
J. Fluid Mech. (2024), vol. 996, A12, doi:10.1017/jfm.2024.762

Dynamics of turbulent energy and dissipation in
channel flow

Le Yin1,†, Yongyun Hwang2 and John Christos Vassilicos1

1UMR 9014 – LMFL – Laboratoire de Mécanique des Fluides de Lille – Kampé de Fériet, Univ. Lille,
CNRS, ONERA, Arts et Metiers Institute of Technology, Centrale Lille, F-59000 Lille, France
2Department of Aeronautics, Imperial College London, South Kensington, London SW7 2AZ, UK

(Received 7 February 2024; revised 26 June 2024; accepted 12 August 2024)

The dynamics of turbulent kinetic energy (TKE), turbulence dissipation rate (TDR) and
turbulence production rate (TPR) are explored in fully developed turbulent channel flow
using direct numerical simulations up to Reτ ≈ 2000 with minimal computational box for
large-scale structures. Time correlation analysis based on volume-averaged TKE and TDR
shows a well-defined average time lag, as in periodic/homogeneous turbulence, which,
unlike periodic/homogeneous turbulence, appears to be Reynolds-number-dependent. On
the basis of a spatio-temporal correlation analysis, we show that plane-averaged TKE
fluctuations in the near-equilibrium region are transported towards both the core and
near-wall regions, and are positively correlated with plane-averaged TDR fluctuations
there with combined wall-distance and time lags. In the path towards the core region,
the wall-distance lag is very close to the time lag multiplied by the friction velocity. The
path towards the near-wall region has a wide spread of time lags, which increases with
Reynolds number. The spatio-temporal correlation paths both towards the core and towards
the wall are reproduced when the reference plane TKE is conditionally averaged on either
ejections or sweeps, and are in fact stronger in correlation values in the case of ejections,
which are better organised than sweeps. While volume-averaged TPR evidently precedes
volume-averaged TKE, a more complex picture of non-local space–time correlations
between reference plane TKE and TPR is revealed. A mechanistic model is proposed to
elucidate these correlations between TKE and TPR through the interaction between the
mean shear and the Reynolds shear stress.

Key words: turbulence theory, channel flow

1. Introduction

Dissipation plays an important role in the dynamics of turbulent flows. In a turbulence that
is statistically stationary and homogeneous, the Richardson–Kolmogorov energy cascade
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states that the turbulent kinetic energy (TKE) produced at the large scales is on average
carried to smaller scales and eventually dissipated at the smallest scales (Frisch 1995).
An equilibrium between the space–time average rate of turbulence generation at the large
scales and the space–time average turbulence dissipation at the smallest scales is achieved.
However, highly active fluctuations in TKE and turbulence dissipation rate (TDR) appear
if such averaging is removed. The feeding and dissipation of turbulence are almost always
out of equilibrium. For example, the studies of Goto & Vassilicos (2015, 2016) in forced
periodic/homogeneous turbulence showed that the volume-averaged TDR εV(t) fluctuates
in time and correlates heavily with the volume-averaged TKE EV(t) with some finite
time lag that characterises the average time taken for the turbulence cascade to transport
energy from the large energy-containing scales to the small dissipative scales (see Sagaut
& Cambon 2008). They also demonstrated that the turbulence dissipation coefficient,
defined as Cε(t) ≡ εV/(E3/2

V /L) (where L = L(t) is the fluctuating integral length scale), is
anti-correlated in time with the Taylor-length-based Reynolds number Reλ(t) ∼ EV/

√
νεV

(where ν is the kinematic viscosity) without time lag, i.e. Cε(t) ∼ (
√

ReG/Reλ(t))n, where
n ≈ 1 and ReG denotes a global Reynolds number. Here, Cε is a ratio between the rate of
energy loss (dissipation) at the small scales and the rate of energy loss at the large scales
(by the large-scale eddy turnover). Similarly, Reλ is a ratio of the energy EV contained
mainly in the large scales to the energy

√
νεV contained in the small scales. The strong

anti-correlation between Cε and Reλ suggests that the turbulence is self-regulating: when
the energy at the large scales becomes excessive compared to the energy at the small scales,
the large scales tend to lose energy at a higher rate compared to the rate of energy loss at
the small scales. This self-regulation appears to be a universal phenomenon that is present,
in one way or another, in a wide range of turbulent flows (see Vassilicos 2015; Vassilicos
& Laval 2024).

Recently, Apostolidis, Laval & Vassilicos (2022) investigated this self-regulation
(using wall-parallel plane average quantities instead of volume-averaged ones) in the
near-equilibrium region of fully developed turbulent channel flow (FD TCF), where the
local turbulence energy production roughly balances local turbulence energy dissipation
on average (Townsend 1961), and found an exponent n ≈ 3/2 for the time fluctuations. It
was even further demonstrated that the two signals are anti-correlated at all frequencies
in this region of FD TCF. However, they did not investigate the possibility of a time lag
between TKE and TDR in FD TCF.

The key difference between wall-bounded turbulence and periodic/homogeneous
turbulence is the coupling between the boundary conditions and the generation of
turbulence. In periodic/homogeneous turbulence, TKE is generated by arbitrary direct
forcing of the Navier–Stokes equations, whereas in TCF, the no-slip boundary condition
at the wall enforces mean shear and momentum transfer between the core flow and the
wall, thereby leading to production of TKE. Both viscosity and turbulence (through the
Reynolds shear stress, which is an average of u′v′, where u′ and v′ are streamwise and
wall-normal velocity fluctuations, respectively) contribute to the momentum transfer, and
the latter is particularly significant away from the wall where the effect of viscosity is
negligible. The contributions of Reynolds shear stress can be classified based on the sign
of velocity fluctuations, i.e. the quadrant in u′–v′ plane (Wallace, Eckelmann & Brodkey
1972; Willmarth & Lu 1972; Lu & Willmarth 1973). In particular, ejections (Q2 quadrant,
where u′ < 0 and v′ > 0) provide the largest contribution to the Reynolds stress, and
sweeps (Q4 quadrant, where u′ > 0 and v′ < 0) provide the second largest contribution
to the Reynolds stress throughout a turbulent boundary layer (Lu & Willmarth 1973).
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Thanks to the development of numerical simulation and high performance computing,
spatio-temporal data of turbulence fields have been made available. In the numerical
experiment of Jiménez & Moin (1991), the width of the minimal computational domain
(minimal flow unit) that can sustain TCF was found to be approximately the average
spacing of near-wall streaks discovered from the early experiment of Kline et al. (1967).
By removing the small-scale structures using over-damped large eddy simulation, Hwang
& Cossu (2010) identified the largest energy-containing structures in the outer layer
that conform with the large- and very-large-scale motions (Kim & Adrian 1999; Guala,
Hommema & Adrian 2006; Hutchins & Marusic 2007a).

Energy-containing structures regenerate themselves quasi-periodically, and constitute a
substantial part of the dynamics of wall-bounded flows (Hamilton, Kim & Waleffe 1995;
Waleffe 1997; Jiménez & Pinelli 1999; Hwang & Bengana 2016). This autonomous cycle
is often referred to as the ‘self-sustaining process’ (Doohan, Willis & Hwang 2021; Ciola
et al. 2023). Recent studies on the time evolution of these energy-containing structures
suggest that they operate quasi-periodically with a time scale proportional to their size
(Lozano-Durán & Jiménez 2014b; Hwang & Bengana 2016).

In the present study, we explore the dynamical interplay between TKE, TDR and
turbulence production rate (TPR) fluctuations in a relatively small computational box
FD TCF at moderately high Reynolds number. Whereas there was no need to study the
fluctuations of power input rate in the studies of periodic/homogeneous turbulence of
Goto & Vassilicos (2015, 2016), which concentrated on TKE and TDR fluctuations, in
FD TCF the TPR fluctuations are part and parcel of small box dynamics and cannot be
neglected. We start by exploring the same questions addressed by Goto & Vassilicos (2015,
2016), but now in FD TCF, namely whether TKE and TDR fluctuate in a quasi-periodic
manner, and whether they do so with some time lag relative to each other as in forced
periodic/homogeneous turbulence. If so, what are the scalings of this time lag, and
does it relate to the dynamics of TPR in wall-bounded flows? We finally address the
interconnectivity between TPR and TKE dynamics given that TKE needs to be produced
before it is cascaded to smaller scales and dissipated.

