs
p ∩ λα = λα .

In such situation, Theorem 1.1 gives us the description of closed ideals of λα
stated already in [16].

(ii) If ps > 1 and α ∈ (0, s − 1
p ], then

Bs
p ∩ λα = Bs

p .

In particular, Bs
p is a Banach algebra. Furthermore, in this case, we recover

Theorem 1 of [19] from Theorem 1.1.

Proof (1) Assume that ps < 1. Let f ∈ Λ 1
p
, so we have

∣ f ′(z)∣ = O((1 − ∣z∣)
1
p−1), as ∣z∣ → 1−.

Thus, we get

∣ f ′(z)∣p(1 − ∣z∣)p(1−s)−1 = O((1 − ∣z∣)−ps), as ∣z∣ → 1−.

In particular, Bs
p( f ) = O(1). It follows that Λ 1

p
⊂ Bs

p .
(2) Let f ∈ Bs

p . Obviously, one can assume that 1/2 < ∣z∣ < 1. The mean value prop-
erty confirms that

f ′(z) = 4
(1 − ∣z∣)2 ∫

D(z)
f ′(w)dA(w),

where D(z) ∶= {w ∈ D ∶ ∣z −w∣ < 1−∣z∣
2 }. Thus, using Jensen’s inequality, we have
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∣ f ′(z)∣ ≤ (4∫
D(z)
∣ f ′(w)∣p dA(w)

(1 − ∣z∣)2 )
1/p

≍ (1 − ∣z∣)s− 1
p−1 (4∫

D(z)
∣ f ′(w)∣p(1 − ∣z∣)p(1−s)−1dA(w))

1/p

≲ Bs
p( f )1/p(1 − ∣z∣)(ps−1)/p−1 .

Therefore, if ps > 1, we obtain the desired inclusion Bs
p ⊂ Λ(ps−1)/p . ∎
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