While such general questions can be asked for any wall-bounded turbulent flow, we
limit ourselves to the study of FD TCF using direct numerical simulations (DNS) datasets
at several different Reynolds numbers with long integration time intervals to obtain
well-converged statistics and temporal correlations. The size of the computational box
is chosen to be the minimal one that can accommodate the largest energy-containing
structures in FD TCF as in Hwang & Cossu (2010) without mean statistics, such as
time-averaged mean velocity profile and mean energy budgets deviating too far from DNS
in larger computational domains (Lozano-Durán & Jiménez 2014a; Lee & Moser 2015).

This paper is organised as follows. In § 2, we present the numerical set-up for our
DNS of FD TCF, and define our observables in terms of turbulence energetics. In § 3,
we present our results on the dynamics of TKE and TDR in terms of volume-averaged
temporal correlations, 2-time 1-plane correlations, and 2-time 2-plane correlations of
plane-averaged turbulence energetics. We then focus in § 4 on TPR and TKE fluctuations,
as well as fluctuations of Reynolds shear stress and mean shear, and introduce a
mechanistic model of the fluctuations of mean shear and Reynolds shear stress to account
for the space–time lags between TPR and TKE. We summarise our conclusions in § 5.

2. Numerical methods

We perform DNS of incompressible FD TCF subject to constant mass flux at five different
Reynolds numbers Reτ = 235, 359, 498, 953, 2008, where Reτ is the friction Reynolds
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Name Reτ Nx × Ny × Nz �x+ �y+ �z+ Tintuτ /H Nt

R230 235 96 × 193 × 96 11.52 0.53–4.53 5.76 183.06 3000
R360 359 144 × 257 × 144 11.74 0.61–5.19 5.87 172.13 3000
R500 498 192 × 289 × 192 12.22 0.75–6.41 6.11 164.34 3000
R950 953 384 × 513 × 384 11.69 0.80–6.91 5.85 151.52 3000
R2000 2008 768 × 1025 × 768 12.31 0.83–7.29 6.16 92.42 2001

Table 1. Numerical set-up of DNS in FD TCF, where Nx, Ny and Nz indicate the numbers of grid points in
the streamwise, wall-normal and spanwise directions, respectively; �x+, �y+ and �z+ indicate grid spacings,
after de-aliasing, in inner units; Tint denotes the integration time after the initial transient; and Nt denotes the
number of instantaneous snapshots stored for post-processing.

number. We denote the streamwise, wall-normal and spanwise directions by (x, y, z),
with the corresponding velocity fields (u, v, w) or (u1, u2, u3). The size of the simulation
domain is set to be Lx = πH, Ly = 2H and Lz = πH/2, where H is the half-channel
height. The spanwise extent of the simulation box is comparable to the minimal unit for the
self-sustaining process of the largest energy-containing structures as per Hwang & Cossu
(2010) and Hwang & Bengana (2016). The size of the simulation domain is deliberately
chosen to be small in order to capture the temporal dynamics around the single entity
of the large-scale energy-containing structures without significantly modifying the mean
statistics (Lozano-Durán & Jiménez 2014a). Details of the DNS data sets and their naming
convention can be found in table 1. We note that integration over a relatively long time
interval is required to obtain well-converged statistics ‘temporal correlations’ in the given
computational domain.

The numerical simulation is performed using the Navier–Stokes solver diablo (Bewley
2014). The solver uses the Fourier–Galerkin method with a 2/3 de-aliasing rule in
the wall-parallel directions x and z, and a second-order finite difference method in
the wall-normal direction y. The temporal discretisation of the solver is based on the
fractional-step algorithm by Kim & Moin (1985), with implicit treatment of viscous terms
using the Crank–Nicolson scheme, and explicit treatment of the remaining terms using
a low-storage third-order Runge–Kutta scheme. A snapshot of the velocity field is stored
every 1H/Ub, where Ub = (1/VΩ)

∫
Ω

u d3x = 1 (with Ω the computational domain, and
VΩ its volume) is the bulk streamwise velocity that is kept constant at all time in all DNS.
The solver has been verified extensively in previous studies (e.g. Doohan, Willis & Hwang
2019).

3. Dynamics of TKE and TDR

We first study the dynamics of the TDR and its relation to TKE from the temporal
correlation of terms in the TKE budget equation in the wall-normal direction and in
time. The velocity field is decomposed as u(x, t) = (U( y, t), 0, W( y, t)) + u′(x, t), where
(U( y, t), 0, W( y, t)) = 〈u(x, t)〉, and 〈·〉 denotes averaging over the x–z plane. While the
Reynolds decomposition has often been used with a mean flow obtained by averaging
over time, here we average over wall-parallel planes and extract a time-fluctuating average
flow profile, from which the associated Reynolds stresses are derived. Both the average
flow and the Reynolds stresses fluctuate in time because of the finite size of the minimal
computational domain. We use the notation x ≡ (x1, x2, x3) ≡ (x, y, z) and (u′

1, u′
2, u′

3) ≡
(u′, v′, w′), and two energy budget equations can be considered. The first is for the kinetic

996 A12-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

76
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.762


Dynamics of turbulent energy and dissipation in channel flow

energy (U2 + W2)/2 of the mean flow, which involves neither turbulence transport nor
small-scale turbulence dissipation (the dissipation rate in this equation is ν[(dU/dy)2 +
(dW/dy)2], which, unlike TDR, cannot result from a turbulence cascade in (x, y, z) space).
The second equation is for the TKE, 〈u′

iu
′
i〉/2, which does incorporate turbulence transport

and cascade-related dissipation dynamics, and is obtained by multiplying the governing
equation for the fluctuating velocity component u′

i by u′
i, summing over i = 1, 2, 3 and

averaging in the x–z plane:

∂

∂t
1
2

〈
u′

iu
′
i
〉

︸ ︷︷ ︸
E( y,t)

= −
〈
u′

iu
′
j

〉 ∂Ui

∂xj︸ ︷︷ ︸
P( y,t)

− ν

〈
∂u′

i
∂xj

∂u′
i

∂xj

〉
︸ ︷︷ ︸

ε( y,t)

+ d
dy

〈−v′(u′
iu

′
i)
〉

︸ ︷︷ ︸
Tt( y,t)

+ ν
d2

dy2
1
2

〈
u′

iu
′
i
〉

︸ ︷︷ ︸
Tν( y,t)

+ d
dy

〈−v′p′〉
︸ ︷︷ ︸

Tp( y,t)

, (3.1)

where ν is the kinematic viscosity of the fluid, p′ ≡ p − 〈p〉 is the fluctuating pressure field,
and p is the full pressure field (the mass density of the fluid is taken to be 1). Note that the
three transport terms given in the second line of (3.1) vanish when integrating throughout
the wall-normal direction because of the no-slip boundary condition at the walls. This is
not true if we integrate only over the half-channel in the wall-normal direction from the
wall to the channel centre, where the fluxes are expected to be highly fluctuating in time.

In this paper, we focus on the TKE budget (3.1) because this is the budget directly
affected by turbulence cascade (via TDR) and turbulence transport. A top-down approach
is employed to study the correlations in FD TCF between TKE E( y, t) and TDR ε( y, t) on
the one hand, and TPR P( y, t) and TDR ε( y, t) on the other. We first explore the dynamics
of the overall TKE and TDR by studying the temporal correlation between their volume
averages in § 3.1, as in the work of Goto & Vassilicos (2015) for periodic/homogeneous
turbulence. We volume average from either wall to the centreline, and report the existence
of a time lag both between volume-averaged TKE and volume-averaged TDR, and between
volume-averaged TPR and volume-averaged TDR. (For all present Reynolds numbers,
the frequency spectrum of the volume average U2/2 has 1–2 orders of magnitude
more energy density than the volume-averaged TKE frequency spectrum at frequencies
below 0.5H/uτ to H/uτ . The two frequency spectra are, however, comparable at higher
frequencies, and the intensity of time fluctuations of the volume-averaged U2/2 is
approximately 1 % of its time average, whereas the intensity of time fluctuations of the
volume-averaged TKE is about 10 % of its time average. Here, W2/2 is very much smaller
than TKE with negligible fluctuations.) More detailed dynamical interplay between TKE
and TDR is subsequently studied in the wall-normal direction by investigating in § 3.2
the temporal correlation of the plane-averaged TKE and the plane-averaged TDR at the
same wall-normal location. Overall, the temporal correlation between the two signals is
high in the near-wall and outer regions, but little time lag is observed, suggesting that the
time lag observed from the volume-averaged statistics results from dynamics involving
various wall-normal locations. In § 3.3, we therefore investigate the temporal correlation
between plane-averaged TKE and plane-averaged TDR at different wall-normal locations,
i.e. ε( y, t) and E( yref , t), where yref is a reference wall-normal location. A time lag
between TKE and TDR is recovered together with a wall-distance lag, revealing the role of
inhomogeneity in the spatio-temporal path of energy transfer in FD TCF which is absent
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in the temporal correlation between plane-averaged TPR and plane-averaged TDR. We
also report significant temporal anti-correlations in the near-equilibrium region between
TKE and TDR with time lag. In § 3.4, we investigate the 2-time 2-plane correlations with
reference plane taken in the near-wall region, and report a Reynolds number dependence of
correlation contours. We then average TKE and TDR over regions of ejection and sweeps
to further illustrate the link between paths of energy and momentum fluxes in FD TCF in
§ 3.5.

3.1. Volume-averaged dynamics and correlations
The volume-averaged budget equation is obtained by integrating (3.1) from either wall to
the centre of the channel:

∂

∂t
EV = PV − εV ± T|y=H, (3.2)

where the subscript V denotes averaging over the upper or lower half of the computational
domain. Without time averaging, the wall-normal transport terms in (3.1) fluctuate in time.
The fluxes ±T|y=H across the centreline are found to be very small compared with the
integrated turbulence production PV and dissipation εV .

Figures 1(a,d,g, j,m) present the time signals of volume-averaged TPR, TKE and TDR
for R230, R360, R500, R950 and R2000 (see table 1). While these signals fluctuate heavily
around their mean values, TDR seems to have a low frequency content that closely follows
TPR and TKE, together with some coexisting high-frequency content, a behaviour that
becomes more apparent with increasing Reynolds number. The time signal of TDR in FD
TCF more explicitly displays various time scales other than that of TKE, particularly at
higher Reynolds numbers, unlike previous observations in homogeneous turbulence (Goto
& Vassilicos 2015). This difference might be attributed to the presence of a hierarchy of
energy-containing scales or integral length scales in FD TCF.

The time histories of volume-averaged TKE and volume-averaged TDR in (3.2) are
subsequently studied using a temporal correlation function. For two random signals that
fluctuate only in time, say X(t) and Y(t), the temporal correlation function is defined as

ρ[X,Y](τ ) = X′(t + τ) Y ′(t)√
X′2(t)

√
Y ′2(t)

, (3.3)

where X′(t) = X(t) − X̄ is the fluctuation centred around its mean, and X̄ is the time
average of X(t). The auto-correlation function is recovered for X(t) = Y(t), in which case
a maximum value ρ[X,X](τ ) = 1 is reached for time lag τ = 0.

The temporal correlation functions are presented in figures 1(b,c,e, f,h,i,k,l,n,o).
Limited by the Reynolds number, R230 and R360 show narrow auto-correlation of
volume-averaged TKE. The auto-correlation functions of volume-averaged TKE cross
zero at τuτ /H ≈ ±2 for the higher three Reynolds numbers shown here, suggesting that
some aspects, at least, of the dynamics and time scales of large-scale energy-containing
structures become approximately independent of Reynolds number when it is high enough
(Hwang & Bengana 2016). The auto-correlation functions in figures 1(b,e,h,k,n) show
sharper correlation peaks for TDR and TPR than for TKE, presumably caused by the
high-frequency content in the dissipation and production signals. The zero crossings
of the auto-correlation for TDR and TPR widen as the Reynolds number increases,
although it remains unclear if this continues with further increasing Reynolds number.
Importantly, the peaks of the correlation functions between volume-averaged TKE and
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Figure 1. (a,d,g, j,m) Time evolution of volume-averaged TKE EV (t) (black lines), volume-averaged TDR
εV (t) (blue lines) and volume-averaged TPR PV (t) (red lines), normalised by their time-averaged mean in the
lower half-channelfor five Reynolds numbers. (b,e,h,k,n) Auto-correlations ρ[EV ,EV ] (black lines), ρ[εV ,εV ] (blue
lines) and ρ[PV ,PV ] (red lines). (c, f,i,l,o) Cross-correlations ρ[εV ,EV ] (blue lines), ρ[PV ,EV ] (red lines) and ρ[εV ,PV ]
(green lines).
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volume-averaged TDR are at τuτ /H ≈ 0.2, with values of ρ[εV ,EV ] between 0.5 and 0.8
(increasing with Reτ ), indicating the presence of an average time lag that is reminiscent of
the observations made in forced periodic/homogeneous turbulence by Goto & Vassilicos
(2015) (see also figure 3(b) in Goto & Vassilicos 2016). A similar time lag is also
observed between volume-averaged TPR and volume-averaged TDR, in fact with even
higher values ρ[εV ,PV ] (consistently approximately 0.8 for all five Reynolds numbers)
presumably because TPR and TDR are both rates of change of TKE. This time lag is
shorter than the typical time scale of the self-sustaining process at large scale (Hwang
& Bengana 2016). In addition, the correlation functions ρ[εV ,EV ] and ρ[εV ,PV ] display
increasing skewness towards positive time lags at higher Reynolds numbers, spanning the
range τuτ /H ∈ [−1, 2] for R550 but τuτ /H ∈ [−1, 4] for R2000 in the case ρ[εV ,EV ]. The
skewed correlation function may be interpreted as a ‘spread’ of time lags (see § 3.3).

While we observe a clear positive time lag both between TKE and TDR and between
TPR and TDR in FD TCF, it is important to point out that volume averaging obscures the
dynamics associated with inhomogeneity in the interactions between TKE and dissipation.
The observed dynamical interplay between TKE and TDR cannot be the same as that found
in periodic/homogeneous turbulence (Goto & Vassilicos 2015). We address the impact of
vertical inhomogeneity on the interplay between TKE and TDR in the remainder of § 3,
and the interplay between TKE and TPR in § 4.

3.2. The 2-time 1-plane correlations
The neglect of inhomogeneity, due to volume averaging, needs to be restored for the
detailed picture of the full temporal dynamics between TKE and TDR. We therefore
now investigate, as in § 3.1, the correlations between time signals of plane-averaged
TKE and plane-averaged TDR at different wall-normal locations. In figure 2, we plot
time signals of the plane-averaged TKE and TDR normalised by their plane- and
time-averaged mean values at three locations: the near-wall region at the edge of the
viscous sublayer (y+ = 10), the near-equilibrium region where production approximately
balances dissipation (y/H = 0.3), and the core region (y/H = 0.8).

In the near-wall region (y+ = 10 in figure 2, but similar observations hold for y+ � 100),
TKE and turbulence dissipation fluctuate almost concurrently. This is not surprising as
there is little separation between the energy-containing scale and dissipative scale in the
near-wall region. As the Reynolds number increases (from top to bottom in figure 2),
the low frequency signal appears more pronounced. The near-wall time scale becomes
shorter and shorter compared to H/uτ (used to normalise time in figure 2) as Reynolds
number increases. It is interesting to observe that even so, TKE and TDR fluctuate almost
concurrently even at the highest Reynolds numbers considered here (see figures 2j,m). This
suggests that the near-wall energy-containing structures (potentially part of large-scale
structures extending from the near-equilibrium and outer layers) are directly related to
dissipation in the near-wall region.

At y/H = 0.3 (figures 2b,e,h,k,n), the time signals of plane-averaged TKE and
plane-averaged TDR do not appear to be well correlated with each other as Reτ increases.
The same holds true for any y/H between 0.2 and 0.4. Note that this is the region where
the large-scale structures are very energetic (Hoyas & Jiménez 2006).

In the core region at y/H = 0.8 (though similar observations can be made for
y/H = 0.5–1), TPR is known to be very small due to diminishing mean shear and
Reynolds shear stress near the channel centre. The dynamics of turbulence energetics is
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Figure 2. Time evolution of plane-averaged TKE E( y, t) (black lines) and plane-averaged TDR ε( y, t) (blue
lines), normalised by their plane- and time-averaged mean in the lower half-channel for five Reynolds numbers
at three wall-normal locations: (a,d,g, j,m) y+ = 10, (b,e,h,k,n) y/H = 0.3, and (c, f,i,l,o) y/H = 0.8.
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therefore dominated by turbulence transport and dissipation. The plane-averaged TKE and
the plane-averaged TDR appear highly correlated instantaneously at the same plane, as
shown in figures 2(c, f,i,l,o) for all the Reynolds numbers considered here. As can be seen
in figure 3, there is no time lag in these correlations, and there is therefore no cascade
directly linking plane-averaged TKE and plane-averaged TDR in the core region.

Similar to the correlation function defined for volume-averaged variables in time in
§ 3.1, one can define a temporal correlation function for signals in time that depends on the
wall-normal location in FD TCF. Figure 3 plots the contours of 2-time 1-plane correlation
functions between plane-averaged TKE and TDR, defined as

ρ[ε,E](τ, y) = ε′(t + τ, y) E′(t, y)√
ε′2(t, y)

√
E′2(t, y)

, (3.4)

where τ is a time difference. From the correlation contours in figure 3, high positive
correlations between TDR and TKE in the near-wall region and the core region with
zero time lag are observed, as expected from figure 2. The positive correlations in the
near-wall region are concentrated in a narrow time window for small Reynolds numbers,
which widens as Reynolds number increases, reflecting the volume-averaged correlation
observation in figures 1(c, f,i,l,o). It may be that as Reτ increases, increasingly energetic
structures above the near-wall region influence the near-wall region with fluctuations of
increasing length and time scales, causing positive correlations with an increasing range
of time lags in the near-wall region. In the near-equilibrium region, the correlation contour
shows negative values (anti-correlation) between TDR and TKE with positive time lag, i.e.
an increase/decrease in local TKE precedes a decrease/increase in local TDR. Finally, TKE
and TDR are strongly correlated throughout the core with both positive and negative time
lags τ in the range τuτ /H ∈ [−1, 1] nearly independent of Reynolds number.

In both the near-wall and core regions, the location of the maximum correlation in terms
of time lag is always clearly at τ = 0. In the near-equilibrium region, it is also near τ = 0,
though less rigorously at τ = 0 because of low correlation values there. These zero time
lag results have been reported previously for FD TCF (see figure 5(g,h) of Apostolidis
et al. 2022) using data obtained in a computational domain that is double the size of the
present simulations in the streamwise and spanwise directions in terms of multiples of H
(Lozano-Durán & Jiménez 2014a). In the near-wall region, high instantaneous correlations
between TKE and TDR (neither time lag nor lead) are expected, since there is no scale
separation there. The high instantaneous correlations in the core region (neither time lag
nor lead) suggest that high/low values of TKE and TDR occur together perhaps because
the core flow flip-flops between quiescent and turbulent states as shown in Kwon et al.
(2014). However, the zero average time lag of plane-averaged dynamics is seemingly
inconsistent with the time lag discovered in volume-averaged dynamics in § 3.1. It is
therefore natural to question if plane-averaged TKE at some distance from the wall
correlates with plane-averaged TDR at another distance from the wall, with or without
time lag.

3.3. The 2-time 2-plane correlations: TKE and TDR
To unveil the time lag observed in figure 1 and to illuminate the dynamic relation between
TKE and TDR (as well as TPR and TDR) in space and time, we now investigate 2-time
2-plane correlations. The correlations between TKE at a reference x–z plane and TDR at
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Figure 3. The 2-time 1-plane correlation function contours ρ[ε,E] versus distance from the wall in (a,c,e,g,i)
outer unit y/H with linear axis, or (b,d, f,h, j) inner unit y+ with log axis, and versus time lag τuτ /H, for (a,b)
R230, (c,d) R360, (e, f ) R500, (g,h) R950, (i, j) R2000. Vertical dashed lines indicate the position of maximum
positive correlation as a function of y, showing that it coincides with the vertical τ = 0 line.
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another plane in the channel are defined as

ρ[ε,Eref ](τ, y; yref ) = ε′(t + τ, y) E′(t, yref )√
ε′2(t, y)

√
E′2(t, yref )

. (3.5)

A similar 2-time 2-plane correlation can be defined by replacing TKE with TPR, i.e. Eref

with Pref , and E′ with P′. From the 2-time 1-plane correlations between TKE and TDR in
figures 3(a,c,e,g,i), we observe a region of low positive correlations between y/H = 0.2
and y/H = 0.4, the outer part of the near-equilibrium (P̄ ≈ ε̄) region. We therefore start
by plotting the correlation contours for reference plane yref /H = 0.3, which is where the
minimal 2-time 1-plane correlation at zero time lag is found (figure 3). Taking a different
reference plane within this low correlation region y/H = 0.2 to y/H = 0.4 changes little
the observations that follow throughout the paper.

The correlation contours in (τ, y) space, with TKE at reference plane yref /H = 0.3, are
plotted in figure 4 for the five Reynolds numbers considered. It can be observed clearly
that the TKE in the near-equilibrium region correlates with the TDR in both the core
region and the near-wall region, with a positive time lag and also a wall-distance lag.
This observed time lag resolves the discrepancy between volume-averaged correlations
and 2-time 1-plane correlations. Along the path of positive correlation from the reference
plane towards the channel centre, the peaks of correlations in (τ, y) space lie very close to a
line of slope δy/δτ = (1 ± 0.2)uτ (see figures 4 and 5a). This is a time lag combined with
a wall-distance lag, and the ratio of the latter to the former is ∼uτ . Note that any turbulence
transport in the wall-normal direction should be through the wall-normal velocity in the
turbulence transport term (see Tt( y, t)). The mean wall-normal velocity is zero, but the
standard deviation of the wall-normal velocity fluctuations vrms is of order uτ and varies
slowly with y. The correlations with time lag in figure 4 cannot be caused by the passage
of inclined structures observed previously in turbulent boundary layers (e.g. in Marusic &
Heuer 2007) and FD TCF (e.g. in Cheng, Shyy & Fu 2022). If they were, then TDR in the
core region would precede TKE in the near-equilibrium region due to the earlier passage
of structures further away from the wall than closer to the wall.

The TKE can be transported both upwards and downwards from the reference plane.
During wall-normal turbulence transport, high TKE fluctuations are also transferred
towards smaller scales, which leads to high TDR fluctuations. This transport through
scales is illustrated by the increasing correlation between TKE and TDR further away
from the reference plane (figure 4), as well as by the path of the slowest decorrelation of
TKE with itself, which is also along the line of slope δy/δτ ≈ uτ (not shown here). This
interpretation is supported by figure 6, which shows that the 2-time 2-plane correlation
between TPR and TDR behaves differently even though the volume-averaged TPR has
similar time lags with volume-averaged TDR and volume-averaged TKE. The difference
between figures 4 and 6 can be understood by using the fact that TPR is not transported
through space and scales, whereas TKE is. Figure 6 shows that TPR and TDR are
maximally correlated locally rather than non-locally along a δy/δτ line as in the case
of TKE and TDR in figure 4.

Regarding the path of high correlations towards the core region, the velocity δy/δτ is
close to that of the plane-averaged ejections found by Flores & Jiménez (2010). In the core
region, the mean shear is very weak, and the eddies are composed mainly of dissipative
ones (see § 3.2). It is therefore conceivable that this path is associated with the energy
cascade initiated from the large-scale structure mainly around yref /H = 0.3. This would
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Figure 4. The 2-time 2-plane correlation function contours ρ[ε,Eref ] versus distance from the wall y+ or y/H
and time lag τuτ /H with respect to TKE at the reference plane yref /H = 0.3 (horizontal dash-dotted lines).
The slopes of the solid black lines are ±uτ , respectively. Plots for (a,b) R230, (c,d) R360, (e, f ) R500, (g,h)
R950, (i, j) R2000. Vertical dashed lines indicate τ = 0.

996 A12-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

76
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.762


L. Yin, Y. Hwang and J.C. Vassilicos

0.2

0.8

0.9δy
/
(δ

τ 
u τ

)

1.0

1.1

1.2

0.8

0.9

1.0

1.1

1.2

0.3 0.4

yref/H
0.5 0.2 0.3 0.4

yref/H
0.5

1.0

0.8

0.6

0.4

0.2

0

1.0

0.8

0.6

0.4

0.2

0

(b)(a)

Figure 5. For given yref , one defines δy( y, yref ) ≡ |y − yref |, and then extracts δτ from the maximum
correlation at local y and yref , i.e. ρ(δτ, y; yref ) = supτ {ρ(τ, y; yref )}, where ρ is defined in (3.5). A best linear
fit of δy versus δτ gives an average slope δy/δτ with its 95 % confidence interval for each yref . We plot the
fitted slopes δy/(δτuτ ) as a function of yref (a) for the 2-time 2-plane correlations above the reference plane,
and (b) for the 2-time 2-plane correlations below the reference plane. In both (a,b), the shadings around the
different coloured lines are 95 % confidence intervals for R230 (black line), R360 (red line), R500 (blue line),
R950 (yellow line) and R2000 (green line).

also imply that the ejections towards the outer region (Flores & Jiménez 2010) involve not
only momentum transport but also energy transport in space and in scales, which leads to
TDR fluctuations through a cascade process. In the path towards the wall, the correlation
velocity δy/δτ appears to be smaller than (1 ± 0.2)uτ and less well-defined (see figure 5b).
The contours in figure 4 show that as Reτ increases, the TKE in the near-equilibrium region
and the TDR in the near-wall region correlate with a wider and more skewed spread of
time lags in H/uτ units. It is worth emphasising that this TKE to TDR spatio-temporal
path towards the wall is fundamentally different from the superposition and modulation
effects described in Hutchins & Marusic (2007b).

As in § 3.2, we observe from the 2-time 2-plane correlation in figure 4 a region of
anti-correlation between TDR and TKE around the reference plane at yref = 0.3H. The
extent of this anti-correlation shows a spread of time lags beyond τuτ /H ≈ 0.5, and
little wall-distance lag, consistent with the anti-correlation in 2-time 1-plane correlation in
figure 3. This anti-correlation signifies a high/low TKE event followed in time by low/high
dissipation around a reference plane taken at the outer edge of the near-equilibrium region.
A plausible explanation for the local anti-correlation between TKE and TDR with time
lag could be that TKE is transported away from the upper near-equilibrium region and
therefore does not remain there to cascade and dissipate. A high instance of TKE at the
upper near-equilibrium region is therefore followed by no increase in dissipation – in fact,
even a decrease in dissipation, given that there is no local cascade at y ≈ yref between
y/H = 0.2 and y/H = 0.4 to feed it.

As a side note, unlike the peak of 2-time 1-plane correlation located at the channel
centre in figure 3, the maximum 2-time 2-plane correlation reaches only a distance from
the wall approximately y ∼ 0.75H, above which TKE at the reference plane decorrelates
with TDR in the core region. This observed decorrelation is likely due to the fact that the
single core region in FD TCF contains information such as signals of TKE ejected from
both the upper channel and the lower channel. It would be interesting to investigate in the
future temporal correlations between TKE in the near-equilibrium layer and TDR in the
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Figure 6. The 2-time 2-plane correlation function contours ρ[ε,Pref ] versus distance from the wall y+ or y/H
and time lag τuτ /H with respect to TPR at the reference plane yref /H = 0.3 (horizontal dash-dotted lines).
Plots are for (a,b) R230, (c,d) R360, (e, f ) R500, (g,h) R950, (i, j) R2000. Vertical dashed lines indicate τ = 0.
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outer layer of wall-bounded turbulence with only one wall, such as that of open channel
flow (Yao, Chen & Hussain 2022; Pirozzoli 2023) or turbulent boundary layers.

3.4. The 2-time 2-plane correlations: near-wall region and Reynolds number dependence
The observations made in § 3.3 indicate a correlation velocity closely related to the
turbulence transport velocities from the near-equilibrium region both towards and away
from the wall. The path of correlation away from the wall shows little dependence on the
Reynolds number and is always very close to the friction velocity. However, the correlation
between the TKE in the near-equilibrium region and the TDR in the near-wall region is
heavily dependent on Reynolds number. We therefore turn our focus to the 2-time 2-plane
correlations between TKE at a reference plane taken in the near-wall region, and TDR
fluctuations elsewhere. The correlation contours with reference plane taken at yref = 10δν

are presented in figure 7. This figure does not change significantly if we take a different
reference plane in the range yref ∈ [10, 50] δν .

The first point made by figure 7 is that TKE and TDR fluctuations are strongly correlated
in the near-wall region below y+ ≈ 100, without time lag on average, but also, quite
symmetrically, with equally positive and negative time lags in the range −2 � τuτ /H � 2.
This strong correlation makes sense given that the length and velocity scales associated
with TKE and TDR are not well separated in the near-wall region. The second observation
coming out of figure 7 is that, unlike figure 4, no continuous path of positive correlation
exists from the near-wall region to the near-equilibrium region, and ultimately to the core
region. And the third observation is the significant positive correlation without significant
time lag between TKE in the near-wall region and TDR in the core region.

For a start towards an interpretation of this third observation, we plot in figure 8 the
ratio between the time-averaged TPR and the time-averaged TDR in inner and outer
units obtained from our data. The notion of ‘equilibrium’ is merely an approximation
of the actual TKE budget in the overlap region. The outer peak of the production to
dissipation ratio increases with Reynolds number, and moves away from the wall in inner
units. This is a signature of the very-large-scale motions at moderately high Reynolds
number (Kim & Adrian 1999). As these outer structures become stronger with increasing
Reynolds number, their contributions to the fluctuations in the TKE budget may also
become more pronounced. These strong outer structures in the near-equilibrium region
become increasingly dominant in both outer and near-wall TDR fluctuations. In the
near-wall region, TKE and TDR fluctuate almost in the same manner (as seen from
the high correlation with no time lag on average in the near-wall region in figure 7).
Strong correlations between TKE near the wall and TDR in the core region therefore also
indicate strong correlations between TDR near the wall and TDR in the core region with
zero or little time lag at high Reynolds number, both presumably controlled by strong
energy-containing structures of sizes comparable to the half-channel height. Indeed, the
2-time 2-plane correlations of TDR at y+ = 10 and TDR at other wall distances y (not
shown here for economy of space) are nearly identical to figure 7 except perhaps at the
lowest Reτ = 230, for which they are just very similar. A correlation where the reference
TKE is taken in the core region was also computed (not shown here for economy of
space), and similar instantaneous correlation values with the near-wall TDR were found,
suggesting that the near-wall TDR and the core TDR are both controlled by structures of
sizes comparable to the half-channel height.
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Figure 7. The 2-time 2-plane correlation function contours ρ[ε,Eref ] versus distance from the wall y+ or y/H
and time lag τuτ /H with respect to TKE at the reference plane yref = 10δν (horizontal dash-dotted lines). The
slopes of the solid black lines are ±uτ , respectively. Plots are for (a,b) R230, (c,d) R360, (e, f ) R500, (g,h)
R950, (i, j) R2000. Vertical dashed lines indicate τ = 0.
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Figure 8. Time-averaged mean profile of TPR over TDR in (a) inner units and (b) outer units for five
Reynolds numbers. Horizontal solid line indicates P̄/ε̄ = 1.

3.5. The 2-time 2-plane correlations: ejections and sweeps
As already mentioned in § 3.3, the spatio-temporal path of TKE to TDR from the
near-equilibrium region to the outer region observed in that subsection is reminiscent of
the spatio-temporal path of ejections/sweeps observed by Flores & Jiménez (2010). Hence
we now focus on the regions in the x–z plane where ejections and sweeps happen. For any
quantity Z(x, y, z, t) in FD TCF, we define a conditional plane average as

ZQs( y, t) = 1
AQs( y, t)

∫∫
Qs

Z(x, y, z, t) dx dz, (3.6)

where Qs, for s = 1, 2, 3, 4, indicates the four quadrants in the u–v plane, and
AQs = AQs( y, t) is the sum of the areas in the x–z plane where Qs events take place
(Wallace et al. 1972; Willmarth & Lu 1972). In particular, we investigate 2-time 2-plane
correlations of unconditioned TDR with TKE conditionally averaged either over ejections
(Q2) or over sweeps (Q4) in each plane. It is well-known that ejections and sweeps are
the principal contributors to the Reynolds stress −〈u′v′〉 in the near-equilibrium region
(Willmarth & Lu 1972).

Figure 9 presents the same correlation function as in (3.5), but using unconditioned TDR
and TKE conditionally averaged (as in (3.6)) over Q2 ejection events, i.e. locations in the
plane where u′ < 0 and v′ > 0. The resulting correlation contours show a trend consistent
with the unconditional TKE and TDR in figure 4 (in particular, very similar correlation
velocities δy/δτ to within 10 %, and correlation levels comparable to the unconditional
correlations to within 7 %).

When the correlation function is computed using TKE conditionally averaged over
Q4 sweep events (u′ > 0 and v′ < 0) as shown in figure 10, noticeable changes
in the correlation velocity and in the values of correlation coefficients appear. The
spatio-temporal path towards the core region shows a significantly reduced correlation
velocity (by up to 33 %) and significantly reduced levels of correlation (by up to 20 %).
The perhaps counter-intuitive observation, however, is the difference of the correlation
coefficients between the ejection-conditioned and sweep-conditioned correlations in
the near-wall region. Sweep events are v′ < 0 events, which in effect transport high
streamwise momentum (u′ > 0) towards the wall. They may therefore be expected to
be mainly responsible for the dissipation of the near-wall region, hence the TKE and
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Figure 9. The 2-time 2-plane correlation function contours ρ[ε,Eref
Q2] versus distance from the wall y+ or y/H

and time lag τuτ /H with respect to TKE conditioned on ejection events at the reference plane yref /H = 0.3
(horizontal dash-dotted lines). The slopes of the solid black lines are ±uτ , respectively. Plots are for (a,b) R230,
(c,d) R360, (e, f ) R500, (g,h) R950, (i, j) R2000. Vertical dashed lines indicate τ = 0.
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Figure 10. The 2-time 2-plane correlation function contours ρ[ε,Eref

Q4] versus distance from the wall y+ or y/H

and time lag τuτ /H with respect to TKE conditioned on sweep events at the reference plane yref /H = 0.3
(horizontal dash-dotted lines). The slopes of the solid black lines are ±uτ , respectively. Plots are for (a,b)
R230, (c,d) R360, (e, f ) R500, (g,h) R950, (i, j) R2000. Vertical dashed lines indicate τ = 0.
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Figure 11. Time evolution of conditionally averaged TKE EQs/Ē at y/H = 0.3, normalised by plane- and
time-averaged TKE, in the lower half-channel. Red signals indicate TKE conditionally averaged over ejections
(s = 2), and blue over sweeps (s = 4). Plots are for (a) R500, (b) R950, (c) R2000.

TDR conditionally averaged over sweep events may be expected to be more strongly
correlated with higher correlation coefficient near the wall. The present correlation
contours are contrary to this expectation. Even though ejection events correspond to v′ > 0
structures that would mainly transport slow (u′ < 0) streamwise momentum away from
the wall, they appear to be better correlated with the near-wall dissipation than sweep
events. For the higher three Reynolds numbers, the correlation levels between reference
ejection-conditioned TKE and near-wall TDR (figures 9f,h, j) vary within 10 % of the
unconditional correlation (figures 4f,h, j), whereas the sweep-conditioned correlation
levels (figures 10f,h, j) are reduced by 20 %–36 %.

In FD TCF, the plane-averaged wall-normal velocity must satisfy 〈v〉( y, t) = 0, an exact
result imposed by the no-penetration boundary condition, homogeneity in the wall-parallel
directions and incompressibility. This suggests that locally positive v′ > 0 and negative
v′ < 0 must occur in pairs at any wall-parallel plane in the channel. As a result, ejections
and sweeps should also happen simultaneously at any plane, and the TKE conditionally
averaged over ejections and sweeps should fluctuate more or less concurrently, as appears
to be approximately the case (see figure 11). On the other hand, it is worth pointing
out that ejections have previously been shown to provide the largest contribution to
the overall Reynolds shear stress and TKE (Willmarth & Lu 1972). From figure 11, in
the near-equilibrium region, the TKE conditionally averaged over ejections is indeed
higher than conditionally averaged over sweeps, indicating that local turbulent motions
associated with ejections are more energetic than sweeps (Farano et al. 2017), which might
be responsible for the faster correlation velocity than that of sweeps towards the core
region.

In the near-wall region, there is little separation between energy containing length scales
and dissipative length scales. Turbulence energetics, whether the TKE or dissipation,
plane-averaged or conditionally averaged over ejections/sweeps, are expected to fluctuate
concurrently near the wall. While we expect the sweeps to be responsible for the
near-wall fluctuations, it is actually the ejections in the near-equilibrium regions that
correlate with the near-wall dissipation better, contrary to our expectation. We present
here a hypothesis to account for this observation. As ejections and sweeps operate in
tandem, anything relating to one should also somehow relate to the other. Presumably,
sweeps are responsible for the connection and travel to the wall, and ejections for the
connection and travel to the core, but correlations conditioned on ejections are stronger
than correlations conditioned on sweeps because ejections are more organised/structured
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Figure 12. Time-averaged mean profile of conditionally averaged Reynolds shear stress over ejections (red
lines) and sweeps (blue lines) for five Reynolds numbers.

than sweeps. In support of this suggestion, we plot in figure 12 the time-averaged mean
profile of conditionally plane-averaged Reynolds shear stress over ejections and over
sweeps, respectively. One may consider the Reynolds shear stress as an indication of
organisation/coherence given that −〈u′v′〉 = 0 if u′ and v′ are uncorrelated, as expected in
the absence of organised coherent flow structure, and therefore higher absolute values
of −〈u′v′〉 indicate higher order/coherence. In the case of FD TCF, the magnitude of
−〈u′v′〉Q2 (time-averaged −〈u′v′〉 conditioned on Q2, i.e. plane-averaged over Q2 regions
only) is significantly larger than −〈u′v′〉Q4 for y > 0.2H, thereby suggesting that ejections
are more organised than sweeps. As a result, the correlations conditioned on ejections in
figure 9 are stronger than the correlations conditioned on sweeps in figure 10, both towards
the wall and towards the core. Note that significant correlations conditioned on sweeps also
appear towards the core region in figure 10, which is as counter-intuitive as the significant
correlations conditioned on ejections towards the wall in figure 9.

4. Dynamics of TPR

Having examined the links between TKE and TDR fluctuations we now turn to the
production of TKE which, anyway, occurs before its dissipation. Of course, one expects the
volume-averaged TPR to lead the volume-averaged TKE simply because TKE builds up
as an integration in time of TPR (see (3.2)). This is confirmed by the cross-correlation
function ρ[PV ,EV ] (red line in figures 1c, f,i,l,o): the peaks of the correlations are at
approximately τuτ /H ∼ −0.1 (time lead) with values of ρ[PV ,EV ] between 0.5 and 0.8
(increasing with Reτ ). The 2-time 1-plane correlation ρ[P,E] (not shown here for brevity),
calculated as in (3.4) by replacing TDR ε with TPR P, shows little/no average time
lag between the plane-averaged TPR and the plane-averaged TKE, suggesting that the
dynamic relation between TPR and TKE is more complex than expected.

In § 4.1, we therefore investigate the 2-time 2-plane correlation ρ[P,Eref ] between TKE at
reference plane yref /H = 0.3 (chosen indicatively as results are very similar for any yref /H
between 0.2 and 0.4) and TPR elsewhere. The TPR fluctuations result from fluctuations of
mean shear and Reynolds shear stress, and we therefore concentrate on both in §§ 4.2 and
4.3. A mechanistic model is proposed in § 4.3 to explain the dynamics relating TPR and
TKE.
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4.1. The 2-time 2-plane correlation: TPR and TKE
We plot in figure 13 the 2-time 2-plane correlation between TKE at reference plane
yref = 0.3H and TPR elsewhere. Positive correlations exist between TKE at the reference
plane and TPR in the near-wall and TPR in the core region. The correlations in the core
region share peak locations similar to those between TKE and TDR (figure 4), but the
levels of correlation between TKE and TPR are significantly lower, and the correlation
peaks do not follow the δy/δτ ≈ uτ line that characterises the path from TKE to TDR.
The core correlation between TKE and TPR must be rooted in the correlation between
TKE and Reynolds shear stress (see § 4.2).

The positive correlations between TKE at the reference plane and TPR in the near-wall
region appear similar to the correlations between TKE at the same reference plane and
TDR in the near-wall region (see figure 4) in terms of both the levels of correlations and
the peak locations of the correlations, i.e. the average time lags. As discussed in §§ 3.2,
3.4 and 3.5, the near-wall dynamics are limited by a small range of scales, and TKE, TDR
and TPR fluctuate almost concurrently near the wall. The similarity between correlations
ρ[P,Eref ] and ρ[ε,Eref ] near the wall is therefore expected. One observation is that the
near-wall production depends on the turbulent energy further away from the wall, which
becomes more evident at higher Reynolds numbers (increasing levels of correlation in the
near-wall region). The peaks of the correlation with time lag instead of time lead indicate
that the near-wall TPR lags the reference TKE. Such an observation may be unexpected,
since one often views the turbulence production as a source of turbulent energy, and TPR
should lead TKE in time, as shown in a volume average sense in § 3.1.

It is worth pointing out that the 2-time 2-plane correlations with time lags in figure 13
are not inconsistent with the time lead of peak ρ[PV ,EV ] observed in the volume-averaged
correlation. The observed positive values in figure 13 of 2-time 2-plane correlations with
time lag in the near-wall and core regions largely cancel the negative values of 2-time
2-plane correlations with time lag in the near-equilibrium region when integrated in the
wall-normal direction, and the overall time-lagged peaks of correlations are attenuated.

4.2. The 2-time 2-plane correlation: Reynolds shear stress and TKE
The time-fluctuating TPR is the product of the time-fluctuating plane average mean
streamwise shear and the time-fluctuating plane-averaged Reynolds shear stress −〈u′v′〉.
(The contribution from the plane-averaged spanwise mean shear and the corresponding
Reynolds shear stress component −〈u′w′〉 is minimal compared to the streamwise
component, i.e. less than 1 % of the overall production.) We therefore analyse the dynamics
of the turbulence production in terms of 2-time 2-plane correlations between TKE at the
reference plane and these two factors.

The TKE and the Reynolds shear stress are closely related to each other in terms of
their time fluctuations. As shown by the correlation plot ρ[−〈u′v′〉,Eref ] in figure 14, the
TKE and the Reynolds shear stress are maximally correlated around the reference plane
with no average time lag. The correlation contours above the reference plane show both
wall-distance lag and time lag along a line of slowest decorrelation that is very close to the
friction velocity up to approximately y = 0.8H. In the near-wall region around the viscous
sublayer, as Reynolds number increases, positive correlations develop with time lag, the
spread of which widens in outer time unit H/uτ , and the levels of correlations increase.

Comparing the correlation contours around the reference plane between ρ[P,Eref ] in
figure 13 and ρ[−〈u′v′〉,Eref ] in figure 14, TKE is strongly correlated with the local Reynolds
shear stress, whereas it is relatively decorrelated with TPR. The difference between the
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Figure 13. The 2-time 2-plane correlation function contours ρ[P,Eref ] versus distance from the wall y+ or y/H
and time lag τuτ /H with respect to TKE at the reference plane yref /H = 0.3 (horizontal dash-dotted lines).
The slopes of the solid black lines are ±uτ , respectively. Plots are for (a,b) R230, (c,d) R360, (e, f ) R500, (g,h)
R950, (i, j) R2000. Vertical dashed lines indicate τ = 0.

996 A12-24

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

76
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.762


Dynamics of turbulent energy and dissipation in channel flow

100

101

102

 y+

100

101

102

 y+

100

101

102

 y+

100

100

101

101

102

102

103

 y+

 y+

–1.0 –0.5 0 0.5 1.0

–2 –1 0 1 2
0

0.2

0.4

0.6

0.8

1.0

y/H

0

0.2

0.4

0.6

0.8

1.0

y/H

0

0.2

0.4

0.6

0.8

1.0

y/H

0

0.2

0.4

0.6

0.8

1.0

y/H

0

0.2

0.4

0.6

0.8

1.0

y/H

–2 –1 0 1 2

–2 –1 0 1 2

–2 –1 0 1 2

–2 –1 0 1 2

–6 –2–4 0 2 4 6

–6 –2–4 0 2 4 6

–6 –2–4 0 2 4 6

–6 –2–4 0 2 4 6

–6 –2–4 0 2 4 6

(e)

(b)(a)

(h)(g)

( j )(i)

(c) (d )

( f )

τuτ/H τuτ/H

ρ[–〈u′v′〉,E ref
]

Figure 14. The 2-time 2-plane correlation function contours ρ[−〈u′v′〉,Eref ] versus distance from the wall y+

or y/H and time lag τuτ /H with respect to TKE at the reference plane yref /H = 0.3 (horizontal dash-dotted
lines). The slopes of the solid black lines are ±uτ , respectively. Plots are for (a,b) R230, (c,d) R360, (e, f )
R500, (g,h) R950, (i, j) R2000. Vertical dashed lines indicate τ = 0.
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above two correlation contours must be due to the time-fluctuating mean shear. If a time-
and plane-averaged mean flow was used, then the plane-averaged mean shear would show
no fluctuations in time, and the correlation contours ρ[P,Eref ] in figure 13 and ρ[−〈u′v′〉,Eref ]
in figure 14 would be identical. The dynamics of the plane-averaged mean shear is
therefore indispensable for the dynamics of TPR.

4.3. Interplay between the Reynolds shear stress and the mean shear: a mechanistic
model

To reveal the dynamics of the plane-averaged mean shear and its relation with the
plane-averaged Reynolds shear stress, we plot in figure 15 the correlation between the
Reynolds shear stress at the reference plane yref = 0.3H and the mean shear elsewhere.
(As already mentioned, the results for yref = 0.3H are indicative of any yref between 0.2
and 0.4.) Very similar, if not near-identical, correlation maps (not shown here for brevity)
are obtained for the correlation between TKE at the reference plane yref = 0.3H and the
mean shear elsewhere. Around the reference plane, there exists a region of anti-correlation
between plane-averaged Reynolds shear stress and mean shear with a spread of time lags.
On the other hand, the mean shear in the near-wall region shows a positive correlation
with the plane-averaged reference Reynolds shear stress in the near-equilibrium region.
High/low TKE or Reynolds shear stress in the near-equilibrium region are followed
with some time lag by low/high mean shear in the same region, and by high/low mean
shear fluctuations in the near-wall region. The anti-correlation of ρ[dU/dy,−〈u′v′〉ref ] in the
near-equilibrium region in figure 15 resolves the discrepancy between anti-correlation in
the contours of ρ[P,Eref ] with time lag and ρ[−〈u′v′〉,Eref ].

The above observations may be interpreted by the following mechanistic model. Around
the near-equilibrium region, when strong ejections and/or sweeps occur, high streamwise
momentum in the outer region is transported towards the wall by sweeps, and low
streamwise momentum in the inner region is transported away from the wall by ejections,
resulting in a local flattening of the mean velocity profile and reduction of the mean
shear dU( y, t)/dy. Therefore, in the near-equilibrium region where viscosity plays little
role, high values of −〈u′v′〉, and therefore also TKE, precede low values of dU/dy,
as well as resulting reduced values of TPR around the same x–z plane. When high
momentum in the outer region is transported to the near-wall region by sweeps, the
overall near-wall momentum increases, while the no-slip boundary condition at the wall
is unaltered. As a result, the mean shear close to the wall becomes elevated, thereby
explaining our observation of a positive correlation with positive time lag between −〈u′v′〉
in the near-equilibrium region and dU/dy in the near-wall region. Since both the near-wall
Reynolds shear stress and the near-wall mean shear are positively correlated with reference
TKE in the near-equilibrium region with time lag, the near-wall TPR is also positively
correlated with TKE in the near-equilibrium region as in figure 13. This mechanistic
model therefore explains how TKE can precede TPR even though volume-averaged TPR
obviously precedes, albeit slightly, TKE.

5. Conclusion

Dynamical interactions between turbulent energetics, specifically turbulent kinetic energy
(TKE), turbulence dissipation rate (TDR) and turbulence production rate (TPR), have
been studied in fully developed turbulent channel flow using temporal correlations
at Reynolds numbers up to Reτ ≈ 2000. By using a minimal computational domain
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Figure 15. The 2-time 2-plane correlation function contours ρ[dU/dy,−〈u′v′〉ref ] versus distance from the wall
y+ or y/H and time lag τuτ /H with respect to plane averaged Reynolds shear stress at the reference plane
yref /H = 0.3 (horizontal dash-dotted lines). The slopes of the solid black lines are ±uτ , respectively. Plots are
for (a,b) R230, (c,d) R360, (e, f ) R500, (g,h) R950, (i, j) R2000. Vertical dashed lines indicate τ = 0.
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capable of capturing the outer large-scale structures (Hwang & Cossu 2010), volume- and
plane-averaged statistics fluctuate in time. For example, plane-averaged fields fluctuate in
time, though of course less than fluctuating fields obtained by a Reynolds decomposition
and therefore fluctuating around respective plane-averaged fields.

The volume-averaged TKE is found to be correlated with TDR at a later time (i.e. time
lag) as in periodic/homogeneous turbulence (Goto & Vassilicos 2015) where this time lag
was recognised as resulting from the turbulence energy cascade. The volume-averaged
TPR is correlated with TKE at a later time simply because TPR is an energy input rate.

Moving to plane-averaged TKE, TDR and TPR at various wall-normal locations,
correlations between plane-averaged TKE and TDR at the same plane reveal almost zero
time lag/lead throughout the channel (as in Apostolidis et al. 2022). The volume-averaged
time lag between TKE and TDR must therefore result from non-local processes in the
wall-normal direction.

Non-local correlations are then investigated with 2-time 2-plane correlations,
i.e. correlations between plane-averaged TKE at a reference plane in the outer
near-equilibrium region (where a local minimum in the 2-time 1-plane correlation is found
between TKE and TDR) and plane-averaged TDR at another plane. Positive correlations
between reference plane TKE and core region TDR have been revealed with positive time
lags δτ and wall-distance lags δy related by δy/δτ ≈ uτ for all Reynolds numbers. There is
therefore a correlation path from TKE at the outer near-equilibrium region to TDR in the
core that is reminiscent of the momentum transport path by ejections (Flores & Jiménez
2010).

Another path of positive correlation between reference plane TKE and near-wall region
TDR has also been found with correlation velocities δy/δτ significantly smaller than uτ ,
and less well-defined. The path towards the near-wall region shows an increasing spread
of time lags with increasing Reynolds number, as also, in fact, observed in the correlation
between volume-averaged TKE and TDR. This is a mechanism by which turbulence in
the outer part of the near-equilibrium layer influences/controls near-wall TKE, TDR and
TPR in a way that involves elevation of production/dissipation throughout the overlap and
buffer layers. This mechanism is very different from the superposition and modulation
effect described in Hutchins & Marusic (2007b), but is reminiscent of a similar effect seen
by Doohan et al. (2022) at much lower Reynolds number.

A plane-local anti-correlation also exists between TKE and TDR in the same plane
within the near-equilibrium region with time lag (from TKE to TDR). This anti-correlation
signifies high/low TKE preceding low/high TDR around the reference plane. If the
principal mechanism of depletion of local TKE occurs along the two spatio-temporal paths
identified in the two preceding paragraphs, so that high TDR follows high TKE along these
paths, then little amounts of TKE will be left on the reference plane, thereby leading to
relatively low TDR on that plane at later times.

Taking a reference plane near the wall rather than in the outer part of the
near-equilibrium region leads to significant instantaneous correlations between near-wall
TKE and core region TDR as well as near-wall TDR and core region TDR. This
observation points to an additional effect, which may be that near-wall and core region
TDR are both controlled in a synchronised way by large energy-containing structures with
sizes comparable to the half-channel height.

The relevance of ejections/sweeps to TKE transport has been studied by calculating
plane-averaged TKE conditionally on ejections/sweeps. Ejection-based TKE correlates
with TDR in a way similar to the unconditional TKE in terms of both the correlation
velocity and levels of correlations, whereas the sweep-based TKE is significantly less

996 A12-28

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

76
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.762


Dynamics of turbulent energy and dissipation in channel flow

correlated with TDR. It is hypothesised that the correlation is higher when conditioning
plane-averaged TKE on ejections rather than sweeps along both paths towards the core
and towards the wall because ejections have higher absolute values of Reynolds shear
stress and are therefore better organised than sweeps.

While the volume-averaged TPR evidently precedes TKE, 2-time 2-plane correlations
reveal that high/low reference-plane-averaged TKE precedes high/low plane-averaged TPR
in both the core and near-wall regions when taking the reference plane in the outer
near-equilibrium region. In this reference plane, plane-averaged TKE and plane-averaged
TPR are anti-correlated with positive time lag from high/low TKE to low/high TPR.

We have explained these TPR observations with a mechanistic model. High
instantaneous Reynolds shear stress flattens the local mean flow profile (reduces the local
mean shear) in the near-equilibrium region as ejections and sweeps mix high streamwise
momentum above with low streamwise momentum below the reference plane. It then
strengthens the mean shear in the near-wall region as high streamwise momentum is
brought close to the wall, where viscosity kicks in.
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